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Abstract
Probabilistic Sentential Decision Diagrams
(PSDD) are a type of probabilistic circuit that can
be learned incrementally from data by iteratively
optimizing the log-likelihood of the induced dis-
tribution. As generative models, PSDDs remain
robust against missing features but are often out-
performed by discriminatively trained models in
classification tasks. We consider the recently pub-
lished D-LEARNPSDD learner, which explicitly
encodes the discriminative relation between class
and feature variables to improve classification per-
formance, while still reaping the robustness bene-
fits of generative learning. In this work we further
generalize the original contribution’s theorems to
consider multi-value classification scenarios, and
we discuss the implementation techniques suit-
able for those scenarios.

1. Introduction
Current efforts in the field of Tractable Probabilistic Mod-
eling have been able to successfully balance the trade-offs
between model performance and inference efficiency: prob-
abilistic circuits, such as Probabilistic Sentential Decision
Diagrams (PSDDs), Sum-Product Networks (SPNs), Arith-
metic Circuits (ACs) and Cutset Networks posses myriad
desirable properties (Choi et al., 2020) that make them
amenable to application scenarios where strict resource
budget constraints must be met (Galindez Olascoaga et al.,
2019). But their robustness against missing data—from
learning them generatively—is often at odds with their dis-
criminative capabilities. This conflict is the focus of this
work.

We look in particular at the PSDD (Kisa et al., 2014), a
state-of-the-art tractable representation that encodes a joint
probability distribution over a set of random variables. Pre-
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vious work (Galindez Olascoaga et al., 2019) has shown
how to learn resource-efficient PSDDs that remain robust to
missing features and noise. While the achieved accuracy is
competitive when compared to Bayesian network classifiers,
discriminatively learned models perform consistently better
than purely generative models (Liang & Van den Broeck,
2019) since the latter remain agnostic to the discrimina-
tive task they ought to perform. This begs the question of
whether the discriminative performance of the PSDD could
be improved while remaining robust and tractable.

This work discusses the recently introduced D-
LEARNPSDD (Galindez Olascoaga et al., 2020), a
hybrid discriminative-generative PSDD learning strategy,
that enforces the discriminative relationship between class
and feature variables by means of a logic formula. Our
approach shows to consistently outperform the purely
generative case and is competitive compared to other
classifiers, while remaining robust to missing features. We
generalize this work to show how any multi-value classifica-
tion scenario can benefit from the D-LEARNPSDD when
initialized to the pertinent logical formulas and structural
conditions.

2. Background
Notation. Variables are denoted by upper case letters X
and their instantiations by lower case letters x. Sets of
variables are denoted in bold upper case X and their joint
instantiations in bold lower case x.

Figure 1. A Bayesian network and its equivalent PSDD (taken from
(Liang et al., 2017)).

PSDD. Probabilistic Sentential Decision Diagrams (PS-
DDs) are circuit representations of joint probability distribu-
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tions over binary random variables (Kisa et al., 2014). They
were introduced as probabilistic extensions to Sentential De-
cision Diagrams (SDDs) (Darwiche, 2011), which represent
Boolean functions as logical circuits. The inner nodes of
a PSDD alternate between AND gates with two inputs and
OR gates with arbitrary number of inputs; the root must
be an OR node; and each leaf node encodes a distribution
over a variable X (see Fig. 1.c). The combination of an
OR gate with its AND gate inputs is referred to as decision
node, where the left input of the AND gate is called prime
(p), and the right is called sub (s). Each of the n edges of a
decision node are annotated with a normalized probability
distribution θ1, ..., θn. PSDDs possess two syntactic restric-
tions: 1) Each AND node must be decomposable, meaning
that its input variables must be disjoint. This property is
enforced by a vtree, a binary tree whose leaves are the ran-
dom variables and which determines how will variables be
arranged in primes and subs in the PSDD ( Fig. 1.d): each
internal vtree node is associated with the PSDD nodes at the
same level, variables appearing in the left subtree X are the
primes and the ones appearing in the right subtree Y are the
subs. 2) Each decision node must be deterministic, meaning
that only one of its inputs can be true.

Each PSDD node q represents a probability distribution.
Terminal nodes encode a univariate distributions. Decision
nodes, when normalized for a vtree node with X in its left
subtree and Y in its right subtree, encode the following
distribution over XY (see also Fig. 1.a and 1.c):

Prq(XY) =
∑
i

θiPrpi(X)Prsi(Y) (1)

Thus, each decision node decomposes the distribution into
independent distributions over X and Y. In general, prime
and sub variables are independent at PSDD node q given
the prime base [p] (Kisa et al., 2014):

Prq(XY|[pi]) = Prpi
(X|[pi])Prsi(Y|[pi]) (2)

= Prpi
(X)Prsi(Y)

The base of node q is the support of the node’s distribution,
over which it defines a non-zero probability and it is written
as a logical sentence using the recursion [q] =

∨
i[pi] ∧ [si].

