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ABSTRACT

Hawkes process provides an effective statistical framework for analyzing the time-
dependent interaction of neuronal spiking activities. Although utilized in many
real applications, the classic Hawkes process is incapable of modelling inhibitory
interactions among neurons. Instead, the nonlinear Hawkes process allows for
a more flexible influence pattern with excitatory or inhibitory interactions. In
this paper, three sets of auxiliary latent variables (Pólya-Gamma variables, la-
tent marked Poisson processes and sparsity variables) are augmented to make
functional connection weights in a Gaussian form, which allows for a simple it-
erative algorithm with analytical updates. As a result, an efficient expectation-
maximization (EM) algorithm is derived to obtain the maximum a posteriori
(MAP) estimate. We demonstrate the accuracy and efficiency performance of
our algorithm on synthetic and real data. For real neural recordings, we show
our algorithm can estimate the temporal dynamics of interaction and reveal the
interpretable functional connectivity underlying neural spike trains.

1 INTRODUCTION

One of the most important tracks in neuroscience is to examine the neuronal activity in the cere-
bral cortex under varying experimental conditions. Recordings of neuronal activity are represented
through a series of action potentials or spike trains. The transmitted information and functional
connection between neurons are considered to be primarily represented by spike trains (Kass et al.,
2014; Kass & Ventura, 2001; Brown et al., 2004; 2002). A spike train is a sequence of recorded
times at which a neuron fires an action potential and each spike may be considered to be a times-
tamp. Spikes occur irregularly both within and across multiple trials, so it is reasonable to consider
a spike train as a point process with the instantaneous firing rate being the intensity function of point
processes (Perkel et al., 1967; Paninski, 2004; Eden et al., 2004). An example of spike trains for
multiple neurons is shown in Fig. 2a in the real data experiment.

Despite many existing applications, the classic point process models, e.g., Poisson processes, ne-
glect the time-dependent interaction within one neuron and between multiple neurons, so fail to
capture the complex temporal dynamics of a neural population. In contrast, Hawkes process is one
type of point processes which is able to model the self-exciting interaction between past and future
events. Existing applications cover a wide range of domains including seismology (Ogata, 1998;
1999), criminology (Mohler et al., 2011; Lewis et al., 2012), financial engineering (Bacry et al.,
2015; Filimonov & Sornette, 2015) and epidemics (Saichev & Sornette, 2011; Rizoiu et al., 2018).
Unfortunately, due to the linearly additive intensity, the vanilla Hawkes process can only represent
the purely excitatory interaction because a negative firing rate may exist with inhibitory interac-
tion. This makes the vanilla version inappropriate in the neuroscience domain where the influence
between neurons is a mixture of excitation and inhibition (Maffei et al., 2004; Mongillo et al., 2018).

In order to reconcile Hawkes process with inhibition, various nonlinear Hawkes process variants
are proposed to allow for both excitatory and inhibitory interactions. The core point of nonlinear
Hawkes process is a nonlinearity which maps the convolution of the spike train with a causal influ-
ential kernel to a nonnegative conditional intensity, such as rectifier (Reynaud-Bouret et al., 2013),
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exponential (Gerhard et al., 2017) and sigmoid (Linderman, 2016; Apostolopoulou et al., 2019). The
sigmoid mapping function has the advantage that the Pólya-Gamma augmentation scheme can be
utilized to convert the likelihood into a Gaussian form, which makes the inference tractable. In Lin-
derman (2016), a discrete-time model is proposed to convert the likelihood from a Poisson process
to a Poisson distribution. Then Pólya-Gamma random variables are augmented on discrete obser-
vations to propose a Gibbs sampler. This method is further extended to a continuous-time regime
in Apostolopoulou et al. (2019) by augmenting thinned points and Pólya-Gamma random variables
to propose a Gibbs sampler. However, the influence function is limited to be purely exciting or
inhibitive exponential decay. Besides, due to the nonconjugacy of the excitation parameter of expo-
nential decay influence function, a Metropolis-Hastings sampling step has to be embedded into the
Gibbs sampler making the Markov chain Monte Carlo (MCMC) algorithm further inefficient.

To address the parametric and inefficient problems in aforementioned existing works, we develop a
flexible sigmoid nonlinear multivariate Hawkes processes (SNMHP) model in the continuous-time
regime, (1) which can represent the flexible excitation-inhibition-mixture temporal dynamics among
the neural population, (2) with the efficient conjugate inference. An EM inference algorithm is
proposed to fit neural spike trains. Inspired by Donner & Opper (2017; 2018), three auxiliary latent
variable sets: Pólya-Gamma variables, latent marked Poisson processes and sparsity variables are
augmented to make functional connection weights in a Gaussian form. As a result, the EM algorithm
has analytical updates with drastically improved efficiency. As shown in experiments, it is even more
efficient than the maximum likelihood estimation (MLE) for the parametric Hawkes process in high
dimensional cases.

