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ABSTRACT

Cost aggregation is the key to finding semantic correspondence between a pair of
similar images. Transformer-based cost aggregators have recently shown strong
performance in obtaining high-quality correlation maps due to their capability of
capturing long-range dependencies between matching points. However, such mod-
els are data-hungry and prone to over-fitting when training data is not sufficiently
large. Besides, they easily incur incorrect matches when finding correspondences
in the local semantic context. To address these issues, we propose a Global-Local
Bayesian Transformer (GLBT) for cost aggregation. Specifically, GLBT intro-
duces one global Bayesian self-attention module, whose weights are sampled from
a learnable Bayesian posterior distribution, to mitigate over-fitting while mod-
eling the long-range interaction from correlation maps. Furthermore, to model
the short-range interaction between candidate matches, GLBT introduces another
local Bayesian self-attention module, which factorizes both correlation maps and
Bayesian attention weights into pairs of patches and conducts a matrix multipli-
cation on individuals rather than a direct dot-product. Two self-attention modules
are joined together to model the long-range and short-range interactions from
correlation maps. Ultimately, GLBT is hierarchically aggregated for the refinement
of correlation maps before feeding it to the flow estimator. We conduct extensive
experiments to show the superiority of our proposed network to the state-of-the-art
methods on datasets, including SPair-71k, PF-PASCAL, and PF-WILLOW.

1 INTRODUCTION

Establishing dense semantic correspondences between images is a fundamental problem facilitat-
ing many vision tasks, including semantic segmentation (Min et al., 2021; Xie et al., 2021), 3D
reconstruction (Kokkinos & Kokkinos, 2021a;b; Li et al., 2020b), and optical flow estimation(Yang
& Ramanan, 2019). In contrast to the classical pixel-wise correspondence problems (Kim et al.,
2003) that require images to be geometrically normalized and aligned, semantic correspondence
considers unconstrained image pairs, posing additional challenges from large intra-class variations in
appearance and geometry.

Recent methods (Bristow et al., 2015; Cho et al., 2021; Zhao et al., 2021) for semantic correspondence
generally follow the classical matching pipeline, including feature extraction, cost aggregation, and
flow estimation. Some works (Rublee et al., 2011; Tola et al., 2010) attempted to find the semantic
similarity between images by focusing on the feature extraction stage. These methods disregard
the pixel-wise relationship between correlation features, resulting in sub-optimal performance. To
overcome this issue, several methods (Jeon et al., 2020; Rocco et al., 2017; Truong et al., 2020b;
Hong & Kim, 2021) introduced a regression network at the flow estimation stage to infer dense
correspondences from correlation maps. However, such approaches rely on high-quality initial
matching scores. Thereby, the latest methods (Min & Cho, 2021; Min et al., 2019a; Li et al., 2020a;
Rocco et al., 2020; Min et al., 2020; Rocco et al., 2018b) have focused on designing an efficient cost
aggregation module to improve the quality of correlation maps before feeding them into the flow
estimation, proving the importance of cost aggregation networks.

The core of the cost aggregation stage is to produce reliable correlation maps via the refinement of
matching scores. Some models (Min & Cho, 2021; Rocco et al., 2018b) refined the local consistent
matches from the initial correlation maps with high-dimensional 4D or 6D convolutions. However,
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such models lack the ability to achieve long-range context aggregation due to the inherently limited
receptive fields. To tackle this problem, CATs (Cho et al., 2021) leveraged the vision transformer
for cost aggregation to effectively refine the ambiguous matching scores in consideration of the
global consensus. Nonetheless, it overlooks the spatial structure of the correlation map, leading
to sub-optimal results. To further boost the performance, VAT (Hong et al., 2022) proposed a 4D
Convolutional Swin Transformer as a cost aggregator to preserve the spatial structure of correlation
maps, while providing an efficient self-attention to model long-range interaction between candidate
matches. However, the existing Transformer-based cost aggregators (Hong et al., 2022; Casey et al.,
2021; Cho et al., 2021) are infeasible to model the short-range pixel-to-pixel interaction, resulting in
redundant noisy matches when dealing with the local semantic matches. In addition, since transformer
architecture is prone to over-fitting, these transformer-based aggregators are data-hungry (Hassani
et al., 2021), i.e., requiring enormous amounts of training data to obtain a good performance.

