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Abstract
Conversation agents fueled by Large Language001
Models (LLMs) are providing a new way to in-002
teract with visual data. While there have been003
initial attempts for image-based conversation004
models, this work addresses the under-explored005
field of video-based conversation by introduc-006
ing Video-ChatGPT. It is a multimodal model007
that merges a video-adapted visual encoder008
with an LLM. The resulting model is capable009
of understanding and generating detailed con-010
versations about videos. We introduce a new011
dataset of 100,000 video-instruction pairs used012
to train Video-ChatGPT acquired via manual013
and semi-automated pipeline that is easily scal-014
able and robust to label noise. We also develop015
a quantitative evaluation framework for video-016
based dialogue models to objectively analyze017
the strengths and weaknesses of video-based di-018
alogue models. Our codes, models and dataset019
will be publicly released.020

1 Introduction021

The surge of deep learning applications for video022

understanding has lead to major advancements in023

video-related tasks. However, the current video024

understanding models are still unable to hold an025

open-ended conversation about the video content in026

a coherent manner. A video-based dialogue model027

can revolutionize video search, surveillance opera-028

tions and help summarize key events and abnormal029

event detection. Above all, it can provide a unified030

human-understandable interface to video-related031

tasks such as action recognition, localization, de-032

tection, segmentation, retrieval, and tracking. Fur-033

ther, such a capability is of great interest as it will034

demonstrate the model’s ability to encode tempo-035

ral and spatial cues, contextual relationships and036

long-term dependencies.037

Recent advancements in multimodal understand-038

ing are largely based on the combination of pre-039

trained image models with Large Language Mod-040

els (LLMs) but generally do not consider video041

inputs (Liu et al., 2023; Zhu et al., 2023; Li et al., 042

2022, 2023a; Dai et al., 2023). It is therefore in- 043

teresting to leverage the vast capabilities of LLMs 044

for video understanding tasks in a way that would 045

not only maintain the temporal and spatial charac- 046

teristics but also be adept at generating human-like 047

conversations about videos. In this paper, we intro- 048

duce Video-ChatGPT, a novel multimodal model 049

that merges the representational abilities of a pre- 050

trained visual encoder and the generative powers of 051

an LLM, capable of understanding and conversing 052

about videos. 053

Video-ChatGPT leverages an adapted LLM (Liu 054

et al., 2023) that integrates the visual encoder of 055

CLIP (Radford et al., 2021) with Vicuna (Chiang 056

et al., 2023) as a language decoder, fine-tuned on 057

generated instructional image-text pairs. Our ap- 058

proach further adapts the design for spatiotempo- 059

ral video modeling and fine-tunes the model on 060

video-instruction data to capture temporal dynam- 061

ics and frame-to-frame consistency relationships 062

available in video data. In contrast to other concur- 063

rent works for video-based conversation (Li et al., 064

2023b; Zhang et al., 2023; Su et al., 2023), Video- 065

ChatGPT excels at temporal understanding, spa- 066

tial consistency and contextual comprehension as 067

demonstrated by our extensive evaluations. 068

A fundamental contribution of this work is the 069

creation of a dataset of 100,000 video-instruction 070

pairs using a combination of human-assisted and 071

semi-automatic annotation methods. Each pair con- 072

sists of a video and its associated instruction in the 073

form of a question-answer. This provides Video- 074

ChatGPT with a large and diverse dataset to learn 075

from, increasing its video-specific understanding, 076

attention to temporal relationships and conversa- 077

tion capabilities. 078

Moreover, we introduce the first quantitative 079

video conversation evaluation framework for bench- 080

marking, allowing for a more accurate evaluation 081

of the performance of video conversation models. 082
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This framework evaluates models on a variety of083

