
Proceedings of Machine Learning Research vol 213:1–15, 2023 2nd Conference on Causal Learning and Reasoning

Causal Discovery for Non-stationary Non-linear Time-series Data
Using Just-In-Time Modeling

Daigo Fujiwara D.FUJIWARA@NTT.COM
Kazuki Koyama * KKOYAMA@ISM.AC.JP
Keisuke Kiritoshi K.KIRITOSHI@NTT.COM
Tomomi Okawachi T.OKAWACHI@NTT.COM
Tomonori Izumitani TOMONORI.IZUMITANI@NTT.COM
NTT Communications Corporation
21F, Granpark Tower, Shibaura, Minato-ku 3-4-1, Tokyo, Japan

Shohei Shimizu SHOHEI-SHIMIZU@BIWAKO.SHIGA-U.AC.JP

Faculty of Data Science, Shiga University, 1-1-1 Banba Hikone, Shiga, Japan
Center for Advanced Intelligence Project, RIKEN, Japan

Editors: Mihaela van der Schaar, Dominik Janzing and Cheng Zhang

Abstract
Causal discovery from multivariate continuous time-series data is becoming more important as the
amount of IoT data to analyze increases. However, it is not easy to identify the causal structure from
such data using conventional linear causal discovery methods due to their non-stationary charac-
teristics such as distribution shifts, and non-linearity of the system dynamics. The application of
non-linear causal discovery methods is also generally limited, and there are still some problems
such as their computational complexity, interpretability, and robustness for non-stationarity. To
address these challenges, we propose a new causal discovery method JIT-LiNGAM, based on the
Linear Non-Gaussian Acyclic Model (LiNGAM) and the Just-In-Time (JIT) framework, which is
also called Lazy-Learning or Model-On-Demand. Our method estimates a local linear structural
causal model from neighboring samples of the past data every time a new input sample is given.
Approximating an inherently globally non-linear model with local linear models, we can benefit
from high detection performance of causal relationship for non-linear and non-stationary data, im-
provements of interpretability of causal effects by linear expression, and reduced computational
complexity. We formulate this algorithm based on Taylor’s theorem, and show effective neighbor
selection algorithms by a simple experiment. The results of numerical experiments using artificial
data with non-linearity and non-stationarity demonstrate the effectiveness of our method compared
to representative methods for such data, under some general evaluation metrics.
Keywords: Causal Discovery, LiNGAM, Just-In-Time Modeling, Non-Stationarity, Non-Linearity,
Time-series

1. Introduction

The importance of time-series data analysis in the manufacturing industry is rapidly increasing due
to its broad useful applications (quality prediction, anomaly/failure detection of equipment, au-
tomation of operations, etc.) and the increase of the amount of IoT data to analyze. Causal analysis
approaches is also useful to addressing these industrial real-world problems, as it enables to clarify
and utilize the causal structure of the target system. For example, with the framework of statistical
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causal inference as a basis, causal relationships can be utilized to determine how the entire data is
affected when a particular variable is changed independently of other variables (Pearl et al. (2016)).
This treatment is called intervention, and its resulting effects are called the interventional effect.
Example applications of the intervention technique include optimizing the amount of material in-
put in a chemical plant by calculating backwards, or utilizing the revealed causal relationships as
a reasoning for later business decision making. The knowledge of causal structure also improve
the interpretability, i.e., how easily machine learning model’s outputs, its reasons and behavior are
understood by humans. It is particularly important e.g. in industrial plants due to the potential
economic and safety repercussions should an accident occur.

When causal relationships are unknown, we usually estimate them by conducting experiments
such as Randomized Controlled Trials (RCTs), where only a certain variable is manipulated and we
observe the changes in the other variables. However, in many real-world use cases, it is difficult
to conduct such an experiment due to practical limitations such as budget, ethical issues, or safety.
Causal discovery is a framework for identifying causal relationships only from data in cases like
this where experimentation is not practical. The application of causal discovery to time-series data
also has been studied extensively in recent years (Hyvärinen et al. (2010)).

One challenge here is that the time-series data appearing in practical applications often violate
the ideal conditions assumed by the conventional methods of time-series analysis and causal dis-
covery. For example, in time-series analysis, many models assume stationarity, i.e., that there are no
time-dependent trends or seasonal components and that the dynamics and state of the system remain
constant over time. This is problematic because actual data may in fact have seasonal deviations
in sensor values due to temperature changes, or discrete changes in operating conditions such as
changes in production amount or trend components due to aging of the plant.

