
Under review as a conference paper at ICLR 2024

NEURAL PRIORITY QUEUES FOR GRAPH NEURAL
NETWORKS (GNNS)

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have shown considerable success in neural algo-
rithmic reasoning. Many traditional algorithms make use of an explicit memory
in the form of a data structure. However, there has been limited exploration on
augmenting GNNs with external memory. In this paper, we present Neural Pri-
ority Queues, a differentiable analogue to algorithmic priority queues, for GNNs.
We propose and motivate a desiderata for memory modules, and show that Neural
PQs exhibit the desiderata, and reason about their use with algorithmic reasoning.
This is further demonstrated by empirical results on the CLRS-30 dataset. Fur-
thermore, we find the Neural PQs useful in capturing long-range interactions, as
empirically shown on a dataset from the Long-Range Graph Benchmark.

1 INTRODUCTION

Algorithms and Deep Learning methods possess very fundamentally different properties. Training
deep learning models to mimic algorithms would allow us to get neural models that show gener-
alisation ability similar to the algorithms, while retaining the robustness to noise of deep learning
systems. This building and training of neural networks to execute algorithmic computations is re-
ferred to as Neural Algorithmic Reasoning (Veličković & Blundell, 2021).

Architectures that align more with the underlying algorithm for the reasoning task, tend to generalize
better (Xu et al., 2019). Previous works have drawn inspiration from the external memory and data
structure use of programmes and algorithms, and have found success in improving the algorithmic
reasoning capabilities of recurrent neural networks (RNNs) by extending them with differentiable
variants for these memory and data structures (Graves et al., 2014; Grefenstette et al., 2015).

Recently, graph neural networks (GNNs) have found immense success with algorithmic tasks (Chen
et al., 2020; Veličković et al., 2022). There have been works attempting to augment GNNs with
memory, with majority using gates to do so. However, gated memory leads to very limited persis-
tence. Furthermore, these works have solely focused on dynamic graphs, and extending these to
non-dynamic graphs would involve significant effort.

In this paper, we propose the extension of the message passing framework of GNNs with external
memory modules. We focus on adding a differentiable analogue to priority queues, as priority
queues are a general data structure used by different algorithms and can be reduced to other data
structures like stacks and queues. We name the thus formed framework for differentiable priority
queues as ‘Neural PQs’. We describe NPQ, an implementation under this framework, and also
explore various variants for this.

We summarize the contributions of this paper below:

• We propose the ‘Neural PQ’ framework, an extension of the message-passing GNN frame-
work to allow use of memory modules, with particular inspiration from priority queues.

• We present and motivate a set of desiderata for memory modules – (1) Memory-Persistence,
(2) Permutation-Equivariance, (3) Reducibility to Priority Queues, and (4) No dependence
on intermediate supervision. Past works have expressed some subsets of these as desirables.

• We propose NPQ, an implementation within this framework, that exhibits all the above
mentioned properties. This is the first differentiable analogue to priority queues, and first
memory module for GNNs to exhibit all the above desiderata, to the best of our knowledge.

1



Under review as a conference paper at ICLR 2024

Figure 1: Left: A GNN processor based on the message passing framework. At each timestep, pair-
wise messages are formed using the node features. These messages are aggregated, and then used
to update the node features for the next timestep. Right: The Neural PQ framework we propose. At
each timestep, the node features are used to pop values from the priority queue. These values are
used to form the messages that are sent to the different nodes. The node features and previous state
are also used to determine what values to push, and update the priority queue.

• We perform extensive quantitative analysis, via a variety of experiments and find:
– NPQs, when training to reason Dijkstra’s shortest path algorithm, close the gap be-

tween the baseline test performance and ground truth by over 40%.
– The various Neural PQs outperform the baseline on 26 out of 30 algorithms from the

CLRS-30 dataset (Veličković et al., 2022). The performance gains are not restricted
to algorithms that actually use a priority queue.

– Neural PQs also help with long-range reasoning. These help local message-passing
networks to capture long-range interaction. Thus, the benefits of using the Neural PQs
are not limited to algorithmic reasoning, and these can be used on other tasks as well.

2 BACKGROUND

CLRS Benchmark (Veličković et al., 2022) Various prior works have shown the efficiency of
GNNs for algorithmic tasks. However, many of these works tend to be disconnected in terms of the
algorithms they target, data processing and evaluation, making direct comparisons difficult. To take
the first steps in solving this issue, Veličković et al. (2022) propose the CLRS Algorithmic Reason-
ing Benchmark which consists of 30 algorithms from the ‘Introduction to Algorithms’ textbook by
Cormen et al. (2022). They name this dataset as CLRS-30.

The authors employ the encode-process-decode paradigm (Hamrick et al., 2018) and compare dif-
ferent processor networks (which are different GNNs) choices. Below we provide some more details
on this encode-process-decode setup. Since we focus on the CLRS Benchmark for evaluation, this
forms as the baseline architectural structure.

Let us take a graph G = (V, E), with Let Ni as the one-hop neighbourhood of node i. Let xi ∈ Rdk

be the node features for node i ∈ V , eji ∈ Rde the edge features for edge (j, i) ∈ E and g ∈ Rdg the
graph features. The encode step involves encoding these inputs using linear layers fn : Rdk → Rdh ,
fe : Rde → Rdh and fg : Rdg → Rdh :

hi = fn(xi) hij = fe(eij) hg = fg(g) (1)

These are then used in a processor network during the process step. The previous latent features
h(t−1)
i are used along with the current node feature hi encoding to get a recurrent encoded input z(t)i

using a recurrent encoding function fA. This recurrent cell update is line with the work of Veličković

2



Under review as a conference paper at ICLR 2024

et al. (2019). A message from node i to node j, mij is computed for each pair of nodes using a
message function fm. These messages are aggregated using a permutation-invariant aggregation
function

⊕
. Finally, a readout function fr transforms the aggregated messages and node encodings

into processed node latent features.

z(t)i = fA(hi,h(t−1)
i ) (2)

mij = fm(z(t)i , z(t)j ,hij ,hg) (3)

mi =
⊕
j∈Ni

mji (4) h(t)
i = fr(z

(t)
i ,mi) (5)

For different processors, fA, fm and fr may differ.

The last decode step consists of using relevant decoding functions to get the required prediction.
This might be the predicted hints or predicted output.

3 RELATED WORK

The ability of RNNs to work in a sequential manner led to their popularity in previous works for
reasoning about algorithms, as algorithms tend to be iterative in nature. Noting that most computer
programmes make use of external memory, Graves et al. (2014) proposed addition of an external
memory module to RNNs, which makes reasoning about algorithms easier. Subsequent methods
have worked upon this idea and have found success with memory modules inspired from different
data structures. This includes Stack-Augmented RNNs by (Joulin & Mikolov, 2015) and Neural
DeQues by Grefenstette et al. (2015). A key limitation of all these proposals is that they are only
defined for use by RNNs. Unlike GNNs, RNNs are unable to use the structured information about
the algorithms’ input spaces.

Early explorations on augmenting GNNs with memory focused on the use of internal memory in the
form of gates, such as Gated Graph Sequence Networks by Li et al. (2015), and Temporal Graph
Networks by Rossi et al. (2020). However, the use of such RNN-like gate mechanisms limits the
persistence of the graph/node histories. Persistent Message Passing (PMP) by Strathmann et al.
(2021) is a noteworthy GNN that makes use of non-gated persistent external memory, by persisting
some of the nodes at each timestep. However, PMPs cannot be applied to non-dynamic graphs
without significant effort. Furthermore, they require intermediate-supervision.

4 NEURAL PQ FRAMEWORK

Previous works have proposed Neural Stacks, Queues and DeQues (Grefenstette et al., 2015; Joulin
& Mikolov, 2015) that have a RNN controller. In this project, we propose the use of memory mod-
ules, with focus on differentiable PQs (or Neural PQs), with a GNN model acting as the controller.
Furthermore, we propose integration of such memory modules with message-passing framework by
allowing the Neural PQ to send messages to each node. The setup for this is shown in Figure 1.

