
Efficient and Scalable Diffusion Transformer Policies
with Mixture of Expert Denoisers for Multitask

Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract: Diffusion Policies have become widely used in Goal-Conditioned Imita-1

tion Learning, offering several appealing properties, such as generating multimodal2

and discontinuous behavior. As models are becoming larger to capture more3

complex capabilities, their computational demands increase, as shown by recent4

scaling laws. Therefore, continuing with the current architectures will present5

a computational roadblock. To address this, we propose Mixture-of-Denoising6

Experts (MoDE) as a novel policy for guided behavior generation. MoDE is able7

to achieve competitive performance to current state-of-the-art dense transformer-8

based Diffusion Policies while requiring fewer active parameters, reducing the9

inference cost significantly. To achieve this, MoDE introduces a novel routing strat-10

egy that conditions the expert selection on the current noise level of the diffusion11

denoising process. MoDE achieves competitive or state of the art performance on12

four established imitation learning benchmarks, including CALVIN and LIBERO.13

In addition, we perform thorough ablations on the various components in MoDE.14

1 Introduction15

Diffusion models [1, 2], which learn to reverse a noise-adding process, have gained popularity as16

policies for Imitation Learning (IL) [3, 4, 5] due to their ability to generate diverse behaviors [6]17

and handle complex action spaces. However, their high computational cost, resulting from large18

architectures and multiple denoising steps, limits their use in real-time robotics applications, especially19

those with limited on-board computing resources. To address this challenge, we explore Mixture of20

Experts (MoE) models that can scale model capacity while reducing computational requirements by21

utilizing only a subset of parameters during each forward pass.22

We introduce Mixture-of-Denoising Experts Policy (MoDE), a scalable and efficient Mixture-of-23

Experts (MoE) Diffusion Policy. Our work is inspired by prior results showcasing the multitask24

nature of the denoising process [7], where there is little transfer between the different phases in the25

denoising process. We present a novel noise-conditioned routing mechanism, that distributes tokens26

to our experts based on the current noise level. MoDE leverages noise-conditioned self-attention27

combined with a noise input token for enhanced noise-injection. Our proposed Policy surpasses28

previous Diffusion Policies with higher efficiency and demonstrates improved performance across29

134 diverse tasks in challenging goal-conditioned imitation learning benchmarks: CALVIN [8] and30

LIBERO [9]. Through comprehensive ablation studies, we investigate the impact of various design31

decisions, including token routing strategies, noise-injection techniques, and expert distribution.32

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

Figure 1: Overview of the proposed MoDE architecture. The model uses a transformer with
causal masking from top to bottom. Each transformer block uses noise-conditional self-attention
and is followed by a noise-conditioned router, that distributes tokens to specialized expert models
conditioned on the current noise level. Each expert is a simple MLP with Swish-GLU activation.

2 Method33

2.1 Problem Formulation34

We consider the problem of learning a language-conditioned policy πθ(ā|s̄, g) given a dataset of35

robot demonstrations T . The policy predicts a sequence of future actions ā = (a, . . . ,ai+j−1) of36

length j, conditioned on the history of state embeddings s̄ = (si−h+1, . . . , si) of length h and a37

desired goal g. The dataset contains τ ∈ T trajectories, where trajectory consists of a sequence of38

triplets of state, actions, and goal (s̄i,ai, g). g is a language instruction. Our policy is trained to39

maximize the log-likelihood of the action sequence given the context of state history and goal:40

LIL = E

 ∑
(s̄,ā,g)∈T

log πθ (ā|s̄, g)

 . (1)

2.2 Diffusion Policy41

MoDE uses the continuous-time diffusion model of EDM [10] as a policy representation. Diffusion42

models are a type of generative model for generating data by initially adding noise through Gaussian43

perturbations and then reversing this process. MoDE applies the score-based diffusion model to44

represent the policy πθ(ā|s̄, g). The perturbation and inverse process can be described using a45

stochastic differential equation:46

dā =
(
βtσt − σ̇t

)
σt∇a log pt(ā|s̄, g)dt+

√
2βtσtdωt, (2)

where βt controls the noise injection, dωt refers to infinitesimal Gaussian noise, and pt(ā|s̄, g) is the47

score function of the diffusion process, that moves samples away from regions of high-data density in48

the forward process. To generate new samples from noise a neural network is trained to approximate49

the score function ∇ā log pt(ā|s̄, g) via Score matching (SM) [11]50

LSM = Eσ,ā,ϵ

[
α(σt)∥Dθ(ā+ ϵ, s̄, g, σt)− ā∥22

]
, (3)

where Dθ(ā+ ϵ, s̄, g, σt) is the trainable neural network. During training, we sample noise from a51

training distribution and add it to an action sequence. The network predicts the denoised actions and52

computes the SM loss.53

After training, we can generate a new action sequence starting from random noise by approximating54

the reverse SDE or related ODE in discrete steps using numerical ODE integrators. Therefore, we55

sample noise from the prior aT ∼ N (0, σ2
T I) and iteratively denoise it. MoDE uses the DDIM-solver,56

a numerical ODE-solver designed for diffusion models [12], that allows fast denoising of actions in a57

few steps. MoDE uses 10 denoising steps in all our experiments.58

2

2.3 Mixture-of-Experts Denoising59

We now present the details of MoDE’s noise-conditioned expert routing. An overview of MoDE is60

shown in Figure 1. For language conditioning, MoDE uses a frozen CLIP language encoder model to61

generate a single latent goal vector. To encode images, MoDE uses FiLM-conditioned ResNets-18.62

Let X ∈ Rtokens×D be a sequence of input tokens of dimension D, and σt be the noise level. Let63

ϕ(σt) encode the noise level into a token using a sinusoidal embedding followed by a small MLP,64

and let X also contain ϕ(σt) as a token. MoE MoDE(X, ϕ(σt)) is a composition of L transformer65

blocks which we will now describe in detail. Each transformer block f i takes ϕ(σt) as input as well.66

We now define each block f i as a composition of a self-attention (SA) layer and an MoE layer,67

f i(X, ϕ(σt)) = MoE(SA(X̂) +X, ϕ(σt)) +X. (4)

We add the noise token, ϕ(σt) to all the tokens in X before computing the self-attention as done in68

[13].69

X̂ = ϕ(σt) +X, (5)

and following [14],70

SA(X̂) = softmax(
1√
D
[X̂WQ][X̂WK]T)[X̂WV]. (6)

Given N experts {Ei}Ni=1, we define the sparse MoE layer as71

MoE(X, ϕ(σt)) =

N∑
i=1

R(ϕ(σt))Ei(X), (7)

where, the routing function R(·) : Rtokens×D → Rtokens×N. Our noise-only conditioned routing72

function is defined as73

R(ϕ(σt)) = topk(softmax(ϕ(σt)WR), k) (8)

While topk typically varies across different MoE implementations, we use multinomial sam-74

pling. Where we sample without replacement k elements according to their probabilities given75

by softmax(ϕ(σt)WR). We set all non-chosen elements to 0. Since sampling is a non-differentiable76

process, scaling the expert outputs by the routing probability, Ei(X) is needed to pass gradients to77

the routing function. In addition, we optimally re-normalize the chosen k elements probabilities.78