To address these limitations, we propose a Global-Local Bayesian Transformer (GLBT) cost aggre-
gator for semantic correspondence. Inspired by BayesNN (Blundell et al., 2015), which applied a
variational inference on the weights of a neural network to prevent over-fitting, our proposed GLBT
introduces the Global-Local Bayesian Self-Attention (GLB-SA) into the transformer aggregator
for capturing the long-range and short-range match-to-match interaction from correlation maps
simultaneously. Compared to the raw self-attention in the transformer (Cho et al., 2021; Vaswani
et al., 2017), which suffers from a data-hungry issue due to the operation of dense matrix-vector
multiplication, GLBT leverages the sparse matrix factorization (Dao et al., 2019) on the self-attention
operation to avoid over-fitting via a reduction in its learnable parameters. The proposed GLBT
module is then leveraged to hierarchically aggregate the multi-level matching correspondences on the
different semantic contexts, achieving the refinement of correlation maps. Consequently, the refined
correlation maps are applied in the decoder to infer the semantic correspondences from image pairs.

We validate the effectiveness of our GLBT method on public benchmark datasets (Ham et al., 2016;
2017; Min et al., 2019b). Extensive experimental results demonstrate that our proposed method for
semantic correspondence outperforms the previous state-of-the-art methods on several benchmarks.
We also provide a detailed ablation analysis to verify the main components in GLBT.

2 RELATED WORK

Semantic Correspondence. Finding semantic correspondences between image pairs poses additional
challenges to intra-class appearance and shape variations among different instances from the same
object or scene category. To address these challenges, approaches to semantic correspondence can
be roughly categorized into hand-crafted feature-based methods (Bay et al., 2006; Dalal & Triggs,
2005; Ham et al., 2016; Liu et al., 2011; LoweDavid, 2004; Rublee et al., 2011; Tola et al., 2010) and
learnable feature-based methods (Choy et al., 2016; Kim et al., 2018; 2017; Lee et al., 2019; Li et al.,
2020a; Rocco et al., 2017; Seo et al., 2018). Hand-crafted techniques leverage the low-level feature
descriptors, such as SIFT (LoweDavid, 2004), HOG (Taniai et al., 2016), and DAISY (Tola et al.,
2010), to measure dense correspondences, lacking the capture of high-level semantics.

To tackle this problem, most learnable techniques focus on building dense correspondences on high-
level semantic features of deep convolutional neural networks, such as NC-Net (Rocco et al., 2018b),
ANC-Net (Li et al., 2020a), and GOCor (Truong et al., 2020a). However, solely relying on the deep
learnable features limits the performance of semantic correspondences due to the direct output of
the similarity scores from the correlation maps. To address this issue, (Rocco et al., 2017) proposed
a regression network to estimate the parameters from the matching features, coping with incorrect
matches from the initial learnable features at the flow estimation stage. Their success encourages
many variant methods, e.g., GSF (Jeon et al., 2020) and GLU-Net (Truong et al., 2020b), to directly
regress semantic correspondences from the feature matches.

Cost Aggregation. To alleviate the requirement of high-quality initial matching scores, HPF (Min
et al., 2020) introduced the RHM (Min et al., 2019a) cost aggregator into the learnable feature
methods for geometric consistency enhancement. Later, numerous CNN-based feature-learnable
variants (Min & Cho, 2021; Rocco et al., 2018b) utilized 4D or 6D convolution-based geometric
matching algorithms to refine the local consistency of the initial correlation maps. Nonetheless,
CNN-based aggregation networks fail to model global matches due to the limited receptive fields of
convolutions. Transformer-based aggregators (Cho et al., 2021; Sun et al., 2021), which leveraged
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(a) Overall Pipeline of Semantic Correspondence (b) GLBT

Figure 1: Overall architecture of our proposed GLBT. (a) The whole pipeline includes feature
extraction, cost aggregation, and flow estimation. Given a pair of images, a ResNet101 (He et al.,
2016) is used to extract multi-level features independently. At the cost aggregation stage, we construct
the multi-level correlation maps via a cosine similarity and propose the GLBT to refine the correlation
maps hierarchically. At the last flow estimation stage, we concatenate the resulting matching scores
with the source features to obtain the final correspondence field. (b) The GLBT joints GB-SA and
LB-SA to model the long-range and short-range interactions from rich semantic correlation maps.

the self-attention mechanism (Vaswani et al., 2017) to capture the global match-to-match interaction
from the initial correlation map, can solve this problem. However, such a self-attention is prone
to introduce redundant noisy matches when modeling the short-range interaction in a small region,
because it does not consider local contexts. Besides, Transformer-based deep networks starve huge
amounts of training data to avoid over-confident decisions.

