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Abstract

Open-ended Event Forecasting (OEEF) is vital
in various real-world applications. However,
it faces challenges, including limited availabil-
ity of datasets that enhance LL.M’s predictive
capabilities and crude methods of organizing
forecast-related information. In this work, we
construct a large-scale dataset NewsForest that
contains 12,406 prediction chains reflecting
the drivers of event development. To effec-
tively extract information from the prediction
background, we propose a prediction method,
ForestCast. ForestCast organizes all relevant
news into a story tree and predicts each branch
based on the story tree. ForestCast has five
main steps: (1) collecting and cleaning news,
(2) clustering news into event nodes, (3) con-
structing the news story tree, (4) mining the
semantic structure of the news story tree, (5)
predicting the next node and evaluating the
quality of the predictions. Experiments demon-
strate that the NewsForest dataset enhances the
model’s ability to predict these structures. The
ForestCast method improves the accuracy and
quality of predictions.

1 Introduction

Event prediction shows great application potential
in various fields such as policy making, risk man-
agement, and financial markets (Zhao, 2022). By
analyzing historical trends and current dynamics,
accurately mining evolutionary structures of events
and predicting future events can effectively help
decision-makers anticipate and respond to possible
challenges and opportunities (Zhao, 2022).
Traditional forecasting tasks can be categorized
into script event prediction (Chambers and Juraf-
sky, 2008) and temporal knowledge graph comple-
tion (TKGC) (Leblay and Chekol, 2018). These
tasks are limited to predicting specific attributes
and can only select answers from a finite range (Lin
et al., 2022; Ma et al., 2024; Shi et al., 2023; Xu
et al., 2023). Real-world developments are often

not limited to a specific scope, and critical informa-
tion is not always a defined attribute. For example,
when predicting the trend of US-China tariffs, a
specific tariff rate is not the sole focus of the pre-
diction. It is also difficult to define the scope of
the future tariff. Open-ended Event Forecasting
(OEEF) is proposed to address these critical and
diverse forecasting tasks (Wang et al., 2025).

The OEEF task faces significant challenges.
First, existing datasets (Li et al., 2021; Caselli and
Vossen, 2017) focus solely on data crawling and
attribute extraction, overlooking the developmental
logic of events and topics’ true meaning. This leads
to an inability to improve the prediction ability of
LLMs, and even a steep drop in accuracy for open-
ended tasks. Second, existing prediction methods
deal with the background information of the predic-
tion by simple clustering and summarization (Guan
et al., 2024; Ma et al., 2024; Wang et al., 2025),
ignoring the complex relationships between events
in the background information.

To address the above challenges, this paper
proposes a dataset NewsForest and a prediction
method ForestCast. The NewsForest dataset se-
lects topics that reflect the drivers of event develop-
ment and uncovers the logical progression relation-
ships within these topics. It enables LL.Ms to learn
hidden event development drivers and enhance their
forecasting capabilities. The ForestCast method
aims to mine the evolutionary structures of events
from a prediction background and provides predic-
tions for multiple evolutionary directions of events.
We have implemented the ForestCast method on-
line. It can be accessed at http:/newsinsight.cn !
and the associated datasets and code are posted at
https://anonymous.4open.science/r/Newsforest.

The main contributions of this research include
the following two aspects:
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e We construct NewsForest, a large OEEF dataset
that can be used to enhance the event predic-
tion capabilities of LLMs. The dataset contains
12,406 prediction chains covering the four most
significant domains.

e We develop ForestCast, an OEEF method. This
method can organize massive news into a news
story tree and use a fine-tuned model to predict
the future development of the story tree.

2 Related Work

2.1 News Story Tree Construction

The Topic Detection and Tracking(TDT) (Allan
et al., 1998) helps users quickly extract key infor-
mation from massive news by thematically cluster-
ing and continuously tracking news events. How-
ever, the TDT task ignores potential dependency
relationships between events. Researchers propose
various methods to capture the structural features
of event evolution. Nallapati et al. (2004) quantifies
the dependency between two events based on tem-
poral relationships and TF-IDF vector similarity.
Further, Yang et al. (2009) introduces the concept
of event graphs to describe the relationship between
events.

However, these studies only focus on pairwise
event relationships and fail to fully reflect the over-
all event evolutionary structures. Shahaf et al.
(2012) proposes "metro maps" to describe event
evolutionary structures. Liu et al. (2018, 2020) pro-
poses a structure more aligned with event develop-
ment patterns and user cognition—the news story
tree, which constructs dependencies between two
events through a keyword map of the text. How-
ever, these methods are still limited to pruning oper-
ations on the graph structure and fail to effectively
reflect the internal cohesion within the same branch
and the distinctiveness between different branches.

Moreover, existing methods for capturing event
evolutionary structures mostly rely on low-level
text feature analysis, such as keyword graphs (Liu
et al., 2020), keyword reoccurrence rate (Shahaf
et al., 2012), and TF-IDF vectors (Nallapati et al.,
2004). In contrast, the method proposed in this pa-
per innovatively introduces LLMs and pre-trained
sentence encoders, enabling analysis at a higher
semantic level.