After the final layer, we use a linear projection layer to get the denoised action sequence. The above79

formulation is general enough to explore routing variants; we tested what the router was conditioned80

on, such as noise only or token only. We report the results in section 3.81

In addition, to mitigate expert collapse, we adopt an additional loss function (LB) that regularizes82

the router called load balancing [15]. Here for a given expert Ei, we compute the fraction of the83

tokens that were routed to it, under topk being an argmax function, and we scale that by the average84

probability of routing to Ei across all tokens in a batch B.85

LB(σt) = N

N∑
n=1

1

|B|
(

|B|∑
i=1

1{R(ϕ(σti))n > 0}) 1

|B|
(

|B|∑
i=1

softmax(ϕ(σti)WR)n) (9)

We use γ = 0.01 for the load-balancing loss.86

3 Evaluation87

Our experiments aim to answer four key questions: (I) How does MoDE compare to other policies88

and prior diffusion transformer architectures in terms of performance?89

We compare MoDE against prior diffusion transformer architecture [5], ensuring fair comparisons90

by using a similar number of active parameters. MoDE uses 8 layers with 4 experts and a latent91

dimension of 1024 in all experiments. Detailed hyperparameters are provided in the Appendix (92

Table 1).93

3

(a) LIBERO-90 Tasks

10 90
0.4

0.6

0.8

1

0.51

0.66

0.73
0.78

0.69

0.89
0.92 0.91

A
v
g
.
S
u
cc
es
s
R
a
te

DP-T DP-CNN QueST MoDE

(b) Results for LIBERO-10 and LIBERO-90

Figure 2: Visualization and Results for LIBERO environment. (a) Few example environments and
tasks of the LIBERO-90 task suite. (b) Average results for both LIBERO challenges averaged over 3
seeds with 20 rollouts for each task.

3.1 Long-Horizon Multi-Task Experiments94

We first evaluate MoDE on the LONG-challenge and LIBERO-90 challenge of the LIBERO bench-95

mark [9]. The LONG challenge requires a model to learn 10 tasks in different settings. It demands96

long-horizon behavior generation with several hundreds of steps for completion. The 90 variant97

tests policies on 90 diverse short-horizon tasks in different environments. Figure 2a visualizes a few98

examples of these tasks. All environments feature two cameras: a static one and a wrist-mounted99

camera, used to encode the current observation using FiLM-ResNets-18. We test each policy 20100

times on each task and report the average results over 3 seeds. We use an action chunking length101

of 10 and a history length of 1. MoDE and all other diffusion architectures use FiLM-conditioned102

ResNets-18 with a CLIP sentence embedding to encode the goal and the images.103

Baselines. We compare MoDE against three state-of-the-art baselines: 1) The Diffusion Transformer104

(DP-T) architecture [5], which conditions on noise and observations using a cross-attention module.105

2) The standard Diffusion Policy CNN-based architecture (DP-CNN). 3) QueST [16], a transformer-106

based policy that learns discrete action representations using vector-quantized embeddings of action107

sequences. We tested all baselines ourselves, except for QueST, whose results are taken directly from108

their paper.109

Results. The performance of all models on the benchmark is summarized in Figure 2b. Overall,110

MoDE achieves the highest average performance in both benchmarks, while the QueST baseline is111

the second best in the LIBERO-90 setting and the CNN-architecture is second best in the long horizon112

setting. These results demonstrate MoDE’s ability to learn long-horizon tasks with high accuracy.113

The performance gap is more pronounced in the challenging LIBERO-10 experiment, where MoDE114

is the first policy to achieve an over 90% success rate. Furthermore, MoDE surpasses prior best115

Diffusion baselines by an average of 16% in both settings, all while maintaining its computational116

advantage. This showcases MoDE’s ability to achieve state-of-the-art performance with a more117

efficient use of computational resources.118

4 Conclusion119

In this work, we introduced Mixture-of-Denoising Experts (MoDE), a novel Diffusion Policy that120

leverages a mixture of experts Transformer to enhance the performance and efficiency of diffusion121

policies. We also proposed a noise-conditioned routing strategy for learning specialized experts122

within our model. In our extensive experiments and ablation studies across diverse benchmarks, we123

demonstrated the advantages of MoDE to outperform prior Diffusion Policies with a lower number124

of parameters and 40% less FLOPS during inference. In future work, we want to experiment with125

more routing strategies, such as expert-choice routing [17].126

4

References127

[1] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural128

Information Processing Systems, 33:6840–6851, 2020.129

[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based130

generative modeling through stochastic differential equations. In International Conference on131

Learning Representations, 2020.132

[3] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,133

C. Xu, J. Luo, T. Kreiman, Y. Tan, D. Sadigh, C. Finn, and S. Levine. Octo: An open-source134

generalist robot policy. https://octo-models.github.io, 2023.135

[4] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal conditioned imitation learning using score-based136

diffusion policies. In Proceedings of Robotics: Science and Systems (RSS), 2023.137

[5] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:138

Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and139

Systems (RSS), 2023.140

[6] X. Jia, D. Blessing, X. Jiang, M. Reuss, A. Donat, R. Lioutikov, and G. Neumann. To-141

wards diverse behaviors: A benchmark for imitation learning with human demonstrations.142

In The Twelfth International Conference on Learning Representations, 2024. URL https:143

//openreview.net/forum?id=6pPYRXKPpw.144

[7] T. Hang, S. Gu, C. Li, J. Bao, D. Chen, H. Hu, X. Geng, and B. Guo. Efficient diffusion training145

via min-snr weighting strategy, 2024.146

[8] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-147

conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and148

Automation Letters, 2022.149

[9] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge150

transfer for lifelong robot learning. arXiv preprint arXiv:2306.03310, 2023.151

[10] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based152

generative models. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in153

Neural Information Processing Systems, 2022.154

[11] P. Vincent. A connection between score matching and denoising autoencoders. Neural Compu-155

tation, 23(7):1661–1674, 2011. doi:10.1162/NECO_a_00142.156

[12] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In ICLR, 2021.157

[13] A. Hatamizadeh, J. Song, G. Liu, J. Kautz, and A. Vahdat. Diffit: Diffusion vision transformers158

for image generation. arXiv preprint arXiv:2312.02139, 2023.159

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and160

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,161

30, 2017.162

[15] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models163

with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.164

[16] A. Mete, H. Xue, A. Wilcox, Y. Chen, and A. Garg. Quest: Self-supervised skill abstractions165

for learning continuous control. arXiv preprint arXiv:2407.15840, 2024.166

[17] Y. Zhou, T. Lei, H. Liu, N. Du, Y. Huang, V. Zhao, A. Dai, Z. Chen, Q. Le, and J. Laudon.167

Mixture-of-experts with expert choice routing, 2022.168

5

https://octo-models.github.io
https://openreview.net/forum?id=6pPYRXKPpw
https://openreview.net/forum?id=6pPYRXKPpw
https://openreview.net/forum?id=6pPYRXKPpw
http://dx.doi.org/10.1162/NECO_a_00142

[18] X. Li, M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing, W. Zhang, H. Liu, et al.169

Vision-language foundation models as effective robot imitators. In International Conference on170

Learning Representations, 2024.171

[19] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,172

M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in173

Neural Information Processing Systems, 35:23716–23736, 2022.174

[20] T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing175

instructions. In CVPR, 2023.176

[21] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-177

shot robotic manipulation with pretrained image-editing diffusion models. arXiv preprint178

arXiv:2310.10639, 2023.179

[22] H. Wu, Y. Jing, C. Cheang, G. Chen, J. Xu, X. Li, M. Liu, H. Li, and T. Kong. Unleashing large-180

scale video generative pre-training for visual robot manipulation. In International Conference181

on Learning Representations, 2024.182

[23] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation183

learning over unstructured data. IEEE Robotics and Automation Letters (RA-L), 7(4):11205–184