Bayesian Neural Network. Applying Bayesian approaches (Shridhar et al., 2019; Fan et al., 2021;
Zhang et al., 2021) to neural networks is an alternative to mitigating the over-fitting issue by offering
uncertainty estimates so that Bayesian Neural Networks (BayesNNs) can easily learn from small
datasets and are robust to over-fitting. In the past years, several methods, such as Variational Inference
(Blundell et al., 2015; Graves, 2011), Laplace Approximation (MacKay, 1992), and MC Dropout
(Gal & Ghahramani, 2015; 2016), have been widely applied to estimate the parameter uncertainty,
which is propagated for predictions. Instead of selecting a single point estimate, BayesNNs use the
Bayes rule to average results over parameter values and thus have a strong reasoning ability.

3 PRELIMINARY

Let Is ∈ RHs×Ws×3 and It ∈ RHt×Wt×3 denote a pair of source and target images, respectively.
The goal of dense semantic correspondence is to find the optimal f∗ that generates a correspondence
flow containing the offsets between corresponding keypoints in the two images, i.e., Kpred =
f∗(Is, It), where the correspondence flow Kpred = {(∆xs

i ,∆ysi )}
Hs×Ws
i=1 contains the predicted

offsets for all pixels in the source image. Following previous works, we consider learning of f∗ in
the supervised setting. More specifically, we are given a dataset D = {(Isj , Itj ,K

gt
j )}Mj=1 containing

M image pairs and the associated ground-truth correspondence flows. Due to sparse annotations,
the ground-truth flow Kgt

j = {(∆xs
i ,∆ysi )}

Hs×Ws
i=1 is only non-zero at a subset of locations. We aim

to learn an approximate fn by minimizing the distance between the predicted and the ground-truth
correspondence flows: fM = argmin

f

1
M

∑M
j=1 ||Φ(f(Isj , Itj))−Kgt

j ||, where Φ is a logical metric

that sets the offsets at locations without ground-truth offsets to zero.

The pipeline to design the function f involves several basic steps, including feature extraction,
cost aggregation, and flow estimation. Specifically, dense feature maps Ds ∈ RHs×Ws×C and
Dt ∈ RHt×Wt×C are extracted from each image pair Is and It, respectively. Directly matching
similarity between Ds and Dt without introducing any prior often undergoes ambiguous matches due
to limited local repetitive patterns. To address this issue, cost aggregation techniques are employed to
refine matches from initial correlation maps. The correspondence flow is, consequently, inferred from
refined matching scores. Our approach follows this common framework for semantic correspondence.
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(a) Global Bayesian Self-Attention (GB-SA)

(b) Local Bayesian Self-Attention (LB-SA)

Figure 2: Global-Local Bayesian Self-Attention is consist of (a) GB-SA and (b) LB-SA, modeling
the long-range and short-range interactions between candidate matches respectively. Here, the left
arrow visualizes the details of the computation process.

As shown in Figure 1(a), we follow the previous works (Min et al., 2021; 2020; Truong et al.,
2020b) to construct the correlation maps, using cosine similarity, C(Ds

x, D
t
y) ∈ RHs×Ws×Ht×Wt =

Ds
x,:·D

t
y,:

||Ds
x,:||·||Dt

y,:||
. The result is a 4D tensor, representing the initial matching scores between an image

pair. To capture rich semantic information, 4D convolutions (Min & Cho, 2021; Rocco et al., 2018b)
are employed to extract multi-scale features at different levels of a backbone network. However, such
dense feature points are weak to identify global semantics alignment due to the limited receptive
fields of convolutions. To address this issue, a cost aggregator is introduced to refine the correlation
maps before feeding them for flow estimation. The current cost aggregators (Cho et al., 2021; Hong
et al., 2022) leverage the transformer to refine correlation maps due to its global receptive fields.
However, such methods discard the ability to capture the short-range interaction between candidate
matches, leading to extra noisy matches when matching the semantic correspondences in a small
region. Besides, it is data-hungry and requires large amounts of training data to avoid over-fitting.

4 GLOBAL-LOCAL BAYESIAN TRANSFORMER

Given the limitations of existing methods, we propose a Global-Local Bayesian Transformer (GLBT)
to refine the correlation maps by considering the local and global interactions between candidate
matches simultaneously. As visualized in Figure 1(b), GLBT stacks a group of the Global-Local
Bayesian Self-Attention (GLB-SA) module, layer normalization, and multilayer linear perceptron, to
refine the final correlation matches:

C′ = GLBT(X), (1)
where X ∈ RL×C is the correlation map unfolded from the result of Conv4D(C(Ds, Dt)), L =
Hs ×Ws ×Ht ×Wt, and C denotes the channels.

