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Abstract001

Open-ended Event Forecasting (OEEF) is vital002
in various real-world applications. However,003
it faces challenges, including limited availabil-004
ity of datasets that enhance LLM’s predictive005
capabilities and crude methods of organizing006
forecast-related information. In this work, we007
construct a large-scale dataset NewsForest that008
contains 12,406 prediction chains reflecting009
the drivers of event development. To effec-010
tively extract information from the prediction011
background, we propose a prediction method,012
ForestCast. ForestCast organizes all relevant013
news into a story tree and predicts each branch014
based on the story tree. ForestCast has five015
main steps: (1) collecting and cleaning news,016
(2) clustering news into event nodes, (3) con-017
structing the news story tree, (4) mining the018
semantic structure of the news story tree, (5)019
predicting the next node and evaluating the020
quality of the predictions. Experiments demon-021
strate that the NewsForest dataset enhances the022
model’s ability to predict these structures. The023
ForestCast method improves the accuracy and024
quality of predictions.025

1 Introduction026

Event prediction shows great application potential027

in various fields such as policy making, risk man-028

agement, and financial markets (Zhao, 2022). By029

analyzing historical trends and current dynamics,030

accurately mining evolutionary structures of events031

and predicting future events can effectively help032

decision-makers anticipate and respond to possible033

challenges and opportunities (Zhao, 2022).034

Traditional forecasting tasks can be categorized035

into script event prediction (Chambers and Juraf-036

sky, 2008) and temporal knowledge graph comple-037

tion (TKGC) (Leblay and Chekol, 2018). These038

tasks are limited to predicting specific attributes039

and can only select answers from a finite range (Lin040

et al., 2022; Ma et al., 2024; Shi et al., 2023; Xu041

et al., 2023). Real-world developments are often042

not limited to a specific scope, and critical informa- 043

tion is not always a defined attribute. For example, 044

when predicting the trend of US-China tariffs, a 045

specific tariff rate is not the sole focus of the pre- 046

diction. It is also difficult to define the scope of 047

the future tariff. Open-ended Event Forecasting 048

(OEEF) is proposed to address these critical and 049

diverse forecasting tasks (Wang et al., 2025). 050

The OEEF task faces significant challenges. 051

First, existing datasets (Li et al., 2021; Caselli and 052

Vossen, 2017) focus solely on data crawling and 053

attribute extraction, overlooking the developmental 054

logic of events and topics’ true meaning. This leads 055

to an inability to improve the prediction ability of 056

LLMs, and even a steep drop in accuracy for open- 057

ended tasks. Second, existing prediction methods 058

deal with the background information of the predic- 059

tion by simple clustering and summarization (Guan 060

et al., 2024; Ma et al., 2024; Wang et al., 2025), 061

ignoring the complex relationships between events 062

in the background information. 063

To address the above challenges, this paper 064

proposes a dataset NewsForest and a prediction 065

method ForestCast. The NewsForest dataset se- 066

lects topics that reflect the drivers of event develop- 067

ment and uncovers the logical progression relation- 068

ships within these topics. It enables LLMs to learn 069

hidden event development drivers and enhance their 070

forecasting capabilities. The ForestCast method 071

aims to mine the evolutionary structures of events 072

from a prediction background and provides predic- 073

tions for multiple evolutionary directions of events. 074

We have implemented the ForestCast method on- 075

line. It can be accessed at http://newsinsight.cn 1 076

and the associated datasets and code are posted at 077

https://anonymous.4open.science/r/Newsforest. 078

The main contributions of this research include 079

the following two aspects: 080
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• We construct NewsForest, a large OEEF dataset081