11212, 2022.185

[24] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a186

general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,187

volume 32, 2018.188

[25] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the189

IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.190

[26] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning191

latent plans from play, 2019.192

[27] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k193

modes with one stone. In Thirty-Sixth Conference on Neural Information Processing Systems,194

2022. URL https://openreview.net/forum?id=agTr-vRQsa.195

[28] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional behavior196

generation from uncurated robot data. In International Conference on Learning Representations,197

2023. URL https://openreview.net/forum?id=c7rM7F7jQjN.198

[29] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation199

with latent actions. arXiv preprint arXiv:2403.03181, 2024.200

[30] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.201

Advances in Neural Information Processing Systems, 32, 2019.202

[31] Z. Xian, N. Gkanatsios, T. Gervet, T.-W. Ke, and K. Fragkiadaki. Chaineddiffuser: Unifying203

trajectory diffusion and keypose prediction for robotic manipulation. In 7th Annual Conference204

on Robot Learning, 2023. URL https://openreview.net/forum?id=W0zgY2mBTA8.205

[32] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene206

representations. arXiv preprint arXiv:2402.10885, 2024.207

[33] X. Li, V. Belagali, J. Shang, and M. S. Ryoo. Crossway diffusion: Improving diffusion-based208

visuomotor policy via self-supervised learning. arXiv preprint arXiv:2307.01849, 2023.209

[34] P. M. Scheikl, N. Schreiber, C. Haas, N. Freymuth, G. Neumann, R. Lioutikov, and F. Mathis-210

Ullrich. Movement primitive diffusion: Learning gentle robotic manipulation of deformable211

objects. arXiv preprint arXiv:2312.10008, 2023.212

6

https://openreview.net/forum?id=agTr-vRQsa
https://openreview.net/forum?id=c7rM7F7jQjN
https://openreview.net/forum?id=W0zgY2mBTA8

[35] M. Reuss, Ö. E. Yağmurlu, F. Wenzel, and R. Lioutikov. Multimodal diffusion transformer:213

Learning versatile behavior from multimodal goals. In Robotics: Science and Systems, 2024.214

[36] A. Ajay, Y. Du, A. Gupta, J. B. Tenenbaum, T. S. Jaakkola, and P. Agrawal. Is conditional215

generative modeling all you need for decision making? In International Conference on Learning216

Representations, 2023. URL https://openreview.net/forum?id=sP1fo2K9DFG.217

[37] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior218

synthesis. In International Conference on Machine Learning, pages 9902–9915. PMLR, 2022.219

[38] J. Pari, N. Shafiullah, S. Arunachalam, and L. Pinto. The Surprising Effectiveness of Represen-220

tation Learning for Visual Imitation. In Proceedings of Robotics: Science and Systems, New221

York City, NY, USA, June 2022. doi:10.15607/RSS.2022.XVIII.010.222

[39] T.-H. Wang, J. Zheng, P. Ma, Y. Du, B. Kim, A. E. Spielberg, J. B. Tenenbaum, C. Gan,223

and D. Rus. Diffusebot: Breeding soft robots with physics-augmented generative diffusion224

models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL225

https://openreview.net/forum?id=1zo4iioUEs.226

[40] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.227

Learning universal policies via text-guided video generation. arXiv preprint arXiv:2302.00111,228

2023.229

[41] P.-C. Ko, J. Mao, Y. Du, S.-H. Sun, and J. B. Tenenbaum. Learning to Act from Actionless230

Video through Dense Correspondences. arXiv:2310.08576, 2023.231

[42] A. Ajay, S. Han, Y. Du, S. Li, A. Gupta, T. Jaakkola, J. Tenenbaum, L. Kaelbling, A. Srivastava,232

and P. Agrawal. Compositional foundation models for hierarchical planning. arXiv preprint233

arXiv:2309.08587, 2023.234

[43] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters. Motion planning diffusion: Learning and235

planning of robot motions with diffusion models. In 2023 IEEE/RSJ International Conference236

on Intelligent Robots and Systems (IROS), pages 1916–1923. IEEE, 2023.237

[44] J. Urain, N. Funk, J. Peters, and G. Chalvatzaki. Se (3)-diffusionfields: Learning smooth cost238

functions for joint grasp and motion optimization through diffusion. In 2023 IEEE International239

Conference on Robotics and Automation (ICRA), pages 5923–5930. IEEE, 2023.240

[45] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously241

large neural networks: The sparsely-gated mixture-of-experts layer, 2017.242

[46] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. l.243

Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088,244

2024.245

[47] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu,246

O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou, T. Wang, Y. E. Wang, K. Webster, M. Pellat,247

K. Robinson, K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and248

C. Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.249

[48] Z. Chi, L. Dong, S. Huang, D. Dai, S. Ma, B. Patra, S. Singhal, P. Bajaj, X. Song, X.-L. Mao,250

H. Huang, and F. Wei. On the representation collapse of sparse mixture of experts. In A. H.251

Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing252

Systems, 2022. URL https://openreview.net/forum?id=mWaYC6CZf5.253

[49] H. Hazimeh, Z. Zhao, A. Chowdhery, M. Sathiamoorthy, Y. Chen, R. Mazumder, L. Hong, and254

E. H. Chi. Dselect-k: Differentiable selection in the mixture of experts with applications to multi-255

task learning. CoRR, abs/2106.03760, 2021. URL https://arxiv.org/abs/2106.03760.256

7

https://openreview.net/forum?id=sP1fo2K9DFG
http://dx.doi.org/10.15607/RSS.2022.XVIII.010
https://openreview.net/forum?id=1zo4iioUEs
https://openreview.net/forum?id=mWaYC6CZf5
https://arxiv.org/abs/2106.03760

[50] S. Roller, S. Sukhbaatar, A. Szlam, and J. Weston. Hash layers for large sparse models. CoRR,257

abs/2106.04426, 2021. URL https://arxiv.org/abs/2106.04426.258

[51] M. Lewis, S. Bhosale, T. Dettmers, N. Goyal, and L. Zettlemoyer. Base layers: Simplifying259

training of large, sparse models, 2021.260

[52] J. Obando-Ceron, G. Sokar, T. Willi, C. Lyle, J. Farebrother, J. Foerster, G. K. Dziugaite,261

D. Precup, and P. S. Castro. Mixtures of experts unlock parameter scaling for deep rl. arXiv262

preprint arXiv:2402.08609, 2024.263

[53] O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann. Specializing versatile skill libraries264

using local mixture of experts. In A. Faust, D. Hsu, and G. Neumann, editors, Proceedings265

of the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning266

Research, pages 1423–1433. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.267

press/v164/celik22a.html.268

[54] O. Celik, A. Taranovic, and G. Neumann. Acquiring diverse skills using curriculum reinforce-269

ment learning with mixture of experts. arXiv preprint arXiv:2403.06966, 2024.270

[55] K. Hansel, J. Urain, J. Peters, and G. Chalvatzaki. Hierarchical policy blending as inference for271

reactive robot control. In 2023 IEEE International Conference on Robotics and Automation272