4.1 DESIDERATA

We form the framework with the following desiderata in mind – (1) Memory-Persistence, (2)
Permutation-Equivariance, (3) Reducibility to Priority Queues, and (4) No dependence on inter-
mediate supervision. We motivate the need for these below.

Algorithms tend to run over multiple timesteps and have long temporal-interactions. Memory-
persistence is necessary to effectively model such interactions. Furthermore, memory persistence
helps avoid over-smoothing. Node embeddings of GNNs tend to start off varied, but as messages
are passed, they converge to each-other, making the nodes indistinguishable. Memory-persistence
would allow GNNs to remember earlier states, when the embeddings were more distinguished, and
use these to promote more varied embeddings.

Permutation-Equivariance reflects one of the most basic symmetries of graph structures, and is
necessary to ensure that isomorphic graphs receive the same representation, up to certain permu-
tations and transformation. This makes permutation-equivariance an essential property for GNN
layers.

3



Under review as a conference paper at ICLR 2024

Priority queues are a general data structure used by various algorithms. Furthermore, different data
structures, like stacks and queues, can be modelled using priority queues. Since algorithmically
aligned models lead to greater generalisation (Xu et al., 2019), having a memory module that aligns
with priority queues is desired.

By not requiring any intermediate supervision, memory modules become easier to apply directly
to different algorithmic tasks. These tasks might not use priority queues themselves, and so cannot
provide the intermediate supervision.

4.2 FRAMEWORK

We present the framework for a Neural PQ controlled by a message-passing GNN below. We use
the equations for the baseline message-passing GNN as described in Section 2. Let us suppose we
have the same setup as the baseline. The encode and decode part remain the same, but now the
processor uses an implementation of the Neural PQ Framework. Let the graph in consideration be
G = (V, E). Let the previous hidden state of the GNN be h(t−1)

i , and the previous state of the Neural
PQ be h(t−1)

pq .

In the Neural PQ framework, we calculate the set of values Vi to be popped for each node i ∈
V , using a pop function fpop. Messages are formed from these popped values using a message
encoding function f

(pq)
M . Each node aggregates these messages along with the traditional node-to-

node pairwise messages. Lastly, a push function fpush updates the state of the Neural PQ, to obtain
the next state h(t)

pq . Formally, we can define the following equations for the framework:

z(t)i = fA(hi,h(t−1)
i ) (6)

mij = fm(z(t)i , z(t)j ,hij ,hg) (7)

Vi = fpop(z
(t)
i , z(t),h(t−1)

pq ) (8)

Mi = f
(pq)
M (Vi, z(t)i ) ∪ {mji | j ∈ Ni} (9)

mi =
⊕

m∈Mi

m (10)

h(t)
i = fr(z

(t)
i ,mi) (11)

h(t)
pq = fpush(h(t−1)

pq , z(t)) (12)

where z(t) is a multi-set of all the encoded inputs z(t)i , i.e. z(t) = {{z(t)i | i ∈ V}}. fA, fm and fr

depend on which message-passing GNN processor we choose, while fpop, f (pq)
M and fpush depend

on the Neural PQ implementation.

Note that, in the above proposed framework, we choose to delay the update of the priority queue
due to pop operation until the fpush. This is done to keep the Neural PQ framework general and
to segregate the queue read and update operations. This also allows us to prove the permutation-
equivariance properties of the framework, as discussed below.

Even though the presented framework is inspired from priority queues, we can implement various
other data structures, like queues and stacks, by appropriate fpop and fpush definitions. The Neural
PQ framework exhibits and promotes various properties from the desiderata. By design, these do
not require any additional supervision. Furthermore, since the push, pop and message encoding
functions only depend on the destination node’s features, the multi-set of all node features and the
Neural PQ state, all implementations are also equivariant to permutations of the nodes, under certain
assumptions. For a detailed proof, refer to Appendix A.

5 NPQ

We propose NPQ, an implementation following the fore-mentioned Neural PQ framework that ex-
hibits all the proposed desiderata. We divide the definition of NPQ into 4 sub-sections – (1) State,
(2) Pop Function, (3) Message Encoding Function, and (4) Push Function. Taking inspiration from
Neural DeQues (Grefenstette et al., 2015), NPQs consist of continuous push and pop operations.

5.1 STATE

Due to continuos push/pop operations, the state h(t)
pq contains the values and their strengths. We can

represent this as a pair of lists, one with the memory values v(t) = [v(t)
1 , . . . , v(t)

i , . . .] and the other

4



Under review as a conference paper at ICLR 2024

Figure 2: State of the NPQ. It consists of two lists of the same length, representing the values v in
the queue and their respective strengths s.

Figure 3: Sample pop operation for a single
node i in NPQM. Left: Pop-request genera-
tion. Right: Use of pop-grants to determine
the value popped.

Figure 4: Sample push operation. The over-
all push operation can be divided into two main
steps. Step 1: The queue is updated to reflect
the removal of popped fractions. Step 2: New
value is pushed into the queue.

with the strengths of these values s(t) = [s(t)1 , . . . , s(t)i , . . .].

h(t)
pq = ⟨v(t), s(t)⟩ (13)

where ⟨·⟩ is a tuple. Figure 2 shows a sample state for the NPQ.

5.2 POP FUNCTION

We propose a continuos pop function, i.e. we pop a fractional proportions of the values in the queue.
This fraction, s(i)pop ∈ (0, 1) for node i, is computed as noted in Equation 14. This equation is similar
to the ones used for Neural DeQues by Grefenstette et al. (2015).

s(i)pop = sigmoid
(
f (pop)
s (z(t)i )

)
(14)

We use a request-grant framework to maintain the constraint that no value can be popped more than
it is present, i.e. one cannot pop 0.7 of a value vj that may be present in the PQ with only a strength
of sj = 0.4. Each node i ∈ V requests to pop fraction p

(i)
j ∈ (0, 1) of PQ element j. NPQ takes

all the p
(i)
j values into consideration and grants a fraction q

(i)
j ∈ (0, 1) of PQ element j to node i,

which may or may not be the same as the requested p
(i)
j . Equation 15 shows the calculation of this

granted fraction given the requested fractions p(i)j and the PQ element strengths s(t−1)
j .

q
(i)
j =

 p
(i)
j , if

∑
k∈V p

(k)
j ≤ s(t−1)

j

p
(i)
j∑

k∈V p
(k)
j

· s(t−1)
j , else

(15)

The above equation maintains the requirement that q
(i)
j ≤ p

(i)
j and

∑
i∈V q

(i)
j ≤ s(t−1)

j . These
granted proportions are used to calculate the final value popped.

v =
∑

j∈I(t−1)
pq

q
(i)
j · v(t−1)

j (16) fpop(z
(t)
i , z(t), ⟨v(t−1), s(t−1)⟩) = {v} (17)

where I(t−1)
pq =

[
1, . . . ,

∣∣v(t−1)
∣∣ ] is the set of indices for the NPQ. Note that since we are only

popping a single value from the NPQ, we are returning a single element set. The requested pop

5



Under review as a conference paper at ICLR 2024

proportions p
(i)
j are calculated using the continuous pop strength value s

(i)
pop, and attention coeffi-

cients c(i)j ∈ (0, 1), denoting the coefficient for the jth element of the queue with respect to the ith
node. These are calculated using a multi-head additive attention mechanism (Bahdanau et al., 2014;
Vaswani et al., 2017). This is done with inspiration from GATs by Veličković et al. (2018).

e
(i,h)
j = LeakyReLU

(
f (h)
a1

(z(t)i ) + f (h)
a2

(v(t−1)
j )

)
(18)

α
(i,h)
j = softmaxj

(
e
(i,h)
j

)
(19)

c
(i)
j = softmaxj

(
fa([α

(i,1)
j , . . . , α

(i,h)
j , . . .])

)
(20)

where α(i,h)
j ∈ (0, 1) is the attention coefficients for jth element of the queue with respect to node i

via attention-head h, and f
(h)
a1 , f (h)

a2 and fa are linear layers.

Using these coefficients, we propose two ways of popping elements from the queue – Max Popping
and Weighted Popping. We refer to NPQ using max popping and weighted popping as NPQM and
NPQW, respectively. Figure 3 shows sample pop operation for NPQ.