that can be used to enhance the event predic-082

tion capabilities of LLMs. The dataset contains083

12,406 prediction chains covering the four most084

significant domains.085

• We develop ForestCast, an OEEF method. This086

method can organize massive news into a news087

story tree and use a fine-tuned model to predict088

the future development of the story tree.089

2 Related Work090

2.1 News Story Tree Construction091

The Topic Detection and Tracking(TDT) (Allan092

et al., 1998) helps users quickly extract key infor-093

mation from massive news by thematically cluster-094

ing and continuously tracking news events. How-095

ever, the TDT task ignores potential dependency096

relationships between events. Researchers propose097

various methods to capture the structural features098

of event evolution. Nallapati et al. (2004) quantifies099

the dependency between two events based on tem-100

poral relationships and TF-IDF vector similarity.101

Further, Yang et al. (2009) introduces the concept102

of event graphs to describe the relationship between103

events.104

However, these studies only focus on pairwise105

event relationships and fail to fully reflect the over-106

all event evolutionary structures. Shahaf et al.107

(2012) proposes "metro maps" to describe event108

evolutionary structures. Liu et al. (2018, 2020) pro-109

poses a structure more aligned with event develop-110

ment patterns and user cognition—the news story111

tree, which constructs dependencies between two112

events through a keyword map of the text. How-113

ever, these methods are still limited to pruning oper-114

ations on the graph structure and fail to effectively115

reflect the internal cohesion within the same branch116

and the distinctiveness between different branches.117

Moreover, existing methods for capturing event118

evolutionary structures mostly rely on low-level119

text feature analysis, such as keyword graphs (Liu120

et al., 2020), keyword reoccurrence rate (Shahaf121

et al., 2012), and TF-IDF vectors (Nallapati et al.,122

2004). In contrast, the method proposed in this pa-123

per innovatively introduces LLMs and pre-trained124

sentence encoders, enabling analysis at a higher125

semantic level.126

2.2 Event Prediction127

Script event prediction (Chambers and Jurafsky,128

2008) requires selecting the most likely subsequent129

event from a candidate list given an event con- 130

text. In recent years, several studies have predicted 131

the most probable outcomes by constructing event 132

chain (Wang et al., 2017, 2024), event evolution 133

graph (Ding et al., 2019; Li et al., 2018; Du et al., 134

2022), or event graph deformation structure (Zhou 135

et al., 2021; Ma et al., 2023; Granroth-Wilding and 136

Clark, 2016) as event evolutionary structures. On 137

the other hand, Temporal Knowledge Graph Com- 138

pletion (TKGC) (Xia et al., 2024; Deng et al., 2020; 139

Rong et al., 2025; Zhang et al., 2024a,b) addresses 140

incomplete temporal knowledge graphs by learning 141

representations of entities, relations, and times to 142

predict missing information. 143

However, script event prediction and TKGC are 144

limited to predicting specific attributes and can only 145

select results within predefined scopes. When pre- 146

dicting real-world events, these methods offer in- 147

sufficient guidance. Therefore, Guan et al. (2024) 148

first proposes the task definition of OEEF, charac- 149

terized by: (1) diverse predictive questions cov- 150

ering different stages of event development and 151

viewpoints, promoting comprehensive analysis; (2) 152

flexible prediction results with no restrictions on 153

scope, format, or length, allowing for semantically 154

complete detailed responses. 155

Guan et al. (2024) proposes a prediction method. 156

However, this method only clusters and sum- 157

marises the background news, ignoring the depen- 158

dency relationship between related events. In the 159

dataset construction of OEEF, Guan et al. (2024) 160

provides a small manual dataset for testing pur- 161

poses only. Wang et al. (2025) further proposes 162

a large OEEF dataset; however, performance de- 163

creases after fine-tuning models with this dataset. 164

We hypothesise that the dataset organizes topics by 165

simply listing decades of history for a place or peo- 166

ple, making it difficult to capture the hidden factors 167

driving event development and the underlying logic 168

of events. 169

3 NewsForest 170

We construct a large dataset containing 12,406 pre- 171

diction chains. The dataset can be used directly for 172

model training or evaluation. We use news from 173

2024-10-01 to 2025-04-20 to avoid the knowledge 174

leakage problem of LLM as much as possible. 175

3.1 Data Selection and Cleaning 176

The topics we select are typically event-oriented 177

and strategic, better reflecting the hidden drivers 178
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Header Content

Instruction Task: Please predict the next node in the chain based on the background.

Input Background: In New York, a federal judge kept a lawsuit against Trump alive, while Trump’s legal team pushed for dismissals. Judges delayed or
recused from Trump-related cases. Democrats confirmed judges pre-inauguration, and Republicans tried to stall Trump trials.
Chain: 1. A federal judge denied throwing out a baseless lawsuit filed against Trump, maintaining its validity in court proceedings.
2. In Colorado, Republican judges dismissed Trump’s election interference and secret documents cases, potentially setting Aileen Cannon as a future
AG; these rulings could sway the outcome of Trump supporter candidate selection in court appointments.
3. Judges continue to cancel Trump’s 2020 election case court deadlines post-presidential win, with a judge shutting down GOP challenge months
after Trump’s victory.
4. The judge paused Trump-related January 6 cases, citing special counsel’s request and concerns about timing after Trump’s election win and before
his inauguration.

Chosen After Joe Biden’s victory in the US presidential election, a judge paused Donald Trump’s legal challenges to the 2020 election results. This decision
came shortly after the formal certification of the election outcome. Judge Jack Smith put the federal election interference case against Trump on hold.

Reject Rioters sought charges dismissal unless Trump was also convicted, but lost in court, and were sentenced to prison following the Capitol riot.

Table 1: Example of masked DPO training data

of event development. We focus on the four most179

instructive domains: economics, politics, military,180

and social events (Table 2).

Domain Examples

Economics (tariff, China), (stock, market)
Politics (elect, republican), (trump, China)
Military (NATO, Ukraine), (America, Iran)
Social Events (Florida, hurricane), (police, racism)