Self-attention, which obtains key, value and query from the initial correlation map X, is the core of
GLBT. Instead of using the standard self-attention mechanism (Vaswani et al., 2017), we introduce
one Global Bayesian Self-Attention (GB-SA) in Figure 2(a) to model the global match-to-match
interaction on the large semantic displacement, and another Local Bayesian Self-Attention (LB-SA)
in Figure 2(b) to model the local match-to-match interaction on the small semantic displacement.
Both are then joined together to reason about the final correlation maps at the same time.

4.1 GLOBAL BAYESIAN SELF-ATTENTION

The classical self-attention (Dosovitskiy et al., 2021) performs a dot-product on all pixels, prone to
the issue of data-hungry (Liu et al., 2021; Yuan et al., 2021). BayesCNNs (Shridhar et al., 2019)
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averages models sampled from the posterior distribution of convolution kernels and have the potential
to prevent the requisite of large data and be robust to over-fitting. Inspired by this, we introduce a
Global Bayesian Self-Attention (GB-SA), which directly operates the matrix-multiplication on the
input and the Bayesian weight to learn the global interaction between candidate matches from the
correlation maps.

Let θ denote the network parameters in the computation of the correlation map X = hθ(I
s, It),

and W ∈ Rd denote the parameters in a Bayesian self-attention module. Our Bayesian model
considers W as a random variable and our goal is to infer the posterior distribution p(W |D) and
learn the parameters θ simultaneously. The whole proposed network can be viewed as the following
probabilistic model:

pθ(Kgt|Is, It,W ) = N (Kgt|Φ(G(hθ(I
s, It),W )), σ2

0), (2)

where G stands for the probability function in the GB-SA module, hθ is the network computing the
correlation map, and σ0 is the standard deviation of the Gaussian distribution. To avoid yielding a
slow convergence and prevent a strange local minima (Blundell et al., 2015), we use the mixture
Gaussian distribution with zero mean for the prior distribution p(W ):

p(W ) =
d∏

i=1

N (Wi|0, σ2
1) + (1− π)N (Wi|0, σ2

2), (3)

where σ1 and σ2 correspond to the standard deviations of two Gaussian distributions, respectively.

To infer the Bayesian posterior distribution p(W |D) on the weights in self-attention, we follow the
variational inference procedure (Shridhar et al., 2019) to estimate an approximate variational posterior
qϕ(W ) by minimizing the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951):

θ̂, ϕ̂ = arg min
θ,ϕ

KL[qϕ(W )||pθ(W |D)]

= arg min
θ,ϕ

KL [qϕ(W )∥p(W )]− Eqϕ(W )[log pθ(D|W )],
(4)

where the likelihood pθ(D|W ) =
∏M

j=1 pθ(K
gt
j |Isj , Itj ,W ). In addition, we use a Gaussian distribu-

tion for the variational posterior, so the parameter ϕ = (µ,σ), where µ is the mean vector and σ is
the standard deviation vector.

To achieve the GB-SA operation visible in Figure 2(a), we sample the attention weights W bayes
g from

the learnable Bayesian posterior distribution qϕ(W |D) and, directly compute it and the correlation
map X via the general matrix multiplication:

WGB = G(X,W bayes
g ) = X ∗W bayes

g . (5)

Recall the self-attention mechanism (Vaswani et al., 2017), the attention weight is a non-zero matrix
with each row summing to one. Therefore, we leverage a softmax function to obtain attention weight
Wg = softmax(WGB), and the resulting weight Wg is then used to refine the initial matching
features. Such a GB-SA, which is leveraged as a regularisation on the weights of the network, can
learn the global matches on small data and is robust to over-fitting.

4.2 LOCAL BAYESIAN SELF-ATTENTION

Besides, the traditional self-attention (Dosovitskiy et al., 2021) is prone to introducing extra noisy
matches when capturing the short-range interaction from the correlation maps in a small region.
Inspired by the sliding windows used in convolutions, we introduce another Local Bayesian Self-
Attention (LB-SA), which conducts the dot-product of the input and the sparse Bayesian weight
according to the matrix factorization, to reason about the short-range matches from semantic context.