(ICRA), pages 10181–10188. IEEE, 2023.273

[56] A. T. Le, K. Hansel, J. Peters, and G. Chalvatzaki. Hierarchical policy blending as optimal274

transport. In Learning for Dynamics and Control Conference, pages 797–812. PMLR, 2023.275

[57] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton, A. S. Pinto, D. Keysers, and276

N. Houlsby. Scaling vision with sparse mixture of experts, 2021.277

[58] O. Mees, A. Eitel, and W. Burgard. Choosing smartly: Adaptive multimodal fusion for object278

detection in changing environments. In 2016 IEEE/RSJ International Conference on Intelligent279

Robots and Systems (IROS), pages 151–156. IEEE, 2016.280

[59] D. Blessing, O. Celik, X. Jia, M. Reuss, M. X. Li, R. Lioutikov, and G. Neumann. Infor-281

mation maximizing curriculum: A curriculum-based approach for learning versatile skills.282

In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL283

https://openreview.net/forum?id=7eW6NzSE4g.284

[60] M. X. Li, O. Celik, P. Becker, D. Blessing, R. Lioutikov, and G. Neumann. Curriculum-based285

imitation of versatile skills. In 2023 IEEE International Conference on Robotics and Automation286

(ICRA), pages 2951–2957, 2023. doi:10.1109/ICRA48891.2023.10160543.287

[61] B. Park, S. Woo, H. Go, J.-Y. Kim, and C. Kim. Denoising task routing for diffusion models.288

arXiv preprint arXiv:2310.07138, 2023.289

[62] H. Go, Y. Lee, J.-Y. Kim, S. Lee, M. Jeong, H. S. Lee, and S. Choi. Towards practical plug-and-290

play diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and291

pattern recognition, pages 1962–1971, 2023.292

[63] B. Park, H. Go, J.-Y. Kim, S. Woo, S. Ham, and C. Kim. Switch diffusion transformer:293

Synergizing denoising tasks with sparse mixture-of-experts. arXiv preprint arXiv:2403.09176,294

2024.295

[64] Y. Lee, J. Kim, H. Go, M. Jeong, S. Oh, and S. Choi. Multi-architecture multi-expert diffusion296

models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages297

13427–13436, 2024.298

[65] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:299

Generalization and efficiency in robot manipulation via semantic augmentations and action300

chunking, 2023.301

8

https://arxiv.org/abs/2106.04426
https://proceedings.mlr.press/v164/celik22a.html
https://proceedings.mlr.press/v164/celik22a.html
https://proceedings.mlr.press/v164/celik22a.html
https://openreview.net/forum?id=7eW6NzSE4g
http://dx.doi.org/10.1109/ICRA48891.2023.10160543

[66] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation302

with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.303

[67] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,304

E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv305

preprint arXiv:2302.13971, 2023.306

[68] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-307

man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Julian,308

D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,309

I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,310

M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,311

V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1:312

Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817, 2022.313

[69] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid,314

Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. Sanketi,315

G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski, Y. Lu,316

S. Levine, L. Lee, T.-W. E. Lee, I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J. Joshi,317

A. Irpan, brian ichter, J. Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Florence,318

C. Finn, K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar, J. Carbajal,319

N. Brown, A. Brohan, M. G. Arenas, and K. Han. RT-2: Vision-language-action models transfer320

web knowledge to robotic control. In 7th Annual Conference on Robot Learning, 2023. URL321

https://openreview.net/forum?id=XMQgwiJ7KSX.322

[70] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,323

A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to324

robotic control. arXiv preprint arXiv:2307.15818, 2023.325

[71] J. Gu, S. Kirmani, P. Wohlhart, Y. Lu, M. G. Arenas, K. Rao, W. Yu, C. Fu, K. Gopalakrishnan,326

Z. Xu, P. Sundaresan, P. Xu, H. Su, K. Hausman, C. Finn, Q. Vuong, and T. Xiao. Rt-trajectory:327

Robotic task generalization via hindsight trajectory sketches. In International Conference on328

Learning Representations, 2024.329

[72] O. X.-E. Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan,330

A. Khazatsky, A. Rai, A. Singh, A. Brohan, A. Raffin, A. Wahid, B. Burgess-Limerick, B. Kim,331

B. Schölkopf, B. Ichter, C. Lu, C. Xu, C. Finn, C. Xu, C. Chi, C. Huang, C. Chan, C. Pan, C. Fu,332

C. Devin, D. Driess, D. Pathak, D. Shah, D. Büchler, D. Kalashnikov, D. Sadigh, E. Johns,333

F. Ceola, F. Xia, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Schiavi, H. Su,334

H.-S. Fang, H. Shi, H. B. Amor, H. I. Christensen, H. Furuta, H. Walke, H. Fang, I. Mordatch,335

I. Radosavovic, I. Leal, J. Liang, J. Kim, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu,336

J. Wu, J. Luo, J. Gu, J. Tan, J. Oh, J. Malik, J. Tompson, J. Yang, J. J. Lim, J. Silvério, J. Han,337

K. Rao, K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund,338

K. Kawaharazuka, K. Zhang, K. Majd, K. Rana, K. Srinivasan, L. Y. Chen, L. Pinto, L. Tan,339

L. Ott, L. Lee, M. Tomizuka, M. Du, M. Ahn, M. Zhang, M. Ding, M. K. Srirama, M. Sharma,340

M. J. Kim, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf, N. D. Palo,341

N. M. M. Shafiullah, O. Mees, O. Kroemer, P. R. Sanketi, P. Wohlhart, P. Xu, P. Sermanet,342

P. Sundaresan, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Martín-Martín, R. Mendonca,343

R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Moore, S. Bahl, S. Dass,344

S. Song, S. Xu, S. Haldar, S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian,345

S. Dasari, S. Belkhale, T. Osa, T. Harada, T. Matsushima, T. Xiao, T. Yu, T. Ding, T. Davchev,346

T. Z. Zhao, T. Armstrong, T. Darrell, V. Jain, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard,347

X. Chen, X. Wang, X. Zhu, X. Li, Y. Lu, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Xu, Y. Wang,348

Y. Bisk, Y. Cho, Y. Lee, Y. Cui, Y. hua Wu, Y. Tang, Y. Zhu, Y. Li, Y. Iwasawa, Y. Matsuo,349

Z. Xu, and Z. J. Cui. Open X-Embodiment: Robotic learning datasets and RT-X models.350

https://arxiv.org/abs/2310.08864, 2023.351

9

https://openreview.net/forum?id=XMQgwiJ7KSX
https://arxiv.org/abs/2310.08864

A Appendix / supplemental material352

Hyperparameter CALVIN ABCD CALVIN ABC LIBERO-10 LIBERO-90
Number of Transformer Layers 8 8 8 8
Number Experts 4 4 4 4
Attention Heads 8 8 8 8
Action Chunk Size 10 10 10 10
History Length 1 1 1 1
Embedding Dimension 1024 1024 1024 1024
Image Encoder FiLM-ResNet18 FiLM-ResNet18 FiLM-ResNet18 FiLM-ResNet18
Goal Lang Encoder CLIP ViT-B/32 CLIP ViT-B/32 CLIP ViT-B/32 CLIP ViT-B/32
Attention Dropout 0.3 0.3 0.3 0.3
Residual Dropout 0.1 0.1 0.1 0.1
MLP Dropout 0.1 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW AdamW
Betas [0.9, 0.9] [0.9, 0.9] [0.9, 0.9] [0.9, 0.9]
Learning Rate 1e-4 1e-4 1e-4 1e-4
Transformer Weight Decay 0.05 0.05 0.05 0.05
Other weight decay 0.05 0.05 0.05 0.05
Batch Size 512 512 512 512
Train Steps in Thousands 30 25 15 40
σmax 80 80 80 80
σmin 0.001 0.001 0.001 0.001
σt 0.5 0.5 0.5 0.5
EMA True True True True
Time steps Exponential Exponential Exponential Exponential
Sampler DDIM DDIM DDIM DDIM
Parameter Count (Millions) 460 460 460 460

Table 1: Summary of all the Hyperparameters for the MoDE policy used in our experiments.