2 OUR MODEL

Neurons communicate with each other by action potentials (spikes) and chemical neurotransmitters.
A spike causes the pre-synaptic neuron to release a chemical neurotransmitter that induces impulse
responses, either exciting or inhibiting the post-synaptic neuron from firing its own spikes. The ad-
dition of excitatory and inhibitory influence to a neuron determines whether a spike will occur. At
the same time, the impulse response characterizes the temporal dynamics of the exciting or inhibit-
ing influence which can be complex and flexible (Purves et al., 2014; Squire et al., 2012; Bassett
& Sporns, 2017). Arguably, the flexible nonlinear multivariate Hawkes processes are a suitable
choice for representing the temporal dynamics of mutually excitatory or inhibitory interactions and
functional connectivity of neuron networks.

2.1 MULTIVARIATE HAWKES PROCESSES

The vanilla multivariate Hawkes processes (Hawkes, 1971) are sequences of timestamps D =
{{tin}

Ni
n=1}Mi=1 ∈ [0, T ] where tin is the timestamp of n-th event on i-th dimension with Ni being

the number of points on i-th dimension, M the number of dimensions, T the observation window.
The i-th dimensional conditional intensity, the probability of an event occurring on i-th dimension
in [t, t+ dt) given all dimensional history before t, is designed in a linear superposition form:

λi(t) = µi +

M∑
j=1

∑
tjn<t

φij(t− tjn), (1)

where µi > 0 is the baseline rate of i-th dimension and φij(·) ≥ 0 is the causal influence function
(impulse response) from j-th dimension to i-th dimension which is normally a parameterized func-
tion, e.g., exponential decay. The summation explains the self- and mutual-excitation phenomenon,
i.e., the occurrence of previous events increases the intensity of events in the future. Unfortunately,
one blemish is the vanilla multivariate Hawkes processes allow only nonnegative (excitatory) in-
fluence functions because negative (inhibitory) influence functions may yield a negative intensity
which is meaningless. To reconcile the vanilla version with inhibitory effect and flexible influence
function, we propose the SNMHP.
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2.2 SIGMOID NONLINEAR MULTIVARIATE HAWKES PROCESSES

Similar to the classic nonlinear multivariate Hawkes processes (Brémaud & Massoulié, 1996), the
i-th dimensional conditional intensity of SNMHP is defined as

λi(t) = λiσ(hi(t)), hi(t) = µi +

M∑
j=1

∑
tjn<t

φij(t− tjn), (2)

where µi is the base activation of neuron i, hi(t) is a real-valued activation and σ(·) is the logistic
(sigmoid) function which maps the activation into a positive real value in (0, 1) with λi being a
upper-bound to scale it to (0, λi). The sigmoid function is chosen because as seen later, the Pólya-
Gamma augmentation scheme can be utilized to make the inference tractable. After incorporating
the nonlinearity, it is straightforward to see the influence functions, φij(·), can be positive or neg-
ative. If φij(·) is negative, the superposition of φij(·) will lead to a negative activation hi(t) that
renders the intensity to 0; instead, the intensity tends to λi with a positive φij(·).

To achieve a flexible impulse response, the influence function is assumed to be a weighted sum of
basis functions

φij(·) =

B∑
b=1

wijbφ̃b(·), (3)

where {φ̃b}Bb=1 are predefined basis functions and wijb is the weight capturing the influence from
j-th dimension to i-th dimension by b-th basis function with positive indicating excitation and neg-
ative indicating inhibition. The basis functions are nonnegative functions capturing the temporal
dynamics of the interaction. Although basis functions can be in any form, in order for the weights to
represent functional connection strength, basis functions are chosen to be probability densities with
compact support that means they have bounded support [0, Tφ] and the integral is one. As a result,
the i-th dimensional activation is

hi(t) = µi +

M∑
j=1

∑
tjn<t

B∑
b=1

wijbφ̃b(t− tjn) = µi +

M∑
j=1

B∑
b=1

wijb
∑
tjn<t

φ̃b(t− tjn)

= µi +

M∑
j=1

B∑
b=1

wijbΦjb(t) = wT
i ·Φ(t),

(4)

where Φjb(t) is the convolution of j-th dimensional observation with b-th basis function and can
be precomputed; wi = [µi, wi11, . . . , wiMB ]T and Φ(t) = [1,Φ11(t), . . . ,ΦMB(t)]T , both are
(MB + 1) × 1 vectors. A similar model is used in Linderman (2016) where a binary variable is
included to characterize the sparsity of functional connection. As shown later, the sparsity in our
model is guaranteed by utilizing a Laplace prior on weight instead.

In this paper, the basis functions are scaled (shifted) Beta densities, but alternatives such as Gaussian
or Gamma also can be used. The reason we choose Beta distribution is the inference of weights will
be subject to edge effects with infinite support densities when close to the endpoints of [0, Tφ]. The
weighted sum of Beta densities is a natural choice. With appropriate mixing, it can be used to
approximate functions on bounded intervals arbitrarily well (Kottas, 2006).