One of the most representative causal discovery methods is the Linear Non-Gaussian Acyclic
Model (LiNGAM) (Shimizu et al. (2006); Shimizu et al. (2011)), which assumes a linear model for
the structural equations that express causal relationships. However, in reality, many of the physi-
cal phenomena that occur in plants and other facilities are non-linear, so a linear model can only
capture causal relationships as a limited approximation. Non-linear causal discovery methods have
problems too: for example, it is often difficult for human operators to interpret the causal relation-
ships implicitly expressed by non-linear functions (e.g., MultiLayer Perceptron (MLP) ), and their
computational complexity of training is extremely high. As is well known, MLP-based models
(Zheng et al. (2020); Uemura et al. (2022)) take a long time to train, and REgression with Subse-
quent Independence Test (RESIT) (Peters et al. (2014)) also has computational complexity because
it requires repeated nonlinear regression and examinations of independence for each combination of
variables to detect causality. Furthermore, when these methods are extended to time-series analysis,
the validity is not necessarily guaranteed for non-stationary data. One of the methods having similar
problem setting of robustness for non-stationarity is Constraint-based causal Discovery from het-
erogeneous/NOnstationary Data (CD-NOD) (Huang et al. (2020)). However, it has another problem
that if none of the certain identifiability conditions given in this theory are satisfied, the causal di-
rection of the relationship between two variables suggested by former half of this algorithm remains
undetermined with the algorithm of CD-NOD, and an extra direction detect method (e.g. LiNGAM)
is needed.
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Figure 1: The basic idea of the proposed method.

Summery of This Paper

In response to these challenges, we have developed a locally linear (but globally non-linear) causal
discovery method that is robust to non-stationary and non-linear time-series data. The proposed
method, JIT-LiNGAM, approximates the inherently globally non-linear structural equations by local
linear models. Each local linear model is trained in the neighborhood of the query data xQ, located
at where we want to know the causality. This query point is given for each estimation, for example, if
data are available sequentially in a time-series, the most recently observed data can be treated as the
query data. The idea of this local model is based on the fact that a non-linear function can generally
be approximated to a linear function from Taylor’s theorem if a sufficiently small neighborhood
is taken as the neighborhood of the query point. Furthermore, by taking the neighborhood, we
also expect proposed method to be robust for non-stationarity, for example, involving multimodal
distribution shifts. The learning of theses local linear causal models can be easily solved by a
conventionally used model, LiNGAM. The basic idea of the proposed method is shown in Figure 1.

The main contributions of this paper is below:

• We propose a new causal discovery method having a following features:

– Strong detection capability for non-linear causality, due to approximation to
local linear models

– Robustness for non-stationary characteristics such as distribution shifts by
using neighboring training data around query point

– Simple algorithms and less computational complexity based on LiNGAM
– High interpretability of causal representation of local linear functions, with

respect to its strength, its evolution over time, etc.
– Fully directed causal relationships (unlike CD-NOD)
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• We show the rough formulation and the application range of our method.

• We suggest the effective way of selecting neighbors especially for causal discov-
ery by a simple experiment.

• We conduct a further experiment using more complex non-linear non-stationary
artificial data to confirm effectiveness of our method compared to conventional
methods.

2. Related Work

2.1. Analysis for Non-stationary Non-linear Time-series Data (JIT)

As discussed above, the analysis of non-stationary and non-linear time-series data, which often ap-
pears in practical data such as the sensor values of industrial plants, is generally difficult. One
framework for resolving this difficulty is the Just-In-Time (JIT) model (Stenman et al. (1996)),
which is also called Lazy-Learning (Bontempi et al. (1999)) or Model-On-Demand (Braun et al.
(2001)). JIT has been utilized in the context of soft sensors in industrial plants (e.g., pseudo-sensors
for difficult-to-measure locations using regression estimation), for forecasting problems, and for
system identification and control engineering. It is also known to be robust to non-stationary and
non-linear time-series data as appearing in industrial plants.