A.1 Experiments Details353

A.1.1 CALVIN Benchmark354

The CALVIN benchmark [8] is an established IL benchmark for learning language-conditioned355

behavior from human play data. In contrast to other benchmarks the data does not contain structured356

demonstrations, where the robot completes one task, but instead, the dataset was collected by humans,357

that randomly interact with the environment. From these long-horizon trajectories across the 4358

different settings, the authors randomly cut out short sequences with 64 frames and labeled them359

with the task label. While the dataset offers models to train on the unlabeled part too, we restricted360

MoDE to only train on the labeled parts. The Franke Emika Panda robot is controlled using a361

Delta-End-Effector Space with a discrete gripper. We use two cameras to encode the current scene: a362

static camera and a wrist one and predict the next 10 actions, before receiving the next observations363

and generating another set of 10 actions.364

CALVIN ABC. We train MoDE and our dense transformer baseline for 25k training steps with a365

batch size of 512 on a 4 GPU Cluster Node with 4 A6000 NVIDIA GPUs for 6.5 hours with all366

1000 rollouts at the end of training. We report the mean results averaged over 3 seeds as done in367

all relevant prior work. All baselines are reported from the original paper given the standardized368

evaluation protocol of CALVIN [8].369

CALVIN ABCD. We train MoDE and our dense transformer baseline for 30k training steps with370

a batch size of 512 on a 4 GPU Cluster Node with 4 A6000 NVIDIA GPUs for 7.5 hours with all371

1000 rollouts at the end of training. We report the mean results averaged over 3 seeds as done in all372

relevant prior work.373

A.1.2 LIBERO Benchmark374

LIBERO-10. The LIBERO-10 benchmark consists of 50 demonstrations for 10 different tasks375

that are all labeled with a text instruction. The Franka Emika Panda robot is controlled using an376

end-effector controller. Similar to CALVIN all models have access to two camera inputs: a static one377

and a wrist camera. We train MoDE and our dense transformer baseline for 50 epochs with a batch378

size of 512 on a 4 GPU Cluster Node with 4 A6000 NVIDIA GPUs for 2 hours with all 200 rollouts379

10

Model Block Push Relay Kitchen CAL ABC CAL ABCD L-10 Average

Dense T 0.96±0.02 3.73±0.12 2.83±0.19 4.13±0.11 0.91±0.02 0.839±0.144
Token-Router 0.97±0.01 3.85±0.03 2.67±0.04 4.29±0.08 0.90±0.01 0.845±0.161
σt-Router 0.97±0.01 3.79±0.04 2.79±0.16 4.30±0.02 0.92±0.02 0.851±0.151

Table 2: Overview of the performance of all different token routing strategies used for MoDE across
5 benchmarks. We mark the best result for each environment in bold and the second best in cursive.
We use CAL to represent CALVIN. To average the results, we normalize all scores and compute the
average over all environments.

at the end of training. The benchmark does require to test models on 10 different long-horizon tasks.380

We test each task 20 times for each model and report the final average performance overall 10 tasks.381

LIBERO-90. The LIBERO-10 benchmark consists of 50 demonstrations for 90 different tasks382

that are all labeled with a text instruction. The Franka Emika Panda robot is controlled using an383

end-effector controller. We train MoDE and our dense transformer baseline for 50k steps with a384

batch size of 512 on a 4 GPU Cluster Node with 4 A6000 NVIDIA GPUs for 12 hours with all 1800385

rollouts at the end of training. The benchmark does require to test models on 90 different tasks in386

many different environments. We test each task 20 times for each model and report the final average387

performance overall 90 tasks.388

A.2 Baselines389

Below we explain several baselines used in the experiments in detail:390

Diffusion Policy-CNN/T Inspired by [5], we evaluate extension of the DDPM based Diffusion Policy391

framework for goal-conditioned Multi-task learning. We evaluate two versions: the CNN-based392

variant and the Diffusion-Transformer variant, that is conditioned on context and noise using cross-393

attention. For our experiments we also use EDM-based Diffusion framework for fair comparison394

against MoDE. We optimized the ideal number of layers and latent dimension for the Transformer395

baseline and our final version uses 8 layers with a latent dimension of 1024. Larger or smaller variants396

resulted in lower average performance.397

RoboFlamingo. RoboFlamingo [18] is a Vision-Language-Models (VLM) finetuned for behavior398

generation. The authors use a 3 billion parameter Flamingo model [19] and fine-tune it on CALVIN399

by freezing the forward blocks and only fine-tuning a new Perceiver Resampler module to extract400

features from a frozen vision-transformer image encoder and the cross-attention layers to process401

the image features. Finally, a new action head is learned to generate actions. Overall, the finetuning402

requires training approx. 1 billion of the parameters. We report the reported results from the paper403

since they use the standard CALVIN evaluation suite.404

SuSIE. This model first finetunes Instruct2Pix, an image-generation diffusion model, that generates405

images conditioned on another image and a text description [20] on the local CALVIN robotics406

domain and uses it as a high-level goal generator. The low-level policy is a Convolutional neural407

network (CNN)-based Diffusion Policy, that predicts the next 4 actions given the current state408

embedding and desired sub-goal from the high-level policy [21].409

GR-1 A causal GPT-Transformer model [22], that has been pretrained on large-scale generative410

video prediction of human videos. Later, the model is finetuned using co-training of action prediction411

and video prediction on CALVIN. We report the results directly from their paper for the CALVIN412

benchmark.413

A.3 Scaling Multi-Task Experiments414

Next, we evaluate MoDE efficacy on the demanding CALVIN Language-Skills Benchmark [8],415

an established image-based benchmark for IL. This benchmark contains a large dataset of human-416

recorded demonstrations. First, MoDE is tested on the ABCD→D challenge, which involves 22, 966417

11

(a) Environments

“go push the red
block left”

“pull the handle to
open the drawer”

“lift the pink block
from the sliding

cabinet”

“store the grasped
block in the

drawer”

“grasp and lift the
red block”

(b) Example CALVIN-Rollout

Figure 3: Overview of the CALVIN environment. (a) CALVIN contains four different settings
(A,B,C,D) with different configurations of slides, drawers and textures. (b) Example rollout consisting
of 5 tasks in sequence. The next goal is only given to the policy, if it manages to complete the prior.

Train→Test Method Active Params PrT No. Instructions in a Row (1000 chains)

in Million 1 2 3 4 5 Avg. Len.