Max Popping The element j of the queue with the highest attention coefficient c(i)j is requested
to be popped for the node i.

k = argmax
k∈I(t−1)

pq

c
(i)
k (21) p

(i)
j = s(i)pop · I{k} (j) (22)

where IA(·) is the indicator function for set A, i.e. IA(a) = 1 ⇐⇒ a ∈ A and
IA(a) = 0 ⇐⇒ a /∈ A.

Weighted Popping The attention coefficients are treated as soft-weights with which each element
in the PQ is requested to be popped.

p
(i)
j = s(i)pop · c

(i)
j (23)

5.3 PRIORITY QUEUE MESSAGE FUNCTION

We use a simple message encoding function, where each output is passed through a linear layer
f
(pq)
m .

f
(pq)
M (Vi, z(t)i ) =

{
f (pq)
m (v) | v ∈ Vi

}
(24)

5.4 PUSH FUNCTION

As mentioned earlier, the push function is actually the state update function. Here we first delete the
popped proportions from the NPQ. Let h(t−1)

pq = ⟨v(t−1), s(t−1)⟩ be the previous NPQ state. Then,
we can define the NPQ state with the popped proportions deleted as ⟨v′, s′⟩, which are calculated as
below.

s′i = s(t−1)
i −

∑
k∈V

q
(k)
i (25) s′ = nonzeroi (s′i) (26) v′ = v(t)[ arg-nonzeroi (s

′
i)] (27)

where q
(k)
i ∈ (0, 1) is the proportion NPQ element i granted to be popped for node k as defined in

Equation 15, nonzeroi(s′i) is sequence of s′i with all zero s′i removed, and similarly, arg-nonzeroi is
the relevant indices of the sequence.

We push a single value v for the whole graph. To determine this value, we pass each node embedding
through a linear layer fv and sum the formed values across all the nodes. In line with Neural DeQues
by Grefenstette et al. (2015), this values is activated using a tanh function to get the final value to be
pushed.

The push function is continuous and so requires calculation of the push strength spush. This is done
in a similar manner to the push values calculation, using a linear layer f (push)

s . We use a logistic

6



Under review as a conference paper at ICLR 2024

sigmoid activation here instead of tanh, akin to Neural DeQues.

v = tanh

(∑
i∈V

fv(z
(t)
i )

)
(28)

s = sigmoid

(∑
i∈V

f (push)
s (z(t)i )

)
(29)

fpush(⟨v(t−1), s(t−1)⟩, z(t)) = ⟨v′ || [v], s′ || [spush]⟩ (30)

Note that in the above equations, we use q
(k)
i and z(t)i , which are not actually inputs to the fpush

function. This is done mainly to maintain readability of the functions. These equations can be easily
reformulated to only use h(t−1)

pq and z(t), in order to follow the general Neural PQ framework. Refer
to Appendix B for the reformulation.

5.5 PROPERTIES

Simply by virtue of following the Neural PQ framework, NPQ exhibits two of the desiderata –
Permutation-Equivariance, and no dependence on intermediate supervision. We do not update or
replace the previously stored NPQ elements, but rather persist them as long as possible, and only
delete their proportions when we pop them. This allows NPQ to achieve much greater memory-
persistence than done using gated memories.

Lastly, the push and pop operations of the NPQ are defined to be aligned close to the push and pop
operations of the traditional priority queue. In fact, under some assumptions, we can prove that
NPQM can be reduced to a traditional priority queue. This can be done by taking the push and pop
functions to be encoding the key-value pairs for the priority queue elements. For a detailed proof,
refer to Appendix C.

Thus, NPQ satisfies the four stated desiderata.

5.6 VARIANTS

We also explore some variations on the proposed NPQ. One such variation involves consideration
of greater memory-persistence by not deleting the popped elements. We refer to this variation as
NPQ-P.

Notably, NPQ treats popping as a node-wise activity. We can instead treat popping as a graph
operation, i.e. each node receives the same set of popped values. This can be done by either sending
all the node-wise popped values to all the nodes, or by popping a single value for all the nodes. We
refer to these two variants as NPQ-SA and NPQ-SV, respectively.

Empirically, we found these latter two variants more useful when combined with the first one. We re-
fer to these combined variations as NPQ-P-SA and NPQ-P-SV, respectively. For the exact equations
for the variants, refer to Appendix D-F.

6 EVALUATION

The main hypothesis we test is whether the Neural PQ implementations are useful for algorithmic
reasoning by using the CLRS-30 dataset (Veličković et al., 2022). To do so, we undertake multiple
experiments – (1) We first focus on a single algorithm, Dijkstra’s Shortest Path algorithm, evaluating
the performance of the Neural PQs with a MLP MPNN as the base GNN, comparing them with the
MPNN baseline as well as an MLP MPNN with an oracle priority queue. (2) We also evaluate the
performance of the Neural PQs on rest of the algorithms from the CLRS benchmark. (3) Lastly,
we also test whether the Neural PQs are useful for long-range reasoning, by evaluating their perfor-
mance on a dataset from the Long Range Graph Benchmark (Dwivedi et al., 2022). Appendix G
shows some more experiments performed.

7



Under review as a conference paper at ICLR 2024

Table 1: Test performance (Mean ± Standard
Deviation) of models with MLP MPNN base
on learning Dijkstra’s Algorithm with 256 node
graphs, run with 3 different seeds. The table
shows the results for the Best validation score
model (early-stopped model) and the Last model
in training.

Method Best Last
Baseline 68.58%± 9.71 76.97%± 4.38
NPQW 85.48%± 3.50 86.22%± 2.20
NPQM 74.54%± 8.37 74.68%± 3.06
NPQW-SA 79.74%± 2.99 69.36%± 12.02
NPQW-SV 77.04%± 2.99 79.89%± 6.28
NPQW-P 63.74%± 11.81 74.74%± 14.84
NPQM-P 73.12%± 3.03 72.14%± 6.76
NPQM-P-SA 79.19%± 5.17 78.26%± 6.19
NPQW-P-SV 71.46%± 6.75 79.44%± 5.90

Oracle PQ 75.85%± 3.65 85.37%± 3.72

Figure 5: Test MAE (Mean ± Stan-
dard Deviation) of different Neural
PQs with different base processors on
Peptides-struct dataset, run with 3 dif-
ferent seeds. Lower the test MAE,
better is the performance.

6.1 DIJKSTRA’S ALGORITHM – MPNN BASE

We train the models on Dijkstra’s algorithm from CLRS-30, and test for out-of-distribution (OOD)
generalisation, i.e. the models are trained on smaller input graphs, containing 16 nodes, and tested
on larger graphs, containing 256 nodes. The training data consists of 1000 samples, while the testing
and validation data consist of 32 samples each. We test the models on larger graph sizes than done
by Veličković et al. (2022) (they use graphs with 64 nodes) to better test the generalisation ability,
and because baseline MPNN model already gets around 91.5% test performance with 64 nodes.

To test the limit of attainable performance from Neural PQs, we test an MPNN with access to an
Oracle PQ, where apart from the standard input features, we also take information about the values
pushed and popped from the priority queue as input. The Oracle Neural PQ forces the push and pop
operation to be determined by the algorithmic PQ. This information about the actual PQ is used in
training, validation as well as testing.

Table 1 shows the test performance of the different models. We see that the last model performs
much better than the early-stopped model for the baseline and Oracle PQ. Notably, the last and
early-stopped model perform similarly for NPQW. NPQW outperforms the baseline as well as the
Oracle PQ. In fact, we see that it closes the gap between the test performance of baseline MPNN
and true solution, i.e. 100% test performance, by over 40%.

We also note that NPQW outperforms the persistence variants. This suggests that the performance
improvements are not simply due to introduction of persistence or a form of memory and com-
plicated pop operations are not unnecessary. It also outperforms the graph pop operation variants,
suggesting that the node-wise pop operation might be better suited for these tasks.

6.2 DIFFERENT ALGORITHMS FROM CLRS-30

We train and test five models for each algorithm from CLRS-30 dataset – ‘Baseline’ (no memory
module), NPQM-P-SA, NPQW-P-SV, NPQW and NPQM. We train each model on graphs with 16
nodes, and test them on graphs with 128 nodes, and consider only the early-stopped models.

