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ABSTRACT

Multimodal Large Language Models (MLLMs) face significant efficiency chal-
lenges that stem from two distinct yet coupled sources: data redundancy and com-
putational redundancy. While most methods focus on data redundancy by pruning
visual tokens from the output of the visual encoder or computing redundancy in
LLM decoders using blockwise importance, the finer-grained inter-layer represen-
tation shifts and the distribution differences within the layers themselves have not
been fully explored. In this work, we comprehensively investigate this dual-level
inefficiency. We posit that intermediate layer tokens from vision encoders should
be considered for effective visual token pruning, as semantic focus shifts across
layers, with middle-layer tokens capturing more detailed object-centric informa-
tion that deeper layers may abstract away. Furthermore, we reveal the differential
contributions of Attention and FFNs across distinct LLM decoder layers. Building
upon these discoveries, we propose SPIDER, a training-free framework that in-
tegrates multi-layer Semantic visual token PrunIng with an aDaptive sub-layER
skipping mechanism. Experimental evaluations demonstrate that SPIDER con-
sistently maintains strong performance across various MLLM architectures and
reduction ratios. Notably, SPIDER achieves a reduction to 20% in FLOPs for
LLaVA-Next-7B, while preserving 98.7% performance to the baseline.

1 INTRODUCTION

Multimodal large language models (MLLMs) integrate visual information with powerful large lan-
guage models (LLMs), achieving wonderful performances on various complex tasks, such as image
understanding (Bai et al., 2025), video understanding (Lin et al., 2024), and visual reasoning (Zhang
et al., a). However, this integration introduces significant overhead, stemming from both data re-
dundancy in the form of lengthy visual token sequences and computational redundancy within the
large-scale LLM backbone. While visual token pruning has become a dominant strategy to tackle
data redundancy (Chen et al., 2024b; Zhang et al., b; 2024a), the computational redundancy in pro-
cessing the remaining tokens through the LLM decoder has received not enough attention. In this
work, we argue that data redundancy and computational redundancy can be combined, and each
requires a more fine-grained pruning strategy.

First, on the data redundancy front, most token pruners (Zhang et al., 2024a; b; Chen et al., 2024b)
exclusively use features from the final layer. This overlooks a crucial semantic focus shift across
encoder layers, impairing performance on fine-grained tasks like counting or localization. As visu-
alized in Figure 1, while deep-layer features provide global context, they may not contain enough
object-centric details that are rich in middle layers. Pruning solely based on final-layer features thus
risks discarding parts of key objects.

Second, on the computational redundancy front, some methods focus on layer skipping. But most
layer-skipping methods (Lawson & Aitchison, 2025; Csordás et al.; Raposo et al., 2024) are coarse-
grained, indiscriminately skipping entire decoder blocks. Our analysis reveals that attention and
Feed-forward Network (FFN) sub-layers contribute unequally to visual tokens. This finding moti-
vates a more adaptive and fine-grained skipping strategy than treating blocks as monolithic units.
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Based on these findings, we propose SPIDER, a novel, training-free framework to improve MLLM
inference efficiency. It is built on two core mechanisms: Multi-layer semantic token pruning
(MSV-Prune): This strategy uses tokens from both deep and middle layers of the visual encoder for
semantic clustering and similarity computation. Adaptive sub-layer skipping (ASL-Skip): This
strategy accumulates a skippability score to determine which retained visual tokens should perform
layer skipping and at which layer to skip, and an offline sub-Layer contribution score (SLC) to
decide which specific sub-layer (Attention or FFN) to skip in subsequent LLM decoder layers for
skipped tokens. Our contributions are summarized as follows:

• We explore the semantic focus shift across vision encoder layers, and propose multi-layer
semantic token pruning, considering middle and deep layer tokens.

• We quantify the fine-grained redundancy in attention and FFN sub-layers of MLLM de-
coders, and propose adaptive sub-layer skipping to decide whether a retained visual token
should skip, when to skip, and ship which part of the layers.