2.2 Event Prediction

Script event prediction (Chambers and Jurafsky,
2008) requires selecting the most likely subsequent

event from a candidate list given an event con-
text. In recent years, several studies have predicted
the most probable outcomes by constructing event
chain (Wang et al., 2017, 2024), event evolution
graph (Ding et al., 2019; Li et al., 2018; Du et al.,
2022), or event graph deformation structure (Zhou
et al., 2021; Ma et al., 2023; Granroth-Wilding and
Clark, 2016) as event evolutionary structures. On
the other hand, Temporal Knowledge Graph Com-
pletion (TKGC) (Xia et al., 2024; Deng et al., 2020;
Rong et al., 2025; Zhang et al., 2024a,b) addresses
incomplete temporal knowledge graphs by learning
representations of entities, relations, and times to
predict missing information.

However, script event prediction and TKGC are
limited to predicting specific attributes and can only
select results within predefined scopes. When pre-
dicting real-world events, these methods offer in-
sufficient guidance. Therefore, Guan et al. (2024)
first proposes the task definition of OEEF, charac-
terized by: (1) diverse predictive questions cov-
ering different stages of event development and
viewpoints, promoting comprehensive analysis; (2)
flexible prediction results with no restrictions on
scope, format, or length, allowing for semantically
complete detailed responses.

Guan et al. (2024) proposes a prediction method.
However, this method only clusters and sum-
marises the background news, ignoring the depen-
dency relationship between related events. In the
dataset construction of OEEF, Guan et al. (2024)
provides a small manual dataset for testing pur-
poses only. Wang et al. (2025) further proposes
a large OEEF dataset; however, performance de-
creases after fine-tuning models with this dataset.
We hypothesise that the dataset organizes topics by
simply listing decades of history for a place or peo-
ple, making it difficult to capture the hidden factors
driving event development and the underlying logic
of events.

3 NewsForest

We construct a large dataset containing 12,406 pre-
diction chains. The dataset can be used directly for
model training or evaluation. We use news from
2024-10-01 to 2025-04-20 to avoid the knowledge
leakage problem of LLM as much as possible.

3.1 Data Selection and Cleaning

The topics we select are typically event-oriented
and strategic, better reflecting the hidden drivers
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Content

Instruction

Task: Please predict the next node in the chain based on the background.

Input

Background: In New York, a federal judge kept a lawsuit against Trump alive, while Trump’s legal team pushed for dismissals. Judges delayed or
recused from Trump-related cases. Democrats confirmed judges pre-inauguration, and Republicans tried to stall Trump trials.

Chain: 1. A federal judge denied throwing out a baseless lawsuit filed against Trump, maintaining its validity in court proceedings.

2. In Colorado, Republican judges dismissed Trump’s election interference and secret documents cases, potentially setting Aileen Cannon as a future
AG:; these rulings could sway the outcome of Trump supporter candidate selection in court appointments.

3. Judges continue to cancel Trump’s 2020 election case court deadlines post-presidential win, with a judge shutting down GOP challenge months
after Trump’s victory.

4. The judge paused Trump-related January 6 cases, citing special counsel’s request and concerns about timing after Trump’s election win and before
his inauguration.

Chosen

After Joe Biden’s victory in the US presidential election, a judge paused Donald Trump’s legal challenges to the 2020 election results. This decision
came shortly after the formal certification of the election outcome. Judge Jack Smith put the federal election interference case against Trump on hold.

Reject

Rioters sought charges dismissal unless Trump was also convicted, but lost in court, and were sentenced to prison following the Capitol riot.

Table 1: Example of masked DPO training data

of event development. We focus on the four most
instructive domains: economics, politics, military,
and social events (Table 2).

Domain Examples

Economics (tariff, China), (stock, market)
Politics (elect, republican), (trump, China)
Military (NATO, Ukraine), (America, Iran)

Social Events (Florida, hurricane), (police, racism)

Table 2: Sample topics from different domains in the
NewsForest dataset

We select keyword groups for popular topics
from the past six months. We query all articles
with keywords in their titles from our GDELT-
based (Leetaru and Schrodt, 2013) database. To
ensure topic coherence, we semantically encode the
article headlines using all-MiniLM-L6-v2. We use
the HDBSCAN algorithm (Rahman et al., 2016)
to cluster the articles and retain only the largest
cluster as the final data source. For each topic, to
ensure coverage of both long-term and short-term
prediction tasks (Wang et al., 2025), we set news
search time lengths of 20, 30, 40, 60, and 80 days.
Within the determined time length, we randomly
set the period.

3.2 Dataset Main Construction

After determining the keywords and period, we
construct the news story tree. Constructing the
news story tree involves three steps: clustering
news into event nodes, constructing the news story
tree, and mining the semantic structure of the news
story tree. Since the process of constructing the
story tree in this step is identical to the method used
in the prediction approach, we provide a detailed
explanation of the story tree construction steps in
Section 4.2, 4.3, and 4.4.