The basic idea of JIT is simple. Based on an unknown non-linear function f(·) : RP → R, the
dataset of inputs and outputs D =

{
(x(i), y(i)) | i = 1, . . . , N

}
is obtained as

y(i) = f(x(i)) + ϵ(i), (1)

where ϵ(i) is the noise assuming i.i.d. for i. With JIT, instead of regressing an unknown (non-linear)
function f(·) directly from D, we use K-neighbor-data, which is a subset of D composed of inputs
x(i) (i = 1, 2, . . . ,K) neighboring xQ and the corresponding outputs y(i). Using these neighboring
data, we can regress the local function f̂xQ(·) and then obtain the resulting estimation of f(xQ) by
f̂xQ(xQ). xQ is called a query point. We usually utilize a linear model as the regression method
for f̂xQ(·) because, by taking a local neighborhood, we should be able to approximate the globally
non-linear function to a linear model around the query point based on Taylor’s theorem. In addition,
using a linear model means we can more easily interpret the output process of the model. Note that,
in original Just-In-Time modeling for regression, K-Nearest-Neighbor is normally adopted as the
way of selecting neighboring data. When predicting multiple test outputs yi = f(xi) for inputs xi

(i = N + 1, N + 2, . . . , ) , local linear functions are learned repeatedly in JIT in the procedure
above.

JIT can be applied to the regression of time-series data as shown in previous studies. In these
time-series extension, we apply Algorithm 2 (showed in Appendix A.) repeatedly to time-series
data obtained at discrete times (t = 1, 2, . . . , T ) updating D and xQ. And sometimes time delay
embedding (i.e., making multivariate vector including delayed variable cut out by time window)
is used as the input vector xi there. By appropriately setting future value of target variable as
the output y(T ), Auto Regressive (AR) models and Vector Auto Regressive (VAR) models can be
easily handled within the JIT framework. A similar idea of embedding can be applied to the time-
series extension of our proposed method (please refer to Hyvärinen et al. (2010)), but we would
like to consider this extension as a future work. JIT is not only expected to approximate non-
linear functions linearly: in addition, when applied to time-series data in this way, it should be
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able to follow time-series data with non-stationarity characteristics such as discrete state changes,
seasonality, and trends thanks to taking a neighboring data of the current system state x(T ).

2.2. Linear Causal Discovery (LiNGAM)

The (non-linear) Structural Equation Model (SEM), which is one of the most general formulations
of causality and describes the causal relationship between variables, is written as

xi = fi(x\i, ei) (i = 1, 2, . . . , P ), (2)

where ei means noise and x\i means a vector made by removing only xi as an element from x =
(x1, x2, . . . , xP )

T. Note that x\i in some causal models (e.g., LiNGAM and ANM, as discussed
below) include only parental variables of xi in the meaning of causality. fi(·) is a non-linear function
that represents the causal relationship from each variable to xi. A common task setting for causal
discovery is to find this structural equation and the functions fi(·) (i = 1, 2, . . . , P ) from the data
only.

LiNGAM further utilize the following linear structural equation model:

xi =

P∑
j=1,j ̸=i

bijxj + ei (i = 1, 2, . . . , P ). (3)

In LiNGAM, ei is assumed to be a non-Gaussian noise independent for each i whose mean zero. It
can be written in matrix form as

x = Bx+ e. (4)

It is also assumed that when B is seen as the adjacency matrix of a weighted directed graph, the
graph is a Directed Acyclic Graph (DAG). When bij ̸= 0 holds, it means there is a causal rela-
tionship in the direction of xj → xi. Causal discovery in LiNGAM is equivalent to finding this
B.

3. Proposed Method

3.1. Formulation of JIT-LiNGAM

The JIT framework has a simple structure consisting of Neighbor-Search and sequential local model
learning, so it can also be widely applied to problem settings other than regression if their algorithm
solving is computationally light. As mentioned above, most real time-series data are considered to
have non-linear causal relationships between variables. We can also interpret these non-linear rela-
tionships in terms of the continuously changing strength of the (linear) relationships corresponding
to the values of the variables. On the basis of this idea, we construct a new theory of non-linear
causal discovery under the JIT framework and propose a natural extension of JIT to the causal dis-
covery problem. The key point of our method is that it approximates causality based on non-linear
structural equations to a local linear structural equation by using neighborhood data and LiNGAM.