• We propose SPIDER, a training-free framework combining token pruning and sub-layer
skipping. It significantly reduces computational burden for various MLLM architectures
while maintaining comparable performance.

2 RELATED WORKS

2.1 MULTIMODEL LARGE LANGUAGE MODELS (MLLMS)

MLLMs have rapidly advanced in vision–language understanding and generation (Comanici et al.,
2025; Liu et al., 2024a). Notable systems such as LLaVA (Liu et al., 2024a), BLIP2 (Li et al.,
2023a), and MiniGPT-4 (Zhu et al., 2023) can process prompts that integrate both text and images,
enabling versatile multimodal interaction. Beyond general-purpose capabilities, MLLMs have been
adapted to specialized domains, including affective computing (Li et al., 2024a) and medical rea-
soning (Zhang et al., 2025), highlighting their potential in high-stakes applications. Despite these
advances, the computational demands of MLLMs remain substantial for both training and inference,
especially in scenarios requiring fine-grained reasoning over high-resolution images (Zhang et al.,
2024b;a). The challenge becomes more acute in video understanding (Maaz et al., 2023; Zhang
et al., 2023; Lin et al., 2024), where temporal redundancy and extended frame sequences greatly in-
flate token counts. Such scalability and latency bottlenecks underscore the need for efficient MLLM
architectures, motivating effective strategies for real-time, large-scale multimodal systems.

2.2 REDUCING REDUNDANCY IN MLLMS

While MLLMs have achieved remarkable success, their huge computational cost hinders scalable
deployment. Existing inference optimizations primarily fall into two categories: token pruning and
layer skipping.

Token pruning has gained wide attention due to the high redundancy of visual tokens, which dom-
inate input sequences. Some efforts focused on compressing visual tokens into compact represen-
tations Chen et al. (2024a); Li et al. (2024b); Shang et al. (2024), but requiring additional training.
Other training-free methods leverage text-visual attention within the LLM to identify less impor-
tant visual tokens Chen et al. (2024b); Zhang et al. (b); Xing et al. (2024). However, studies like
Vispruner (Zhang et al., 2024a), VisionZip (Yang et al., 2025), VTC-CLS Wang et al. (2024), and
HiPrune Liu et al. (2025) argue against the sole reliance on text-visual attention due to positional
bias, advocating for visual cues. A common limitation across most token pruning methods is their
focus on pruning from the final output, neglecting the multi-layer semantic information inherent in
the vision encoder.

Layer skipping addresses the inherent layer redundancy in MLLMs, as observed by ShortV Yuan
et al. (2025). While some layer skipping approaches involve additional training Zeng et al. (2025);
Suo et al. (2024); Elhoushi et al. (2024), our focus remains on training-free methods. ShortV (Yuan
et al., 2025), for instance, identifies and replaces less effective layers with sparse versions where
visual tokens remain frozen. However, these methods are not fine-grained enough since they of-
ten aggressively replace entire LLM layers for all visual tokens, overlooking token and sub-layer
importance variance .
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Figure 1: Visualizations to show the importance of
mid-layer features for fine-grained token pruning. We
highlight the top 25% most attentive tokens (in pur-
ple) from various layers of the CLIP vision encoder,
together with their t-SNE embeddings. Mid-layer to-
kens exhibit a higher key object coverage ratio (R∗),
indicating a stronger focus on crucial object-centric de-
tails compared to deeper layers, which tend to capture
broader global semantics.
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Figure 2: Visualization of sub-layer skip-
ping, where we visualize either (b) skip-
ping attention sub-layer module or (c) FFN
sub-layer module. The sub-layer skipping
is achieved via replacing the standard LLM
decoder block with corresponding sparse
blocks, so that visual tokens are blocked in
attention or FFN modules.