3.3 Dataset Masking and Specifics

After constructing the news story tree using the
ForestCast method, we treat the path from a leaf
node to the root node as a news development chain.
The root node’s branch summary serves as back-
ground. We need to mask each news development
chain further to enable the LLLMs to learn hidden
event evolutionary structures from the dataset. For
each chain, we mask one or more nodes at the end
of the chain. If the chain length is greater than 6,
we mask the last third of the nodes in the chain. The
masked nodes serve as the correct answers for the
chain prediction. Thus, long chains can generate
two or more prediction chains. If the chain length
is less than 6, only the last node is masked. Addi-
tionally, we use the DPO method to train the model,
so we select the node with the lowest attachment
score as the rejection answer. An example is shown
in Table 1. In the end, we get the dataset with
12,406 prediction chains. We also present more
information about the dataset in Appendix A.2.1.

3.4 Dataset Quality Assessment

We found a lack of quality assessment for event
evolutionary structures in TDT tasks. Therefore,
referencing the evaluation methods in Guan et al.
(2024), we propose six evaluation metrics, detailed
in Table 3. Atomicity evaluates the node itself. Va-
lidity and relevance assess the relationship between
the current node and its preceding nodes. Chain
consistency and causal insight evaluate the entire
chain. Branch rationality assesses the whole tree.
We provide scoring examples using LLM to rate
six attributes on a 1-5 score.

Evaluation results (Figure 2) show average
scores from 2.57 to 3.74. Chain consistency and
branch rationality score 3.66 and 3.70, indicating
good structural integrity. We also present more as-
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Figure 1: The pipeline of the ForestCast method.

Metric Description events and linking them based on those attributes.
Atomicity Is the event description specific? These works overlook the developmental logic and
Validit Does the event provide new information? . . . .

’ e proY : 4 underlying drivers of the information. We propose
Relevance Are the main participants consistent consecutively?

Chain Consistency
Causal Insight
Branch Rationality

Is logic consistent throughout the chain?
Are hidden relationships captured?
Are branches distinct/non-mergeable?

Table 3: Explanation of evaluation metrics for news
story trees

sessment information about the NewsForest dataset

in Appendix A.2.2 and A.2.3.
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Figure 2: Evaluation results of the NewsForest dataset.

4 ForestCast

Existing work on processing predictive information
remains focused on extracting attributes between

a method that further predicts events based on the
organization of event evolutionary structures. Our
method requires users to provide topic-related key-
words. Then we can automatically complete news
collection and analysis, returning the story tree
and its predictions within 5 minutes. In the Ap-
pendix A.1.4, we provide the time complexity of
the method and its efficiency in real situations. Fig-
ure 3 shows the main interface of the website. We
detail other functions in the Appendix A.1.1. As
shown in Figure 1, our ForestCast method is di-
vided into five modules: (1) collecting and clean-
ing news; (2) clustering news into event nodes; (3)
constructing the news story tree; (4) mining the
semantic structure of the news story tree; (5) pre-
dicting the next node and evaluating the quality of
the predictions.

4.1 Collecting and Cleaning News

Our data is sourced from GDELT to ensure com-
prehensive and credible news sources. We obtain
news headlines, links, publication times, and media
sources from the GDELT project. We then retrieve
the full text of the news based on the links. We
use keyword searches for news. After obtaining
relevant news, we deduplicate the articles.



4.2 Clustering News into Event Nodes

After obtaining news, we need to cluster news arti-
cles narrating the same event. These clusters serve
as event nodes in the news story tree. Consid-
ering clustering speed and accuracy, we use the
semantics-based USTORY (Yoon et al., 2023)for
clustering.

4.3 Constructing the news story tree

In the current work on the TDT task, the story
tree is the visual form that best matches the user’s
cognitive habits and event evolutionary structures.
Therefore, we construct story trees to organize rel-
evant news.

4.3.1 Calculating Dependency Degree
Between Two Nodes

Inspired by Yang et al. (2009), we regard the
hidden dependency relationship between events
is determined by the participants, positions, ob-
jects, and media sources. Therefore, we use
en_core_web_sm text processing model to extract
important terms from articles, deduplicate and dis-
ambiguate them to obtain four sets of important
terms: Setparticipants> S€tposition> S€lobjects S€Tsource-
Given the varying importance of terms, we cal-
culate their frequency of occurrence and assign
weights accordingly. After reordering terms by
weight, we obtain weighted lists of important
terms: liStparticipants, liStposition, liStobject, listsource-
We also assume that the four types of impor-
tant terms have different influences on the de-
pendency relationship, setting different weights
Clparticipants> (positions (lobjects (source- We aim for
the entire construction process to be based on the
semantic level, thus using the pre-trained word en-
coder GloVe (Pennington et al., 2014) to semanti-
cally encode the lists of important terms, obtain-
ing weighted vector lists: vecparticipants» VECpositions
VeCobjects VECsource- NOW, wWe can calculate the de-
pendency score between two nodes by computing
the weighted sum of the cosine vector similarities.
All the details of the hyperparameter(ca, p, A) set-
tings are provided in the Appendix A.1.3.