capabilities, such as correctness of information, de-084

tail orientation, contextual understanding, temporal085

understanding, and consistency.086

The contributions of this work are as follows,087

• We propose Video-ChatGPT, a video conver-088

sation model capable of generating meaning-089

ful conversations about videos. It combines090

the capabilities of LLMs with a pretrained vi-091

sual encoder adapted for spatiotemporal video092

representations.093

• We introduce 100,000 high-quality video in-094

struction pairs together with a novel annota-095

tion framework that is scalable and generates096

a diverse range of video-specific instruction097

sets.098

• We develop the first quantitative video conver-099

sation evaluation framework for benchmark-100

ing video conversation models. We demon-101

strate Video-ChatGPT to perform well com-102

pared to concurrent conversational engines for103

videos such as Video Chat (Li et al., 2023b).104

2 Related Works105

Vision Language Models: Significant advance-106

ments in the field of computer vision have recently107

been observed due to the development of many108

foundational vision-language models. These mod-109

els represent a significant leap towards creating110

general-purpose vision models capable of tackling111

various tasks simultaneously (Radford et al., 2021;112

et al, 2022; Gupta et al., 2022; Maaz et al., 2022).113

A prime example is CLIP (Radford et al., 2021),114

which is trained on 400M image-text pairs and has115

demonstrated impressive zero-shot performance116

on numerous benchmarks. It has been employed117

in various downstream applications, from image-118

based object detection and segmentation (Rasheed119

et al., 2022; Liang et al., 2023) to 3D applica-120

tions (Rozenberszki et al., 2022; Ni et al., 2022).121

Numerous attempts have also been made to adapt122

CLIP for video applications (Wang et al., 2021;123

Ni et al., 2022). Similar to our design, ViFi-124

CLIP (Rasheed et al., 2023) suggests employing125

temporal pooling across video frames to adapt the126

image-based CLIP model for video-based tasks.127

Large Language Models: The field of natural lan-128

guage processing has witnessed a paradigm shift129

with the advent of pretrained Large Language Mod-130

els (LLMs) such as GPT (Brown et al., 2020),131

LLaMA (Touvron et al., 2023), OPT (Zhang et al.,132

2022), and MOSS (OpenLMLab, 2023). These 133

models exhibit extraordinary abilities like language 134

generation and in-context learning, and their knack 135

for understanding intricate tasks given user prompts 136

in a zero-shot manner reflects their impressive 137

adaptability and generalization. The proven ca- 138

pabilities of LLMs have encouraged researchers to 139

fine-tune them to maximize their proficiency. 140

A key strategy in this pursuit is instruction tun- 141

ing. This approach focuses on improving the 142

model’s alignment with user intentions and opti- 143

mizing its output quality. For instance, Instruct- 144

GPT (Ouyang et al., 2022) and ChatGPT (Ope- 145

nAI, 2023) significantly benefit from this tech- 146

nique, showcasing improvements in diverse conver- 147

sational interaction capabilities and their aptitude 148

to answer a broad range of complex questions. This 149

effective approach has recently been employed in 150

open-source models like Alpaca (Taori et al., 2023) 151

and Vicuna (Chiang et al., 2023), both developed 152

using the LLaMA (Touvron et al., 2023) frame- 153

work, resulting in performance improvements. 154

Pre-trained LLMs in Vision-Language Tasks: 155

The recent strides in multimodal understanding 156

have primarily been driven by the integration of 157

image-based vision models with LLMs. Seminal 158

contributions such as Flamingo (et al, 2022) and 159

BLIP-2 (Li et al., 2023a) have demonstrated the 160

power of utilizing web-scale image-text data, as 161

well as pioneering techniques in cross-modal align- 162

ment, to exhibit dynamic abilities in conversational 163

and few-shot learning contexts. Building on this 164

foundation, MiniGPT-4 (Zhu et al., 2023) allows 165

image-based conversations by integrating BLIP-2 166

and Vicuna for zero-shot image comprehension. 167

Equally significant is the emergence of 168

LLaVA (Liu et al., 2023), a model derived from the 169

LLaMa architecture, leveraging GPT-4’s language 170

proficiency to generate multimodal instruction- 171

following data. With instruction tuning applied 172

on the derived data, LLaVA has displayed inter- 173

esting multimodal chat capability, hinting at the 174

scalability potential of such a methodology. In ad- 175