3 INFERENCE

The likelihood of a point process model is provided in Daley & Vere-Jones (2003). Correspondingly,
the probability density (likelihood) of SNMHP on the i-th dimension as a function of parameters in
continuous time is

p(D|wi, λi) =

Ni∏
n=1

λiσ(hi(t
i
n)) exp

(
−
∫ T

0

λiσ(hi(t))dt

)
. (5)

It is worth noting that hi(t) depends on wi and observations on all dimensions. Our goal is to infer
the parameters i.e., weights and intensity upper-bounds, from observations, e.g., neural spike trains,

3



Published as a conference paper at ICLR 2021

over a time interval [0, T ]. The functional connectivity in cortical circuits is demonstrated to be
sparse in neuroscience (Thomson & Bannister, 2003; Sjöström et al., 2001). To include sparsity,
a factorizing Laplace prior is applied on the weights which characterize the functional connection.
With the likelihood Eq. 5 and Laplace prior pL(wi) =

∏
j,b

1
2α exp (− |wijb|α ), the log-posterior

corresponds to a L1 penalized log-likelihood. The i-th dimensional MAP estimate can be expressed
as

w∗i , λ
∗
i = argmax

{
log p(D|wi, λi) + log pL(wi)

}
, (6)

where w∗i and λ
∗
i are MAP estimates. The dependency of the log-posterior on parameters is com-

plex because the sigmoid function exists in the log-likelihood term and the absolute value function
exists in the log-prior term. As a result, we have no closed-form solutions for the MAP estimates.
Numerical optimization methods can be applied, but unfortunately, the efficiency is low due to the
high dimensionality of parameters which is (MB + 2) ×M . To circumvent this issue, three sets
of auxiliary latent variables: Pólya-Gamma variables, latent marked Poisson processes and sparsity
variables are augmented to make the weights appear in a Gaussian form in the posterior. As a result,
an efficient EM algorithm with analytical updates is derived to obtain the MAP estimate.

3.1 AUGMENTATION OF PÓLYA-GAMMA VARIABLES

Following Polson et al. (2013), the binomial likelihoods parametrized by log odds can be represented
as mixtures of Gaussians w.r.t. a Pólya-Gamma distribution. Therefore, we can define a Gaussian
representation of the sigmoid function

σ(z) =

∫ ∞
0

ef(ω,z)pPG(ω|1, 0)dω, (7)

where f(ω, z) = z/2−z2ω/2−log 2 and pPG(ω|1, 0) is the Pólya-Gamma distribution with ω ∈ R+.
Substituting Eq. 7 into the likelihood Eq. 5, the products of observations σ(hi(t

i
n)) are transformed

into a Gaussian form.

3.2 AUGMENTATION OF MARKED POISSON PROCESSES

Inspired by Donner & Opper (2018), a latent marked Poisson process is augmented to linearize
the exponential integral term in the likelihood. Applying the property of sigmoid function σ(z) =
1− σ(−z) and Eq.7, the exponential integral term is transformed to

exp

(
−
∫ T

0

λiσ(hi(t))dt

)
= exp

(
−
∫ T

0

∫ ∞
0

(
1− ef(ω,−hi(t))

)
λipPG(ω|1, 0)dωdt

)
. (8)

The right hand side is a characteristic functional of a marked Poisson process. According to the
Campbell’s theorem (Kingman, 2005) (App. I), the exponential integral term can be rewritten as

exp

(
−
∫ T

0

λiσ(hi(t))dt

)
= Epλi

 ∏
(ω,t)∈Πi

ef(ω,−hi(t))

 , (9)

where Πi = {(ωik, tik)}Kik=1 denotes a realization of a marked Poisson process and pλi is the proba-
bility measure of the marked Poisson process Πi with intensity λi(t, ω) = λipPG(ω|1, 0). The events
{tik}

Ki
k=1 follow a Poisson process with rate λi and the latent Pólya-Gamma variable ωik denotes the

independent mark at each location tik. We can see that, after substituting Eq. 9 into the likelihood
Eq. 5, the exponential integral term is also transformed into a Gaussian form.

3.3 AUGMENTATION OF SPARSITY VARIABLES

The augmentation of two auxiliary latent variables above makes the augmented likelihood become
a Gaussian form w.r.t. the weights. However, the absolute value in the exponent of the Laplace
prior hampers the Gaussian form of weights in the posterior. To circumvent this issue, we augment
the third set of auxiliary latent variables: sparsity variables. It has been proved that a Laplace
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distribution can be represented as an infinite mixture of Gaussians (Donner & Opper, 2017; Pontil
et al., 2000)

pL(wijb) =
1

2α
exp (−|wijb|

α
) =

∫ ∞
0

√
βijb

2πα2
exp

(
−βijb

2α2
w2
ijb

)
p(βijb)dβijb, (10)

where p(βijb) = (βijb/2)−2 exp (−1/(2βijb)). It is straightforward to see the weights are trans-
formed into a Gaussian form in the prior after the augmentation of latent sparsity variables β.

3.4 AUGMENTED LIKELIHOOD AND PRIOR

After the augmentation of three sets of latent variables, we obtain the augmented joint likelihood
and prior (derivation in App. II)

p(D,Πi,ωi|wi, λi) =

Ni∏
n=1

[
λi(t

i
n, ω

i
n)ef(ωin,hi(t

i
n))
]
· pλi(Πi|λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t)), (11a)

p(wi,βi) =

MB+1∏
j,b

√
βijb

2πα2
exp

(
−βijb

2α2
w2
ijb

)(
2

βijb

)2

exp

(
− 1

2βijb

)
, (11b)

where ωi is the vector of ωin on each tin, βi is a (MB + 1)× 1 vector of [βi00, βi11, . . . , βiMB ]T ,
λi(t

i
n, ω

i
n) = λipPG(ωin|1, 0). The motivation of augmenting auxiliary latent variables should now

be clear: the augmented likelihood and prior contain the weights in a Gaussian form, which corre-
sponds to a quadratic expression for the log-posterior (L1 penalized log-likelihood).