Different from previous works, we use the semantic information from middle and deep layer tokens
for token pruning. Besides, we systematically analyze the contribution difference of attention and
FFN modules in the LLM decoder and adopt a more fine-grained sub-layer skipping mechanism.

In this work, we propose SPIDER, a novel, training-free framework that synergistically tackles both
token and layer redundancy with fine-grained adaptivity. Unlike previous token pruning methods, we
explicitly consider the semantic differences between middle and deep layers of the vision encoder.
We leverage a multi-layer semantic clustering approach by incorporating middle-layer tokens to
achieve more comprehensive and effective token pruning. Furthermore, diverging from coarse-
grained layer skipping strategies, SPIDER introduces a sub-layer skipping mechanism. This allows
us to adaptively determine whether a retained visual token should skip computation, when to skip,
and critically, which specific sub-layer (Attention or FFN) within the LLM decoder to skip, based
on a nuanced understanding of their individual contributions.

3 KEY FINDINGS

3.1 SEMANTIC SHIFT ACROSS VISION ENCODER

We visualize the semantic focus shift and the distribution of the top 25% attentive tokens across
CLIP vision encoder layers in Figure 1. t-SNE embeddings across layers show a gradual shift in
semantic clustering, with middle layers bridging distinct visual concepts. Notably, middle-layer
tokens focus more on key object regions, yielding higher key object coverage ratios R∗ compared
to early and deep layers. Deep layers, while capturing broader scene regions, risk missing critical
object information. This suggests that effective token pruning should leverage both middle- and
deep-layer features, not solely the deepest layer.

3.2 SUB-LAYER REDUNDANCY IN MLLMS

To quantify sub-layer redundancy for specific tokens, we introduce two sparse layers: VSkip-Attn
and VSkip-FFN. In the VSkip-Attn layer, visual tokens do not function as queries, acting solely as
keys and values. In the VSkip-FFN layer, the visual token input to the FFN is directly bypassed.

We propose the Sub-Layer Contribution (SLC) score to quantify a sub-layer’s impact on the
model’s final prediction. The SLC is calculated as the Kullback-Leibler (KL) divergence between
the output logits of the original model and a modified one where a specific sub-layer’s operation
is selectively bypassed. Specifically, to measure the contribution, we simulate skipping a sub-layer
(e.g., attention or FFN) for a subset of tokens X at a given layer i by preventing their hidden states
from being updated by that sub-layer. We then define SLCX

i,attn and SLCX
i,ffn as the KL divergence

3
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Figure 3: The sub-layer contribution scores (SLC) of LLaVA-1.5-7B and LLaVA-Next-7B. Lower
SLC values indicate a weaker influence of the corresponding attention or FFN sub-layer on the
specified tokens. Skipping transformations of visual tokens in such low-impact sub-layers yields
minimal divergence from the original model’s output distribution, and the SLC distribution is very
different across various benchmarks.

when the self-attention or FFN sub-layers are skipped for tokens X in layer i, respectively. A lower
SLC value indicates less influence on the final output, making the sub-layer a stronger skip candi-
date. For each layer, we take SLCX

i = min
(
SLCX

i,attn,SLC
X
i,ffn

)
to identify the least impactful

module, replacing modules in ascending SLC order with corresponding sparse layers. Appendix
A.2 provides a detailed sub-layer replacement order list.

To ensure robustness, we compute SLC offline across three diverse benchmarks. As shown in
Figure 3, the resulting SLC distributions exhibit significant variance across different models and
datasets, validating our approach of averaging them to obtain a statistically meaningful, generalized
score. Another key finding is that SLCX

i,attn is generally lower than SLCX
i,ffn. This suggests that for

visual tokens, the attention sub-layer is often more redundant than the FFN, making it a preferable
target for skipping.

4 METHOD

Our training-free framework is illustrated in Figure 4. The input image first goes through multi-
layer semantic visual token pruning to reduce data redundancy, then the retained tokens are fed to
the LLM decoder for adaptive sub-layer skipping. Details are as follows.