dition, InstructBLIP (Dai et al., 2023) has demon- 176

strated strong image-based dialogue capabilities via 177

vision-language instruction tuning by innovating 178

with instruction-aware visual feature extraction. 179

More closely related to our work, VideoChat (Li 180

et al., 2023b) employs selective components of 181

video foundational models (Wang et al., 2022) and 182

image foundation models (Li et al., 2023a), and 183

integrates them with LLMs (Chiang et al., 2023) 184

2



in conjunction with few learnable layers, tuned us-185

ing a two-stage lightweight training. Additionally,186

they construct a video-specific dataset using off-the-187

shelf vision-language models (Wu et al., 2022; Li188

et al., 2023a; Huang et al., 2023; Wang et al., 2022)189

for generating noisy detailed textual descriptions190

to enhance the training of video-centric conversa-191

tional models.192

Different from VideoChat, we propose a novel193

human assisted and semi-automatic annotation194

framework for generating high quality instruction195

data for videos. Our simple and scalable archi-196

tecture design utilizes pretrained CLIP (Radford197

et al., 2021) to generate spatiotemporal features198

which help Video-ChatGPT in generating mean-199

ingful video conversation. Further, we are the first200

to propose quantitative framework for evaluating201

video conversation tasks (see Section "Video In-202

struction Data Generation" for more details).203

3 Video-ChatGPT204

Video-ChatGPT is a large vision-language model205

that aligns video representations with a Large Lan-206

guage Model (LLM), thus enhancing its ability207

to generate meaningful conversation about videos.208

Our approach draws from the approach employed209

in designing vision-language (VL) models for the210

video domain. Given the limited availability of211

video-caption pairs and the substantial resources re-212

quired for training on such data from scratch, these213

models commonly adapt pretrained image-based214

VL models for video tasks (Ni et al., 2022; Wang215

et al., 2021; Rasheed et al., 2023). We adopt a sim-216

ilar approach, starting with the Language-aligned217

Large Vision Assistant (LLaVA)(Liu et al., 2023)218

as our foundation.219

LLaVA is a LMM that integrates the visual en-220

coder of CLIP (Radford et al., 2021) with the Vi-221

cuna language decoder (Chiang et al., 2023) and222

is fine-tuned end-to-end on generated instructional223

vision-language data. We fine-tune this model us-224

ing our video-instruction data, adapting it for video225

conversation task. The video-instruction data is ob-226

tained as a combination of manual and automated227

pipelines in our proposed instruction generation228

setup. This adaptation on video-specific instruc-229

tions allows for accommodating additional tem-230

poral dynamics, frame-to-frame consistency, and231

long-range relationships present in video data. As a232

result, our Video-ChatGPT excels in video reason-233

ing, creativity, and understanding of spatial, tempo-234

ral, and action-oriented components within videos. 235

3.1 Architecture 236

We use CLIP ViT-L/14, which is pretrained using 237

large-scale visual instruction tuning in LLaVa, as 238

the visual encoder. However, LLaVa visual encoder 239

is meant for images, which we modify to capture 240

spatiotemporal representations in videos. Given 241

a video sample Vi ∈ RT×H×W×C with T frames, 242

the visual encoder generates temporal and spatial 243

features. The visual encoder encodes the T frames 244

independently as a batch of images and produces 245

frame-level embeddings xi ∈ RT×h×w×D, where 246

h = H/p,w = W/p. Here p is the patch size 247

(i.e. 14 for ViT-L/14), and we represent the number 248

of tokens as N , where N = h × w. Frame-level 249

embeddings are average-pooled along the spatial 250

dimension to obtain a video-level temporal rep- 251

resentation ti ∈ RT×D. This operation implicitly 252

incorporates temporal learning through the aggrega- 253

tion of multiple frames. Similarly, the frame-level 254

embeddings are average-pooled along the temporal 255

dimension to yield the video-level spatial repre- 256

sentation zi ∈ RN×D. The temporal and spatial 257

features are concatenated to obtain the video-level 258

features vi, 259

vi = [ti zi] ∈ R(T+N)×D. (1) 260

A simple trainable linear layer g, projects these 261

video-level features into the language decoder’s 262

embedding space, transforming them into corre- 263

sponding language embedding tokens Qv, 264

Qv = g(vi) ∈ R(T+N)×K . (2) 265

Note that the function g acts as an adapter and can 266