3.5 EM ALGORITHM

The original MAP estimate has been represented by Eq. 6. With the support of auxiliary latent
variables, we propose an analytical EM algorithm to obtain the MAP estimate instead of perform-
ing numerical optimization. In the standard EM algorithm framework, the lower-bound (surrogate
function) of the log-posterior can be represented as

Q(wi, λi|ws−1
i , λ

s−1

i ) = EΠi,ωi

[
log p(D,Πi,ωi|wi, λi)

]
+ Eβi [log p(wi,βi)] , (12)

with expectation over posterior distributions p(Πi,ωi|ws−1
i , λ

s−1

i ) and p(βi|ws−1
i , λ

s−1

i ), s − 1
indicating parameters from last iteration.

E step: Based on joint distributions in Eq. 11, the posterior of latent variables can be derived. The
detailed derivation is provided in App. III. The posterior distributions of Pólya-Gamma variables ωi
and sparsity variables βi, and the posterior intensity of marked Poisson process Πi are

p(ωi|ws−1
i ) =

Ni∏
n=1

pPG(ωin|1, hs−1
i (tin)), (13a)

Λi(t, ω|ws−1
i , λ

s−1

i ) = λ
s−1

i σ(−hs−1
i (t))pPG(ω|1, hs−1

i (t)), (13b)

p(βi|ws−1
i ) =

MB+1∏
j,b

pIG(βijb|
α

ws−1
ijb

, 1), (13c)

where Λi(t, ω) is the posterior intensity of Πi, pIG is the inverse Gaussian distribution.
It is worth noting that hs−1

i (t) depends on ws−1
i . The first order moments, E[ωin] =

1/(2hs−1
i (tin)) tanh(hs−1

i (tin)/2) and E[βijb] = α/ws−1
ijb , will be used in the M step.

M step: Substituting Eq. 13 into Eq. 12, we obtain the lower-bound Q(wi, λi|ws−1
i , λ

s−1

i ). The
updated parameters can be obtained by maximizing the lower-bound. The detailed derivation is
provided in App. III. Due to the augmentation of auxiliary latent variables, the update of parameters
has a closed-form solution

λ
s

i = (Ni +Ki) /T, (14a)

ws
i = Σi

∫ T

0

Bi(t)Φ(t)dt, (14b)
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whereKi =
∫ T

0

∫∞
0

Λi(t, ω|ws−1
i , λ

s−1

i )dωdt, Σi =
[∫ T

0
Ai(t)Φ(t)ΦT (t)dt+ diag

(
α−2E[βi]

)]−1

with diag(·) indicating the diagonal matrix of a vector, Ai(t) =
∑Ni
n=1 E[ωin]δ(t − tin) +∫∞

0
ωΛi(t, ω)dω, Bi(t) = 1

2

∑Ni
n=1 δ(t − tin) − 1

2

∫∞
0

Λi(t, ω)dω with δ(·) being the Dirac delta
function. It is worth noting that numerical quadrature methods, e.g., Gaussian quadrature, need to
be applied to intractable integrals above.

3.6 COMPLEXITY AND HYPERPARAMETERS

Algorithm 1: EM inference for SNMHP

Result: {λi(t) = λiσ(wT
i ·Φ(t))}Mi=1

Predefine basis functions {φ̃b(·)}Bb=1;
Initialize the hyperparameter α and {λi, wi,
ωi, Πi, βi}Mi=1;

for Iteration do
for Dimension i do

Update the posterior of ωi by Eq. 13a;
Update the posterior intensity of Πi

by Eq. 13b;
Update the posterior of βi by Eq. 13c;
Update the intensity upper-bound λi
by Eq. 14a;

Update the weights wi by Eq. 14b.
end
Update the hyperparameter α.

end

The complexity of our proposed EM algorithm
isO(NNTφB+L(N(MB+ 1)2 +M(MB+

1)3)) where N is the number of observations
on all dimensions, NTφ is the the average num-
ber of observations on the support of Tφ on all
dimensions and L is the number of iterations.
The first term is due to the convolution nature
of Hawkes process, the second and third term to
the matrix multiplication and inversion in EM
iterations. For one application, the number of
dimensions M and basis functions B are fixed
and much less thanN . Therefore, the complex-
ity can be simplified as O(N(NTφ + L)).

The hyperparameter α in Laplace prior that en-
codes the sparsity of weights and parameters of
basis functions can be chosen by cross valida-
tion or maximizing the lower-bound Q using
numerical methods. For the number of basis
functions: in essence, a large number leads to a
more flexible functional space while a small number results in a faster inference. In experiments,
we gradually increase it until no more significant improvement. Similarly, the number of quadra-
ture nodes and EM iterations is also gradually increased until a suitable value. The pseudocode is
provided in Alg. 1.