4.1 MULTI-LAYER SEMANTIC VISUAL TOKEN PRUNING

The retained visual tokens comprise two subsets: a fraction r of anchor tokens Tanc
v selected via

attention sorting, and complementary tokens Tcmp
v selected under the involvement of middle layer

tokens into semantic clustering and sorting. Then Tanc
v and Tcmp

v are concatenated in spatial indices
order and fused with text tokens Tq for LLM decoding.

4.1.1 ATTENTION-BASED ANCHOR TOKENS

To address the high redundancy in visual inputs, we first perform a saliency-based token pruning
step. Drawing inspiration from findings that visual encoder attention is a reliable indicator of patch
importance Zhang et al. (2024a), we use the visual encoder’s self-attention scores to select a compact
set of important tokens. We average the self-attention matrix A over all heads to obtain av ∈ Rn,
where for CLIP-like encoders av is the [CLS] row, and for encoders without [CLS] it is the mean
attention each patch token receives. A dynamic threshold τ selects anchor tokens to meet a budget
of n×R×r tokens, where R ∈ (0, 1) is the overall retention ratio and r ∈ (0, 1) is a hyperparameter
defining the proportion of anchor tokens within the retained set.

τ = min{t | |{avi ≥ t}| ≤ n×R× r}, Tanc
v = {tvi ∈ Tv | avi ≥ τ}. (1)

4
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Figure 4: Illustration of SPIDER. We begin by token pruning using the semantic information from
the middle and last layers. The retained tokens are fed to the LLM for adaptive sub-layer skipping.

4.1.2 MULTI-LAYER SEMANTIC CLUSTERING-BASED COMPLEMENTARY TOKENS

Relying solely on foreground-centric anchor tokens (Tanc
v ) risks losing crucial background context.

To mitigate this, we propose a coarse-to-fine strategy to select a set of complementary tokens (Tcmp
v ).

Tcmp
v are obtained by clustering non-anchor tokens into K groups, computing their multi-layer sim-

ilarity scores, selecting the Nk lowest-scoring tokens from each cluster, and aggregating them.

Coarse-grained Semantic Clustering. A naive redundancy removal on non-anchor tokens is sub-
optimal, as populous but uniform background regions would exhaust the selection quota, displacing
smaller yet unique semantic areas. To address this, we apply K-means clustering to the high-level
features FL

v of non-anchor tokens, partitioning them into K semantic clusters {Ck}Kk=1. The total
budget for complementary tokens, Ncmp = n×R · (1− r), is then allocated proportionally to each
cluster as a quota Nk, ensuring all semantic groups are represented.

Nk = max

(
1, round

(
Ncmp ·

|Ck|∑K
j=1 |Cj |

))
(2)

Fine-grained Multi-view Pruning. Within each semantically homogeneous cluster Ck, we select
the most informative Nk tokens by leveraging hierarchical features. We observe that middle-layer
features (FM ) capture fine-grained object-centric details, whereas last-layer features (FL) encode
global semantics, as analyzed in Section 3.1. To select a complementary set, we compute a multi-
layer similarity score Sij for any pair of tokens (i, j). This score considers their similarity at both
middle and deep layer feature levels (multi-layer intra-cluster similarity), and their similarity to the
already-selected anchor tokens:

Sij =
(
sim(FL

i ,F
L
j ) + sim(FM

i ,FM
j )
)︸ ︷︷ ︸

Multi-layer Intra-Cluster Similarity

+

(
max
p∈Tanc

v

sim(FL
i ,F

L
p ) + max

p∈Tanc
v

sim(FL
j ,F

L
p )

)
︸ ︷︷ ︸

Similarity to Anchor Tokens

(3)

where sim(·, ·) is the cosine similarity. For each cluster, we compute similarity scores for all tokens,
retain the Nk lowest-scoring ones, and aggregate them across clusters to form Tcmp

v .