be implemented with more complicated architec- 267

tures as well. However, we opt for a simplistic de- 268

sign that gives competitive performance compared 269

to more sophisticated choices in our experiments. 270

The text queries are tokenized to the same dimen- 271

sions, Qt ∈ RL×K . Here L represents the length 272

of text query. Finally, Qv is concatenated with Qt 273

and input to the language decoder. 274

3.2 Video Instruction Tuning 275

We employ instruction-tuning of the LLM on 276

the prediction tokens, utilizing its original auto- 277

regressive training objective. The pretrained model 278

is finetuned with curated, high-quality video-text 279

pairs. During the finetuning phase, we use prede- 280

fined prompts based on the following template: 281
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Figure 1: Architecture of Video-ChatGPT. Video-ChatGPT leverages the CLIP-L/14 visual encoder to extract
both spatial and temporal video features. This is accomplished by averaging frame-level features across temporal
and spatial dimensions respectively. The computed spatiotemporal features are then fed into a learnable linear layer,
which projects them into the LLMs input space. In our approach, we utilize the Vicuna-v1.1 model, comprised of
7B parameters, and initialize it with weights from LLaVA (Liu et al., 2023).

USER: <Instruction> <Vid-tokens>282

Assistant:283

Using the notations, we can represent it as,284

USER: <Qt> <Qv> Assistant:285

In this prompt, the <Instruction> represents286

a question pertaining to the video, randomly sam-287

pled from the training set of video-question-answer288

pairs. Questions can be general, asking to describe289

the video, or they may relate to specific temporal,290

spatial, or creative aspects of the video content.291

The prediction answer <Answer> corresponds to292

the specific question asked. Throughout the train-293

ing, the weights for both the video encoder and294

LLM remain frozen, and the model maximizes the295

likelihood of predicting tokens representing the an-296

swer by adapting the linear layer. Consequently,297

the video features Qv become aligned with the pre-298

trained LLM word embeddings, equipping Video-299

ChatGPT with the ability to produce more natural300

and dependable responses.301

4 Video Instruction Data Generation302

In this section, we discuss our data-focused ap-303

proach, which uses both human-assisted and semi-304

automatic annotation methods to generate high-305

quality video instruction data. This data is cru-306

cial for training Video-ChatGPT, ensuring accu-307

rate and meaningful responses. Our data collection308

involves two key methods. The human-assisted309

annotation, involves expert annotators analysing 310

video content and providing detailed descriptions. 311

This process generates data rich in context and 312

detail, which helps our model understand com- 313

plex aspects of video content. On the other hand, 314

the semi-automatic annotation framework is more 315

cost-effective and scalable. Leveraging state-of-the- 316

art vision-language models, this method generates 317

broad, high-volume annotations, thus increasing 318

the quantity of data without compromising the qual- 319

ity substantially. Through these combined methods, 320

we have successfully accumulated a robust set of 321

100,000 video-instruction pairs. This extensive 322

dataset is crucial in fine-tuning our model to com- 323

prehend video content effectively, integrating both 324

spatial and temporal cues into its understanding. 325

Our instructional data is both diverse and com- 326

prehensive, incorporating a wide range of data 327

types. These include detailed descriptions, sum- 328

marizations, question-answer pairs, tasks that stim- 329

ulate creativity or generation of new ideas, and 330

conversational tasks. The data spans a broad spec- 331

trum of concepts, ranging from visual appearance 332

and temporal relations to complex reasoning tasks 333

and beyond, providing a diverse training ground 334

for our model to learn from. 335

4.1 Human-assisted Annotation 336

In this process, we leverage datasets containing 337

video-caption pairs and utilize the expertise of 338
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Figure 2: Examples of data enrichment via human-assisted annotation. Human annotators augment video
descriptions from video-caption datasets. The captions are enriched by integrating detailed information about spatial
and temporal aspects, object relationships, reasoning, scene descriptions, and the chronological sequence of events.