Table 2: Sample topics from different domains in the
NewsForest dataset

181

We select keyword groups for popular topics182

from the past six months. We query all articles183

with keywords in their titles from our GDELT-184

based (Leetaru and Schrodt, 2013) database. To185

ensure topic coherence, we semantically encode the186

article headlines using all-MiniLM-L6-v2. We use187

the HDBSCAN algorithm (Rahman et al., 2016)188

to cluster the articles and retain only the largest189

cluster as the final data source. For each topic, to190

ensure coverage of both long-term and short-term191

prediction tasks (Wang et al., 2025), we set news192

search time lengths of 20, 30, 40, 60, and 80 days.193

Within the determined time length, we randomly194

set the period.195

3.2 Dataset Main Construction196

After determining the keywords and period, we197

construct the news story tree. Constructing the198

news story tree involves three steps: clustering199

news into event nodes, constructing the news story200

tree, and mining the semantic structure of the news201

story tree. Since the process of constructing the202

story tree in this step is identical to the method used203

in the prediction approach, we provide a detailed204

explanation of the story tree construction steps in205

Section 4.2, 4.3, and 4.4.206

3.3 Dataset Masking and Specifics 207

After constructing the news story tree using the 208

ForestCast method, we treat the path from a leaf 209

node to the root node as a news development chain. 210

The root node’s branch summary serves as back- 211

ground. We need to mask each news development 212

chain further to enable the LLMs to learn hidden 213

event evolutionary structures from the dataset. For 214

each chain, we mask one or more nodes at the end 215

of the chain. If the chain length is greater than 6, 216

we mask the last third of the nodes in the chain. The 217

masked nodes serve as the correct answers for the 218

chain prediction. Thus, long chains can generate 219

two or more prediction chains. If the chain length 220

is less than 6, only the last node is masked. Addi- 221

tionally, we use the DPO method to train the model, 222

so we select the node with the lowest attachment 223

score as the rejection answer. An example is shown 224

in Table 1. In the end, we get the dataset with 225

12,406 prediction chains. We also present more 226

information about the dataset in Appendix A.2.1. 227

3.4 Dataset Quality Assessment 228

We found a lack of quality assessment for event 229

evolutionary structures in TDT tasks. Therefore, 230

referencing the evaluation methods in Guan et al. 231

(2024), we propose six evaluation metrics, detailed 232

in Table 3. Atomicity evaluates the node itself. Va- 233

lidity and relevance assess the relationship between 234

the current node and its preceding nodes. Chain 235

consistency and causal insight evaluate the entire 236

chain. Branch rationality assesses the whole tree. 237

We provide scoring examples using LLM to rate 238

six attributes on a 1-5 score. 239

Evaluation results (Figure 2) show average 240

scores from 2.57 to 3.74. Chain consistency and 241

branch rationality score 3.66 and 3.70, indicating 242

good structural integrity. We also present more as- 243
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Figure 1: The pipeline of the ForestCast method.

Metric Description

Atomicity Is the event description specific?
Validity Does the event provide new information?
Relevance Are the main participants consistent consecutively?
Chain Consistency Is logic consistent throughout the chain?
Causal Insight Are hidden relationships captured?
Branch Rationality Are branches distinct/non-mergeable?

Table 3: Explanation of evaluation metrics for news
story trees

sessment information about the NewsForest dataset244

in Appendix A.2.2 and A.2.3.245

Figure 2: Evaluation results of the NewsForest dataset.

4 ForestCast246

Existing work on processing predictive information247

remains focused on extracting attributes between248

events and linking them based on those attributes. 249

These works overlook the developmental logic and 250

underlying drivers of the information. We propose 251

a method that further predicts events based on the 252

organization of event evolutionary structures. Our 253

method requires users to provide topic-related key- 254

words. Then we can automatically complete news 255

collection and analysis, returning the story tree 256

and its predictions within 5 minutes. In the Ap- 257

pendix A.1.4, we provide the time complexity of 258

the method and its efficiency in real situations. Fig- 259

ure 3 shows the main interface of the website. We 260

detail other functions in the Appendix A.1.1. As 261

shown in Figure 1, our ForestCast method is di- 262

vided into five modules: (1) collecting and clean- 263

ing news; (2) clustering news into event nodes; (3) 264

constructing the news story tree; (4) mining the 265

semantic structure of the news story tree; (5) pre- 266

dicting the next node and evaluating the quality of 267

the predictions. 268

4.1 Collecting and Cleaning News 269

Our data is sourced from GDELT to ensure com- 270

prehensive and credible news sources. We obtain 271

news headlines, links, publication times, and media 272

sources from the GDELT project. We then retrieve 273

the full text of the news based on the links. We 274

use keyword searches for news. After obtaining 275

relevant news, we deduplicate the articles. 276
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4.2 Clustering News into Event Nodes277