To achieve the LB-SA, we leverage the butterfly matrix (Dao et al., 2019) to generate a boolean
matrix B and, sample the attention weight W bayes

l from the learnable Bayesian posterior distribution
qϕ(W |D) which is inferred by the similar rules as Equation 4. As shown in Figure 2(b), we employ
the boolean matrix B to sparsify the Bayesian attention weight W bayes

l :

A = B ⊙W bayes
l , (6)
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where ⊙ is the Hadamard product of B and W bayes
l , and the resulting A is a sparse Bayesian weight.

To capture the local correspondences on the limited receptive field, we leverage the matrix factoriza-
tion technique to divide both the input X and the sparse Bayesian matrix A into n pairs of patches Xij

and Aij with a window size S × S, where 1 ≤ i ≤ n, 1 ≤ j ≤ n and n = Hs

S = Ws

S = Ht

S = Wt

S
Afterwards, each pair of sub-matrices is computed separately via the matrix multiplication, to generate
the final Bayesian attention weight WLB . Let L denote the function in the LB-SA module, we have:

WLB = L(X,A) = X ∗A

=

[
X11 X12

X21 X22

]
∗
[

A11 A12

A21 A22

]
=

[
X11 ∗A11 X12 ∗A12

X21 ∗A21 X22 ∗A22

]
.

(7)

Compared to direct matrix-multiplication, such a process has a strong capability of modeling the
local patterns while reducing the computational complexity. To efficiently model the long-range
and short-range interactions between candidate matches from correlation maps, the resulting local
attention weight WLB is integrated with the global attention weight WGB to obtain the final global-
local attention weight Wgl = softmax(WGB +WLB) in our proposed GLBT. Consequently, the
GLBT is hierarchically aggregated as a cost aggregator to refine the initial correlation maps before
feeding it into the decoder for flow estimation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

Datasets. We conduct comprehensive experiments on three widely-used benchmark datasets for
semantic correspondence, including SPair-71k (Min et al., 2019b), PF-PASCAL (Ham et al., 2017)
and PF-WILLOW (Ham et al., 2016). The SPair-71k dataset contains 70,958 image pairs with diverse
variations in viewpoint and scale, splitting into 53,340 pairs for training, 5,384 pairs for validation
and 12,234 pairs for testing. The PF-PASCAL dataset contains 1,351 image pairs from 20 categories,
augmented to 2,940 training pairs, 308 validation pairs and 299 testing pairs. The PF-WILLOW
dataset contains 900 image pairs from 4 categories, used for testing.

Evaluation Metric. The percentage of correct keypoints (PCK) is the standard evaluation metric for
category-level matching. Given a pair of predicted keypoint Kpred and ground-truth keypoint Kgt,
PCK computes the ratio of correctly predicted keypoints by PCK = 1

N

∑N
i=1[||K

pred
i − Kgt

i || ≤
α ·max(H,W )], where H and W denote height and width of an entire image or an object bounding
box, and α is a threshold to tolerate the distance between the predicted keypoint and the ground-truth.

Implementation Details. We follow the recent method (Min et al., 2019a) to extract the features
from the best sub-layers of ResNet101 (He et al., 2016) pre-trained on the ImageNet (Deng et al.,
2009) dataset. In training process, batch-size is set to 8 for all experiments and AdamW (Kingma &
Ba, 2015) with a weight decay of 0.05 is adopted for optimization. The data augmentation techniques
introduced in (Cho et al., 2021) are also used in our method. The learning rate for backbone features
is set to 1e-6. The learning rate for the cost aggregation layers is initialized as 1e-5 and gradually
decreased during training. We train the model for 300 epochs. All experiments are implemented with
PyTorch (Paszke et al., 2019) and our method costs 38.6 ms inference time on V100 GPUs.

5.2 BENCHMARK RESULTS AND ANALYSIS

To provide a fair comparison of our proposed GLBT and other state-of-the-arts, including CN-
NGeo (Rocco et al., 2017), A2Net (Seo et al., 2018), NC-Net (Rocco et al., 2018b), WeakAlign (Rocco
et al., 2018a), HPF (Min et al., 2019a), SCOT (Liu et al., 2020), DHPF (Min et al., 2020), CHM (Min
& Cho, 2021), CATs (Cho et al., 2021), MMNet (Zhao et al., 2021), and VAT (Hong et al., 2022), we
use the same backbone ResNet101 (He et al., 2016) to extract the features from a pair of images. All
results are measured under the same PCK evaluation indications on the benchmark datasets.