DepScore; ; = g
ke{part,pos,obj,src}

4.3.2 Calculating Node and Branch
Attachment Scores

Q. - sim(v;m-, 'Uk,j)

To ensure that the event evolutionary structures
form a cohesive whole, we must design the con-

struction method to enhance the distinctiveness be-
tween different tree branches while reinforcing the
cohesion within the same branches. Our design
idea is that when attaching a candidate node v to
the tree at potential attachment node u, we should
consider the dependency score dep(v, u) as well as
the dependency scores between v and the nodes in
the parent branch (P,) and sibling branches (.5,,)
of u. The dependency score of the potential attach-
ment node accounts for a proportion p. The scope
of parent and sibling branch nodes is defined as
tracing back to the first parent node with multiple
children of the potential attachment node. Within
the parent branch, node weights decay as the dis-
tance to the potential attachment node increases.
Within sibling branches, all nodes are assigned the
same weight. We want the dependency score be-
tween v and P, to be large, and the dependency
score between v and 5, to be small, thus setting a
penalty coefficient A.

AttachScore, , = - dep(v, u)
+(1—p)- Y wy-dep(v,p)

pEPy
1
- A — Z dep(v, )
|Su| SGSu

where:

* P,: Set of parent branch nodes from u to,
but not including, the first multi-child parent.
wp = exp(—pf - d(p,u)), with d(p, u) as the
distance and 3 > 0.

* Syu: Set of sibling branch nodes sharing u’s
multi-child parent. |.S,| is the number of sib-
lings.

4.3.3 Constructing the news story tree

After determining the attachment method, we can
construct a tree from scratch. Initially, we define
the time of an event node as the average time of
the news articles associated with it. We reorder
the nodes chronologically to obtain an event node
sequence. To better initialise the news story tree,
we add a pre-construction phase to filter out nodes
at the beginning of the sequence that are irrelevant
to the topic. We select the first five nodes of the
sequence to generate an initial tree. We then re-
move nodes from the event node sequence whose
attachment scores fall below the initial attachment
threshold and add them to a queue of detached



nodes. The remaining nodes are re-added to the
sequence. For the formal construction of the news
story tree, we sequentially take nodes from the
sequence as candidate nodes to be attached. All
nodes already attached to the tree serve as poten-
tial attachment nodes. We calculate the candidate
node’s attachment score to all potential attachment
nodes and attach the candidate node to the node
with the highest score. Similarly, during the formal
construction phase, if a node’s highest attachment
score 1s below the attachment threshold, it is added
to the queue of detached nodes.

4.4 Mining the Semantic Structure of the
News Story Tree

Previous works typically attach nodes after extract-
ing low-level textual features, neglecting semantic-
level information. Benefiting from LLMs’ pow-
erful text generation capabilities, we mine the se-
mantic structure of the news story tree after it is
constructed. This allows users to grasp the hid-
den event evolutionary structure better. In partic-
ular, we execute the following tasks: (1) use an
LLM to obtain event node summaries; (2) use an
LLM to obtain the branching rationale and branch
summaries for the news story tree; (3) adjust the
branches based on their summary similarity. All
prompts are provided in the Appendix A.1.2.

4.4.1 Obtaining Event Node Summaries Using
LLM

We pass all news headlines under an event node to
LLM to obtain a node summary.

4.4.2 Obtaining Branching Basis Using LLM

LLMs exhibit limited proficiency in handling long
texts and tree-structured data. Therefore, we em-
ploy a leaf-root data processing method. After
obtaining node summaries of all nodes, we start
from the leaf nodes. We conduct a branch summa-
rization for the branch containing a leaf node. The
scope of this branch extends to the first multi-child
parent node, excluding the multi-child parent node
itself. We pass the node summaries of all nodes
in this branch to LLM to get a branch summary.
After obtaining all branch summaries for a multi-
child parent node through post-order traversal, we
pass these branch summaries and the node sum-
mary to LLM. We instruct the LLM to generate the
branching rationale for distinct branches and to syn-
thesize all branch summaries along with the node
summary of the multi-child parent. This summary

becomes the branch summary for the multi-child
parent node. When a node has a branch summary,
we prioritise using the branch summary over the
node summary. This way, we can aggregate all
branch information layer by layer. By traversing
the entire news story tree in this post-order manner,
we can obtain the branching rationale and branch
summary for each branch. Additionally, we obtain
a summary of the entire tree, as the root node’s
branch summary aggregates information from all
nodes.

4.4.3 Adjust the branches based on their
summary similarity

We use a pre-trained sentence encoder, all-MiniLM-
L6-v2 (Wang et al., 2021), to encode node sum-
maries. We perform a post-order traversal of the
tree. We sequentially calculate the cosine similarity
between a node’s summary and its parent node’s
summary. If the similarity is below a threshold, the
node and its children are reattached to the root node.
If a child of the root node falls below the threshold,
this child and its descendants are removed from
the news story tree and added to the queue of de-
tached nodes. Eventually, the detached nodes are
presented separately to the user.