First, we consider Additive Noise Model (ANM) (Hoyer et al. (2008)), a non-linear structural
equation model that restricts Equation (2) to additive noise. This is formulated as

xi = fi(x\i) + ei (i = 1, 2, . . . , P ). (5)
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It is also written in vector form, as

x = f(x) + e, (6)

where ei is assumed to be a non-Gaussian noise independent for each i whose mean is zero. Note
that in ANM, the causal relationship defined by f is restricted to directed acyclic models in the
meaning of the causal graph. In B(xQ, ε) = {x | d(x,xQ) < ε}, which is the neighborhood around
the query point xQ, we obtain the following approximated equation based on Taylor’s theorem:

x = f(xQ + (x− xQ)) + e

≃ f(xQ) + J(xQ)(x− xQ) + e, (7)

where J(·) is Jacobian. Then, we take the expected value of both sides of Equation (7) by the
truncated distribution in B(xQ, ε), which is a neighborhood of xQ. When we set each expected
value of x and e in the neighborhood as x̄ = EB(xQ,ε)[x] and ē = EB(xQ,ε)[e], the resulting
equation is

x̄ = f(xQ) + J(xQ)(x̄− xQ) + ē. (8)

Therefore, subtracting both sides of Equation (8) from Equation (7), we have

x̃ = J(xQ)x̃+ ẽ, (9)

with x̃ = x− x̄, ẽ = e− ē. This has the same form as Equation (4) (by utilize the assumption of
the acyclic causality in ANM, J(xQ) also becomes DAG as a adjacency matrix), and can be solved
by the LiNGAM algorithm to obtain the matrix J(xQ).

In actual data analysis, x̃ = x − x̄ can be obtained by sample approximation (centralization
of neighbor data). Then ẽ is not calculated explicitly but automatically treated as non-Gaussian
noise whose mean is zero in the LiNGAM algorithm. We now regard this resulting B = J(xQ)
given by LiNGAM as the linearly approximated causality in the neighborhood of the query point
xQ of the original non-linear structural equation (Equations (5) and (6)). In addition, by using
the linearly approximated output B = J(xQ), we can more easily interpret the causality in term
of its positive/negative effect, its strength, and its change over time. Note that the computational
complexity of the causal discovery part in JIT-LiNGAM fully depends on this part (the details is
explained Section 3.2). From the above, the general form of the proposed algorithm JIT-LiNGAM
can be summarized as Algorithm 1.

3.2. How to Select Neighboring Set

We examined the following ways for selecting the neighboring set Ω.

• ΩKNN(xQ; dE,K): K-Nearest-Neighbors from the query point measured by Euclidean dis-
tance.

• ΩKNN(xQ; dM,K): K-Nearest-Neighbors from the query point measured by Mahalanobis
distance.

• ΩERN(xQ; dE,K, ε): K-Neighbors randomly selected from samples whose distance from the
query point measured by Euclidean distance is smaller than ε.

6
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Algorithm 1 JIT Algorithm for Time-Series Causal Discovery (JIT-LiNGAM)

Inputs:
stored data D =

{
x(t) | t = 1, . . . , T − 1

}
,

query point xQ = x(T ), distance function d(·, ·), number of neighbors K.
Outputs:

weighted adjacency matrix J(x(T )): representing the causality defined in the neighborhood for
query point x(T ).

Procedure 1
Extract K-data of x(t) from D, based on d(x(t),xQ), which is the distance from the query point
xQ. (The details of how to extract K-data are described in Section 3.2.) The resulting K-data
subset Ω(xQ; d,K) is:

Ω(xQ; d,K) =
{
x(σ(k)) | k = 1, . . . ,K

}
,

where σ(k) is a function that returns the k-th nearest time index t in Ω(xQ; d,K).

Procedure 2
Centralize Ω(xQ; d,K) and get Ω̃(xQ; d,K), where mean is subtracted from each element of
Ω(xQ; d,K) along each dimension of x.

Procedure 3
Train LiNGAM using Ω̃(xQ; d,K), and get resulting weighted adjacency matrix J(x(T )).

• ΩERN(xQ; dM,K, ε): K-Neighbors randomly selected from samples whose distance from the
query point measured by Mahalanobis distance is smaller than ε.