Table 1 and Table 2 report the quantitative comparison of the proposed GLBT with the previous
state-of-the-art methods on SPair-71k (Min et al., 2019b), PF-PASCAL (Ham et al., 2017), and
PF-WILLOW (Ham et al., 2016) respectively. In Table 1, we find that the transformer-based cost
aggregators outperform others by a wide margin, due to the capability of long-range matches for
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Table 1: Quantitative comparisons of different state-of-the-art methods evaluated on standard
benchmarks (Ham et al., 2016; 2017; Min et al., 2019b). U denotes unsupervised learning methods,
W refers to weakly-supervised methods, and F represents fully-supervised methods. The backbone
used here is ResNet101 (He et al., 2016). Higher PCK [%] is better. The best results are in bold, and
the second-best results are underlined.

Methods Aggregation
SPair-71k PF-PASCAL PF-WILLOW

PCK @ αbbox PCK @ αimg PCK @ αbbox
0.1 0.05 0.1 0.15 0.05 0.1 0.15

U CNNgeo (Rocco et al., 2017) 2D Conv. 20.6 41.0 69.5 80.4 36.9 69.2 77.8
A2Net (Seo et al., 2018) 2D Conv. 22.3 42.8 70.8 83.3 36.3 68.8 84.4

W

NC-Net (Rocco et al., 2018b) 4D Conv. 20.1 54.3 78.9 86.0 33.8 67.0 83.7
WeakAlign (Rocco et al., 2018a) 2D Conv. 20.9 49.0 74.8 84.0 37.0 70.2 79.9

RTNs (Kim et al., 2018) 2D Conv. 25.7 55.2 75.9 85.2 41.3 71.9 86.2
DCC-Net (Huang et al., 2019) 4D Conv. - 55.6 82.3 90.5 43.6 73.8 86.5
PWarpC (Truong et al., 2022) PWarpC 33.5 65.7 87.6 93.1 47.5 78.3 89.0

F

SFNet (Lee et al., 2019) 2D Conv. 24.0 59.0 84.0 92.0 46.3 74.0 84.2
HPF (Min et al., 2019a) RHM 28.2 60.1 84.8 92.7 45.9 74.4 85.6
GSF (Jeon et al., 2020) 2D Conv. 36.1 65.6 87.8 95.9 49.1 78.7 90.2

ANC-Net (Li et al., 2020a) 4D Conv. - - 86.1 - - - -
DHPF (Min et al., 2020) RHM 37.3 75.7 90.7 95.0 49.5 77.6 89.1
SCOT (Liu et al., 2020) OT-RHM 35.6 63.1 85.4 92.7 47.8 76.0 87.1

CHM (Min & Cho, 2021) 6D Conv. 46.3 - 91.6 94.9 52.7 79.4 87.5
CATs (Cho et al., 2021) Transformer 49.9 75.4 92.6 96.4 50.3 79.2 90.3

MMNet (Zhao et al., 2021) 4D Conv. 50.4 77.6 91.6 95.9 - - -
VAT (Hong et al., 2022) Transformer 55.5 78.2 92.3 96.2 52.8 81.6 91.4

GLBT Transformer 57.5 78.6 93.3 96.6 53.4 82.7 92.2

Table 2: Comparisons with the state-of-the-art methods on the SPair-71k (Min et al., 2019b)
dataset. All results are evaluated using PCK @ αimg = 0.1. The best results are reported in bold.

Methods aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv all
CNNGeo (Rocco et al., 2017) 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
A2Net (Seo et al., 2018) 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3
NC-Net (Rocco et al., 2018b) 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
WeakAlign (Rocco et al., 2018a) 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9
HPF (Min et al., 2019a) 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2
SCOT (Liu et al., 2020) 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6
DHPF (Min et al., 2020) 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHM (Min & Cho, 2021) 49.6 29.3 68.7 29.7 45.3 48.4 39.5 64.9 20.3 60.5 56.1 46.0 33.8 44.3 38.9 31.4 72.2 55.5 46.3
CATs (Cho et al., 2021) 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9
MMNet (Zhao et al., 2021) 55.9 37.0 65.0 35.4 50.0 63.9 45.7 62.8 28.7 65.0 54.7 51.6 38.5 34.6 41.7 36.3 77.7 62.5 50.4
VAT (Hong et al., 2022) 58.8 40.0 75.3 40.1 52.1 59.7 44.2 69.1 23.3 75.1 61.9 57.1 46.4 49.1 51.8 41.8 80.9 70.1 55.5