4 EXPERIMENTS

We validate the EM algorithm for SNMHP in analyzing both synthetic and real-world spike data
collected from the cat primary visual cortex. For comparison, the following most relevant baselines
are considered: (1) parametric linear multivariate Hawkes processes that are vanilla multivariate
Hawkes processes with exponential decay influence functions, for which the inference is performed
by MLE (Ozaki, 1979); (2) nonparametric linear multivariate Hawkes processes with flexible influ-
ence functions, for which the inference is by majorization minimization Euler-Lagrange (MMEL)
(Zhou et al., 2013); (3) parametric nonlinear multivariate Hawkes processes with exponential de-
cay influence functions, for which the inference is by MCMC based on augmentation and Poisson
thinning (MCMC-Aug) (Apostolopoulou et al., 2019). The implementation of our model is publicly
available at https://github.com/zhoufeng6288/SNMHawkesBeta.

4.1 SYNTHETIC DATA

We analyze spike trains obtained from the synthetic network model shown in Fig. 1a. The synthetic
neural network contains four groups of two neurons each. In each group, the 2 neurons are self-
exciting and mutual-inhibitive while groups are independent of each other. We assume 4 scaled
(shifted) Beta distributions as basis functions with support [0, Tφ = 6] in Fig. 1b. For the ground
truth, it is assumed that φ11 = φ33 = φ55 = φ77 = φ̃1, φ22 = φ44 = φ66 = φ88 = φ̃4,
φ12 = φ34 = φ56 = φ78 = − 1

2 φ̃2, φ21 = φ43 = φ65 = φ87 = − 1
2 φ̃3 with positive indicating

excitation and negative indicating inhibition. With base activation {µi}8i=1 = 0 and upper-bounds
{λi}8i=1 = 5, we use the thinning algorithm (Ogata, 1998) to generate two sets of synthetic spike
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Figure 1: The synthetic network model and experimental results. (a): The synthetic neural popu-
lation contains 4 independent groups. In each group, the interdependencies between 2 neurons are
self-exciting and mutual-inhibitive with red arrows indicating excitation and blue arrows indicating
inhibition. (b): Four scaled (shifted) Beta densities as basis functions on the support of [0, 6]. (c):
The intensities and spike times of 8 neurons in the synthetic data. (d): The estimated influence
functions of 1-st and 2-nd neurons where the estimated φ̂11, φ̂12, φ̂21, φ̂22 are close to the ground
truth, the other ground truth φ13...18 and φ23...28 are not labeled since they are all zero (GT=Ground
Truth). (e): The heat map of functional connectivity among neural population with ground truth
(left) and estimation (right). (f): The training and test log-likelihood curve w.r.t. EM iterations. (g):
The trade-off between accuracy and efficiency w.r.t. # of quadrature nodes and basis functions for
synthetic data. (h): The running time of 2D data for EM algorithm and alternatives w.r.t. the average
observation number on each dimension (the precomputation of Φ(t) is included).

data on the time window [0, T = 1000] with one being the training dataset in Fig. 1c and the
other one test dataset in App. IV. Each dataset contains 8 sequences and each sequence consists
of 3340 events on average. We aim to identify the functional connectivity of the neural population
and the temporal dynamics of influence functions from statistically dependent spike trains. More
experimental details, e.g., hyperparameters, are given in the App. IV.

The temporal dynamics of interactions among the neural population is shown in Fig. 1d where we
plot the estimated influence functions of 1-st and 2-nd neurons (other neurons are shown in the
App. IV). The estimated φ̂11 and φ̂22 exhibit the self-exciting relation with φ̂12 and φ̂21 character-
izing the mutual-inhibitive interactions. All estimated influence functions are in a flexible form and
close to the ground truth. Besides, as shown in Fig. 1e, the estimated functional connectivity re-
covers the ground-truth structure successfully. The functional connectivity is defined as

∫
|φij(t)|dt

meaning there is no connection only if neither excitation nor inhibition exists.

Table 1: Training/test LogL (×103) of
different models for synthetic data.

MLE MMEL MCMC-Aug EM

Training LogL 2.051 1.993 2.199 2.465
Test LogL 1.866 1.843 2.278 2.373

The training and test log-likelihood (LogL) curves w.r.t.
EM iterations are shown in Fig. 1f where our EM al-
gorithm converges fast with only 50 iterations needed
to obtain a plateau. The trade-off between accuracy
(LogL) and efficiency (running time) w.r.t. the num-
ber of quadrature nodes and basis functions is shown in
Fig. 1g where we can see the accuracy is not sensitive to
the number of quadrature nodes over 100 and the optimal number of basis functions is 4. A larger
number does not significantly improve the accuracy but leads to a longer running time. Moreover,
we compare the running time of our method with alternatives in Fig. 1h where the number of dimen-
sions M is fixed to 2, basis functions B to 4, quadrature nodes to 200 and iterations of all methods
to 200. We can observe that our EM algorithm is the most efficient, even superior to MLE for the
classic parametric case, which verifies its efficiency. Also, we compare our model’s fitting and pre-
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Figure 2: The real data experimental results. (a): The training spike trains extracted from real data
(test spike trains in App. IV). (b): The estimated influence functions between 8-th and 9-th neurons.
(c): The heat map of estimated functional connectivity among 25 neurons. (d): The training and test
LogL curves w.r.t. EM iterations.

diction ability with baseline models for 1-st and 2-nd neurons. Training and test LogL are shown
in Tab. 1 where our SNMHP with EM inference is the champion due to its superior generalized
expressive ability.

4.2 REAL DATA

In this section, we analyze our model performance on a real multi-neuron spike train dataset. We aim
to draw some conclusions about the functional connectivity of cortical circuits and make inferences
of the temporal dynamics of influence.