After obtaining news, we need to cluster news arti-278

cles narrating the same event. These clusters serve279

as event nodes in the news story tree. Consid-280

ering clustering speed and accuracy, we use the281

semantics-based USTORY (Yoon et al., 2023)for282

clustering.283

4.3 Constructing the news story tree284

In the current work on the TDT task, the story285

tree is the visual form that best matches the user’s286

cognitive habits and event evolutionary structures.287

Therefore, we construct story trees to organize rel-288

evant news.289

4.3.1 Calculating Dependency Degree290

Between Two Nodes291

Inspired by Yang et al. (2009), we regard the292

hidden dependency relationship between events293

is determined by the participants, positions, ob-294

jects, and media sources. Therefore, we use295

en_core_web_sm text processing model to extract296

important terms from articles, deduplicate and dis-297

ambiguate them to obtain four sets of important298

terms: setparticipants, setposition, setobject, setsource.299

Given the varying importance of terms, we cal-300

culate their frequency of occurrence and assign301

weights accordingly. After reordering terms by302

weight, we obtain weighted lists of important303

terms: listparticipants, listposition, listobject, listsource.304

We also assume that the four types of impor-305

tant terms have different influences on the de-306

pendency relationship, setting different weights307

αparticipants, αposition, αobject, αsource. We aim for308

the entire construction process to be based on the309

semantic level, thus using the pre-trained word en-310

coder GloVe (Pennington et al., 2014) to semanti-311

cally encode the lists of important terms, obtain-312

ing weighted vector lists: vecparticipants, vecposition,313

vecobject, vecsource. Now, we can calculate the de-314

pendency score between two nodes by computing315

the weighted sum of the cosine vector similarities.316

All the details of the hyperparameter(α, µ, λ) set-317

tings are provided in the Appendix A.1.3.318

DepScorei,j =
∑

k∈{part,pos,obj,src}

αk · sim(vk,i, vk,j)319

4.3.2 Calculating Node and Branch320

Attachment Scores321

To ensure that the event evolutionary structures322

form a cohesive whole, we must design the con-323

struction method to enhance the distinctiveness be- 324

tween different tree branches while reinforcing the 325

cohesion within the same branches. Our design 326

idea is that when attaching a candidate node v to 327

the tree at potential attachment node u, we should 328

consider the dependency score dep(v, u) as well as 329

the dependency scores between v and the nodes in 330

the parent branch (Pu) and sibling branches (Su) 331

of u. The dependency score of the potential attach- 332

ment node accounts for a proportion µ. The scope 333

of parent and sibling branch nodes is defined as 334

tracing back to the first parent node with multiple 335

children of the potential attachment node. Within 336

the parent branch, node weights decay as the dis- 337

tance to the potential attachment node increases. 338

Within sibling branches, all nodes are assigned the 339

same weight. We want the dependency score be- 340

tween v and Pu to be large, and the dependency 341

score between v and Su to be small, thus setting a 342

penalty coefficient λ. 343

AttachScorev,u =µ · dep(v, u) 344

+ (1− µ) ·
∑
p∈Pu

wp · dep(v, p) 345

− λ · 1

|Su|
∑
s∈Su

dep(v, s) 346

where: 347

• Pu: Set of parent branch nodes from u to, 348

but not including, the first multi-child parent. 349

wp = exp(−β · d(p, u)), with d(p, u) as the 350

distance and β > 0. 351

• Su: Set of sibling branch nodes sharing u’s 352

multi-child parent. |Su| is the number of sib- 353

lings. 354

4.3.3 Constructing the news story tree 355

After determining the attachment method, we can 356

construct a tree from scratch. Initially, we define 357

the time of an event node as the average time of 358

the news articles associated with it. We reorder 359

the nodes chronologically to obtain an event node 360

sequence. To better initialise the news story tree, 361

we add a pre-construction phase to filter out nodes 362

at the beginning of the sequence that are irrelevant 363

to the topic. We select the first five nodes of the 364

sequence to generate an initial tree. We then re- 365

move nodes from the event node sequence whose 366

attachment scores fall below the initial attachment 367

threshold and add them to a queue of detached 368
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nodes. The remaining nodes are re-added to the369