GLBT 61.4 43.6 75.0 43.7 49.9 66.9 54.6 69.9 26.1 72.8 62.7 57.9 47.9 53.9 49.8 41.4 82.2 74.7 57.5

self-attention in the transformer. Compared to the previous best transformer-based VAT, the overall
performance of our GLBT surpasses it by 2.0% @ αbbox = 0.1, 1.0% @ αimg = 0.1 and 1.1% @
αimg = 0.1, on SPair-71k, PF-PASCAL, and PF-WILLOW, respectively. Moreover, we also compare
the results of each class on SPair-71k in Table 2. GLBT achieves the best performance in most
categories, such as aeroplane, bike and boat, because it integrates both global and local self-attention
to learn the long-range and short-range matches between images when refining the matching scores.

Figure 3 provides the visual comparison of results obtained from GLBT and the recent state-of-the-art
methods, namely VAT (Hong et al., 2022), MMNet (Zhao et al., 2021) and CATs (Cho et al., 2021).
The visual examples demonstrate that GLBT can match more accurate points between a pair of
images than other methods. The results also present that GLBT has smaller offsets than others for the
correspondences between image pairs, further validating the effectiveness of our proposed method.

5.3 ABLATION STUDY AND ANALYSIS

In this section, we provide an ablation analysis to investigate the importance of the cost aggregation
stage during the entire pipeline. We also show the details of our proposed GLBT, including one
Global Bayesian Self-Attention (GB-SA) and another Local Bayesian Self-Attention (LB-SA). For a
fair comparison, we conduct all ablation study experiments with the same backbone ResNet101 (He
et al., 2016) and each experiment is trained from scratch under the same settings.
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Support GT GLBT VAT MMNet CATs

Figure 3: Qualitative comparison of the recent state-of-the-art methods evaluated on SPair-
71k (Min et al., 2019b), including VAT (Hong et al., 2022), MMNet (Zhao et al., 2021) and
CATs (Cho et al., 2021). All results are generated from the same model which is evaluated using
PCK @ αimg = 0.1. For each image pair, “+” is the groundtruth point and “×” is the predicted key
point. The closer distance between two signs corresponds to the better results.

Table 3: Ablation results on the overall architecture. “Feat”, “Aggr” and “Flow” denote feature
extraction, cost aggregation and flow estimation, respectively. SPair-71k and PF-WILLOW employs
PCK @ αbbox for evaluation, while PF-PASCAL adopts PCK @ αimg.

Feat Aggr Flow SPair-71k PF-PASCAL PF-WILLOW
α = 0.1 α = 0.05 α = 0.1 α = 0.15 α = 0.05 α = 0.1 α = 0.15

✓ ✗ ✗ 44.5 69.7 86.9 94.2 39.1 73.6 86.7
✓ ✗ ✓ 46.7 70.3 89.2 95.0 40.6 75.0 88.0
✓ ✓ ✗ 54.6 76.5 92.7 96.2 52.9 80.8 90.8
✓ ✓ ✓ 57.5 78.6 93.3 96.6 53.4 82.7 92.2

Overall Pipeline. Table 3 explores the impact of three modules, including feature extraction, cost
aggregation, and flow estimation, for semantic correspondence. To validate that cost aggregation
plays an essential role in the whole pipeline, we conduct ablation studies based on the different
combinations of these modules. The results shown in Table 3 report the performance of involved
models on SPair-71k (Min et al., 2019b), PF-PASCAL (Ham et al., 2017), and PF-WILLOW (Ham
et al., 2016) in terms of PCK evaluation indicators with different thresholds. The results summarize
that cost aggregation network contributes the most improvements to the final performance.

Table 4: Comparison of various self-attention
mechanisms for Transformer-based Cost Aggre-
gator. G-SA and L-SA mean the standard global
and local self-attentions respectively. GL-SA rep-
resents the global-local self-attention. GB-SA and
LB-SA denote the global and local Bayesian self-
attentions respectively. GLB-SA is the global-local
Bayesian self-attention.