Spike Train Data (Blanche, 2005; Apostolopoulou et al., 2019) Several multi-channel silicon elec-
trode arrays are designed to record simultaneously spontaneous neural activity of multiple isolated
single units in anesthetized paralyzed cat primary visual cortex areas 17. The spike train dataset
contains spike times of 25 simultaneously recorded neurons.

Preliminary Setup We extract the spike times in the time window [0, 300] (time unit: 100ms, the
same applies to the following) as the training data (Fig. 2a) and [300, 600] as the test data (App. IV).
Both datasets contain approximate 7000 timestamps. All hyperparameters are fine tuned to obtain
the maximum test LogL: the scaled (shifted) Beta distribution Beta(α̃ = 50, β̃ = 50, shift = −5)
with support [0, Tφ = 10] is designed as the basis function; the number of quadrature nodes is set to
1000 and EM iterations to 100. More experimental details, e.g., hyperparameters, are given in the
App. IV.

Results 25 × 25 influence functions among the neuron population are estimated in the application.
An example of the influence functions between 8-th and 9-th neurons are plotted in Fig. 2b where
our SNMHP model successfully captures the exciting or inhibitive interaction between neurons. Be-
sides, the estimated functional connectivity is shown in Fig. 2c where we can see the functional
connection structure among neural population is sparse. Unfortunately, because the ground-truth
functional connectivity of cortical circuits is unknown, the estimated functional connectivity cannot
be compared with the ground truth but here we resort to the test LogL to verify whether the estima-
tion is good. The training and test LogL curves are shown in Fig. 2d where they both reach a close
plateau indicating the estimation is appropriate without overfitting or underfitting.

Table 2: Training/test LogL (×103) and run-
ning times of different models for real data.

MLE MMEL MCMC-Aug EM

Training LogL - - -15.328 -5.519
Test LogL - - -6.133 -5.862

Running Time > 2 days > 2 days 1h 45m 3m

A significant advantage of our EM algorithm is
the efficiency. The 25-dimensional observation in
the real data is a challenge for the inference. For
the running time, our EM algorithm costs 3 min-
utes, the MCMC-Aug costs 1 hour and 45 minutes
with the same number of iterations while MLE and
MMEL cannot finish in 2 days due to the curse of
dimensionality. Moreover, the fitting and prediction
ability is compared in Tab. 2. The superior performance of SNMHP w.r.t. training and test LogL
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demonstrates our model can capture the complex mixture of exciting and inhibitive interactions
among neural population which leads to better goodness-of-fit.

5 DISCUSSION AND CONCLUSION

Although we propose a point-estimation method (EM algorithm) in this work, a straightforward
extension to Gibbs sampler is already at hand. Based on the augmented likelihood and prior, we can
obtain the conditional densities of latent variables and parameters in closed form, which constitutes
a Gibbs sampler with better efficiency than MCMC-Aug since the time-consuming Metropolis-
Hasting sampling in MCMC-Aug is not needed. However, the proposed Gibbs sampler is less
efficient than the proposed EM algorithm because the latent Poisson processes have to be sampled
by thinning algorithm in Gibbs sampler which is time consuming. For the model in Apostolopoulou
et al. (2019), a tighter intensity upper-bound is used to reduce the number of thinned points to
accelerate the sampler. Instead, our EM algorithm does not encounter this problem as we compute
the expectation rather than sampling. Moreover, Apostolopoulou et al. (2019) can only use one
basis function, which limits influence functions to be purely exciting or inhibitive exponential decay.
Instead, our model can utilize multiple basis functions to characterize an influence function that is a
mixture of excitation and inhibition.

In this paper, we develop a SNMHP model in the continuous-time regime which can characterize
excitation-inhibition-mixture temporal dependencies among the neural population. Three auxiliary
latent variables are augmented to make the corresponding EM algorithm in a closed form to improve
efficiency. The synthetic and real data experimental results confirm that our model’s accuracy and
efficiency are superior to the state of the arts. From the application perspective, although our model
is proposed in the neuroscience domain, it can be applied to other applications where the inhibition
is a vital factor, e.g., in the coronavirus (COVID-19) spread, the inhibitive effect may represent the
medical treatment or cure, or the forced isolation by government. From the inference perspective,
our EM algorithm is a point-estimation method; other efficient distribution-estimation methods can
be developed, e.g., the Gibbs sampler mentioned above or the mean-field variational inference.
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Pólya-Gamma latent variables. Journal of the American statistical Association, 108(504):1339–
1349, 2013.

Massimiliano Pontil, Sayan Mukherjee, and Federico Girosi. On the noise model of support vector
machines regression. In International Conference on Algorithmic Learning Theory, pp. 316–324.
Springer, 2000.

Dale Purves, George J Augustine, David Fitzpatrick, WC Hall, AS LaMantia, JO McNamara, and
L White. Neuroscience, 2008. De Boeck, Sinauer, Sunderland, Mass, pp. 15–16, 2014.

Patricia Reynaud-Bouret, Vincent Rivoirard, and Christine Tuleau-Malot. Inference of functional
connectivity in neurosciences via Hawkes processes. In 2013 IEEE Global Conference on Signal
and Information Processing, pp. 317–320. IEEE, 2013.