human annotators to enrich the original ground339

truth annotations. Specifically, we use a subset340

of ActivityNet-200 (Fabian Caba Heilbron and341

Niebles, 2015) which provides concise ground truth342

descriptions of various activities in distinct video343

segments.344

The annotators further enrich the captions by345

adding comprehensive information about physical346

appearances and spatial and temporal localization,347

among other critical contextual details. Figure 2348

shows an example of how a ground truth caption is349

enriched using human-assisted annotation.350

4.2 Semi-automatic Annotation Framework351

In addition to the rich human-assisted annotations,352

we also harness the capabilities of advanced dense353

image vision-language models, developing a semi-354

automatic annotation framework. This approach is355

cost-effective and scalable, thereby increasing the356

quantity of data without substantially compromis-357

ing the quality.358

Similar to the human-assisted process, this359

framework also leverages datasets containing 360

video-caption pairs. We enrich these datasets us- 361

ing contextual information drawn from off-the- 362

shelf dense prediction and captioning image-based 363

vision-language models. These models provide 364

predictions that deliver additional contextual infor- 365

mation, thereby enriching the video captions. We 366

developed a comprehensive method that combines 367

these predictions, and utilize specific models for the 368

purpose of eliminating noisy or irrelevant context 369

from the data. This ensures that the data maintains 370

its accuracy and relevance. 371

Building on the use of off-the-shelf models, we 372

apply pretrained models like BLIP-2 (Li et al., 373

2023a) and GRiT (Wu et al., 2022) for key- 374

frame analysis in the videos. The BLIP-2 image- 375

captioning model generates frame-level captions, 376

while the GRiT dense captioning model provides 377

detailed captions for scene objects. Additionally, 378

the pretrained Tag2Text (Huang et al., 2023) model 379

is used to generate tags for each key-frame of the 380

video. Despite their utility, these models can intro- 381
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Figure 3: Examples of generating instructional data using our proposed semi-automatic annotation pipeline.
We employ off-the-shelf dense prediction and captioning models to augment video descriptions. BLIP-v2 (Li
et al., 2023a) generates frame-level captions, while GRIT (Wu et al., 2022) is utilized for dense frame captions.
Tag2Text (Huang et al., 2023) generates tags for each key-frame, aiding in eliminating noise (e.g. the GRiT
descriptions containing flower pattern and on phone would be discarded as there are no corresponding tags detected).
Finally, we query GPT-3.5 with in-context examples to generate video-instructional data.