LearnPSDD. The LEARNPSDD algorithm (Liang et al.,
2017) generatively learns a PSDD by maximizing log-
likelihood given available data. The algorithm starts by
learning a vtree that minimizes the mutual information
among all possible sets of variables. This vtree is then
used to guide the PSDD structure learning stage, which
relies on the iterative application of the Split and Clone
operations (Liang et al., 2017). These operations keep the
PSDD syntactically sound while improving likelihood of
the distribution represented by the PSDD.

3. A discriminative bias for PSDD learning
Generative learners such as LEARNPSDD optimize the like-
lihood of the distribution given available data rather than
the conditional likelihood of the class C given a full set
of features F. As a result, their accuracy is comparable or
worse than that of simple models such as naive Bayes (NB),
and Tree Augmented naive Bayes (TAN), which perform
surprisingly well despite their naive structure (Friedman
et al., 1997). One of the main reasons for their performance,
despite being generative, is that (TA)NB models structurally
enforce a discriminative bias that directly encodes the con-
ditional dependence of all the features on the class variable.

This Section introduces the D-LEARNPSDD (Galin-
dez Olascoaga et al., 2020), an extension to LEARNPSDD
based on the insight that the learned model should satisfy the
“class conditional constraint” present in Bayesian network
classifiers. That is, all feature variables must be conditioned
on the class variable. This enforces a structure that is bene-
ficial for classification while still allowing to generatively
learn a PSDD that encodes the distribution over all variables
using state-of-the-art learning strategies (Liang et al., 2017).

3.1. D-LearnPSDD

The classification task can be stated as the following con-
ditional probability query: Pr(C|F) ∼ Pr(F|C) · Pr(C).
Our goal is to learn PSDDs whose joint probability dis-
tributions include the expression Pr(F|C), like Bayesian
network classifiers do (Friedman et al., 1997).

The first step in our strategy is to set the root-node’s prime
and sub variables to be C and F, respectively. The root node
can thus represent the following joint distribution (following
the notation of Equations 1 and 2):

Prroot(CF) =

n∑
i=0

θiPrpi
(C)Prsi(F), (3)

where n is the cardinality of the class variable. We need
to ensure that the term Prsi(F) represents the conditional
relation of interest between F and C. To achieve this we
require the following proposition:
Proposition 1. Given (i) a vtree with variable C as the
prime and variables F as the sub of the root node, and (ii)
an initial PSDD where the root decision node decomposes
the distribution as [root] =

∨
i:0...n([pi] ∧ [si]); applying

the Split and Clone operators will never change the root
decision decomposition [root] =

∨
i:0...n([pi] ∧ [si]).

The proof of this proposition can be found in Appendix A.
Note that for an n-value classification scenario, C is rep-
resented by multiple propositional variables c0, c1, . . . , cn
that correspond to the set C = 0, C = 1, . . . , C = n, of
which exactly one will be true at all times. The root-node’s
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Figure 2. Examples of vtrees and initial PSDDs.

sub for the vtree in Proposition 1 is still the set of variables
F, but the prime is defined over the available propositional
variables associated to the class (see Appendix C for an
example). The base of the root-node is thus defined as:

[root] =
∨

i=0...n

([ci
∧

j:0...n∧i 6=j

¬cj ] ∧ [si]), (4)

which enforces the mutual exclusivity of the values of C.
In the case of a binary classification scenario this can be
simplified to [root] = ([¬c] ∧ [s0]) ∨ ([c] ∧ [s1]).

We can now show that the resulting PSDD includes nodes
that directly represent the distribution Pr(F|C).
Proposition 2. A PSDD of the form∨

i=0...n([ci
∧

j:0...n∧i 6=j ¬cj ] ∧ [si]) with si any for-
mula with propositional feature variables f0, . . . , fn,
directly expresses the distribution Pr(F|C).

Appendix B includes the proof. In addition to defining
a suitable vtree, we must define an initial PSDD that is
consistent with the logic formulas above, as illustrated by
the following examples. These examples consider binary
classification, but the concepts extend to the n-class scenario.

Example 1. Fig. 2.b shows a PSDD that encodes a fully
factorized probability distribution normalized for the vtree
in 2.a. Note that the vtree does not connect the class variable
C to all feature variables (e.g. F1) so D-LEARNPSDD is
not guaranteed to find conditional relations between certain
features and the class when initialized with this PSDD.

Example 2. Fig. 2.e shows a PSDD that explicitly conditions
the feature variables on the class variables by normalizing
for the vtree in 2.c and by following the logical formula
from Proposition 2.