4.2 ADAPTIVE SUB-LAYER SKIPPING

Even after token pruning, significant computational redundancy persists within the MLLM decoder.
While prior work has explored coarse-grained layer skipping, this often incurs performance degrada-
tion. We observe that sub-layers (i.e., self-attention and FFN) within each decoder block contribute
unequally to the final output (Fig. 3). This motivates our fine-grained, adaptive sub-layer skipping
policy, which dynamically bypasses less critical sub-layers for specific tokens. The decision process
is guided by a hybrid mechanism, combining an online, per-token skippability score with an offline,
per-layer sub-layer contribution score.

4.2.1 ONLINE SKIPPABILITY SCORE

To determine if and at which layer a token should perform sub-layer skipping, we compute an online
skippability score Ssa(i, ℓ) for each visual token i at each layer ℓ. It consists of two aspects:

5
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1. Intrinsic Information Entropy (Eii): This measures the semantic uncertainty of a token’s
hidden state hv(i, ℓ). We compute it as the Shannon entropy of the probability distribution p(i, ℓ) =
Softmax(hv(i, ℓ) · W⊤

unembed), which results from projecting the hidden state into the vocabulary
space V via the language model’s unembedding matrix Wunembed ∈ RV×d. Low entropy indicates
semantic convergence, making the token a candidate for skipping. We normalize the entropy to [0, 1]
to get Eii(i, ℓ).

2. Image-Text Correlation Factor (Fitc): This is a common factor (Zhang et al., b; Chen et al.,
2024b) that assesses a visual token’s relevance to the text query. A token weakly correlated with the
text context is more skippable. We measure this as the cosine similarity between the visual token’s
hidden state hv(i, ℓ) and the averaged text context vector qt(ℓ). The cosine similarity sim(i, ℓ) is
also normalized to [0, 1] to be Fitc. We then define a retention score R(i, ℓ) = Eii(i, ℓ)+Fitc(i, ℓ).
The final skippability score is its inverse:

Ssa(i, ℓ) = ReLU (1−R(i, ℓ)) . (4)

A higher Ssa indicates a stronger signal for skipping.

4.2.2 OFFLINE SUB-LAYER CONTRIBUTION SCORE

Once a token is deemed skippable, we must decide which sub-layer (attention or FFN) to bypass. To
inform this, we pre-compute a Sub-Layer Contribution (SLC) score via offline profiling. For each
layer ℓ, SLCattn(ℓ) and SLCffn(ℓ) are the average KL-divergence between the original model’s
output and the output when the respective sub-layer is skipped via sparse layer replacement, evalu-
ated over multiple multimodel benchmarks. A low KL-divergence implies the module is less critical.
We normalize these to obtain module-level skippability scores, where a higher score means more
skippable:

SLCNorm
module(ℓ) = 1− SLCmodule(ℓ)− SLCmodule,min

SLCmodule,max − SLCmodule,min + ϵ
, module ∈ {Attn, FFN}. (5)

At each layer ℓ, the sub-layer with the higher SLCNorm score is designated as the target for skipping.

4.3 SCORE FUSION AND CUMULATION

The final skipping decision integrates both online and offline scores. At each layer ℓ (up to the
network’s midpoint, L/2), we compute a fused score:

Sfuse(i, ℓ) = w1 · Ssa(i, ℓ) + w2 · SLCNorm(ℓ), (6)

where SLCNorm(ℓ) is the score of the skippable module at that layer. This score is accumulated for
each token: Sskip(i, ℓ) = Sskip(i, ℓ − 1) + Sfuse(i, ℓ). Once Sskip(i, ℓ) exceeds a threshold Tskip,
token i enters a “skip mode”. For all subsequent layers, it will bypass the pre-determined sub-layer
(attention or FFN) identified by the offline SLC scores. Tokens not in skip mode proceed normally.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Models. We evaluate our method on LLaVA-1.5-7B (Liu et al., 2024a) and the high-resolution
LLaVA-NeXT-7B (Liu et al., 2024b). LLaVA-1.5 generates 576 visual tokens from 336×336 im-
ages. LLaVA-NeXT’s sub-image partitioning strategy handles flexible resolutions, yielding 2,880
tokens for our evaluation, a 5x increase.