Figure 6 shows the comparison for best performing Neural PQ and the baseline MPNN for each
algorithm. We see that for 26 out of the 30 algorithms, at least one of the Neural PQs outper-
forms the baseline MPNN. Interestingly, the optimal Neural PQ version depends on the algorithm
of choice. Notably, the performance gain of using a Neural PQ does not seem to be limited to
algorithms that use a traditional priority queue. This supports our belief that the Neural PQ imple-
mentations are quite general, and these can perform various roles, such as acting as a traditional data
structure, or a persistent-memory for accessing past overall graph states. We provide the table with
algorithm-wise performance of each Neural PQ in Appendix G. Focussing on NPQM, we found that
it outperforms the baseline for 17 algorithms (more than half of the algorithms). We see that for 12

8



Under review as a conference paper at ICLR 2024

Figure 6: Evaluation results for best performing Neural PQ and the baseline MPNN model for the
30 algorithms from CLRS-30, sorted by the relative improvement in performance.

algorithms, it improves the performance or closes the gap to true prediction by at least 10%. For 4
algorithms, it improves performance/reduces the gap by at least 50%.

6.3 LONG-RANGE REASONING

Message-passing based GNNs exchange information between 1-hop neighbours to build node rep-
resentations at each layer. Past works have shown that such information propagation leads to over-
squashing when the path of information traversal is long, and leading to poor performance on long-
range tasks (Alon & Yahav, 2021; Dwivedi et al., 2022). Dwivedi et al. (2022) have proposed a
collection of graph learning datasets to form ‘Long Range Graph Benchmark’ (LRGB), each requir-
ing long-range interaction reasoning to achieve strong performance. In these experiments, we test
the performance of using Neural PQs on Peptides-struct dataset from the LRGB benchmark.

Figure 5 shows the test MAE results for the different Neural PQs and the baseline. Notably, all
Neural PQs outperform the baseline for GATv2 processor, while only NPQW-P-SV and NPQW out-
perform the baseline on the other two processors. The success of NPQW-P-SV and NPQW means
that these Neural PQs are empirically helping the models with long-range reasoning. Notably, we
see that Weighted popping seems more useful for long-range reasoning.

7 CONCLUSION AND FUTURE WORKS

In this paper, we proposed Neural PQs, a general framework for adding memory modules to GNNs,
with inspirations from traditional priority queues. We empirically show that NPQs help with algo-
rithmic reasoning, and without any extra supervision, match the performance of the baseline model
that has access to true priority queue operations on Dijkstra’s algorithm. The performance gains are
not limited to algorithms using priority queues. Furthermore, we show that the Neural PQs help
with capturing long-range interaction, by demonstrating their prowess on the Peptides-struct
dataset from the Long-Range Graph Benchmark.

The success of the Neural PQs has a wide effect on the field of representational learning. It opens
up a research domain exploring the use of memory modules with GNNs, especially their interfacing
with the message-passing framework. The Neural PQs take crucial steps towards advancing the
neural algorithmic reasoning field. These also hold potential with various other fields and tasks, as
seen by their performance on the long-range reasoning task.

We have limited our focus on simple memory module operations. Potential future works could in-
volve exploration of more complicated definitions. These might be formed by analysing the reasons
behind the greater success of Neural PQs on some algorithms as opposed to others. Neural PQs can
also be used for various other graph tasks, and it would be interesting to explore their uses for these.

9



Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

To foster reproducibility, we plan to make our code publicly available once accepted. Section 6
contains most of the experimental details, with additional details in Appendix G.

For completeness, we include further discussions and proofs in the Appendix. Appendix A contains
the proof for permutation-equivariance of modules with the Neural PQ framework. To make the
NPQ operations simpler, the equations defined earlier do not strictly follow the Neural PQ frame-
work. In Appendix B, we provide a reformulation of these equations so that they follow the Neural
PQ framework. We show the alignment of NPQs with traditional priority queues in Appendix C.
Appendix D-F contain information and equations about the different variants of NPQ that we ex-
plored. Appendix G contains additional details and results from the experiments described earlier in
the paper, as well results from further evaluations.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical im-
plications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i80OPhOCVH2.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2014. URL https://arxiv.org/abs/1409.0473.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2022.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark, 2022. URL https://arxiv.org/
abs/2206.08164.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014. URL https:
//arxiv.org/abs/1410.5401.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory, 2015. URL https://arxiv.org/abs/1506.02516.

Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee, Joshua B. Tenen-
baum, and Peter W. Battaglia. Relational inductive bias for physical construction in humans and
machines, 2018.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac, Beat-
rice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Veličković. A generalist neural
algorithmic learner, 2022.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets, 2015. URL https://arxiv.org/abs/1503.01007.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks, 2015. URL https://arxiv.org/abs/1511.05493.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs, 2020. URL https:
//arxiv.org/abs/2006.10637.

Heiko Strathmann, Mohammadamin Barekatain, Charles Blundell, and Petar Veličković. Persistent
message passing, 2021. URL https://arxiv.org/abs/2103.01043.

10

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/2206.08164
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1506.02516
https://arxiv.org/abs/1503.01007
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2103.01043


Under review as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL https://arxiv.
org/abs/1706.03762.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273,
jul 2021. doi: 10.1016/j.patter.2021.100273. URL https://doi.org/10.1016%2Fj.
patter.2021.100273.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execu-
tion of graph algorithms, 2019. URL https://arxiv.org/abs/1910.10593.

Petar Veličković, Lars Buesing, Matthew C. Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks, 2020. URL https://arxiv.org/abs/2006.06380.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning bench-
mark, 2022. URL https://arxiv.org/abs/2205.15659.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about?, 2019. URL https://arxiv.org/abs/1905.
13211.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets, 2018.

11

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1016%2Fj.patter.2021.100273
https://doi.org/10.1016%2Fj.patter.2021.100273
https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/2006.06380
https://arxiv.org/abs/2205.15659
https://arxiv.org/abs/1905.13211
https://arxiv.org/abs/1905.13211


Under review as a conference paper at ICLR 2024

A PERMUTATION-EQUIVARIANCE

Node permutation-equivariance is an essential property shown by majority of the GNNs, as it em-
bodies a key graph symmetry. A GNN layer is said to be equivariant to permutation of the nodes
if and only if any permutation of the node IDs, while maintaining the overall graph structure, leads
to the same permutation of the node features. Let us continue with considering our graph to be
G = (V, E). Let P : V → V be a permutation of the node IDs. For ease, let ρ : α → α be an
overloaded permutation operation, affecting the permutation P over all domains α. For example,
for the domain of vertices/nodes V , we have ρ(i) = P (i) for all i ∈ V .

A.1 MPNN PERMUTATION-EQUIVARIANCE

GNNs following the message-passing framework are permutation-equivariant. We consider the re-
current setup of CLRS benchmark here. This is fairly easy to show. First, we recall the relevant
equations from Section 2 below.

z(t)i = fA(hi,h(t−1)
i ) (31)

mij = fm(z(t)i , z(t)j ,hij ,hg) (32)

mi =
⊕
j∈Ni

mji (33)

h(t)
i = fr(z

(t)
i ,mi) (34)

We can consider matrices H(t) and H indexed by the vertices i ∈ V , containing values h(t)
i and hi,

respectively. We also have a matrix of edge features E index by edges (i, j) ∈ E with value hij .
Further, we can define the above operations as a single layer Fmpnn (·), such that:

H(t) = Fmpnn

(
H(t−1),H,E

)
(35)

In order to prove that message-passing GNNs are permutation-equivariant, we need to show that:

Fmpnn

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E)

)
= ρ

(
H(t)

)
(36)

PROOF

We start by noting that by definition of ρ and permutation, ρ
(
H(t−1)

)
and ρ (H) are matrices such

that they have values h(t−1)
ρ(i) and hρ(i), respectively, for index i ∈ V . Also, ρ (E) is indexed by pairs

(i, j), where (ρ(i), ρ(j)) ∈ E , containing value hρ(i)ρ(j). Thus, we can define H′(t) as below.