Example 3. When initializing on a PSDD that encodes a
fully factorized formula (Fig. 2.d), the base of the root node
is [root] = [c ∨ ¬c] ∧ [s0]. Eq. 1 evaluates to:

Prq(CF) = Prp0
(C|[c ∨ ¬c]) · Prs0(F|[c ∨ ¬c])

= (Prp1
(C|[c]) + Prp2

(C|[¬c])) · Prs0(F|[c ∨ ¬c])
= (Prp1

(C = 1) + Prp2
(C = 0)) · Prs0(F)

Thus, in this worst case scenario, the PSDD encodes a dis-
tribution that assumes the class to be independent from all
feature variables, which may still lead to high log-likelihood
but will have low classification accuracy.

3.2. Generative bias and vtree learning

Learning the distribution over the feature variables is a gen-
erative learning process and we achieve this by applying the
Split and Clone operators in the same way as the original
LEARNPSDD algorithm. To define the nodes corresponding
to si with distributions Pr(F|C = i) we follow the intuition
behind (TA)NB and start with a PSDD that encodes a dis-
tribution where all feature variables are independent given
the class variable (see Fig. 2.e). Next, the LEARNPSDD
algorithm will incrementally learn the relations between the
feature variables by applying the Split and Clone operations
following the approach in (Liang et al., 2017).

In LEARNPSDD, the decision nodes decompose the dis-
tribution into independent distributions. Thus, the vtree
is learned from data by maximizing the approximate pair-
wise mutual information, as this metric quantifies the level
of independence between two sets of variables. For D-
LEARNPSDD we are interested in the level of conditional
independence between sets of feature variables given the
class variable. We thus obtain the vtree by optimizing for
Conditional Mutual Information instead and replace mutual
information in the approach in (Liang et al., 2017) with:
CMI(X,Y|Z) =

∑
x

∑
y

∑
z Pr(xy) log

Pr(z) Pr(xyz)
Pr(xz) Pr(yz) .

4. Experiments
We compare the performance of D-LEARNPSDD,
LEARNPSDD, two generative Bayesian classifiers (NB and
TANB) and a discriminative classifier (logistic regression):
Section 4.1 examines whether the introduced discriminative
bias improves classification performance on PSDDs. Sec-
tion 4.2 compares the robustness to missing values for all
classification approaches.

We ran our experiments on the suite of standard benchmarks
(Dua & Graff, 2017; Kohavi & John, 1997) listed in Table
1, which also summarizes the number of features |F|, the
number of classes |C| and the available number of training
samples |N|. As pre-processing steps, we applied the dis-
cretization method described in (Fayyad & Irani, 1993), and
we binarized all variables using a one-hot encoding.
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Table 1. Five cross fold accuracy and size in number of parameters
Dataset |F|,|C|,|N| D-LearnPSDD LearnPSDD NB TANB LogReg

Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy

Australian 40, 2, 690 86.2± 3.6 367 84.9± 2.7 386 85.1± 3.1 161 85.8± 3.4 312 84.1± 3.4
Breast 28, 2, 683 97.1± 0.9 291 94.9± 0.5 491 97.7± 1.2 114 97.7± 1.2 219 96.5± 1.6
Chess 39, 2, 3196 97.3± 1.4 2178 94.9± 1.6 2186 87.7± 1.4 158 91.7± 2.2 309 96.9± 0.7
Cleve 25, 2, 303 82.2± 2.5 292 81.9± 3.2 184 84.9± 3.3 102 79.9± 2.2 196 81.5± 2.9
Corral 6, 2, 160 99.4± 1.4 39 98.1± 2.8 58 89.4± 5.2 26 98.8± 1.7 45 86.3± 6.7
Credit 42, 2, 653 85.6± 3.1 693 86.1± 3.6 611 86.8± 4.4 170 86.1± 3.9 326 84.7± 4.9

Diabetes 11, 2, 768 78.7± 2.9 124 77.2± 3.3 144 77.4± 2.56 46 75.8± 3.5 86 78.4± 2.6
German 54, 2, 1000 72.3± 3.2 1185 69.9± 2.3 645 73.5± 2.7 218 74.5± 1.9 429 74.4± 2.3
Glass 17, 6, 214 79.1± 1.9 214 72.4± 6.2 321 70.0± 4.9 203 69.5± 5.2 318 73.0± 5.7
Heart 9, 2, 270 84.1± 4.3 51 78.5± 5.3 75 84.0± 3.8 38 83.0± 5.1 70 84.0± 4.7
Iris 12, 3, 150 90.0± 0.1 76 94.0± 3.7 158 94.7± 1.8 75 94.7± 1.8 131 94.7± 2.9

Mofn 10, 2, 1324 98.9± 0.9 260 97.1± 2.4 260 85.0± 5.7 42 92.8± 2.6 78 100.0± 0
Pima 11, 2, 768 80.2± 0.3 108 74.7± 3.2 110 77.6± 3.0 46 76.3± 2.9 86 77.7± 2.9

Vehicle 57, 2, 846 95.0± 1.7 1186 93.9± 1.69 1560 86.3± 2.00 228 93.0± 0.8 442 94.5± 2.4
Waveform 109, 3, 5000 85.0± 1.0 3441 78.7± 5.6 2585 80.7± 1.9 657 83.1± 1.1 1296 85.5± 0.7
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Figure 3. Robustness to missing features per method.