4.5 Predicting the next node and evaluating
the quality of the predictions

After obtaining the story tree’s semantic structure,
we use LLM to predict the semantic level. Specifi-
cally, we treat the path from a leaf node to the root
node as a news development chain. We use the
root node’s branch summary as background con-
text. After passing the background and the news
development chain to LLM, we require the model
to predict the next node of the chain. Finally, we
attach the predictions to the end of the news story
tree and assess their quality. Specific assessment
methods refer to Section 5.2. Additionally, we use
the prediction model Qwen2.5-7B, which has been
fine-tuned with the NewsForest dataset. Section 5.1
shows that this fine-tuning process effectively im-
proves the model’s prediction accuracy and quality.

S Experiments

As the OEEF task is relatively new, there is no
benchmark in the OEEF task. We will demonstrate
the effectiveness of our method and dataset directly
through experiments. Our experiments aim to an-
swer two questions: (1) Can our ForestCast method



assist humans or LLMs in capturing event evolu-
tionary structures from complex news? (2) Does
our NewsForest dataset capture hidden real-world
relationships that LLMs can learn?

5.1 Experimental Method

Ye et al. (2024) propose MIRAI to evaluate a
model’s ability to predict international relations.
However, it cannot evaluate the prediction ability
of models under OEEF. Therefore, we design an
evaluation method inspired by the MIRAI. The
difficulty in evaluating OEEF results is that if the
prediction is general, it is more likely to be true.
Thus, we need to evaluate both the quality and ac-
curacy of the prediction. Referencing Guan et al.
(2024) for assessing the quality of predictions, we
implement a dual evaluation of prediction accuracy
and quality. We extract the prediction results from
the forecasting model. We then search online for
some latest related news and pass this information
on to an evaluation LLM. The evaluation LLM de-
termines if the prediction has already occurred. If
it has, we continue to score the prediction result for
atomicity, validity, relevance, causal insight, and
chain consistency(Appendix A.3).

We use ForestCast to create an up-to-date news
story tree dataset. Topics include recent hot topics
(Russia-Ukraine negotiations) occurring between
April 13 and 20, 2025, and long-term popular top-
ics from the past six months (US tariff policy). For
these topics, we use ForestCast to construct a test
dataset with time lengths of 20, 30, 40, 60, and
80 days, all ending on April 20, 2025. We reserve
ten days to allow all true predictions to occur. We
complete the evaluation of all predictions between
May 1 and 3, 2025. To demonstrate that ForestCast
can assist humans or LLMs in capturing event evo-
lutionary structures from a flood of news, we create
the news timeline dataset based on the news story
tree dataset. We replace the node summaries in
the chains with all news headlines under the event
nodes. These headlines are then reordered by their
publication time to form a news timeline dataset.

To demonstrate that the NewsForest dataset cap-
tures hidden real-world relationships that LLMs
can learn, we train the Qwen2.5-7b model with
NewsForest. In our experiments, we locally deploy
the Qwen2.5 series models (Qwen, 2024 )for testing.
We also test Deepseek-V3-671b (DeepSeek-Al,
2024), one of the leading models without deep rea-
soning, and Gemini-2.5-pro-0325 (Gemini Team,
2023), one of the leading models with deep rea-

soning(via API). We provide training details in the
Appendix A.4.1.

5.2 Evaluating Story Trees for Event
Evolutionary Structures

We use five models to make predictions on the story
tree dataset and the timeline dataset. Results are in
Table 4 and 5. We analyze the experimental results
in terms of both quality and accuracy, with specific
conclusions as follows:

(1) Pass@1 accuracy is critical in real-world sce-
narios. And the news story tree dataset generally
performs better on pass@1. Multiple rounds of
generation show marginal gains. This may be due
to the task’s high demand for logical consistency
in generation, resulting in multiple rounds of gen-
eration predicting in the same direction. In the real
world, the predictions of each branch should also
have unique directions.

(2) Deepseek-V3-671b and Gemini-2.5-pro-
0325 partially perform better on the news time-
line dataset. First, this is because the news time-
line dataset has more raw data. This suggests that
more capable models can capture more informa-
tion from the raw data in the news timeline dataset,
thus improving the prediction accuracy. However,
DeepSeek and Gemini have significantly lower pre-
diction quality than the other models. This suggests
that with the emergence of multiple responses, the
more capable models show a tendency to explore
different directions of temporal development, simi-
lar to the different branches of our story tree. They
also perform lower on atomicity, proving that the
model improves the prediction correctness by giv-
ing fuzzy predictions. This proves that fine-tuning
of small models as predictive models is necessary.

(3) The news story tree has higher scores and
a wider range, indicating that the average perfor-
mance and potential of the dataset are both greater.

(4) The largest gaps between the two datasets
are in the causal and relevance metrics. This means
that the news story tree is better able to grasp the
event evolutionary structures.

(5) Additionally, the news story tree dataset per-
forms more consistently on the long and short-term
prediction tasks, as detailed in the Appendix A.4.2.