(KNN : K-Nearest-Neighbors, ERN : Epsilon-Random-Neighbors)

The Euclidean and Mahalanobis distances are defined as

dE(x,xQ) =
√

(x− xQ)T(x− xQ),

dM(x,xQ) =
√

(x− xQ)TW (x− xQ),

where

W = (
1

N

N∑
i=1

(xi −m)(xi −m)T)−1,

m =
1

N

N∑
i=1

xi.

The Mahalanobis distance is a distance metric that considers the correlation between variables by
measuring after disentangling it, and it has often been used in the area of anomaly detection.
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All the above selection techniques fix the number of neighbors K so as to ensure the upper limit
of computational complexity. As a result, when the number of data N is sufficiently larger than
the number of variables P , the computational complexity of JIT-LiNGAM mainly depends on the
Neighbor-Search part (in KNN, it is O(T log T )), and the computational complexity of the causal
discovery part is the same as the LiNGAM of K-samples.

Note that the algorithm of ERN selects K-data from the neighbor region B(xQ, ε), which is
closer to the query point than ε, but sometimes the number of elements belonging to B(xQ, ε) is
less than K and the algorithm breaks. To avoid this problem, we increase the size of ε until the
number of elements belonging to B(xQ, ε) is more than K, where the value of ε is reset to the
initial value every query.

4. Experiment

4.1. Simple Independent Data (Experiment 1)

We utilized the following structural equations represented by a non-linear ANM, and we generated
N = 20000 independent samples:

x1 = e1

x2 = −2 sin(2x1) + e2

x3 = exp(−x1) + x22 + e3

x4 = x32 − cos(x3) + e4

, (10)

where ei ∼ LA(0, 0.05) is independent Laplace noise for (i = 1, 2, 3, 4). This causal relationship
is represented as a causal DAG as shown in Figure 2.

The generated N samples are treated as if a time-series in this experiment although this data is
actually i.i.d. data, not time-series. Causal discovery (LiNGAM) at time T ∈ [1, N ] is executed
sequentially in the JIT framework (whose number of neighbors K = 500) using latests stored data
D =

{
x(t) | t = 1, . . . , T − 1

}
at each time. Here, instead of ICA-based LiNGAM (Shimizu et al.

(2006)), we used a method called Direct-LiNGAM (Shimizu et al. (2011)), which repeats regres-
sions and examinations of independence. In Experiment 1, we examined all the ways of selecting
neighbors introduced in Section 3.2.

4.2. Complex Non-stationary Time-series Data (Experiment 2)

Further more, we generate t = 1, 2, . . . , N (N = 20000) time dependent samples using the follow-
ing structural equations extending a non-linear ANM to non-stationary time-series data:

x1 = z(t) + e1

x2 = −2 sin (2x1) + e2

x3 = exp (−x1) · x22 + e3

x4 = x32 − cos (x3) + e4

,where

z(t) = αt+ β(t)

β(t) =


0 (1 ≤ t <

N

2
)

β (
N

2
< t ≤ N)

. (11)

Note that in z(t), the first term αt means the time dependent trend and the second term β(t) means
distribution shift by a bias parameter β occurring at t = N

2 . It also increases complexity of causality

8



JIT-LINGAM

X_1

X_2

−2sin(2x)

X_3

exp(−x)

x^2

X_4

x^3

−cos(x)

Figure 2: The causal DAG corresponding to the
non-linear structural equations in Ex-
periment 1 and 2. Note that implicitly
in Experiment 1, two causal effects
expressed as two arrows directed to
x3 are added before flow into x3, but
in Experiment 2 they are multiplied.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time (the number of samples)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

St
ru

ct
ur

al
 H

am
m

in
g 

di
st

an
ce

 (S
HD

)

KNN-Euclid
KNN-Mahalanobis

ERN-Euclid
ERN-Mahalanobis

Cumulative All
K-Random

Figure 3: Results of JIT-LiNGAM with various
ways of selecting neighbors and the
baseline methods in Experiment 1.
Moving averages are taken over 1000
samples due to large fluctuations.

for Equation (11) to have a cross term of exp (−x1) · x22, which means that the off-diagonal ele-
ments of Hessian matrix is nonzero unlike Equation (10). Though there is the cross term and added
complexity, the causal relationship is represented as the same causal DAG as Equation (10) showed
in Figure 2. This data is processed by the same way as described in Section 4.1 in the experiment
task. In this experiment, we use JIT-LiNGAM with the neighbor selection way of ERN-Euclidean,
which is the best model of proposed methods as showed in Experiment 1. The detail of this con-
clusion is explained later in Section 4.4. In Experiment 2, we compared the proposed method to
representative causal discovery methods for non-linear and non-stationary data under some general
evaluation metrics of causal discovery.