sequence. For the formal construction of the news370

story tree, we sequentially take nodes from the371

sequence as candidate nodes to be attached. All372

nodes already attached to the tree serve as poten-373

tial attachment nodes. We calculate the candidate374

node’s attachment score to all potential attachment375

nodes and attach the candidate node to the node376

with the highest score. Similarly, during the formal377

construction phase, if a node’s highest attachment378

score is below the attachment threshold, it is added379

to the queue of detached nodes.380

4.4 Mining the Semantic Structure of the381

News Story Tree382

Previous works typically attach nodes after extract-383

ing low-level textual features, neglecting semantic-384

level information. Benefiting from LLMs’ pow-385

erful text generation capabilities, we mine the se-386

mantic structure of the news story tree after it is387

constructed. This allows users to grasp the hid-388

den event evolutionary structure better. In partic-389

ular, we execute the following tasks: (1) use an390

LLM to obtain event node summaries; (2) use an391

LLM to obtain the branching rationale and branch392

summaries for the news story tree; (3) adjust the393

branches based on their summary similarity. All394

prompts are provided in the Appendix A.1.2.395

4.4.1 Obtaining Event Node Summaries Using396

LLM397

We pass all news headlines under an event node to398

LLM to obtain a node summary.399

4.4.2 Obtaining Branching Basis Using LLM400

LLMs exhibit limited proficiency in handling long401

texts and tree-structured data. Therefore, we em-402

ploy a leaf-root data processing method. After403

obtaining node summaries of all nodes, we start404

from the leaf nodes. We conduct a branch summa-405

rization for the branch containing a leaf node. The406

scope of this branch extends to the first multi-child407

parent node, excluding the multi-child parent node408

itself. We pass the node summaries of all nodes409

in this branch to LLM to get a branch summary.410

After obtaining all branch summaries for a multi-411

child parent node through post-order traversal, we412

pass these branch summaries and the node sum-413

mary to LLM. We instruct the LLM to generate the414

branching rationale for distinct branches and to syn-415

thesize all branch summaries along with the node416

summary of the multi-child parent. This summary417

becomes the branch summary for the multi-child 418

parent node. When a node has a branch summary, 419

we prioritise using the branch summary over the 420

node summary. This way, we can aggregate all 421

branch information layer by layer. By traversing 422

the entire news story tree in this post-order manner, 423

we can obtain the branching rationale and branch 424

summary for each branch. Additionally, we obtain 425

a summary of the entire tree, as the root node’s 426

branch summary aggregates information from all 427

nodes. 428

4.4.3 Adjust the branches based on their 429

summary similarity 430

We use a pre-trained sentence encoder, all-MiniLM- 431

L6-v2 (Wang et al., 2021), to encode node sum- 432

maries. We perform a post-order traversal of the 433

tree. We sequentially calculate the cosine similarity 434

between a node’s summary and its parent node’s 435

summary. If the similarity is below a threshold, the 436

node and its children are reattached to the root node. 437

If a child of the root node falls below the threshold, 438

this child and its descendants are removed from 439

the news story tree and added to the queue of de- 440

tached nodes. Eventually, the detached nodes are 441

presented separately to the user. 442

4.5 Predicting the next node and evaluating 443

the quality of the predictions 444

After obtaining the story tree’s semantic structure, 445

we use LLM to predict the semantic level. Specifi- 446

cally, we treat the path from a leaf node to the root 447

node as a news development chain. We use the 448

root node’s branch summary as background con- 449

text. After passing the background and the news 450

development chain to LLM, we require the model 451

to predict the next node of the chain. Finally, we 452

attach the predictions to the end of the news story 453

tree and assess their quality. Specific assessment 454

methods refer to Section 5.2. Additionally, we use 455

the prediction model Qwen2.5-7B, which has been 456

fine-tuned with the NewsForest dataset. Section 5.1 457

shows that this fine-tuning process effectively im- 458

proves the model’s prediction accuracy and quality. 459

5 Experiments 460

As the OEEF task is relatively new, there is no 461

benchmark in the OEEF task. We will demonstrate 462

the effectiveness of our method and dataset directly 463

through experiments. Our experiments aim to an- 464

swer two questions: (1) Can our ForestCast method 465
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assist humans or LLMs in capturing event evolu-466