5.3 Evaluating the Enhancement of Prediction
Capability with Fine-Tuned Models

To demonstrate that NewsForest captures learn pro-
gression drivers learnable by models, we use the



News Timeline Dataset

News Story Tree Dataset

Model pass@1 pass@3 pass@5 pass@1 pass@3 pass@5
Qwen2.5-7b 37.11% 71.78% 86.22% 43.11% 78.22% 91.56%
Qwen?2.5-7b-lora-dpo 38.66% 73.11% 86.89% 46.22% 79.77% 91.56%
Qwen2.5-14b 45.33% 78.67% 92.00% 48.67% 82.22% 92.67%
Deepseek-V3-671b 44.44% 78.66% 91.33% 47.78% 79.33% 90.67%
Gemini-2.5-pro-0325 48.44% 85.33% 94.44% 52.00% 81.33% 91.33%

Table 4: Prediction accuracy of different models on news timeline dataset and story tree dataset

News Timeline Dataset News Story Tree Dataset
Model Atom. Rel. Valid. Causal. Consist. Atom. Rel. Valid. Causal. Consist.
Qwen2.5-7b 2.99 233 270 2.66 3.78 3.46 307 286 3.27 3.72
Qwen2.5-7b-lora-dpo 2.97 226  2.58 2.61 3.51 3.50 3.06 275 3.29 3.77
Qwen2.5-14b 3.01 244 229 2.71 3.55 348 3.19 291 3.40 3.77
Deepseek-V3-671b 3.02 247 212 2.56 3.23 341 3.16 256 3.02 3.72
Gemini-2.5-pro-0325 2.89 237 207 241 3.06 2.88 290  2.15 2.74 3.56

Table 5: Prediction quality scores(average of five responses) for different models on the news timeline dataset and

news story tree dataset

NewsForest dataset to train Qwen2.5-7b. Compar-
ing the prediction results of Qwen2.5-7b-lora-dpo
and Qwen2.5-7b in Table 4 and 5, we find that:

(1) After training, our prediction accuracy im-
proves significantly on two datasets.

(2) The quality of the news timeline dataset de-
creases, and its accuracy increases. We find that
Gemini exhibits lower quality but higher accuracy
on the news timeline dataset. Therefore, we hy-
pothesize that the quality decline in the fine-tuned
model is because it begins to explore different de-
velopmental directions on the news event timeline
dataset, resulting in reduced quality but increased
accuracy.

This indicates that NewsForest contains progres-
sion drivers that the LLM can capture.

6 Discussion

This research advances Open-Ended Event Fore-
casting (OEEF) through two major contributions:
the NewsForest dataset and the ForestCast method.
NewsForest is designed to enhance LLMs by teach-
ing them event development logic. ForestCast or-
ganizes news into semantic story trees, enabling
predictions along multiple event trajectories.
Experiments confirm that NewsForest and
ForestCast significantly enhance LLM perfor-
mance. Story trees significantly improve models’
ability to understand complex event dynamics com-
pared to linear timelines. Fine-tuning LL.Ms with
NewsForest further enhances performance. On the

news timeline dataset, the prediction accuracy of
models increases, but the quality drops. This sug-
gests that NewsForest’s training encourages models
to explore diverse event paths.

In addition, we made an important discovery. By
comparing the performance of different models, we
can prove that more powerful LLMs cannot replace
fine-tuning models and organizing prediction back-
ground information. Larger models like Deepseek
and Gemini sometimes perform better on the time-
line dataset containing more information, but the
prediction quality is significantly lower. However,
NewsForest-trained smaller models better balance
accuracy and quality.

This work addresses persistent OEEF issues. Ex-
isting datasets(Wang et al., 2025; Ma et al., 2024)
often lack development logic, hindering LLM pre-
dictive power and even degrading performance.
NewsForest counters this with rich event logic, en-
abling models to learn progression drivers. Tra-
ditional methods like basic clustering(Guan et al.,
2024) fail to capture event dependencies, whereas
ForestCast’s story trees offer a sophisticated, se-
mantically rich framework for forecasting.

Future research could explore the application
of ForestCast to more diverse data sources, opti-
mise the algorithm for building news story trees,
and continue to improve the performance of LLMs
under the OEEF task.



Limitations

First, our data source is singular, including only
news. In contemporary society, social media also
provides much critical information about event de-
velopments. Second, automatic evaluation methods
based on LLLMs may differ from human evaluation
methods. Future work will aim to bridge the gap
between these two approaches.

Ethics Statement

In our study, ForestCast is developed using open-
source projects, including GDELT. These resources
have been widely employed in other studies, en-
suring that no ethical standards are compromised.
Regarding compatibility with original access con-
ditions, the GDELT data is publicly accessible for
research, and our derivative dataset (NewsForest)
is used solely within this context, ensuring compli-
ance with GDELT’s terms.
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A Appendix

A.1 ForestCast

Our method has been deployed live.Figure 3 is a
screenshot of the main interface. In this section,
we specify the additional functionality, method
specifics, and time complexity of our implementa-
tion.