4.3. Baselines and Evaluation Metrics

In Experiment 1, we prepared two linear models as baselines: one that executes a causal discovery
using all the stored data D observed at each time (Cumulative All), and one that executes a causal
discovery using randomly selected K samples from the stored data D regardless of the distance (K-
Random). Both of them use LiNGAM as a causal discovery algorithm. For the evaluation metric,
we used Structural Hamming Distance (SHD), which has been widely utilized as a performance
index in other causal discovery studies (Zheng et al. (2020); Uemura et al. (2022)). This measure
does not focus on the strength of the estimated coefficients given by causal discovery (the adja-
cency matrix B in LiNGAM) but rather on only on the causal structure of zero or nonzero. On
the basis of this idea, SHD evaluates a kind of distance from the minimum number of operations
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(adding/reversing/deleting edges) required to transform the estimated graph into the true graph on a
DAG representing causality.

In Experiment 2, as baselines, we adopted RESIT with Random Forest regressor as a represen-
tative of non-linear causal discovery methods, and CD-NOD as a representative of non-stationary
causal discovery methods in addition to Cumulative All and K-Random. For the evaluation met-
ric, we uses some famous classification evaluation metrics, False Discovery Rate (FDR) (same as
1 − precision), True Positive Rate (TPR) (same as recall), False Positive Rate (FPR), F1 score
(harmonic mean of precision and recall) in addition to SHD. Each metric is measured for the edge
predictions considering direction, i.e., when a edge with a certain direction is predicted, it is counted
as one prediction positive sample, however if the true edge has opposite direction, this prediction is
counted as one false positive sample. CD-NOD’s output contains undirected edges. For undirected
edges, we propose two ways of measure. One is ”Active”, which regards the undirected edges ap-
propriately as directed edges to get possibly closer to true edges direction. The other is ”Inactive”,
which regards the undirected edge as if nothing, i.e. the interpretation that neither of both directions
of edges is predicted. Active is more advantageous for CD-NOD than Inactive.

4.4. Results and Discussion

The results of Experiment 1 are presented in Figure 3, where a lower SHD indicates that the esti-
mated graph is closer to the true causal graph. Since there was considerable variation in the accuracy
of causal discovery for each query point, a moving average over 1000 samples is shown. As we can
see, all of the proposed methods outperformed the baselines over all the time. Thanks to its algo-
rithm, JIT is able to collect similar neighborhoods to the query point as the amount of accumulated
data increases and construct more detailed and localized models. This suggests that the error would
presumably decrease with the passing of time, but in fact we found that the error tends to increase
slightly over time when the KNN method is used to collect neighborhoods (Figure. 3).

One potential reason for the increasing error is the supposition that the causal discovery accuracy
depends on the training dataset’s variance (radius). Figure 4 plots the time evolution of sample
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standard deviations in the neighborhood set. The sample’s density in the data space increases as the
observed samples D increase over time. Therefore, in KNN, where the number of neighbors K is
fixed and the elements are taken from the nearest neighbor in order, the size of the region covering
the neighborhood set becomes smaller and smaller as Figure 4 shows. The value 0.05 in Figure 4
is shown as a rough indication of the Laplace noise scale. When the scale (standard deviation) of
the neighborhood set is below this, most of the contributions to the data values in the neighborhood
set become noise, which makes it difficult to detect tendencies originating from causal effects, as
depicted in Figure 5. As a result, combined with the general difficulty of causal discovery, it is
thought that causality becomes more difficult to find over time.

In contrast, as we can see in Figure 4, the algorithm by ERN enables causal discovery without
shrinking the neighborhood radius. As a result, its accuracy improves with time, as shown in Figure
3. Normally, the reason for fixing the number of neighbors K in the JIT algorithm is to ensure the
upper limit of computational complexity, and as these results demonstrate, ERN can achieve higher
performance than KNN while maintaining this upper limit of computational complexity.