tionary structures from complex news? (2) Does467

our NewsForest dataset capture hidden real-world468

relationships that LLMs can learn?469

5.1 Experimental Method470

Ye et al. (2024) propose MIRAI to evaluate a471

model’s ability to predict international relations.472

However, it cannot evaluate the prediction ability473

of models under OEEF. Therefore, we design an474

evaluation method inspired by the MIRAI. The475

difficulty in evaluating OEEF results is that if the476

prediction is general, it is more likely to be true.477

Thus, we need to evaluate both the quality and ac-478

curacy of the prediction. Referencing Guan et al.479

(2024) for assessing the quality of predictions, we480

implement a dual evaluation of prediction accuracy481

and quality. We extract the prediction results from482

the forecasting model. We then search online for483

some latest related news and pass this information484

on to an evaluation LLM. The evaluation LLM de-485

termines if the prediction has already occurred. If486

it has, we continue to score the prediction result for487

atomicity, validity, relevance, causal insight, and488

chain consistency(Appendix A.3).489

We use ForestCast to create an up-to-date news490

story tree dataset. Topics include recent hot topics491

(Russia-Ukraine negotiations) occurring between492

April 13 and 20, 2025, and long-term popular top-493

ics from the past six months (US tariff policy). For494

these topics, we use ForestCast to construct a test495

dataset with time lengths of 20, 30, 40, 60, and496

80 days, all ending on April 20, 2025. We reserve497

ten days to allow all true predictions to occur. We498

complete the evaluation of all predictions between499

May 1 and 3, 2025. To demonstrate that ForestCast500

can assist humans or LLMs in capturing event evo-501

lutionary structures from a flood of news, we create502

the news timeline dataset based on the news story503

tree dataset. We replace the node summaries in504

the chains with all news headlines under the event505

nodes. These headlines are then reordered by their506

publication time to form a news timeline dataset.507

To demonstrate that the NewsForest dataset cap-508

tures hidden real-world relationships that LLMs509

can learn, we train the Qwen2.5-7b model with510

NewsForest. In our experiments, we locally deploy511

the Qwen2.5 series models (Qwen, 2024)for testing.512

We also test Deepseek-V3-671b (DeepSeek-AI,513

2024), one of the leading models without deep rea-514

soning, and Gemini-2.5-pro-0325 (Gemini Team,515

2023), one of the leading models with deep rea-516

soning(via API). We provide training details in the 517

Appendix A.4.1. 518

5.2 Evaluating Story Trees for Event 519

Evolutionary Structures 520

We use five models to make predictions on the story 521

tree dataset and the timeline dataset. Results are in 522

Table 4 and 5. We analyze the experimental results 523

in terms of both quality and accuracy, with specific 524

conclusions as follows: 525

(1) Pass@1 accuracy is critical in real-world sce- 526

narios. And the news story tree dataset generally 527

performs better on pass@1. Multiple rounds of 528

generation show marginal gains. This may be due 529

to the task’s high demand for logical consistency 530

in generation, resulting in multiple rounds of gen- 531

eration predicting in the same direction. In the real 532

world, the predictions of each branch should also 533

have unique directions. 534

(2) Deepseek-V3-671b and Gemini-2.5-pro- 535

0325 partially perform better on the news time- 536

line dataset. First, this is because the news time- 537

line dataset has more raw data. This suggests that 538

more capable models can capture more informa- 539

tion from the raw data in the news timeline dataset, 540

thus improving the prediction accuracy. However, 541

DeepSeek and Gemini have significantly lower pre- 542

diction quality than the other models. This suggests 543

that with the emergence of multiple responses, the 544

more capable models show a tendency to explore 545

different directions of temporal development, simi- 546

lar to the different branches of our story tree. They 547

also perform lower on atomicity, proving that the 548

model improves the prediction correctness by giv- 549

ing fuzzy predictions. This proves that fine-tuning 550

of small models as predictive models is necessary. 551

(3) The news story tree has higher scores and 552

a wider range, indicating that the average perfor- 553

mance and potential of the dataset are both greater. 554

(4) The largest gaps between the two datasets 555

are in the causal and relevance metrics. This means 556

that the news story tree is better able to grasp the 557

event evolutionary structures. 558

(5) Additionally, the news story tree dataset per- 559

forms more consistently on the long and short-term 560

prediction tasks, as detailed in the Appendix A.4.2. 561

5.3 Evaluating the Enhancement of Prediction 562

Capability with Fine-Tuned Models 563

To demonstrate that NewsForest captures learn pro- 564

gression drivers learnable by models, we use the 565
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News Timeline Dataset News Story Tree Dataset

Model pass@1 pass@3 pass@5 pass@1 pass@3 pass@5

Qwen2.5-7b 37.11% 71.78% 86.22% 43.11% 78.22% 91.56%
Qwen2.5-7b-lora-dpo 38.66% 73.11% 86.89% 46.22% 79.77% 91.56%
Qwen2.5-14b 45.33% 78.67% 92.00% 48.67% 82.22% 92.67%
Deepseek-V3-671b 44.44% 78.66% 91.33% 47.78% 79.33% 90.67%
Gemini-2.5-pro-0325 48.44% 85.33% 94.44% 52.00% 81.33% 91.33%

Table 4: Prediction accuracy of different models on news timeline dataset and story tree dataset

News Timeline Dataset News Story Tree Dataset
Model Atom. Rel. Valid. Causal. Consist. Atom. Rel. Valid. Causal. Consist.
Qwen2.5-7b 2.99 2.33 2.70 2.66 3.78 3.46 3.07 2.86 3.27 3.72
Qwen2.5-7b-lora-dpo 2.97 2.26 2.58 2.61 3.51 3.50 3.06 2.75 3.29 3.77
Qwen2.5-14b 3.01 2.44 2.29 2.71 3.55 3.48 3.19 2.91 3.40 3.77
Deepseek-V3-671b 3.02 2.47 2.12 2.56 3.23 3.41 3.16 2.56 3.02 3.72
Gemini-2.5-pro-0325 2.89 2.37 2.07 2.41 3.06 2.88 2.90 2.15 2.74 3.56

Table 5: Prediction quality scores(average of five responses) for different models on the news timeline dataset and
news story tree dataset

NewsForest dataset to train Qwen2.5-7b. Compar-566

ing the prediction results of Qwen2.5-7b-lora-dpo567

and Qwen2.5-7b in Table 4 and 5, we find that:568

(1) After training, our prediction accuracy im-569

proves significantly on two datasets.570

(2) The quality of the news timeline dataset de-571

creases, and its accuracy increases. We find that572

Gemini exhibits lower quality but higher accuracy573

on the news timeline dataset. Therefore, we hy-574

pothesize that the quality decline in the fine-tuned575

model is because it begins to explore different de-576

velopmental directions on the news event timeline577

dataset, resulting in reduced quality but increased578

accuracy.579

This indicates that NewsForest contains progres-580

sion drivers that the LLM can capture.581

6 Discussion582

This research advances Open-Ended Event Fore-583

casting (OEEF) through two major contributions:584

the NewsForest dataset and the ForestCast method.585

NewsForest is designed to enhance LLMs by teach-586

ing them event development logic. ForestCast or-587

ganizes news into semantic story trees, enabling588

predictions along multiple event trajectories.589

Experiments confirm that NewsForest and590

ForestCast significantly enhance LLM perfor-591

mance. Story trees significantly improve models’592

ability to understand complex event dynamics com-593

pared to linear timelines. Fine-tuning LLMs with594

NewsForest further enhances performance. On the595

news timeline dataset, the prediction accuracy of 596

models increases, but the quality drops. This sug- 597

gests that NewsForest’s training encourages models 598

to explore diverse event paths. 599

In addition, we made an important discovery. By 600

comparing the performance of different models, we 601

can prove that more powerful LLMs cannot replace 602

fine-tuning models and organizing prediction back- 603

ground information. Larger models like Deepseek 604

and Gemini sometimes perform better on the time- 605

line dataset containing more information, but the 606

prediction quality is significantly lower. However, 607

NewsForest-trained smaller models better balance 608

accuracy and quality. 609

This work addresses persistent OEEF issues. Ex- 610

isting datasets(Wang et al., 2025; Ma et al., 2024) 611

often lack development logic, hindering LLM pre- 612

dictive power and even degrading performance. 613

NewsForest counters this with rich event logic, en- 614

abling models to learn progression drivers. Tra- 615

ditional methods like basic clustering(Guan et al., 616

2024) fail to capture event dependencies, whereas 617

ForestCast’s story trees offer a sophisticated, se- 618

mantically rich framework for forecasting. 619

Future research could explore the application 620

of ForestCast to more diverse data sources, opti- 621

mise the algorithm for building news story trees, 622

and continue to improve the performance of LLMs 623

under the OEEF task. 624
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Limitations625