A.1.1 Function Demonstration

Keyword Extraction To enable users to grasp
the development structure of the story tree quickly,
we extract keywords for each node. The keyword
extraction follows a rule prioritizing high recur-
rence rates within the same branch and low recur-
rence rates across different branches. Our key-
words are derived from a deduplicated list of key
entities associated with the node. An example is
shown in Figure 4.

Tree Folding and Unfolding When there are too
many news articles, it results in an excessive num-
ber of nodes. The interface cannot display the com-
plete story tree. Therefore, we implement node
folding and unfolding functionalities for the story
tree. This allows users to focus on specific branches
while maintaining an overview of the tree. An ex-
ample is shown in Figure 5.

News Data Analysis To provide users with both
a global and detailed understanding of news related
to a topic, we analyze the raw news data. In the
sidebar, we display the publication patterns of dif-
ferent news outlets across various periods. The col-
ors of the nodes represent different media sources.
Upon clicking a specific node, the sidebar displays
the publication distribution of news linked to that
node. An example is shown in Figure 3.

Branch and Node Information Display We
present extracted semantic information to help
users understand the event evolutionary structure.
When hovering over a branch, we display the
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branching rationale; when hovering over a node,
we show a node summary. Upon clicking a node,
the original information is displayed, with news
titles shown in the bottom-left interface. Clicking
a title displays the corresponding full news article
in the bottom-right interface. An example is shown
in Figure 5.

A.1.2 Method Prompt

The prompt used for method implementation is as
follows:

If you are a journalist and you are given a
chain of multiple news stories, please give
this news chain a 100-word summary in
English. There can only be a summary in
the answer, and no extra words are allowed.
The chain of news is as follows:

If you’re a journalism person, I’m going to
give you multiple follow-up stories and a
central story, and the follow-up news de-
scribes different aspects of the central news.
Your two tasks are:

1. Please give all follow-up news a differ-
entiating 2-8 word English phrase to sum-
marise the dependency relationship between
follow-up news and central news, focusing
on discovering the difference in their depen-
dency relationship and the main subject in
the news.

2. Please make a coherent English summary
of the follow-up news and the central news
in 80 words. The summary should include
time, place, person, cause, process, and re-
sult as much as possible.

The answer template is as follows (the num-
ber varies according to the actual number):
The Relationship between Follow-up News
1 and Central News: Specifics

The Relationship between Follow-up News
2 and Central News: Specifics

Summary: Summary in 80 words
Follow-up news is as follows: Follow-up
news

Central News is as follows: Central News
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News headlines under event nodes

News

China hits back on Trump's new tariffs; levies duty on

food, other US imports

Further, China has also added several US firms to its ‘unreliable entity or export control fists.

Beijing [Chinal, March 4 (AN): China on Tuesday said it is imposing tariffs as much as 15 per cent
on a range of food imports from the United States as Donald Trump-imposed latest tariffs came
into force today.

Prediction results

The prediction given by
the model will be
displayed here. Node
colors represent
prediction quality. Hover
to see prediction.

News data analysis

Here is the data analysis
of a certain node or the
whole tree.

Event nodes

News about the same
event will be clustered
and displayed in the form
of nodes. Hovering over
the node will provide a
summary of the node and
more news data analysis.

Node subordinate news

On Monday, the United States announced that it would impose an additional 10 per cent tariff on

all products imported to the US from China, ef r
per cent tariffs imposed by the United States on products imported from China in February this

year

om March 4. This follows an additional 10

Click a node to read the
node subordinate news.

Figure 3: Website screenshot. The right side shows a description of each part of the website.

Figure 4: Node summary and display of keywords for
event nodes in the user interface.

Suppose you are a journalist and you need
to help a stranger sort out the development
of an event and write a coherent summary
of the event. In that case, your task is to
read the following news headline(s) and
summarize the events described in the news
in a concise sentence of 80 words or fewer.
1. Pay special attention to the changes and
development of the core entity. Strictly
cover all header elements to ensure that
the logical chain is complete, the dynamic
process is clear, and the data is not lost.

2. The summary should include the cause,
process, result, time, place, and people as
much as possible.
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Figure 5: Demonstration of event node collapsing func-
tionality and branch branching rationale in the user in-
terface.

A.1.3 Setting of method hyperparameters

Qlparticipants = 0.6, Qlposition = 0.2, Qlobject = 0.1,
source = 0.1, A = 0.2, 1= 0.9

A.1.4 Time Complexity Analysis of Story Tree
Construction

The time complexity of constructing the news story
tree in the ForestCast is determined by the compu-
tational costs of its key steps. Let m be the number
of event nodes, which are obtained from clustering
news articles, and d be the dimension of the vector
representations used for similarity computations.