Datasets. We evaluate on various multimodel benchmarks, including GQA (Hudson & Manning,
2019), VQAv2 (Goyal et al., 2017), MME (Zhang et al., 2021), TextVQA (Singh et al., 2019), POPE
(Li et al., 2023b), MMB , (Liu et al., 2024c) , MMVet (Yu et al., 2023), MMStar (Chen et al., 2024c).

Baselines. We benchmark SPIDER against training-free efficient MLLM methods. Token pruning
methods include FastV (Chen et al., 2024b), which prunes a fixed ratio R of visual tokens post-layer
K based on attention scores; VTW (Lin et al., 2025), which discards all visual tokens after layer K;
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Table 1: Comparison of training-free MLLM efficiency methods. FLOPs Ratio denotes the propor-
tion of FLOPs retained relative to the vanilla model. Best results are in bold.

Method TFLOPs Ratio VQAv2 GQA MMStar MME MMB PoPE MMVet TextVQA Acc. (%)
LLaVA-1.5-7B (Upper Bound, All 576 Visual Tokens)

Vanilla 8.5 100% 76.5 61.9 33.7 1510.7 64.1 85.9 31.1 58.2 100%

Approximately 55% TFLOPs

FastV (K = 2, R = 50%) 4.9 58% 73.5 60.2 32.4 1475.6 64.3 84.0 29.8 57.2 97.42%
VTW (K = 16) 4.7 55% 66.3 55.1 32.8 1497.0 64.0 82.8 19.2 55.3 90.63%
ShortV ( N = 19) 4.7 55% 75.7 60.9 33.3 1503.1 64.8 86.2 27.9 55.1 97.68%
VisPruner (V = 288) 4.7 55% 76.3 60.8 33.3 1477.9 63.7 86.3 30.3 57.8 98.90%
SPIDER (N = 384, Rs = 55%) 4.8 56% 76.6 60.9 34.9 1498.5 64.9 86.6 30.7 57.9 100.20%
Approximately 25-30% TFLOPs

FastV (K = 2, R = 75%) 2.6 30% 74.3 56.6 30.8 1394 62.3 79.2 30.3 56.2 94.45%
ShortV ( l = 31) 2.1 25% 56.1 47.7 29.3 771.5 56.1 58.5 17.2 35.7 70.08%
VisPruner (V = 128) 2.3 27% 75.8 58.2 32.9 1461.4 62.7 84.6 28.6 57.0 96.71%
SPIDER (N = 144, Rs = 35%) 2.2 26% 76.0 58.6 33.7 1458.2 63.7 84.8 30.3 57.3 98.07%

LLaVA-NeXT-7B (Upper Bound, All 2880 Visual Tokens)
Vanilla 42.7 100% 80.0 62.9 37.1 1519.0 67.1 86.3 38.5 59.6 100%

Approximately 50% TFLOPs

FastV (K = 2, R = 50%) 22.0 52% 79.5 63.0 36.5 1482.0 66.3 86.5 36.8 58.1 98.45%
VTW (K = 16) 21.8 51% 75.6 55.8 37.6 1518.2 67.1 84.9 18.5 57.3 90.29%
ShortV (l = 19) 21.6 51% 78.8 63.4 37.8 1525.1 67.2 86.9 31.7 58.3 97.82%
VisPruner (V = 1600) 21.8 51% 79.9 62.5 37.3 1493.1 66.7 88.0 37.3 59.4 99.50%
SPIDER (N = 1920, Rs = 50%) 21.9 51% 80.2 62.6 37.7 1510.5 66.6 88.2 36.6 59.7 99.69%
Approximately 20-25% TFLOPs