H′(t) = Fmpnn

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E)

)
(37)

where H′(t) has value h′(t)
i for index i ∈ V , with h′(t)

i as defined below.

z′(t)i = fA(hρ(i),h(t−1)
ρ(i) ) (38)

m′
ij = fm(z′(t)i , z′(t)j ,hρ(i)ρ(j),hg) (39)

m′
i =

⊕
j∈ρ(Nρ(i))

m′
ji (40)

h′(t)
i = fr(z

′(t)
i ,m′

i) (41)

where ρ(Nρ(i)) is the one-hop neighbourhood on the permuted graph, and can be simply defined as
ρ(Nρ(i)) = {j ∈ V | (ρ(j), ρ(i)) ∈ E}. All these equations follow simply from application of the
MPNN equations, as noted before, on the permuted matrices.

We start by noting that fA(hρ(i),h(t−1)
ρ(i) ) is simply the value z(t)ρ(i). Thus, we get the below equation.

z′(t)i = z(t)ρ(i) (42)

12



Under review as a conference paper at ICLR 2024

Using this in equation 39, we get:

m′
ij = fm(z(t)ρ(i), z(t)ρ(j),hρ(i)ρ(j),hg) (43)
= mρ(i)ρ(j) (44)

Using this in equation 40, we get:

m′
i =

⊕
j∈ρ(Nρ(i))

mρ(j)ρ(i) (45)

We also note that, by definition of ρ(Nρ(i)), we get the following.

j ∈ ρ(Nρ(i)) ⇐⇒ ρ(j) ∈ Nρ(i) (46)

Using this in Equation 45, we get:

m′
i =

⊕
ρ(j)∈Nρ(i)

mρ(j)ρ(i) (47)

= mρ(i) (48)

Substituting the above value and value from Equation 42 in Equation 41:

h′(t)
i = fr(z

(t)
ρ(i),mρ(i)) (49)

= h(t)
ρ(i) (50)

But that means that H′(t) = ρ(H(t)).

∴ Fmpnn

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E)

)
= ρ

(
H(t)

)
(51)

Hence, proved that message-passing GNNs show node-permutation equivariance.

A.2 NEURAL PQ PERMUTATION-EQUIVARIANCE

In a similar vein, we can show that the memory modules following the Neural PQ framework pro-
posed by me, show node-permutation equivariance. Below we recall the equations for the Neural
PQ framework.

z(t)i = fA(hi,h(t−1)
i ) (52)

mij = fm(z(t)i , z(t)j ,hij ,hg) (53)

Vi = fpop(z
(t)
i , z(t),h(t−1)

pq ) (54)

Mi = f
(pq)
M (Vi, z(t)i ) ∪ {mji | j ∈ Ni} (55)

mi =
⊕

m∈Mi

m (56)

h(t)
i = fr(z

(t)
i ,mi) (57)

h(t)
pq = fpush(h(t−1)

pq , z(t)) (58)

where z(t) is a multi-set of all the encoded inputs z(t)i , i.e. z(t) = {{z(t)i | i ∈ V}}.

We can take H(t), and E as defined in the previous section. Then, we can define the overall opera-
tions of the Neural PQ as a single layer Fnpq (·), such that:

H(t),h(t)
pq = Fnpq

(
H(t−1),H,E,h(t−1)

pq

)
(59)

In order to prove that modules following the Neural PQ framework are permutation-equivariant, we
need to show that:

Fnpq

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E) ,h(t−1)

pq

)
= ρ

(
H(t)

)
,h(t)

pq (60)

13



Under review as a conference paper at ICLR 2024

PROOF

The description of ρ
(
H(t−1)

)
, ρ (H) and ρ (E) follow here same as before. We can define H′(t)

and h′(t)
pq as below.

H′(t),h′(t)
pq = Fnpq

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E) ,h(t−1)

pq

)
(61)

Thus, H′(t) has value h′(t)
i for index i ∈ V , with h′(t)

i and h′(t)
pq as defined below.

z′(t)i = fA(hρ(i),h(t−1)
ρ(i) ) (62)

m′
ij = fm(z′(t)i , z′(t)j ,hρ(i)ρ(j),hg) (63)

V ′
i = fpop(z

′(t)
i , z′(t),h(t−1)

pq ) (64)

M ′
i = f

(pq)
M (V ′

i , z′(t)i ) ∪
{

m′
ji | j ∈ ρ(Nρ(i))

}
(65)

m′
i =

⊕
m∈M ′

i

m (66)

h′(t)
i = fr(z

′(t)
i ,m′

i) (67)

h′(t)
pq = fpush(h(t−1)

pq , z′(t)) (68)

where z′(t) is a multi-set of all the node embeddings z′(t)i , i.e. z′(t) = {{z′(t)i | i ∈ V}}.

The following can be shown in a similar fashion as the previous proof:

z′(t)i = z(t)ρ(i) (69)

m′
ij = mρ(i)ρ(j) (70)

j ∈ ρ(Nρ(i)) ⇐⇒ ρ(j) ∈ Nρ(i) (71)

Using Equation 69 and the definition of z′(t), we get:

z′(t) = {{z(t)ρ(i) | i ∈ V}} (72)

= {{z(t)i | i ∈ V}} (73)

= z(t) (74)

because ρ(i) = P (i) and P is a permutation, and so the multi-sets are equal.

Using Equation 69 and Equation 74, we can update Equation 64 as below.

V ′
i = fpop(z

(t)
ρ(i), z(t),h(t−1)

pq ) (75)
= Vρ(i) (76)

Substituting Equation 69, Equation 70 and Equation 76 in Equation 65, we get:

M ′
i = f

(pq)
M (Vρ(i), z(t)ρ(i)) ∪

{
mρ(i)ρ(j) | j ∈ ρ(Nρ(i))

}
(77)

Using Equation 71 in the above equation, we get:

M ′
i = f

(pq)
M (Vρ(i), z(t)ρ(i)) ∪

{
mρ(i)ρ(j) | ρ(j) ∈ Nρ(i)

}
(78)

= Mρ(i) (79)

Substituting this in Equation 66, we get:

m′
i =

⊕
m∈Mρ(i)

m (80)

= mρ(i) (81)

Using this and Equation 69 in Equation 67, we get:

h′(t)
i = fr(z

(t)
ρ(i),mρ(i)) (82)

= h(t)
ρ(i) (83)

14



Under review as a conference paper at ICLR 2024

This means that H′(t) = ρ(H(t)).

Additionally, substituting the value from Equation 74 in Equation 68, we get:

h′(t)
pq = fpush(h(t−1)

pq , z(t)) (84)

= h(t)
pq (85)

Since, H′(t) = ρ(H(t)) and h′(t)
pq = h(t)

pq , we have:

Fnpq

(
ρ
(
H(t−1)

)
, ρ (H) , ρ (E) ,h(t−1)

pq

)
= ρ

(
H(t)

)
,h(t)

pq (86)

Hence, proved, that modules following the Neural PQ framework show node-permutation equivari-
ance.

B NPQ REFORMULATION

In Section 5, we introduced the push and pop operations for NPQ. However, the equations defined
there make use of the granted pop proportions q(i)j (and z(t)i as well in the push operation). These are
not exactly available to the respective functions as defined in the Neural PQ framework. However,
these are used in Section 5 only to make the equations easier to understand, and they instead can be
reformulated to conform to the Neural PQ framework. We provide the reformulation below.

B.1 POP FUNCTION

The calculation of pop request fractions p(i)j as defined in Section 5.2 can be combined into a single
function POP-REQUEST, which takes z(t)i , h(t−1)

pq and j – the embedding of node i, previous NPQ
state and the index of the queue element we want to calculate the pop request for, and returns the
pop request fraction p

(i)
j .

p
(i)
j = POP-REQUEST(z(t)i ,h(t−1)

pq , j) (87)

We can calculate the sum of the pop requests as below:

TOT-POP-REQ(z(t),h(t−1)
pq , j) =

∑
zk∈z(t)

POP-REQUEST(zk,h(t−1)
pq , j) (88)

By definition of z(t), we have:∑
k∈V

p
(k)
j =

∑
k∈V

POP-REQUEST(z(t)k ,h(t−1)
pq , j) (89)

=
∑

zk∈z(t)
POP-REQUEST(zk,h(t−1)

pq , j) (90)

= TOT-POP-REQ(z(t),h(t−1)
pq , j) (91)

Using this, we can reformulate the pop proportions q(i)j as below:

q
(i)
j =

 p
(i)
j , if TOT-POP-REQ(z(t),h(t−1)

pq , j) ≤ s(t−1)
j

p
(i)
j

TOT-POP-REQ(z(t),h(t−1)
pq ),j

· s(t−1)
j , else

(92)

It is easy to see that this reformulation conforms to the pop function as defined in the Neural PQ
framework.