Marian-Andrei Rizoiu, Swapnil Mishra, Quyu Kong, Mark Carman, and Lexing Xie. SIR-Hawkes:
linking epidemic models and Hawkes processes to model diffusions in finite populations. In
Proceedings of the 2018 World Wide Web Conference, pp. 419–428, 2018.

AI Saichev and Didier Sornette. Generating functions and stability study of multivariate self-excited
epidemic processes. The European Physical Journal B, 83(2):271, 2011.
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APPENDIX

I CAMPBELL’S THEOREM

Let ΠẐ = {(zn,ωn)}Nn=1 be a marked Poisson process on the product space Ẑ = Z × Ω with
intensity Λ(z,ω) = Λ(z)p(ω|z). Λ(z) is the intensity for the unmarked Poisson process {zn}Nn=1
with ωn ∼ p(ωn|zn) being an independent mark drawn at each zn. Furthermore, we define a
function h(z,ω) : Z × Ω→ R and the sum H(ΠẐ) =

∑
(z,ω)∈ΠẐ

h(z,ω). If Λ(z,ω) <∞, then

EΠẐ

[
exp

(
ξH(ΠẐ)

)]
= exp

[∫
Ẑ

(
eξh(z,ω) − 1

)
Λ(z,ω)dωdz

]
,

for any ξ ∈ C. The above equation defines the characteristic functional of a marked Poisson process.
This proves Eq.9 in the main paper. The mean is

EΠẐ

[
H(ΠẐ)

]
=

∫
Ẑ
h(z,ω)Λ(z,ω)dωdz,

which is used when substituting Eq. 13 into Eq. 12.

II DERIVATION OF AUGMENTED LIKELIHOOD AND PRIOR

Substituting Eq.7 and 9 into Eq.5 in the main paper, the augmented likelihood is obtained

p(D|wi, λi) =

Ni∏
n=1

λiσ(hi(t
i
n)) exp

(
−
∫ T

0

λiσ(hi(t))dt

)

=

Ni∏
n=1

(∫ ∞
0

λie
f(ωin,hi(t

i
n))pPG(ωin|1, 0)dωin

)
· Epλi

 ∏
(ω,t)∈Πi

ef(ω,−hi(t))


=

∫∫ Ni∏
n=1

[
λi(t

i
n, ω

i
n)ef(ωin,hi(t

i
n))
]
· pλi(Πi|λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t))dωidΠi.

where ωi is the vector of ωin and λi(tin, ω
i
n) = λipPG(ωin|1, 0). It is straightforward to see the

augmented likelihood is

p(D,Πi,ωi|wi, λi) =

Ni∏
n=1

[
λi(t

i
n, ω

i
n)ef(ωin,hi(t

i
n))
]
· pλi(Πi|λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t)),

which is Eq.11a.

Similarly, the integrand in Eq. 10 is just the augmented prior in Eq. 11b.

III DERIVATION OF EM ALGORITHM

In the standard EM algorithm framework, the lower-bound of log-posterior has been provided in
Eq. 12. The posterior of latent variables can be derived from the joint distribution in Eq. 11. The
derivation is relatively easy for ωi and βi while Πi is difficult. In the following, s − 1 and s mean
the last and current iteration in the EM algorithm.

E STEP

1. The posterior of Pólya-Gamma variables ωi is dependent on the activation hs−1
i (t) at {tin}

Ni
n=1,

which is further dependent on ws−1
i through Eq. 4

p(ωi|ws−1
i ) =

Ni∏
n=1

pPG(ωin|1, hs−1
i (tin)),
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where we utilize the tilted Pólya-Gamma density pPG(ω|b, c) ∝ e−c
2ω/2pPG(ω|b, 0) (Polson et al.,

2013).

2. The posterior of sparsity variables βi is an inverse Gaussian distribution which is dependent on
weights ws−1

i

p(βi|ws−1
i ) =

MB+1∏
j,b

pIG(βijb|
α

ws−1
ijb

, 1).

3. The posterior of Πi is dependent on both hs−1
i (t) and λ

s−1

i

p(Πi|ws−1
i , λ

s−1

i ) =
pλi(Πi|λ

s−1

i )
∏

(ω,t)∈Πi
ef(ω,−hs−1

i (t))∫
pλi(Πi|λ

s−1

i )
∏

(ω,t)∈Πi
ef(ω,−hs−1

i (t))dΠi

.

The Campbell’s theorem can be applied to convert the denominator, the equation above can be
transformed as

p(Πi|ws−1
i , λ

s−1

i ) =
pλi(Πi|λ

s−1

i )
∏

(ω,t)∈Πi
ef(ω,−hs−1

i (t))

exp (−
∫∫

(1− ef(ω,−hs−1
i (t)))λ

s−1

i pPG(ω|1, 0)dωdt)

=
∏

(ω,t)∈Πi

(
ef(ω,−hs−1

i (t))λ
s−1

i pPG(ω|1, 0)
)
· exp

(
−
∫∫

ef(ω,−hs−1
i (t))λ

s−1

i pPG(ω|1, 0)dωdt

)
.

The above posterior distribution is in the likelihood form of a marked Poisson process with intensity
function

Λi(t, ω|ws−1
i , λ

s−1

i ) = ef(ω,−hs−1
i (t))λ

s−1

i pPG(ω|1, 0) = λ
s−1

i σ(−hs−1
i (t))pPG(ω|1, hs−1

i (t)).