ABCD→D

Diff-P-CNN 321 × 86.3% 72.7% 60.1% 51.2% 41.7% 3.16±0.06
Diff-P-T 194 × 78.3% 53.9% 33.8% 20.4% 11.3% 1.98±0.09
RoboFlamingo 1000 ✓ 96.4% 89.6% 82.4% 74.0% 66.0% 4.09±0.00
GR-1 130 ✓ 94.9% 89.6% 84.4% 78.9% 73.1% 4.21±0.00
MoDE 277 × 96.6% 90.6% 86.6% 80.9% 75.5% 4.30±0.02

ABC→D

Diff-P-CNN 321 × 63.5% 35.3% 19.4% 10.7% 6.4% 1.35±0.05
Diff-P-T 194 × 62.2% 30.9% 13.2% 5.0% 1.6% 1.13±0.02
RoboFlamingo 1000 ✓ 82.4% 61.9% 46.6% 33.1% 23.5% 2.47±0.00
SuSIE 860+ ✓ 87.0% 69.0% 49.0% 38.0% 26.0% 2.69±0.00
GR-1 130 ✓ 85.4% 71.2% 59.6% 49.7% 40.1% 3.06±0.00
MoDE 277 × 87.7% 69.8% 52.11% 40.2% 29.1% 2.79±0.18

Table 3: Performance comparison on the two CALVIN challenges. The table reports average success
rates for individual tasks within instruction chains and the average rollout length (Avg. Len.) to
complete 5 consecutive instructions, based on 1000 chains. Zero standard deviation indicates methods
without reported average performance. ’Prt’ denotes models requiring policy pretraining. Parameter
counts exclude language encoders.

interaction sequences across four environments (A, B, C, D), with each consisting of 64 timesteps418

and 34 diverse tasks. These tasks require the acquisition of complex, sequential behaviors and the419

ability to chain together different skills. Figure 3a depicts the diverse configurations of interactive420

elements within these environments. This particular challenge examines the scaling abilities of421

policies trained on a rich variety of data and skills across multiple settings. All policies are tested on422

1000 instructions chains consisting of 5 tasks in sequence in environment D following the official423

protocol of CALVIN [8]. One example rollout with 5 different tasks is visualized in Figure 3b. In424

terms of scoring, the model receives 1 point for completing a task and only progresses to the next425

task upon completion of the prior one. We report the average sequence length over 3 seeds with 1000426

instruction chains each.427

Baselines. We test MODE against several methods specialized for learning language-conditioned428

behavior and against other baseline diffusion policy architectures. We also compare MoDE against429

RoboFlamingo and GR-1. RoboFlamingo is a fine-tuned Vision-Language-Action model, that430

contains around 3 billion parameters and has been pre-trained on diverse internet data. GR-1 is a431

generative decoder-only Transformer pretrained on large-scale video generation and then co-finetuned432

on CALVIN [22]. If available, we report the average performance of all prior work directly from their433

paper, given the standard evaluation protocol in CALVIN [23].434

Results. Our findings, outlined in Table 3 reveal that MoDE outperforms all other policies in terms435

of average success rate. Moreover, MoDE outperforms well-established baselines like RoboFlamingo436

and GR-1, which depend on extensive internet-scale pretraining for their results. Notably, while GR-1437

uses fewer active parameters (130M compared to MoDE’s 277M), it operates with a history length438

of 10 and 14 tokens for each timestep. Despite this, MoDE proves more computationally efficient,439

requiring fewer FLOPs during inference (7.03 vs 7.93 GFLOPs for GR-1). The combination of sota440

12

performance, lower computational demands, and no need for resource-intensive pretraining positions441

MoDE as a highly practical solution for multitask settings.442

A.4 Zero-shot Generalization Experiments443

Finally, we then extend our investigation to the ABC→D challenge in the second phase, testing444

MoDE’s zero-shot generalization abilities. In this experiment, models are only trained on data from445

the first three CALVIN environments A,B,C and tested on the unseen setting of environment D, which446

has different positions of relevant objects and texture of the table. This requires policies, that are able447

to generalize their learned behavior to new environment configurations and different textures, which448

is especially challenging.449

Baselines. For this experiment, we compare MODE against the previous CALVIN baselines, with450

the addition of SuSIE [21]. A hierarchical policy utilizing a finetuned image-generation model,451

Instruct2Pix [20], to generate goal images, which guide a low-level diffusion policy. The high-level452

goal generation model requires large-scale pretraining. SuSIE’s results are based on 100 rollouts only,453

without standard deviation, due to the computational cost of generating subgoal images.454

Results. The results of this experiment are summarized in the lower part of Table 3. MoDE455

outperforms all tested baselines except for GR-1 and surpasses all other Diffusion Policy architectures456

by a wide margin. While GR-1 is slightly better, it requires expensive large-scale pre-training with457

32 GPUS and 7 days of total training time to achieve these results. In contrast, MoDE trains on458

4 GPUs in 8 hours and achieves similar performance without additional pretraining requirements.459

Therefore, in response to Question (I), we affirmatively conclude that Mixture-of-Experts models not460

only enhance scaling performance but also demonstrate strong zero-shot generalization capabilities.461

A.5 Computational Efficiency of MoDE462

MoDE Dense
0

4

8

12

16

20

7.03

15.03

A
v
g
.
G
F
lo
p
s

MoDE Dense
200

400

600

334

551

In
f.

S
p
ee
d
(m

s)

(a) Computational efficiency comparison between
MoDE and Dense-Transformer model with the same
number of parameters. Left: FLOP count for both
model variants. Right: Average inference speed
over 10 forward passes. MoDE demonstrates supe-
rior efficiency with lower FLOP count and faster
inference.

2 4 6 8
2

2.5

3

N-Experts

P
er
fo
rm

an
ce

CALVIN ABC

2 4 6 8
3.5

4

4.5

N-Experts

CALVIN ABCD

MoDE Dense-large Dense-small

(b) Scaling performance of MoDE and Dense-
MoDE on CALVIN ABC and ABCD environments,
showing average performance for 2 to 8 experts us-
ing best-performing variants for each environment.

We compute the average time for MoDE and a dense transformer baseline with a similar number of463

parameters for 10 forward passes to assess the computational efficiency of both. The results of this464

ablation are summarized in Figure 4a. MoDE is around 40% faster than the dense transformer model465

with lower FLOPS and fewer parameters than the dense model. Given the prior experimental results,466

MoDE does increase over dense models in terms of performance, efficiency and inference speed.467

A.6 Ablation Studies468

To thoroughly evaluate MoDE’s performance and design choices, we conducted a series of ablation469

studies. These experiments address our research questions: the computational efficiency of MoDE470

(Question II), the impact of different routing strategies (Question III), and the distribution of tokens471

to experts (Question IV).472

13

A.6.1 What design decisions affect MoDE’s performance?473

Avg. Success.

MoDE 0.92
- Input Noise Token 0.90

- Noise-cond Attention 0.85
FiLM Noise Conditioning 0.81

TopK=1 0.91
Shared Expert 0.90
γ = 0.1 0.90

γ = 0.001 0.86

256 Embed Dim 0.86
512 Embed Dim 0.87

Table 4: Ablation Studies for
MoDE on LIBERO-10. All results
are averaged over 3 seeds with 20
rollouts each.