15



Under review as a conference paper at ICLR 2024

B.2 PUSH FUNCTION

We can rewrite the push function as below:

s′i = s(t−1)
i −min

(
TOT-POP-REQ(z(t),h(t−1)

pq , i), s(t−1)
i

)
(93)

s′ = nonzeroi (s′i) (94)
v′ = v(t)[ arg-nonzeroi (s

′
i)] (95)

v = tanh

 ∑
zk∈z(t)

fv(zk)

 (96)

s = sigmoid

 ∑
zk∈z(t)

f (push)
s (zk)

 (97)

fpush(⟨v(t−1), s(t−1)⟩, z(t)) = ⟨v′ || [v], s′ || [spush]⟩ (98)

Again, it is easy to see that the above reformulation conforms to the push function as defined in the
Neural PQ framework.

C PRIORITY QUEUE ALIGNMENT

Following is the priority queue setup we consider. We will then show that under certain assumptions,
we can reduce the NPQM computation to the equations for the priority queue setup defined.

Let us suppose some algorithm uses a priority queue. We shall take the algorithm to push at most
1 element and pop at most 1 element in each timestep. We take the pushing and popping to be
controlled by the overall graph, but under certain assumptions, the reduction can be extended to
having these from nodes instead. Further, we take that the output of the popping is returned to some
specific node. Let P (t−1) = {(k1, ν1), . . . , (ki, νi), . . .} be the set of past un-popped key-value-pair
pushes to the priority queue. Let o(t)

i be the output to the node i ∈ V . We further assume that all
priority keys and values are unique. We can represent the operation of a traditional priority queue
over a timestep as below, using P (t−1) from the previous timestep and by calculating the next P (t−1)

and the outputs o(t)
i . We take the value returned to be 0 if no value is returned to the node.

o
(t)
i =

{
ν
(t−1)
max , if we pop this timestep and return to node i
0 , else

(99)

P ′(t) =

{
P (t−1) − (k

(t−1)
max , ν

(t−1)
max ) , if we pop this timestep

P (t−1) , else
(100)

P (t) =

{
P ′(t) ∪ (k(t), ν(t)) , if we push some key-value pair (k(t), ν(t))
P ′(t) , else

(101)

where (k
(t−1)
max , ν

(t−1)
max ) ∈ P (t−1) such that ∀(k, ν) ∈ P (t−1) . k ≤ kmax.

We shall now show that, under certain assumptions, the NPQM operations can be reduced to the
above operations. More specifically, we shall show that the NPQ state h(t)

pq mimics the priority queue

state P (t), and the NPQ messages Mi mimics the returned value o
(t)
i . The main assumptions we

make is that the linear layers are capable of expressing the required functions and the intermediate
embedding sizes are big enough to not lose any information. We go into more details about the
assumptions as we describe the reduction.

We continue with the graph G = (V, E) setup, with z
(t)
i as the node features. Since NPQ uses a

GNN controller, we assume that we can make all decisions from the node features, i.e. the node
features determine whether we want to push and pop values and if so, what value and key to push,
and which node to pop to. Let h(t−1)

pq = ⟨v(t−1), s(t−1)⟩ be the previous NPQ state, such that each
element of v(t−1) is an encoding of a unique key-value-pair in P (t−1), with an element existing for
each key-value pair. Let κ be the mapping from NPQ values to the corresponding keys, and ω be the
mapping from NPQ to the values in P (t−1). Let for all s ∈ s(t−1), s = 1.

16



Under review as a conference paper at ICLR 2024

Pop Function We shall now breakdown the pop function, to make the overall computation match
the traditional priority queue’s. We assume that we can instantiate f

(pop)
s in a manner such that

s
(i)
pop = 1 iff we want to pop a value for node i in timestep t, else s

(i)
pop = 0. Let us further suppose

that the attentional mechanism calculating the coefficient c(i)j simply extracts the encoded priority
key in vt−1

j . More specifically, coefficient c(i)j is calculated as below in NPQ.

e
(i,h)
j = LeakyReLU

(
f (h)
a1

(z(t)i ) + f (h)
a2

(v(t−1)
j )

)
(102)

α
(i,h)
j = softmaxj

(
e
(i,h)
j

)
(103)

c
(i)
j = softmaxj

(
fa([α

(i,1)
j , . . . , α

(i,h)
j , . . .])

)
(104)

For simplicity, we can take number of attention heads to be 1. Let f (h)
a1 (x) = 0 for all x. Further,

suppose that f (h)
a2 (v(t−1)

j ) = LeakyReLU−1(κ(v(t−1)
j )). Also, let us take fa to be an identity

function. Thus, we get the below equation for c(i)j .

e
(i,h)
j = κ(v(t−1)

j ) (105)

α
(i,h)
j = softmaxj

(
κ(v(t−1)

j )
)

(106)

c
(i)
j = softmaxj

(
softmaxj

(
κ(v(t−1)

j )
))

(107)

Since we use Max Popping, we have the pop proportions requested as below.

k = argmax
k∈I(t−1)

pq

softmaxk
(

softmaxk
(
κ(v(t−1)

k )
))

(108)

p
(i)
j = s(i)pop · I{k} (j) (109)

We can show easily that argmaxa∈A softmaxa(ba) = argmaxa∈A ba, for some set A and values
ba. Thus, we can simplify the pop proportions.

k = argmax
k∈I(t−1)

pq

κ(v(t−1)
k ) (110)

p
(i)
j = s(i)pop · I{k} (j) (111)

But argmax
k∈I(t−1)

pq
κ(v(t−1)

k ) is nothing but index of the NPQ element corresponding to k
(t−1)
max .

Thus, we can re-formulate the above equation to use this.

p
(i)
j = s(i)pop · I{k

(t−1)
max

} (κ(v(t−1)
j )

)
(112)

Using the assumption about f (pop)
s and rewriting the indicator function, we get the following equa-

tion.

p
(i)
j =


1 , if we pop this timestep, return to node i

and κ(v(t−1)
j ) = k

(t−1)
max

0 , else
(113)

Since ∀s ∈ s(t−1) . s = 1, NPQ will fully grant each pop request. Thus, we have q
(i)
j = p

(i)
j . NPQ

has pop function’s output values as defined below.

fpop(z
(t)
i , z(t), ⟨v(t−1), s(t−1)⟩) =


∑

j∈I(t−1)
pq

q
(i)
j · v(t−1)

j

 (114)

Using the previous equations, we get the following reduction for Vi.

Vi =


{v(t−1)

j } , if we pop this timestep and return to node i

where κ(v(t−1)
j ) = k

(t−1)
max

{0} , else
(115)

17



Under review as a conference paper at ICLR 2024

Message Encoding Function We assume that NPQ learns a message encoding function f
(pq)
m such

that f (pq)
m (0) = 0 and f

(pq)
m (v(t−1)

j ) = ω(v(t−1)
j ) for all j. Thus, the reduction for Mi is as follows.

Mi =

{
ν
(t−1)
max , if we pop this timestep and return to node i
0 , else

(116)

where we make use of the fact that κ(v(t−1)
j ) = k

(t−1)
max ⇐⇒ ω(v(t−1)

j ) = ν
(t−1)
max which follows by

the definition of ω, κ and the key-value-pair (k(t−1)
max , ν

(t−1)
max ).

This in fact is the same value as the output value o
(t)
i , returned in the traditional priority queue.

Thus, we have shown that NPQ messages mimic the returned output. We only need to now show
that the state update can be mimicked as well.

Push Function It is straightforward to see, albeit somewhat tedious to show, that the NPQ state
⟨v′, s′⟩ is such that ∀s ∈ s′.s = 1 and that the correspondence between v′ and the key-value-pairs in
P ′(t) is maintained by κ and ω. Thus, we use this directly without proof.