Table 1 and Figure 6 show the results of Experiment 2. It can be seen in them that the proposed
method outperforms the conventional methods in most of the measures and in a wide range of time.
Seeing Table 1, CD-NOD Active, which is the evaluation for CD-NOD regarding the undirected
edge appropriately as a directed edge to get closer to true edge direction, is seeming better than
proposed method. However, this evaluation is too much advantageous for CD-NOD, and CD-NOD
Inactive indicates extremely low performance in contrast. The proposed method can output fully
directed causal graph, so this method is thought sufficiently superior to CD-NOD. (However, if you
concern, taking the mean of ”Active” and“ Inactive”for example in SHD, you can get perhaps an
effective evaluation metrics where the operation of removing/directing an undirected edge is treated
as costing 1/2). Seeing Figure 6, there are some time sections where the evaluation metrics of the
proposed method is slightly worse. JIT-LiNGAM captures the causal relationships for only the
latest state of system, the result differs depending on query data xQ = x(T ). Thus, taking the time
average of the evaluation values, like in Table 1, is somewhat reasonable, since it means also taking
the approximated expected value under the distribution of the (query) data.
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Figure 6: The results of Experiment 2 plotting time evolution of SHD and F1 score for each method.
Note that, while Just-In-Time like methods (JIT-LiNGAM, Cumulative All, K-Random)
makes estimation every time the new data is observed, evaluation for RESIT and CD-
NOD is executed once the all data is finally given.

Table 1: The results of Experiment 2. In JIT-LiNGAM, Cumulative All, K-Random, the time sam-
ple means for each metric is taken. Result of ∗RESIT and ∗CD-NODs are One-Shot, i.e.
the one-estimation after all the observations are given at end of the time.(↓) means lower
is better. (↑) means greater is better.

FDR (↓) TPR (↑) FPR (↓) SHD (↓) F1 score(↑)
JIT-LiNGAM 0.558 0.452 0.408 3.317 0.443
Cumulative LiNGAM 0.708 0.345 0.588 4.211 0.316
K-Random LiNGAM 0.697 0.351 0.566 4.168 0.325
∗ RESIT 0.667 0.400 0.571 4.000 0.364
∗ CD-NOD Inactive 0.000 0.000 0.000 5.000 0.000
∗ CD-NOD Active 0.167 1.000 0.143 1.000 0.909

5. Conclusion and Future Work

We proposed JIT-LiNGAM as a method to obtain local linear approximated causal models in the
neighborhood of the query point for non-linear and non-stationary data. The proposed method com-
bines the JIT framework, which has conventionally been used for non-stationary non-linear time-
series regression problems, system identification, or control engineering, and LiNGAM, which is
one of the most popular linear causal discovery algorithms. The theory and computational pro-
cedure of JIT-LiNGAM was formulated and the scope of its application was clarified. Thanks
to its linear approximation, JIT-LiNGAM enables easier interpretation of the originally non-linear
causality in the terms of its positive/negative effect, its strength, and its change over time. More-
over, its overall computational complexity can be reduced to the complexity of the JIT framework’s
Neighbor-Search part, and the computational complexity of the causal discovery part can be limited
to LiNGAM’s one. Due to these characteristics, JIT-LiNGAM is expected to be more scalable to
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the increase of the number of variables P than RESIT. As a future work, we will examine this by
experiments for multivariate data with large dimension. Finally, to demonstrate the effectiveness of
the proposed method, we conducted experiments on artificial data and compared the accuracies of
several neighborhood selection methods, including the baseline methods. As a result, we confirmed
the superiority of the proposed method and obtained some suggestions on how to select useful
neighborhoods especially for causal discovery, in JIT’s neighborhood selection part.

As future works, we consider some issues. Based on its algorithm and formulation, JIT-LiNGAM
may be able to handle cases where (not only changing its strength, but also) the structure of the
causal graph itself is time-varying, but this also needs to be further tested. It has been already also
mentioned in Section 2.1, we can think the extension of JIT-LiNGAM with time delay embedding
model, which may be more suitable for the time-series analysis. It also remains as future work.
And, whether or not the output linear causal effect becomes the local approximation of original
non-linear ANM as its Jacobian should be examined later studies.