First, we assess the impact of various design decisions474

on MoDE’s performance. We ablate the choice of noise-475

conditioning and various MoE strategies on the LIBERO-10476

benchmark. The results are summarized in Table 4.477

Noise-Injection Ablations. Our experiments reveal the im-478

portance of proper noise conditioning in MoDE. The full479

MoDE model, which uses both input noise tokens and noise-480

conditioned self-attention, achieves the best performance with481

an average success rate of 0.92. Removing the input noise token482

slightly decreases performance to 0.90, highlighting the com-483

plementary nature of both conditioning methods. Using only484

the noise token for conditioning, without noise-conditioned self-485

attention, further reduces performance to 0.85. Interestingly,486

using FiLM noise conditioning [24], a common approach in487

image-diffusion models [25], yields the lowest performance in488

this group at 0.81. These results underscore the effectiveness of our proposed noise conditioning489

strategy in MoDE, demonstrating a clear performance advantage of 0.08 over the FiLM approach.490

MoE Ablations. Next, we ablate several design decisions regarding Mixture-of-Experts. First, we test491

the topk number of used experts. Setting topk to 1 only marginally lowers the average performance492

from 0.92 to 0.91. MoDE maintains robust performance even with a single expert. We also examine493

the effect of using a shared expert, where the model consistently employs the same expert in all494

cases. This approach achieves a comparable average success rate of 0.90. Different choices for the495

token-distribution loss are also tested. While MoDE uses γ = 0.01 as a default value, we experiment496

with γ values of 0.1 and 0.001, which result in average success rates of 0.90 and 0.86, respectively.497

These results indicate that a γ value of 0.01 strikes the best performance.498

Latent Dimension. We investigate the impact of varying the latent dimension in MoDE, testing499

dimensions of 256, 512, and 1024 (our default). The results show that increasing the latent dimension500

from 256 to 512 yields a modest performance improvement from 0.86 to 0.87, while further increasing501

to 1024 provides a more substantial boost to 0.92. This suggests that a larger latent dimension allows502

MoDE to capture more complex representations, leading to improved performance.503

A.7 Detailed Experimental Results504

We summarize the ablations regarding the choice of routing in Table 2. Therefore, we test two 2505

different routing strategies across 5 benchmarks.506

A.8 Additional Ablation Studies507

A.8.1 Optimal Routing Strategy for Diffusion Transformers508

Next, we answer Question (II) by testing different routing strategies for our diffusion-transformer509

policy across several environments. We test two different token routing strategies: 1) Token-only510

conditioned Routing and 2) Noise-only Token Routing. (1) is commonly used in LLMs, where the511

routing is decided based on the tokens only. We test these strategies in five experiments and report the512

average performance over 3 seeds: Noise-only Routing achieves an average normalized performance513

of 0.851, slightly outperforming Token-only Routing, which achieves 0.845. Detailed results are514

summarized in Table 2 in the Appendix. The results demonstrate the effectiveness of our proposed515

routing strategy. While the performance difference is small, Noise-only Routing offers an additional516

advantage: the ability to predict all used experts based on noise levels once before roll-outs, enabling517

faster inference. This is particularly beneficial for robotics applications.518

14

L
a
y
e
r
s

Experts

t = ?
σ1 σ10

Denoising Process

σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9> > > > > > > > >

Figure 5: Visualized Expert Utilization. The average usage of all experts in MoDE across all layers
is shown. Purple color corresponds to low usage and yellow color to high one, and each image is
separately normalized. The average activation shows that MoDE learns to utilize different experts for
different noise levels.

A.8.2 How does the model distribute the tokens to different experts?519

To address Question IV, we analyzed how MoDE distributes tokens to different experts using a520

pre-trained model. Figure 5 visualizes the average usage of each expert in each model layer during521

inference across various noise levels, using 10 denoising steps for clarity. Our analysis reveals522

that MoDE learns to utilize different experts for various noise levels, suggesting that the router has523

specialized for different noise regimes. A transition in expert utilization occurs around σ8. In the first524

layer, the model learns an expert specialized for low-noise levels, primarily used in the last denoising525

step at σmin. These findings affirmatively answer Question IV, demonstrating that MoDE effectively526

distributes tokens across experts based on noise levels.527

A.8.3 How does the model scale with more experts?528

Finally, we analyze the effect of increasing the number of experts in MoDE. The results are presented529

in Figure 4b, where we evaluate MoDE on the CALVIN ABCD and CALVIN ABC benchmarks using530

2, 4, 6, and 8 experts. For comparison, we include two dense MoDE baselines: Dense-small and531

Dense-large. Dense-small shares the same latent dimensionality as MoDE, while Dense-large is scaled532

up to 2024 dimensions, matching MoDE’s overall parameter count. Our analysis focuses on how533

scaling affects both general performance (CALVIN ABCD) and zero-shot generalization (CALVIN534

ABC). In the ABCD environment, MoDE with 4 experts achieves the best performance. Interestingly,535

increasing beyond 4 experts degrades performance, possibly due to overfitting or increased routing536

complexity. In the zero-shot generalization (ABC), MoDE with 4 experts still performs well. Notably,537

the Dense-small variant consistently underperforms across both tasks, underscoring the efficiency of538

the MoE architecture in utilizing parameters more effectively. The Dense-small variant consistently539

underperforms. Overall, MoDE demonstrates that it can achieve comparable or superior performance540

to dense transformer models while requiring fewer computational resources.541

A.9 State-based Experiments542

We conduct additional experiments with MoDE on two established multi-task state-based environ-543

ments:544

Relay Kitchen. We utilize the Franka Kitchen environment from [26] to evaluate models. This virtual545

kitchen environment allows human participants to manipulate seven objects using a VR interface:546

a kettle, a microwave, a sliding door, a hinged door, a light switch, and two burners. The resulting547

dataset consists of 566 demonstrations collected by the original researchers, where each participant548

performed four predetermined manipulation tasks per episode. The Franka Emika Panda robot is549

controlled via a 9-dimensional action space representing the robot’s joint and end-effector positions.550

15

The 30-dimensional observation space contains information about the current state of the relevant551

objects in the environment. As a desired goal state, we randomly sample future states as a desired552

goal to reach.553

For this experiment, we train all models for 40k training steps with a batch size of 1024 and evaluate554

them 100 times as done in prior work [27, 28, 4] to guarantee a fair evaluation. All reported results555

are averaged over 4 seeds. We train our models on a local PC RTX with an RTX 3070 GPU for556

approx. 2 hours for each run with the additional experimental rollouts.557

Block Push. The PyBullet environment features an XArm robot tasked with pushing two blocks558

into two square targets within a plane. The desired order of pushing the blocks and the specific559

block-target combinations are sampled from the set of 1000 demonstrations as a desired goal state.560

The demonstrations used for training our models were collected using a hard-coded controller that561

selects a block to push first and independently chooses a target for that block. After pushing the first562

block to a target, the controller pushes the second block to the remaining target. This approach results563

in four possible modes of behavior, with additional stochasticity arising from the various ways of564

pushing a block into a target. The models only get a credit, if the blocks have been pushed in the565

correct target position and order. We consider a block successfully pushed if its center is within 0.05566

units of a target square.567

All models were trained on a dataset of 1000 controller-generated demonstrations under these568

randomized conditions. All models have been trained for 60k steps with a batch size569

of 1024. To evaluate them we follow prior work [27, 28, 4] and test them on 100 dif-570

ferent instructions and report the average result over 4 seeds. We train our models on571

a local PC RTX 3070 GPU for approx. 3 hours for each run with a final evaluation.572

Block Push Relay Kitchen

C-BeT 0.87±(0.07) 3.09±(0.12)
VQ-BeT 0.87±(0.02) 3.78±(0.04)
BESO 0.96±(0.02) 3.73±(0.05)
MoDE 0.97±(0.01) 3.79±(0.02)

Table 5: Comparison of the performance
of different policies on the state-based goal-
conditioned relay-kitchen and block-push envi-
ronment averaged over 4 seeds. MoDE outper-
forms the dense transformer variant BESO and
other policy representations on all baselines.