Similar to the push strength, we assume that we can instantiate f
(push)
s in a manner such that s = 1

iff we want to push a value in timestep t, else s = 0. We also assume that we can instantiate fv such
that when we want to push a value, we get v as a unique recoverable encoding of the key-value-pair
that we want to push. That means that we can now define another mapping, κ′ and ω′, such that
these are equal to κ and ω for the previous elements, and for the new element, these are equal to
the newly pushed key-value-pair. This means that the new state NPQ h(t)

pq mimics the priority queue
state P (t).

Hence proved that we can reduce the operations of NPQM to a traditional priority queues, under the
noted assumptions.

D GREATER MEMORY-PERSISTENCE – NPQ-P

NPQ defined earlier deletes the popped elements from the queue. In this variation, we explore a
more persistent Neural PQ implementation. We refer to this as NPQ-Persistent or NPQ-P. NPQ-P
does not delete popped elements. Here the pop operation acts more like a ‘seek’ operation, i.e. it
just returns the element but does not delete it. We make a further simplification by making the push
and pop operations discrete. Thus, at each timestep, one element is pushed into the queue, and one
element (or a weighted combination of elements) per node is read and passed as a message to each
node. Below we note the changes in the components for this implementation, as compared to NPQ.
The message encoding function remains the same, but the rest change.

D.1 STATE

Since we do not have a continuous push and pop operation, we do not need to keep track of the
strengths of the different values in the queue. Thus, the state of the priority queue h(t)

pq is simply the
list of memory values. For the sake of consistency with NPQ, we represent the state as a single value
tuple.

h(t)
pq = ⟨v(t)⟩ (117)

D.2 POP FUNCTION

As noted, pop does not delete an element from the queue. The priority of the elements of the
queue is determined using attention coefficients c

(i)
j ∈ (0, 1), denoting the coefficient for the jth

element of the queue with respect to the ith node, as defined in Equation 20. Since we no longer
have push and pop strengths, we no longer need the request-grant framework. We again have two
popping strategies – Max Popping and Weighted Popping, and related implementations NPQM-P
and NPQW-P respectively.

18



Under review as a conference paper at ICLR 2024

MAX POPPING

j = argmax
j∈I(t−1)

pq

c
(i)
j (118)

fpop(z
(t)
i , z(t), ⟨v(t−1)⟩) =

{
v(t−1)
j

}
(119)

WEIGHTED POPPING

fpop(z
(t)
i , z(t), ⟨v(t−1)⟩) =


∑

j∈I(t−1)
pq

c
(i)
j · v(t−1)

j

 (120)

D.3 PUSH FUNCTION

Since we are no longer deleting elements, the push function simply consists of appending new push
value to the queue.

v = tanh

(∑
i∈V

fv(z
(t)
i )

)
(121)

fpush(⟨v(t−1)⟩, z(t)) = ⟨v(t−1) || [v]⟩ (122)

E GRAPH PRIORITY QUEUE – NPQ-SA

In NPQ, each node pops different elements from the queue, and thus receives different messages
from the queue. This node-wise treatment of the priority queue might not be always ideal, and we
might want to treat the priority queue messaging to be uniform for the whole graph, i.e. we might
want each node to receive the same values from the Neural PQ. In NPQ Send to All or NPQ-SA, we
propose a variant that returns the same set of popped values for each node. This set is simply the
union of all the values that would have been popped from the queue in NPQ for the different nodes.
Thus, in NPQ-SA, each node receives |V| values from the queue. All the components of the Neural
PQ remain the same as in Section 5 except for the pop function, which is as follows.

E.1 POP FUNCTION

Most of the function remains the same and uses the attention coefficients and pop fractions q(i)j as
defined in Section 5.4. The changes are as below, where we now first calculate V ′

k , the set of values
popped for node k, if we were using the pop function of NPQ. These are then union-ed to get the
values returned for each node.

V ′
k =


∑

j∈I(t−1)
pq

q
(k)
j · v(t−1)

j

 (123)

fpop(z
(t)
i , z(t), ⟨v(t−1)⟩) =

⋃
k∈V

V ′
k (124)

F GRAPH PRIORITY QUEUE – NPQ-SV

NPQ-SA is one way to model a graph controlled priority queue. Another way would be to only pop
a single value from the priority queue, and return this single value to all nodes. We implement this
strategy in NPQ Single Value or NPQ-SV. Again, only the pop function changes here.

19



Under review as a conference paper at ICLR 2024

F.1 POP FUNCTION

NPQ-SV makes two changes to the pop function of NPQ – (1) all pop strengths are aggregated to
get a single value for all the nodes, and (2) all the attention coefficients are aggregated to get the
same values for all the nodes. We calculate this single pop strength spop and attention coefficients
cj as below.

spop = sigmoid

(∑
i∈V

f (pop)
s (z

(t)
i )

)
(125)

cj = softmaxj

(∑
i∈V

c
(i)
j

)
(126)

where c
(i)
j is the node-wise attention coefficients, as calculated in Section 5.4. We now need to just

update the pop requests p
(i)
j to use these values, as done below. Rest of the function remains the

same as in NPQ.

MAX POPPING

k = argmax
k∈I(t−1)

pq

ck (127)

p
(i)
j = spop · I{k} (j) (128)

WEIGHTED POPPING

p
(i)
j = spop · cj (129)

G FURTHER EVALUATIONS

In Section 6, we present various experiments we performed. In this section, we provide further
details about the experiments and their results, along with some more experiments.

G.1 DIJKSTRA’S ALGORITHM – DIFFERENT BASE PROCESSORS

We run experiments to test whether the performance improvements seen with the MPNN controlling
the Neural PQs are also seen with the use of different processors controlling the Neural PQs. We
continue with Dijkstra’s algorithm as the target task, and explore the use of different base processors
– Deep Sets (Zaheer et al., 2018), GAT (Veličković et al., 2018), GATv2 (Brody et al., 2022), PGN
(Veličković et al., 2020) and Triplet MPNN (Ibarz et al., 2022), apart from MPNN. We compare the
performance of baseline (no memory module), NPQM-P-SA, NPQW-P-SV, NPQW and NPQM, each
with these different base processors.

Table 2 shows the test performance of the different Neural PQs when used with the above mentioned
different base processors/controllers, on graphs with 256 nodes. We observe that for each processor,
at least one of the Neural PQs outperforms the baseline. NPQW outperforms the baseline for all
processors, except Deep Sets and PGN, for both of which, it gets a performance very close to the
baseline. Thus, the use of Neural PQs does not seem to be limited to the basic MLP MPNN, although
interestingly, for some processor GNNs, like Deep Sets and PGN here, other Neural PQ variants
seem to be more useful.

G.2 DIFFERENT ALGORITHMS FROM CLRS

Section 6.2 talks about our experiment of using the different Neural PQs for all 30 algorithms from
CLRS-30. Table 3 shows the algorithm-wise performance for each model. This also shows the
Win/Tie/Loss counts, which are calculated in the same manner as Veličković et al. (2022). Table 4
shows the algorithm-wise win/tie/loss of each model.

20



Under review as a conference paper at ICLR 2024

Table 2: Test performance (Mean ± Standard Deviation) of different Neural PQs with different base
processors on learning Dijkstra’s Algorithm, run with 3 different seeds. Tested on graphs with 256
nodes, and with Early-stopped model.

Processor Baseline NPQM-P-SA NPQW-P-SV NPQW NPQM
Deep Sets 31.01%± 2.41 37.76%± 0.60 31.30%± 3.12 30.36%± 3.47 31.04%± 5.50
GAT 36.94%± 12.51 19.58%± 9.17 47.04%± 13.51 38.72%± 9.13 36.96%± 14.37
GATv2 55.62%± 3.18 19.07%± 12.56 52.12%± 13.29 58.99%± 12.02 57.01%± 14.89
MPNN 76.97%± 4.38 81.64%± 3.71 77.19%± 8.15 86.22%± 2.20 74.68%± 3.06
PGN 65.28%± 6.16 67.58%± 7.01 74.42%± 5.50 64.57%± 3.00 59.58%± 9.46
Triplet MPNN 57.65%± 7.43 66.58%± 19.72 74.31%± 8.68 79.92%± 11.49 73.92%± 6.18

Table 3: Test performance (Mean ± Standard Deviation) of the Neural PQs on out-of-distribution
test data for all 30 algorithms from CLRS-30, run with 3 different seeds.