Computing Dependency Degrees For each pair
of event nodes, a dependency score (DepScore) is
calculated based on the similarities of their impor-
tant terms. This involves computing vector similar-
ities in d-dimensional space. Since there are four



lists, each similarity computation takes O(d) time.
Therefore, the total time complexity for this step
is:

04 - d)

Attaching Nodes to the Tree Nodes are attached
to the tree sequentially. When attaching a new node
v, an attachment score (AttachScore) is computed
with each existing node u in the tree. We roughly
assume that there are m nodes in the sibling branch
and the parent branch. Since there are up to m
potential attachment points for each of the m nodes,
the total time complexity for this step is:

O(m? - d)

Overall Time Complexity The overall time com-
plexity of the story tree construction is:

O(m? - d)

where m is the number of event nodes and d is the
dimension of the term vectors.

The Efficiency of its Operation in Real Situa-
tions Our method is laid out on 2*A6000. When
the server is not congested, it takes about 5 min-
utes to complete the whole process for 800 articles,
3 minutes for 500 articles, and 1 minute for 100
articles.

A.2 NewsForest Dataset
A.2.1 Dataset Overview

Our dataset comprises global news data collected
over six months. Table 7 shows the data distribu-
tion across different domains. The overall dataset
statistics are presented in Table 8.

A.2.2 Dataset Evaluation Protocol

We show a detailed description of all indicators in
Table 3. The evaluation prompt case is as Table 6.

A.2.3 Dataset Evaluation Results

We conduct further analysis of the dataset and
found that various metrics remain stable across dif-
ferent node counts and chain lengths. The results
are presented in Figure 6 and Figure 7.

A.3 Evaluation Method

For searching for recent news, we use Tavily search
api, which is set to search for the ten most rele-
vant news items, and the search time is within 10
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days. We then pass the information to the evalua-
tion model Qwen2.5-7b to determine if the predic-
tion occurred. For the quality assessment part, we
reuse some of the story tree evaluation metrics. We
assess the first five indicators in the Table 3.

A.4 Experiment Details
A.4.1 Training Parameters

The training protocol we use is LLama-Factory.
We train on 4*A6000 with the following training
parameters.

stage: dpo

do_train: true
finetuning_type: lora
lora_rank: 32
lora_target: all
pref_beta: 0.1
pref_loss: sigmoid

per_device_train_batch_size: 1
gradient_accumulation_steps: 16
learning_rate: 5.0e-6
num_train_epochs: 6.0
lr_scheduler_type: cosine
warmup_ratio: .15

bf16: true

ddp_timeout: 180000000
resume_from_checkpoint: null

dataset: data
template: gwen

overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
val_size: 0.1
per_device_eval_batch_size: 1

eval_strategy: steps
eval_steps: 100

A.4.2 Model Evaluation resluts

We also analyze accuracy over different time
lengths. Because the quality metrics are complex,
we analyze only the accuracy to focus on the im-



Score Scoring Criteria

Example

1 (vague) Mentions general idea only; lacks specifics (ac-
tions, people, results). Uses general words (e.g.,
"attention").

2 (somewhat specific) Little specific info, mostly vague. You may
mention the event type/reaction, not the specific
participants/actions/results.

3 (moderately specific) Some key details (core content), giving a gen-
eral idea; may lack specifics (participants, re-
sults, background).

4 (more specific) Most key info (event, people/institutions, spe-
cific results/reactions). Core elements are rela-
tively clear.

5 (very specific) Clearly describes main events, identifies key
participants, specific actions, results/reactions.
Provides verifiable details.

Chang’e 6 attracted widespread international
attention.

After Chang’e 6 completed its important mis-
sion, it received some international feedback.

Chang’e 6 successfully collected and returned
samples... attracting international attention.

Chang’e 6 successfully brought back samples...
space agencies from many countries expressed
congratulations.

Chang’e 6 successfully brought back samples...
Russia sent congratulations to China.

Table 6: Scoring standard for atomicity provided to an LLM
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Figure 6: Evaluation results for the dataset: Metric trends as the number of nodes changes.
Attribute Story Chain  Prediction Chain Domain # Trees # Story Chain # Prediction chain
Average Length 4.39 2.95 Economics 157 1726 2396
Max Length 14 9 Politics 284 3613 5326
Min Length 2 1 Military 217 2801 3942
Social Events 36 461 742
Table 7: Chain length data before and after dataset pro- ~ Total 694 8601 12406
cessing

pact. We analyze the prediction accuracies over

Table 8: Data volume per domain

different time lengths on the story tree dataset and
the news timeline dataset(Figure 8a and Figure 8b).

The highest prediction accuracy is found at 30
days. We hypothesize that this is because the pre-
dictions at 20 days may not have happened yet to be
confirmed. Beyond 30 days, information becomes
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more complex, prediction becomes naturally more
difficult, and prediction accuracy decreases. Com-
paring the performance of the different models, we
can see that Gemini and DeepSeek perform better
in long-term prediction. Qwen-14b performs stably
in short-time and long-time prediction. Comparing
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Figure 7: Evaluation results for the dataset: Metric trends as the average chain length changes.

different datasets, we find that the models perform
more consistently on the story tree dataset.
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(a) Prediction accuracy curves on news story tree dataset.
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(b) Prediction accuracy curves on news timeline dataset.

Figure 8: Prediction accuracy curves across time lengths
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