Acknowledgments

I would like to thank Kazuki Koyama, Keisuke Kiritoshi, and Tomomi Okawachi for their contri-
butions to experimental data acquisition and related research, and for helpful discussions. Special
thanks also go to Tomonori Izumitani and Shohei Shimizu for their helpful guidance on the overall
direction of the research and the writing of the paper in addition to the above-mentioned contribu-
tions. Finally, I would like to thank NTT Communications Corporation and its employees for the
excellent research environment and support.

13



FUJIWARA KOYAMA KIRITOSHI OKAWACHI IZUMITANI SHIMIZU

References

Gianluca Bontempi, Mauro Birattari, and Hugues Bersini. Lazy learning for local modelling and
control design. International Journal of Control, 72(7-8):643–658, 1999.

Martin W Braun, Daniel E Rivera, and Anders Stenman. A’model-on-demand’identification
methodology for non-linear process systems. International Journal of Control, 74(18):1708–
1717, 2001.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. Advances in neural information processing systems,
21:689–696, 2008.

Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D Ramsey, Ruben Sanchez-Romero, Clark Glymour,
and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary data. J. Mach.
Learn. Res., 21(89):1–53, 2020.

Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer. Estimation of a structural
vector autoregression model using non-gaussianity. Journal of Machine Learning Research, 11
(5), 2010.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal Inference in Statistics: A Primer.
John Wiley & Sons, 2016.

Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. Journal of Machine Learning Research, 15:2009–2053, 2014.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),
2006.

Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara,
Takashi Washio, Patrik O Hoyer, and Kenneth Bollen. Directlingam: A direct method for learn-
ing a linear non-gaussian structural equation model. The Journal of Machine Learning Research,
12:1225–1248, 2011.

Anders Stenman, Fredrik Gustafsson, and Lennart Ljung. Just in time models for dynamical sys-
tems. In Proceedings of 35th IEEE Conference on Decision and Control, volume 1, pages 1115–
1120. IEEE, 1996.

Kento Uemura, Takuya Takagi, Kambayashi Takayuki, Hiroyuki Yoshida, and Shohei Shimizu. A
multivariate causal discovery based on post-nonlinear model. In Conference on Causal Learning
and Reasoning, pages 826–839. PMLR, 2022.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. Learning sparse non-
parametric dags. In International Conference on Artificial Intelligence and Statistics, pages 3414–
3425. PMLR, 2020.

14



JIT-LINGAM

Appendix A. The Algorithm Conventional Just-In-Time Model for Regression

Algorithm 2 JIT Algorithm for Time-series Regression

Inputs:
stored data D =

{
(x(t), y(t)) | t = 1, . . . , T − 1

}
,

query point xQ = x(T ), distance function d(·, ·), number of neighbors K.
Outputs:

prediction ŷ(T ) (i.e. estimation of output y(T ) = f(x(T )) for input x(T )).

Procedure 1
Extract K-pairs of (x(t), y(t)) from D, in ascending order of d(x(t),xQ), which is the distance
from the query point xQ. The resulting K-pair subset Ω(xQ; d,K) is:

Ω(xQ; d,K) =
{
(x(σ(k)), y(σ(k))) | k = 1, . . . ,K

}
,

where σ(k) is a function that returns the k-th nearest time index t.

Procedure 2
Learn the local linear regression model f̂xQ(·) using Ω(xQ; d,K).

Procedure 3
Get the prediction of ŷ(T ) = f̂xQ(xQ).

Appendix B. Calculation Time

Table 2: The calculation time of each methods in Experiment 2. ”Total” means the time to take
making the all of N -estimations for T = 1, 2, . . . , N . ”One-Shot” means the time to
take making the one-estimation after all the observations are given at end of the time.
Note that the two part’s result is shown about JIT-LiNGAM since in the program code we
use for experiment, we can separately calculate the Neighbor Search part and the Causal
Discovery part.

calculation time [second]
JIT-LiNGAM (Neighbor Search) 658.493
JIT-LiNGAM (Causal Discvory) 300.777
JIT-LiNGAM (Total) 959.270
Cumulative LiNGAM (Total) 1434.036
K-Random LiNGAM (Total) 301.798
RESIT (One-shot) 1175.096
CD-NOD (One-Shot) 0.068
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