4.1. Evaluation of D-LEARNPSDD

Table 1 compares the classifiers in terms of accuracy via five
fold cross validation and size in number of parameters. For
LEARNPSDD, we incrementally learned a model on each
fold until convergence on validation-data log-likelihood,
following the methodology in (Liang et al., 2017). For D-
LEARNPSDD, we incrementally learned a model on each
fold until likelihood converged but then selected the incre-
mental model with the highest training set accuracy. For
NB and TANB, we learned a model per fold and compiled
them to ACs , a more general form of PSDDs (Darwiche,
2009). Finally, we compare all probabilistic classifier with a
discriminative one, a multinomial logistic regression model.

Table 1 shows that the proposed D-LEARNPSDD outper-
forms LEARNPSDD in all but two datasets, as the latter
method is not guaranteed to learn significant relations be-
tween feature and class variables. Moreover, it outper-
forms Bayesian network classifiers in most benchmarks,
as the learned PSDDs allow to encode complex relation-
ships among sets of variables or local dependencies such as
context specific independence (Boutilier et al., 1996), while
remaining tractable.

4.2. Robustness to missing features

The generative models in this paper encode a joint proba-
bility distribution over all variables and therefore tend to
be more robust against missing features than discrimina-

tive models, which only learn relations relevant to their
discriminative task. In this experiment, we assessed this
robustness aspect by simulating the random failure of 10%
of the original feature set per benchmark and per fold in
five-fold cross-validation. Fig. 3 shows the average accu-
racy over 10 such feature failure trials in each of the 5 folds
(flat markers) in relation to their full feature set accuracy
reported in Table 1 (shaped markers). As expected, the per-
formance of the discriminative classifier (LogReg) suffers
the most during feature failure, while D-LEARNPSDD and
LEARNPSDD are notably more robust than any other ap-
proach, with accuracy losses of no more than 8%. Note from
the flat markers that the performance of D-LEARNPSDD
under feature failure is the best in all datasets but one.

5. Conclusion
This paper discusses D-LEARNPSDD a hybrid
discriminative-generative learning technique that im-
proves classification performance by enforcing the
conditional relation between the class and the features with
logical constraints. It is proven that any multi-value classifi-
cation scenario can benefit from the learner by constraining
on the pertinent logical formulas and initialization settings.
Meanwhile, robustness against missing features is kept by
exploiting generative learning. Evaluation on a suite of
benchmarks shows that the proposed technique outperforms
purely generative PSDDs in terms of classification accuracy
and the other baseline classifiers in terms of robustness.
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A. Proof of Proposition 1
Proof. The D-LEARNPSDD algorithm iteratively applies
two operations: Split and Clone (following the algorithm in
(Liang et al., 2017)). First, the Clone operation requires a
parent node, which is not available for the root node. The
nodes corresponding to the prime of the root node c0, . . . , cn
can not be cloned either because the structure of the initial
PSDD would not support the necessary copy and rerouting
actions. Second, the Split operator splits AND nodes into
multiple elements by constraining the prime with a partial
assignment to the prime variable. These partial assignments
are mutually exclusive and exhaustive to keep the decision
node deterministic. In our case the logical formula at the
root of the PSDD already encodes mutual exclusivity among
the possible assignments of the Class (prime) variable. The
root decision node is therefore already split into all the
possible worlds available and the Split operator would be
inconsequential. For these reasons, the root’s base remains
intact.

B. Proof of Proposition 2
Proof. Applying this to Equation 1 results in:

Prroot(CF) =
∑
i

θiPrci(C)Prsi(F)

=
∑
i

θiPrci(C|[ci
∧

j:0...n∧j 6=i

¬cj ]) · Prsi(F|[ci
∧

j:0...n∧j 6=i

¬cj ])

=
∑
i

θiPrci(C = i) · Prsi(F|C = i)

The learned PSDD thus contains n nodes si with distribution
Prsi that directly represents Pr(F|C = i). The PSDD thus
encodes Pr(F|C) directly because there are n possible value
assignments of C.

C. Vtree for the n−class scenario

Figure 4. Vtree for an n−value classification problem. a) Variable
C. b) Propositional variables for each value of C.
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