First, our data source is singular, including only626

news. In contemporary society, social media also627

provides much critical information about event de-628

velopments. Second, automatic evaluation methods629

based on LLMs may differ from human evaluation630

methods. Future work will aim to bridge the gap631

between these two approaches.632

Ethics Statement633

In our study, ForestCast is developed using open-634

source projects, including GDELT. These resources635

have been widely employed in other studies, en-636

suring that no ethical standards are compromised.637

Regarding compatibility with original access con-638

ditions, the GDELT data is publicly accessible for639

research, and our derivative dataset (NewsForest)640

is used solely within this context, ensuring compli-641

ance with GDELT’s terms.642
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A Appendix855

A.1 ForestCast856

Our method has been deployed live.Figure 3 is a857

screenshot of the main interface. In this section,858

we specify the additional functionality, method859

specifics, and time complexity of our implementa-860

tion.861

A.1.1 Function Demonstration862

Keyword Extraction To enable users to grasp863

the development structure of the story tree quickly,864

we extract keywords for each node. The keyword865

extraction follows a rule prioritizing high recur-866

rence rates within the same branch and low recur-867

rence rates across different branches. Our key-868

words are derived from a deduplicated list of key869

entities associated with the node. An example is870

shown in Figure 4.871

Tree Folding and Unfolding When there are too872

many news articles, it results in an excessive num-873

ber of nodes. The interface cannot display the com-874

plete story tree. Therefore, we implement node875

folding and unfolding functionalities for the story876

tree. This allows users to focus on specific branches877

while maintaining an overview of the tree. An ex-878

ample is shown in Figure 5.879

News Data Analysis To provide users with both880

a global and detailed understanding of news related881

to a topic, we analyze the raw news data. In the882

sidebar, we display the publication patterns of dif-883

ferent news outlets across various periods. The col-884

ors of the nodes represent different media sources.885

Upon clicking a specific node, the sidebar displays886

the publication distribution of news linked to that887

node. An example is shown in Figure 3.888

Branch and Node Information Display We889

present extracted semantic information to help890

users understand the event evolutionary structure.891

When hovering over a branch, we display the892

branching rationale; when hovering over a node, 893

we show a node summary. Upon clicking a node, 894

the original information is displayed, with news 895

titles shown in the bottom-left interface. Clicking 896

a title displays the corresponding full news article 897

in the bottom-right interface. An example is shown 898

in Figure 5. 899

A.1.2 Method Prompt 900

The prompt used for method implementation is as 901

follows: 902

903

Branch Summary

If you are a journalist and you are given a
chain of multiple news stories, please give
this news chain a 100-word summary in
English. There can only be a summary in
the answer, and no extra words are allowed.
The chain of news is as follows:

904

Branch Summary and branching rationale

If you’re a journalism person, I’m going to
give you multiple follow-up stories and a
central story, and the follow-up news de-
scribes different aspects of the central news.
Your two tasks are:
1. Please give all follow-up news a differ-
entiating 2-8 word English phrase to sum-
marise the dependency relationship between
follow-up news and central news, focusing
on discovering the difference in their depen-
dency relationship and the main subject in
the news.
2. Please make a coherent English summary
of the follow-up news and the central news
in 80 words. The summary should include
time, place, person, cause, process, and re-
sult as much as possible.
The answer template is as follows (the num-
ber varies according to the actual number):
The Relationship between Follow-up News
1 and Central News: Specifics
The Relationship between Follow-up News
2 and Central News: Specifics
Summary: Summary in 80 words
Follow-up news is as follows: Follow-up
news
Central News is as follows: Central News

905
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https://doi.org/10.1145/3450287
https://doi.org/10.1145/3450287
https://doi.org/10.1145/3450287
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.403
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.403
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.403
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.403
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.403


Figure 3: Website screenshot. The right side shows a description of each part of the website.

Figure 4: Node summary and display of keywords for
event nodes in the user interface.

Node summary

Suppose you are a journalist and you need
to help a stranger sort out the development
of an event and write a coherent summary
of the event. In that case, your task is to
read the following news headline(s) and
summarize the events described in the news
in a concise sentence of 80 words or fewer.
1. Pay special attention to the changes and
development of the core entity. Strictly
cover all header elements to ensure that
the logical chain is complete, the dynamic
process is clear, and the data is not lost.
2. The summary should include the cause,
process, result, time, place, and people as
much as possible.

906

Figure 5: Demonstration of event node collapsing func-
tionality and branch branching rationale in the user in-
terface.