Algorithm Baseline NPQM-P-SA NPQW-P-SV NPQW NPQM
Activity Selector 80.38%± 2.94 81.29%± 1.35 62.27%± 19.30 78.82%± 6.13 83.36%± 4.27
Articulation Points 6.86%± 0.33 10.27%± 2.16 16.30%± 13.49 9.51%± 2.37 13.40%± 2.96
Bellman Ford 85.90%± 0.94 87.92%± 0.86 80.43%± 3.45 86.91%± 0.69 87.50%± 2.03
BFS 99.57%± 0.16 99.85%± 0.08 99.86%± 0.12 99.84%± 0.09 99.64%± 0.18
Binary Search 23.53%± 5.76 19.21%± 7.90 33.28%± 10.49 21.22%± 10.96 28.79%± 2.37
Bridges 3.61%± 2.39 3.67%± 1.45 1.68%± 0.72 2.46%± 1.32 1.83%± 0.40
Bubble Sort 18.44%± 2.52 14.31%± 8.79 16.11%± 7.30 21.37%± 3.11 17.78%± 10.43
DAG Shortest Paths 96.48%± 0.49 95.64%± 1.16 69.96%± 21.89 94.93%± 1.79 96.19%± 0.60
DFS 4.48%± 0.57 6.16%± 0.88 5.30%± 0.91 4.17%± 0.92 6.03%± 1.54
Dijkstra 82.69%± 7.50 89.72%± 0.73 89.48%± 2.24 90.93%± 2.66 83.94%± 2.52
Find Max Subarray 18.77%± 4.28 20.38%± 2.66 12.39%± 3.86 16.05%± 3.58 19.94%± 5.31
Floyd-Warshall 16.53%± 2.49 15.57%± 3.86 10.49%± 6.39 13.50%± 4.87 17.84%± 1.09
Graham Scan 85.92%± 5.10 80.33%± 10.77 67.95%± 3.09 64.05%± 15.28 61.95%± 20.81
Heapsort 3.99%± 1.76 24.58%± 26.33 10.57%± 4.91 10.45%± 6.30 16.37%± 8.33
Insertion Sort 12.99%± 8.14 11.61%± 1.45 10.02%± 2.96 9.88%± 1.31 8.16%± 1.22
Jarvis March 93.35%± 1.91 80.35%± 20.57 73.55%± 6.28 89.03%± 4.10 92.88%± 2.87
KMP Matcher 3.82%± 0.63 3.12%± 0.54 3.91%± 0.15 2.59%± 1.30 3.23%± 0.82
LCS Length 61.84%± 7.18 72.05%± 5.72 64.21%± 2.29 59.36%± 2.24 67.50%± 6.24
Matrix Chain Order 77.50%± 0.21 73.48%± 0.16 75.45%± 2.03 76.90%± 2.01 78.74%± 1.01
Minimum 81.99%± 9.79 79.61%± 19.99 76.86%± 18.03 86.08%± 2.36 75.65%± 14.35
MST-Kruskal 27.84%± 1.03 29.53%± 15.24 34.80%± 21.05 27.56%± 5.96 43.24%± 8.25
MST-Prim 46.88%± 15.85 52.59%± 8.58 46.28%± 10.93 49.04%± 8.70 60.31%± 8.79
Naı̈ve String Matcher 4.21%± 0.87 4.24%± 0.98 2.82%± 1.96 3.83%± 0.25 3.40%± 1.55
Optimal BST 34.27%± 12.39 26.83%± 9.77 22.91%± 25.26 18.66%± 15.76 59.89%± 1.84
Quickselect 0.05%± 0.07 0.02%± 0.03 0.74%± 0.81 1.48%± 1.67 0.00%± 0.00
Quicksort 14.20%± 6.53 15.42%± 7.90 10.70%± 3.06 17.07%± 8.36 17.71%± 12.42
Segments Intersect 93.27%± 0.56 93.53%± 0.88 93.44%± 0.83 93.08%± 0.31 93.19%± 0.06
SCC 29.12%± 5.56 32.19%± 9.23 21.22%± 6.05 29.86%± 3.44 22.50%± 2.18
Task Scheduling 78.66%± 1.26 79.10%± 1.23 78.52%± 0.75 78.96%± 0.58 77.79%± 0.26
Topological Sort 47.23%± 7.58 59.54%± 6.13 55.11%± 0.21 52.87%± 0.52 50.98%± 2.69
Overall Average 44.48% 45.40% 41.55% 43.68% 46.32%
Win/Tie/Loss Counts 2/16/12 0/18/12 0/12/18 2/12/16 4/15/11

21



Under review as a conference paper at ICLR 2024

Table 4: Win/Tie/Loss counts of the Neural PQs and Baseline on out-of-distribution test data for all
30 algorithms from CLRS-30, run with 3 different seeds.

Algorithm Baseline NPQM-P-SA NPQW-P-SV NPQW NPQM
Activity Selector T T L L T
Articulation Points T T T T T
Bellman Ford L T L L T
BFS L T T T L
Binary Search T L T L T
Bridges T T L T L
Bubble Sort T L L T L
DAG Shortest Paths T L L L T
DFS L T T L T
Dijkstra L T T T L
Find Max Subarray T T L L T
Floyd-Warshall L L L L W
Graham Scan W L L L L
Heapsort T T T T T
Insertion Sort T T T T T
Jarvis March T L L L T
KMP Matcher T L T L L
LCS Length L T L L T
Matrix Chain Order L L L L W
Minimum L L L W L
MST-Kruskal L L L L W
MST-Prim L T L L T
Naı̈ve String Matcher T T L T T
Optimal BST L L L L W
Quickselect T T T T T
Quicksort T T T T T
Segments Intersect T T T T T
SCC T T L T L
Task Scheduling T T T T L
Topological Sort L T T L L
Overall Counts 1/17/12 0/19/11 0/13/17 1/13/16 4/16/10

22



Under review as a conference paper at ICLR 2024

G.3 LONG-RANGE REASONING

Table 5 shows the evaluation results for the baseline and Neural PQs on the Peptides-Struct dataset
from Long-Range Graph Benchmark (Dwivedi et al., 2022) for different processors, as detailed in
Section 6.3.

Table 5: Test MAE (Mean ± Standard Deviation) of different Neural PQs with different base pro-
cessors on Peptides-struct dataset, run with 3 different seeds. Lower the test MAE, better is the
performance.

Processor Baseline NPQM-P NPQW-P-SV NPQW NPQM
GATv2 0.3530± 0.0019 0.3141± 0.0049 0.2589± 0.0031 0.2670± 0.0009 0.3037± 0.0540
GCN 0.3476± 0.0003 0.3854± 0.0825 0.2723± 0.0054 0.2678± 0.0023 0.3462± 0.1088
GINE 0.3640± 0.0010 0.3865± 0.0372 0.2922± 0.0012 0.2984± 0.0043 0.3871± 0.0578

23


	Introduction
	Background
	Related Work
	Neural PQ Framework
	Desiderata
	Framework

	NPQ
	State
	Pop function
	Priority Queue Message Function
	Push function
	Properties
	Variants

	Evaluation
	Dijkstra's Algorithm – MPNN Base
	Different Algorithms from CLRS-30
	Long-Range Reasoning

	Conclusion and Future Works
	Permutation-Equivariance
	MPNN Permutation-Equivariance
	Neural PQ Permutation-Equivariance

	NPQ Reformulation
	Pop Function
	Push Function

	Priority Queue Alignment
	Greater Memory-Persistence – NPQ-P
	State
	Pop function
	Push Function

	Graph Priority Queue – NPQ-SA
	Pop Function

	Graph Priority Queue – NPQ-SV
	Pop Function

	Further Evaluations
	Dijkstra's Algorithm – Different Base Processors
	Different Algorithms from CLRS
	Long-Range Reasoning