duce noise into the data.382

To ensure high-quality data and mitigate noise,383

we implement three key steps. First, we main-384

tain a high prediction threshold for all off-the-shelf385

models to uphold accuracy. Second, we employ386

a specialized filtering mechanism that removes387

any frame-level caption from BLIP-2 or GRiT388

not matching with the Tag2Text frame-level tags.389

This process involves extracting words from the390

frame-level captions that are within the predefined391

Tag2Text tags vocabulary and eliminates any cap-392

tions that contain words not in the tags for a given393

frame. This strategy acts as an additional filter-394

ing layer and enriches the captions by integrating395

predictions from multiple models.396

In the third step, we merge frame-level captions397

and use the GPT-3.5 model to generate a singular,398

coherent video-level caption. This step augments399

the original ground truth caption with context from400

these models. We also direct GPT-3.5 to discard401

inconsistent information across frames, ensuring a402

precise, contextually rich video instruction dataset.403

Figure 3,4 illustrates how a ground truth caption404

is enriched using this process after all three re-405

finement stages to generate instructional data and406

detailed descriptive caption. All of our designed407

prompts for in-context learning along with the cu- 408

rated dataset will be made publicly available. 409

4.3 GPT-Assisted Postprocessing 410

Lastly, we implement a GPT-Assisted Post- 411

processing mechanism that refines and optimizes 412

the enriched annotations, in order to generate high- 413

quality video instructional data. We prompt GPT- 414

3.5 model to create question-answer pairs from the 415

enriched and detailed captions that cover a wide 416

variety of aspects using in-context learning. These 417

aspects include detailed descriptions, summariza- 418

tions, question-answer pairs, tasks that stimulate 419

creativity or the generation of new ideas, and con- 420

versational tasks. 421

Each of these elements plays a crucial role in 422

our data-centric approach. Our ultimate goal is 423

to create a video-based conversation model that is 424

accurate, capable of understanding video content 425

from both spatial and temporal cues, and adept at 426

engaging in conversations. 427

5 Experiments 428

5.1 Implementation Details 429

We use LLaVA (Liu et al., 2023) as our baseline 430

model and finetune it on our 100K video instruction 431
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Figure 4: Examples of data enrichment using our proposed semi-automatic annotation. We employ off-the-
shelf dense prediction and captioning models (Li et al., 2023a; Wu et al., 2022; Huang et al., 2023) to augment video
descriptions. All additional context elements are combined with the video captions and undergo a GPT-assisted
post-processing stage, generating the final detailed description.

Evaluation Aspect Video Chat LLaMA Adapter Video-LLaMA Video-ChatGPT

Correctness of Information 2.23 2.03 1.96 2.40
Detail Orientation 2.50 2.32 2.18 2.52
Contextual Understanding 2.53 2.30 2.16 2.62
Temporal Understanding 1.94 1.98 1.82 1.98
Consistency 2.24 2.15 1.79 2.37

Table 1: Performance benchmarking of text generation models. An in-depth comparative analysis of Video-
ChatGPT and Video Chat (Li et al., 2023b) across five key evaluation aspects we propose in our benchmark. For a
fair comparison, 7B variants are used for all the models. Video-ChatGPT shows competent performance across all
key aspects.

pairs. We only update the linear layer projecting432

the video features to the LLMs’ input space, while433

the rest of the architecture is kept frozen. We fine-434

tune the model for 3 epochs using a learning rate435

of 2e−5 and an overall batch size of 32. We use 7B436

parameter model in all the experiments and its train-437

ing took around 3 hours on 8 A100 40GB GPUs.438

During inference, for memory efficiency, we load439

the models in FP16 mode.440

In our semi-automatic annotation framework, we441

use Katna (KeplerLab, 2019) to extract video key-442

frames. For off-the-shelf Tag2Text (Huang et al.,443

2023) model, we use the Swin-B variant with an444

input size of 384×384 and a confidence threshold445

of 0.7. For GRIT (Wu et al., 2022), we use ViT-B446

version with CenterNet2 (Zhou et al., 2021).447

5.2 Quantitative evaluation448

In this section, we highlight a key contribution449

of our work: the quantitative evaluation of Video-450

ChatGPT using advanced metrics and comparative451

evaluations with existing state-of-the-art models. 452

We conduct two types of quantitative evaluations: i) 453

Video-based Generative Performance Benchmark- 454

ing and ii) Zero-Shot Question-Answer Evaluation. 455

Video-based Text Generation Performance 456

Benchmarking: We introduce a benchmark 457

to evaluate the text generation performance of 458

video-based conversation models. To do this, we 459

curate a test set based on the ActivityNet-200 460

dataset (Fabian Caba Heilbron and Niebles, 2015), 461

featuring videos with rich, dense descriptive cap- 462

tions and associated question-answer pairs from 463

human annotations. We also develop an evaluation 464

pipeline using the GPT-3.5 model. This pipeline 465

assesses various capabilities of the model and as- 466

signs a relative score to the generated predictions 467

on a scale of 1-5, in the following five aspects: 468

(i) Correctness of Information: We verify the ac- 469

curacy of the generated text, ensuring it aligns 470

with the video content and does not misinter- 471
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Model MSVD-QA MSRVTT-QA TGIF-QA Activity Net-QA
Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM 32.2 – 16.8 – 41.0 – 24.7 –
Video Chat 56.3 2.8 45.0 2.5 34.4 2.3 26.5 2.2
LLaMA Adapter 54.9 3.1 43.8 2.7 - - 34.2 2.7
Video LLaMA 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.8