Demonstrations are sourced from a scripted oracle,573

which first pushes a randomly chosen block to a574

selected square, followed by the other block to a575

different square. The policies are conditioned to576

push the blocks in the desired configuration using577

a goal state-vector. We chose an action sequence578

length of 1 given a history length of 4 for these579

experiments, which are inspired by our dense dif-580

fusion transformer baseline BESO [4].581

Baselines. In this setting, we compare MoDE582

against several SOTA goal-conditioned policies.583

We test two transformer architectures, C-BeT [28]584

and VQ-BeT [29], that predict discretized actions585

with an offset. C-BeT uses k-means clustering586

together with an offset vector while VQ-BeT leverages residual Vector Quantization to embed actions587

into a hierarchical latent space. Further, we test against a dense diffusion policy transformer model588

BESO [4]. BESO uses the same continuous-time diffusion policy combined with a dense transformer589

to predict a single action given a sequence of prior states. To enable a fair comparison, we chose the590

same hyperparameters for BESO and MoDE in both settings. We test all models averaged over 4591

seeds and report the mean values directly from prior work [29].592

Results. The results of both experiments are summarized in Table 5. MoDE achieves a new SOTA593

performance on both benchmarks and outperforms the dense transformer variant of BESO in both594

settings. Further, MoDE achieves higher performance compared to other policy representation595

methods such as VQ-BeT and C-BeT.596

16

A.10 Related Work597

B Related Work598

Diffusion in Robotics. In recent years, Diffusion Models [30, 1, 10] have gained widespread599

adoption in the context of robotics. They are used as a policy representation for Imitation Learning [5,600

4, 31, 32, 33, 34, 35] and in Offline Reinforcement Learning [36, 37, 38]. Other applications of601

diffusion models in robotics include robot design generation [39], video-generation [40, 41, 42] and602

motion planning [43, 44]. The most common architecture for using diffusion models as a policy in603

robotics is a CNN with additional FiLM conditioning [24] to guide the generation based on context604

information. Recently, the transformer architecture has been adopted as a strong alternative backbone605

for diffusion policies, specifically in IL. Examples include Octo [3], BESO [4] and 3D-Diffusion-606

Actor [32]. However, no prior work considers using a Mixture of Experts architecture for improving607

the computational efficiency and inference time and solely relies on dense transformer architectures.608

Mixture-of-Experts. MoE are a class of models where information is selectively routed through609

the model. The modern version of MoE was introduced in [45], where a routing or gating network610

conditionally chooses a subset of experts to send an input to. After Transformers [14] proved to be an611

effective model that scales well with data, they were modified to have expert feed-forward networks at612

each block of the model in [15] which presented Switch Transformers. Switch Transformers laid the613

groundwork that is still widely adopted in different Large-Language-Models (LLM) [46, 47]. This614

allowed for more total parameters while keeping the forward and backward FLOPs smaller than their615

dense counterpart, thus yielding significant performance gains. However, training both the router and616

experts in parallel is a non-trivial optimization problem, and it can yield suboptimal solutions such as617

expert collapse where experts learn similar functions instead of specializing [48]. In addition, router618

collapse occurs when the router selects a small subset of the experts and doesn’t utilize all the experts.619

This is mitigated with load balancing losses [45, 15] which encourage the router to distribute inputs620

more evenly across experts. Multiple works have explored different methods to perform routing, such621

as expert choice routing [17], differential k-selection [49], frozen hashing functions [50], and linear622

assignment [51].623

In the context of robotics, MoE models are used in many settings without being combined with a624

transformer architecture. Several works use a mixture of small MLP policies, that focus on different625

skills in Reinforcement Learning [52, 53, 54] or for robot motion generation[55, 56], another body of626

work utilizes combinations of small CNNs robot perception [57, 58]. Further applications include627

learning multimodal behavior using a mixture of Gaussian policies [59, 60]. Despite the extensive628

usage of MoE in many domains, no prior work has tried to utilize MoE together with Diffusion629

Policies for scalable and more efficient Diffusion Policies.630

Multi Task Learning in Diffusion Models. It has been shown that the denoising process is multi-task631

[7]. Leveraging this idea, works have taken architectures that are suited for multi-task learning. Some632

works have explicitly scheduled which parameters are specialized to which stage in the denoising633

process [61, 62]. In extension to this [63] uses the scheduling as guidance during training but also634

learns how to modulate representations based on the denoising stage. Finally, some works have635

employed different architectures based on the denoising stage [64].636

Transformers for Robot Learning. Transformer models have become the standard network archi-637

tecture for many end-to-end robot learning policies in the last few years. They have been combined638

with different policy representations in the context of IL. One area of research focuses on generating639

sequences of actions with Variational Autoencoder (VAE) models [65, 66]. These action-chunking640

transformer models typically use an encoder-decoder transformer as a policy architecture. Several Dif-641

fusion Policies, such as Octo [3], BESO [4], ChainedDiffuser [31] and 3D-Diffusion-Actor leverage642

a transformer model as a policy backbone. Another direction of research treats behavior generation643

as discrete next-token predictions similar to auto-regressive language generation [67]. C-Bet, RT-1,644

and RT-2 use discretized action binning to divide seen actions into k-classes [28, 27, 68, 69], while645

VQ-BeT [29] learns latent actions with residual Vector Quantization. Several works have shown the646

17

advantages of using pre-trained LLM or VLM as a policy backbone, which are then finetuned for647

action generation [70, 71, 72, 18]. None of the recent work considers using any Mixture-of-Expert648

architecture for policy learning. MoDE is the first architecture to leverage MoE architecture combined649

with diffusion for behavior generation.650

B.1 Limitations651

MoDE still has certain limitations. In our experiments, we find that MoDE exhibits a slightly higher652

standard deviation compared to the baselines. We hypothesize that the router’s initialization has653

significant impact on overall optimization, requiring future work on stabilizing routing models. In654

addition, when visualizing expert utilization, in some of our experiments we noticed that only a655

subset of the total experts were being utilized - a phenomenon known as expert collapse [48]. In656

addition to load balancing regularization, having more inductive biases that encourage the router to657

fully utilize all experts are needed.658

18

	Introduction
	Method
	Problem Formulation
	Diffusion Policy
	Mixture-of-Experts Denoising

	Evaluation
	Long-Horizon Multi-Task Experiments

	Conclusion
	Appendix / supplemental material
	Experiments Details
	CALVIN Benchmark
	LIBERO Benchmark

	Baselines
	Scaling Multi-Task Experiments
	Zero-shot Generalization Experiments
	Computational Efficiency of MoDE
	Ablation Studies
	What design decisions affect MoDE's performance?

	Detailed Experimental Results
	Additional Ablation Studies
	Optimal Routing Strategy for Diffusion Transformers
	How does the model distribute the tokens to different experts?
	How does the model scale with more experts?

	State-based Experiments
	Related Work

	Related Work
	Limitations