A.1.3 Setting of method hyperparameters 907

αparticipants = 0.6, αposition = 0.2, αobject = 0.1, 908

αsource = 0.1, λ = 0.2, µ = 0.9 909

910

A.1.4 Time Complexity Analysis of Story Tree 911

Construction 912

The time complexity of constructing the news story 913

tree in the ForestCast is determined by the compu- 914

tational costs of its key steps. Let m be the number 915

of event nodes, which are obtained from clustering 916

news articles, and d be the dimension of the vector 917

representations used for similarity computations. 918

Computing Dependency Degrees For each pair 919

of event nodes, a dependency score (DepScore) is 920

calculated based on the similarities of their impor- 921

tant terms. This involves computing vector similar- 922

ities in d-dimensional space. Since there are four 923

12



lists, each similarity computation takes O(d) time.924

Therefore, the total time complexity for this step925

is:926

O(4 · d)927

Attaching Nodes to the Tree Nodes are attached928

to the tree sequentially. When attaching a new node929

v, an attachment score (AttachScore) is computed930

with each existing node u in the tree. We roughly931

assume that there are m nodes in the sibling branch932

and the parent branch. Since there are up to m933

potential attachment points for each of the m nodes,934

the total time complexity for this step is:935

O(m2 · d)936

Overall Time Complexity The overall time com-937

plexity of the story tree construction is:938

O(m2 · d)939

where m is the number of event nodes and d is the940

dimension of the term vectors.941

The Efficiency of its Operation in Real Situa-942

tions Our method is laid out on 2*A6000. When943

the server is not congested, it takes about 5 min-944

utes to complete the whole process for 800 articles,945

3 minutes for 500 articles, and 1 minute for 100946

articles.947

A.2 NewsForest Dataset948

A.2.1 Dataset Overview949

Our dataset comprises global news data collected950

over six months. Table 7 shows the data distribu-951

tion across different domains. The overall dataset952

statistics are presented in Table 8.953

A.2.2 Dataset Evaluation Protocol954

We show a detailed description of all indicators in955

Table 3. The evaluation prompt case is as Table 6.956

A.2.3 Dataset Evaluation Results957

We conduct further analysis of the dataset and958

found that various metrics remain stable across dif-959

ferent node counts and chain lengths. The results960

are presented in Figure 6 and Figure 7.961

A.3 Evaluation Method962

For searching for recent news, we use Tavily search963

api, which is set to search for the ten most rele-964

vant news items, and the search time is within 10965

days. We then pass the information to the evalua- 966

tion model Qwen2.5-7b to determine if the predic- 967

tion occurred. For the quality assessment part, we 968

reuse some of the story tree evaluation metrics. We 969

assess the first five indicators in the Table 3. 970

A.4 Experiment Details 971

A.4.1 Training Parameters 972

The training protocol we use is LLama-Factory. 973

We train on 4*A6000 with the following training 974

parameters. 975

Method Parameters

stage: dpo
do_train: true
finetuning_type: lora
lora_rank: 32
lora_target: all
pref_beta: 0.1
pref_loss: sigmoid

976

Training Parameters

per_device_train_batch_size: 1
gradient_accumulation_steps: 16
learning_rate: 5.0e-6
num_train_epochs: 6.0
lr_scheduler_type: cosine
warmup_ratio: 0.15
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null

977

Dataset Parameters

dataset: data
template: qwen
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4

978

Evaluation Parameters

val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 100

979

A.4.2 Model Evaluation resluts 980

We also analyze accuracy over different time 981

lengths. Because the quality metrics are complex, 982

we analyze only the accuracy to focus on the im- 983
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Score Scoring Criteria Example

1 (vague) Mentions general idea only; lacks specifics (ac-
tions, people, results). Uses general words (e.g.,
"attention").

Chang’e 6 attracted widespread international
attention.

2 (somewhat specific) Little specific info, mostly vague. You may
mention the event type/reaction, not the specific
participants/actions/results.

After Chang’e 6 completed its important mis-
sion, it received some international feedback.

3 (moderately specific) Some key details (core content), giving a gen-
eral idea; may lack specifics (participants, re-
sults, background).

Chang’e 6 successfully collected and returned
samples... attracting international attention.

4 (more specific) Most key info (event, people/institutions, spe-
cific results/reactions). Core elements are rela-
tively clear.

Chang’e 6 successfully brought back samples...
space agencies from many countries expressed
congratulations.

5 (very specific) Clearly describes main events, identifies key
participants, specific actions, results/reactions.
Provides verifiable details.

Chang’e 6 successfully brought back samples...
Russia sent congratulations to China.

Table 6: Scoring standard for atomicity provided to an LLM

Figure 6: Evaluation results for the dataset: Metric trends as the number of nodes changes.

Attribute Story Chain Prediction Chain

Average Length 4.39 2.95
Max Length 14 9
Min Length 2 1

Table 7: Chain length data before and after dataset pro-
cessing

pact. We analyze the prediction accuracies over984

different time lengths on the story tree dataset and985

the news timeline dataset(Figure 8a and Figure 8b).986

The highest prediction accuracy is found at 30987

days. We hypothesize that this is because the pre-988

dictions at 20 days may not have happened yet to be989

confirmed. Beyond 30 days, information becomes990

Domain # Trees # Story Chain # Prediction chain

Economics 157 1726 2396
Politics 284 3613 5326
Military 217 2801 3942
Social Events 36 461 742

Total 694 8601 12406

Table 8: Data volume per domain

more complex, prediction becomes naturally more 991

difficult, and prediction accuracy decreases. Com- 992

paring the performance of the different models, we 993

can see that Gemini and DeepSeek perform better 994

in long-term prediction. Qwen-14b performs stably 995

in short-time and long-time prediction. Comparing 996

14



Figure 7: Evaluation results for the dataset: Metric trends as the average chain length changes.

different datasets, we find that the models perform997

more consistently on the story tree dataset.998

(a) Prediction accuracy curves on news story tree dataset.

(b) Prediction accuracy curves on news timeline dataset.

Figure 8: Prediction accuracy curves across time lengths
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