Table 2: Zeroshot question-answering comparison of Video-ChatGPT with other video generative models. For a
fair comparison, 7B variants are used for all the models. Video-ChatGPT performs competitively across all datasets.

pret or misinform.472

(ii) Detail Orientation: We evaluate the depth473

of the model’s responses, looking for both474

completeness, meaning the model’s response475

covers all major points from the video, and476

specificity, denoting the inclusion of specific477

details rather than just generic points in the478

model’s response.479

(iii) Contextual Understanding: We assess the480

model’s understanding of the video’s context,481

checking if its responses align with the overall482

context of the video content.483

(iv) Temporal Understanding: We examine the484

model’s grasp of the temporal sequence of485

events in the video when answering questions.486

(v) Consistency: We evaluate the model’s consis-487

tency across different but similar questions or488

different sections of the video.489

We present the evaluation results of our pro-490

posed model, Video-ChatGPT, using the quanti-491

tative benchmarking framework in Table 1. The492

results reveal its competent performance across all493

key aspects compared with the recently introduced494

contemporary video conversation models, Video495

Chat (Li et al., 2023b), LLaMA Adapter (Gao et al.,496

2023) and Video-LLaMA (Zhang et al., 2023).497

Video-ChatGPT shows good performance, largely498

due to the instruction tuning we perform and its499

straightforward architecture that leverages LLMs500

with a pretrained visual encoder fine-tuned for501

video data. This provides it with the robust abil-502

ity to generate contextually relevant, detailed, and503

temporally accurate text from video input.504

Zero-Shot Question-Answer Evaluation: We505

conducted a comprehensive quantitative evalua-506

tion using several commonly used open-ended507

question-answer datasets: MSRVTT-QA (Xu et al.,508

2017), MSVD-QA (Xu et al., 2017), TGIF-QA509

FrameQA (Jang et al., 2017), and ActivityNet- 510

QA (Yu et al., 2019). These evaluations were car- 511

ried out in a zero-shot manner, employing GPT- 512

assisted evaluation to assess the model’s capabili- 513

ties. This evaluation process measures the accuracy 514

of the model’s generated predictions and assigns a 515

relative score on a scale of 1-5. 516

To benchmark Video-ChatGPT, we compared its 517

performance with other significant models, such 518

as FrozenBiLM (Yang et al., 2022) and the genera- 519

tive video model, Video Chat, LLaMA Adapter and 520

Video-LLaMA. FrozenBiLM is a model that adapts 521

frozen bidirectional language models pretrained 522

on Web-scale text-only data to multi-modal inputs, 523

showing promising results in zero-shot VideoQA 524

settings. Despite the solid foundation established 525

by these models, Video-ChatGPT consistently out- 526

performed them, achieving state-of-the-art (SOTA) 527

performance across all datasets. These results indi- 528

cate Video-ChatGPT’s ability to understand video 529

content and generate accurate, contextually rich 530

answers to questions. 531

6 Conclusion 532

In this work, we presented Video-ChatGPT, a mul- 533

timodal model that merges a pretrained visual en- 534

coder with a large language model (LLM) to enable 535

video understanding and conversations based on 536

videos. Video-ChatGPT leverages an adapter on 537

top of pretrained LLM and vision backbones and 538

is fine-tuned on video-instruction data to capture 539

temporal dynamics and spatial consistency rela- 540

tionships in spatiotemporal sequences. A dataset 541

of 100,000 video-instruction pairs is created to en- 542

hance Video-ChatGPT’s video-specific understand- 543

ing and conversation capabilities. The work also 544

introduced a quantitative video conversation eval- 545

uation framework for benchmarking, evaluating 546

models on a diverse set of capabilities including 547

conventional video question answering as well as 548

open-ended descriptions. 549
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7 Limitations550