SPair-71k PF-PASCAL PF-WILLOW
αbbox = 0.1 αimg = 0.1 αbbox = 0.1

G-SA 54.6 90.6 80.0
GB-SA 55.3 91.8 81.1

L-SA 55.0 91.1 80.6
LB-SA 56.4 92.9 82.0

GL-SA 55.6 92.1 81.4
GLB-SA 57.5 93.3 82.7

Effect on GLB Self-Attention. As visible
in Table 4, we explore the effectiveness of
the Global and Local Bayesian Self-Attention
(GLB-SA) for transformer-based cost aggre-
gation network, on the SPair-71k (Min et al.,
2019b), PF-PASCAL (Ham et al., 2017), and
PF-WILLOW (Ham et al., 2016) benchmark
datasets in terms of PCK @ α = 0.1. The base-
line method adopts the Global Self-Attention
(G-SA) Vaswani et al. (2017) based transformer
to model the long-range matches between im-
ages for the refinement of correlation maps at
the cost aggregation stage. To process the local
semantic matches, we leverage matrix factoriza-
tion (Ocker & Buice, 2021; Shah et al., 2015)
to implement the Local Self-Attention (L-SA).
Table 4 shows that the result of L-SA outper-
forms the G-SA. Besides, the Global-Local Self-Attention (GL-SA), which is a combination of G-SA
and L-SA, has a better performance than both G-SA and L-SA. To further investigate the effects of
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(a) GLT (b) GLBT

Figure 4: Convergence analysis of GLT vs. GLBT for cost aggregator. (a) GLT shows the loss
curve obtained by the global and local self-attention based transformer for cost aggregator, and (b)
GLBT indicates the loss curve which is trained using the global and local Bayesian self-attention for
cost aggregator. The blue and red curves represent the training and testing datasets, respectively.

Bayesian self-attention for the transformer cost aggregator, we conduct the extra ablation experiments,
including G-SA vs. the Global Bayesian Self-Attention (GB-SA), L-SA vs. the Local Bayesian
Self-Attention (LB-SA), and the GL-SA vs. GLB-SA, respectively. Compared to the results shown in
Table 4, we find that the application of the Bayesian inference to self-attention in the transformer
outperforms the non-Bayesian self-attention, because such a Bayesian self-attention mechanism acts
like a regularization. Among them, our proposed GLB-SA achieves the best performance on the
refinement of the correlation, further validating its effect on finding semantic correspondence.

Effect on Over-fitting for GLBT. To verify that the proposed Bayesian self-attention for the GLBT
model can alleviate over-fitting, Figure 4 compares the loss curves obtained by the GLT and the
GLBT. As shown in Figure 4(a), the loss curve of GLT fluctuates up and down in 50-150 epochs.
The fluctuations are caused by the large intra-class variations in appearance and geometry for
unconstrained image pairs. Figure 4(b) reports the loss curve of the GLBT, which is much more
smooth than the GLT. We find that such a Bayesian self-attention can be regarded as a regularization
mechanism to prevent the transformer-based model from over-fitting, when refining the correlation
maps of challenging image pairs.

Table 5: Memory and run-time comparison.
Methods Resolution Memory (GB) Run-time[ms]

DHPF 240× 240 1.6 57.7
CHM 240× 240 1.6 47.2
CATs 256× 256 1.9 34.5
MMNet 224× 320 1.2 86.0
VAT 512× 512 3.8 57.3

GLBT 512× 512 3.4 38.6

Memory and Run-time. Table 5 compares
the memory and run-time of DHPF (Min et al.,
2020), CHM (Min & Cho, 2021), CATs (Cho
et al., 2021), MMNet (Zhao et al., 2021),
VAT (Hong et al., 2022) and GLBT. For a fair
comparison, all methods employ the backbone
ResNet101 for feature extraction, and the results
are obtained using the same machine. Compared
to other methods, GLBT and VAT methods lever-
age transformer-based cost aggregators, exploit larger resolution and more memory than others, and
surpass other methods by a large margin. We also find that compared to the previous state-of-the-art
method VAT, our proposed method outperforms it in terms of PCK @ α = 0.1, while reducing the
memory and run-time by 0.4 GB and 18.7 ms, respectively.

6 CONCLUSION

In this paper, we have proposed a global-local Bayesian Transformer-based cost aggregation network,
dubbed GLBT, for semantic correspondence. It integrates the global and local Bayesian self-attentions
to infer the long-and-short range relationship between the correlation matches based on Bayes’ rule,
achieving both global and local match-to-match interaction at the same time. We have demonstrated
that our proposed method outperforms the existing state-of-the-art by a large margin on public
benchmark datasets. Moreover, we have also conducted extensive ablation studies to validate the
effect of our proposed global-local Bayesian self-attention which is applied for Transformer-based
cost aggregator. We hope that our findings can inspire further research work for other domains.
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I. Rocco, R. Arandjelović, and J. Sivic. End-to-end weakly-supervised semantic alignment. In ECCV,
2018a.
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