M STEP

Substituting posterior distributions of latent variables into Eq. 12, we obtain the lower-bound Q.
The first term of Eq. 12 is

EΠi,ωi

[
log p(D,Πi,ωi|wi, λi)

]
=− 1

2
wT
i ·
∫ T

0

Ai(t)Φ(t)ΦT (t)dt ·wi + wT
i ·
∫ T

0

Bi(t)Φ(t)dt

− λiT +

(
Ni +

∫∫
Λi(t, ω)dωdt

)
log λi + C

where we utilize the mean rule in Campbell’s theorem, C is a constant and

Ai(t) =

Ni∑
n=1

E[ωin]δ(t− tin) +

∫ ∞
0

ωΛi(t, ω)dω,

Bi(t) =
1

2

Ni∑
n=1

δ(t− tin)− 1

2

∫ ∞
0

Λi(t, ω)dω,

with δ(·) being the Dirac delta function and E[ωin] = 1/(2hs−1
i (tin)) tanh(hs−1

i (tin)/2) (Polson
et al., 2013). The integral of intensity function has no closed-form solution but can be solved by
numerical quadrature methods.

The second term of Eq. 12 is

Eβi [log p(wi,βi)] = −1

2
wT
i · diag

(
E[βi]

α2

)
·wi + C,

where C is a constant, E[βi] = {E[βijb]}MB+1
jb = {α/ws−1

ijb }
MB+1
jb and diag(·) indicates the

diagonal matrix of a vector.
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The updated parameters λ
s

i and ws
i can be obtained by setting the gradient of Q to zero. Due to

auxiliary variables augmentation, we can see the weights are in a quadratic form in the lower-bound,
which leads to an analytical expression

λ
s

i = (Ni +Ki) /T,

ws
i = Σi

∫ T

0

Bi(t)Φ(t)dt,

whereKi =
∫ T

0

∫∞
0

Λi(t, ω|ws−1
i , λ

s−1

i )dωdt, Σi =
[∫ T

0
Ai(t)Φ(t)ΦT (t)dt+ diag

(
α−2E[βi]

)]−1

.
It is worth noting that numerical quadrature methods need to be applied to intractable integrals
above.

IV EXPERIMENTAL DETAILS

In this appendix, we elaborate on some experimental details.

SYNTHETIC DATA EXPERIMENTS

For the synthetic data, the intensities and spike times of our simulated training and test data are
shown in Fig. 1. As shown in the experiment of log-likelihood and running time w.r.t. the number
of basis functions, the optimal number of basis functions is 4, which are chosen as the ground truth:
φ̃{1,2,3,4} = Beta(α̃ = 50, β̃ = 50, scale = 6, shift = {−2,−1, 0, 1}). By cross validation, the
hyperparameter α is chosen to be 0.05. As shown in the experiment of log-likelihood and running
time w.r.t. the number of quadrature nodes, the accuracy is not sensitive to the number of quadrature
nodes over 100, so the number of quadrature nodes is set to 2000. The number of EM iterations is set
to 200 which is large enough for convergence. We plot the estimated influence functions of 8 neurons
in Fig. 2. For comparison, we also plot the estimated influence functions of 8 neurons from vanilla
multivariate Hawkes processes using the MLE algorithm in Fig. 3 and the functional connectivity
graph in Fig. 4. We can see both estimated influence functions and functional connectivity graph
are far from the ground truth. This demonstrates the necessity of incorporating inhibitive interaction
into the model when the Hawkes process is applied in the neuroscience domain. The running time
experiment and the fitting and prediction experiment are both conducted for 2 neurons because the
baseline models cannot finish in 2 days with 8 neurons because of the curse of dimensionality.
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Figure 1: The intensities and spike times of 8 neurons in our synthetic training dataset (left) and test
dataset (right).
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Figure 2: The estimated influence functions of all neurons where the estimated φ̂’s are close to the
ground truth and some ground truth are not labeled since they are all zero (GT=Ground Truth).
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Figure 3: The estimated influence functions of all neurons from vanilla multivariate Hawkes pro-
cesses using MLE; some influence functions are not labelled since they are all zero (GT=Ground
Truth).

REAL DATA EXPERIMENTS

For the real spike data in cat primary visual cortex areas 17, it contains spike times of 25 simultane-
ously recorded neurons. We extract the spike times in the time window [0, 300] (time unit: 100ms) as
the training data and [300, 600] as the test data. Both datasets contain approximate 7000 timestamps.
The training and test spike trains are plotted in Fig. 5 below.

All hyperparameters are fine tuned in real data experiments. Specifically, the optimal basis function
is chosen as: φ̃ = Beta(α̃ = 50, β̃ = 50, scale = 10, shift = −5). The hyperparameter α is
optimised to be 0.1 by cross validation. The number of quadrature nodes is chosen to be 1000 for
which the running time is acceptable. The number of EM iterations is set to 100 which is large
enough for convergence.
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Figure 4: The heat map of functional connectivity among neural population with ground truth (left)
and estimation from vanilla multivariate Hawkes processes (right).
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Figure 5: The training and test spike trains in the dataset of cat primary visual cortex areas 17.
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