While the model performs competitively in several551

scenarios, we note it finds it challenging to under-552

stand subtle temporal relationships in long videos553

(> 2 min), which can compromise its predictive554

performance. Additionally, it has difficulty recog-555

nizing the details of small objects, often missing556

additional information embedded in these details.557

8 Potential Risks558

Video-ChatGPT, like any other AI model, must be559

handled with due caution to prevent misuse and to560

ensure it upholds the principles of fairness, trans-561

parency, and respect for user privacy.562

We made a concerted effort to minimize bias dur-563

ing the dataset creation phase for Video-ChatGPT.564

Despite these efforts, it is important to recognize565

the possibility of residual bias persisting. The use566

of our model should be mindful of these potential567

biases, which may subtly influence the model’s un-568

derstanding and response to visual content. We569

encourage all users to consider these limitations in570

their application of Video-ChatGPT and to strive571

for ethical and responsible use in all contexts.572

9 Use of Data and AI Assistant573

We curate our dataset based on a subset of the574

ActivityNet-200 dataset (Fabian Caba Heilbron575

and Niebles, 2015), distributed under MIT LI-576

CENSE, available for use in research. Further, the577

use of GPT models abides by (OpenAI). Respect-578

ing source license information, we will release all579

datasets created in this work under MIT LICENSE.580

10 Human Annotations581

The semi-automatic dataset curation involves hu-582

man annotation. Annotators are provided with con-583

cise video caption ground truths. Specific instruc-584

tions are given to enrich the caption with compre-585

hensive descriptions of the video content, with spe-586

cific attention to temporal and spatial details. They587

are given specific instructions to neutralize the tone588

and biases during the correction process.589
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Supplemental Material767

A Qualitative Evaluation768

We performed an extensive evaluation of our769

model on a variety of open-ended video question-770

answering tasks, utilizing diverse videos sourced771

from ActivityNet and YouTube. The evaluation772

tasks included video reasoning (Figure 5), creative773

and generative tasks (see Figure 6), spatial under-774

standing (Figure 7), action recognition (Figure 8),775

video conversation (Figure 9), question answer-776

ing (Figure 10) and temporal understanding (Fig-777

ure 11). Our model demonstrates proficiency in778

comprehending the content of the videos and gen-779

erating accurate responses across multiple video-780

based tasks. Our model can effectively understand781

the visual information present in the videos and782

provide precise answers (see Figures 5 to 11).783
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Figure 5: Video Reasoning Task. This figure illustrates an example from Video-ChatGPT’s demonstration
showcasing its performance in video reasoning tasks.
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Figure 6: Creative and generative tasks. Illustrative examples from Video-ChatGPT’s demonstration highlight its
performance in video-based creative and generative tasks, such as crafting a story, poem, or advertisement.
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Figure 7: Spatial understanding tasks. The figure depicts examples from Video-ChatGPT’s demonstration,
emphasizing its capability in video-based spatial understanding tasks, including identifying renowned locations or
counting the number of objects in a scene.

Figure 8: Actiong Recognition Task. This figure illustrates examples from Video-ChatGPT’s demonstration
showcasing its performance in video action recognition tasks such as playing drums and grooming horse.
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Figure 9: Video Understanding and Conversation Tasks. This figure illustrates examples from Video-ChatGPT’s
demonstration showcasing its performance in video understanding and conversation tasks.
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Figure 10: Question-Answering Task. The figure depicts examples Video-ChatGPT’s demonstration showcasing
its performance in question-answering tasks.
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Figure 11: Temporal Understanding Task. The figure provides examples from Video-ChatGPT’s demonstration,
highlighting its performance in temporal understanding tasks, particularly in comprehending sequences of events.
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