FastV (K = 2, R = 89%) 8.5 20% 71.9 55.9 32.1 1282.9 53.4 71.7 25.9 55.7 84.14%
ShortV ( N = 29) 9.7 23% 58.6 49.7 30.4 884.5 51.2 56.6 21.5 36.5 68.93%
VisPruner (V = 640) 9.1 21% 79.8 61.4 36.5 1490.8 65.2 85.9 36.7 59.3 98.18%
SPIDER (N = 710, Rs = 30%) 9.0 21% 79.8 61.8 37.3 1492.2 65.7 87.8 35.9 59.5 98.69%

and VisPruner (Zhang et al., 2024a), which retains V visual tokens from the vision encoder. Layer
skipping method includes ShortV Yuan et al. (2025), which replaces N LLM layers with its ShotV
layers. Our SPIDER retains N visual tokens after the pruning stage and then allows Rs of them to
skip certain sub-layer modules. All the methods are compared at similar FLOPs reduction ratios.

To perform an ablation study on SPIDER’s components, we introduce additional specialized base-
lines. We evaluate our token pruning module, MSV-Prune, against other token pruners like Sparse-
VLM (Zhang et al., b) and VisionZip (Yang et al., 2025). To assess the efficacy of our layer skipping
module, ASL-Skip, we benchmark it against ShortV Yuan et al. (2025) and naive strategies that
uniformly skip all attention or FFN modules.

Method GQA TextVQA POPE Acc. (%)

Upper Bound, All 2880 Tokens (100%)
LLaVA-NeXT-7B 62.9 59.6 86.3 100.0%

Retain 320 Tokens (↓ 88.9%)
FastV 55.9 55.7 71.7 88.47%
SparseVLM 56.5 52.4 73.5 87.64%
VisionZip 58.1 57.6 75.0 91.97%
VisPruner 58.4 57.6 80.4 94.22%
MSV-Prune (Ours) 59.0 58.1 83.3 95.93%

Retain 160 Tokens (↓ 94.4%)
FastV 49.8 51.9 51.7 75.39%
SparseVLM 50.2 45.1 54.6 72.92%
VisionZip 54.3 54.7 59.4 82.31%
VisPruner 54.7 56.0 72.9 88.46%
MSV-Prune (Ours) 55.1 57.1 73.3 89.45%

Table 2: Comparisons of our MSV-Prune, with
other SOTA training-free token pruning methods.
Best results are in bold.

Method R MMStar TextVQA MME Acc. (%)

Upper Bound, All 576 Tokens (100%)
LLaVA-1.5-7B 100% 33.7 58.2 1510.7 100%

ShortV 81% 33.8 57.3 1503.3 99.42%
Skip All Attn 82% 34.1 51.1 1300.6 91.69%
Skip All FFN 38% 28.9 40.9 875.9 71.34%
Skip Partial FFN 81% 32.6 57.4 1483.1 97.84%
ASL-Skip (Ours) 80% 33.7 58.1 1504.9 99.81%

Table 3: Comparisons of our ASL-Skip with
other training-free layer skipping/pruning meth-
ods. No visual token is pruned. Most of these
methods are evaluated at around 80 % of the
original TFLOPs for fair comparisons. “Random
Skip” means random skipping certain sub-layer
modules across all LLM layers. Best results are
in bold. “R” denotes TFLOPs ratio.
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5.2 MAIN RESULTS

We apply SPIDER to the classic LLaVA-1.5 and LLaVA-Next models and comprehensively com-
pare against prior approaches. As shown in Table 1, SPIDER consistently matches or surpasses
baselines across multiple benchmarks at similar or lower FLOPs, outperforming other training-free
methods and achieving the best trade-off between efficiency and performance. Notably, even under
a relatively aggressive FLOPs reduction ratio to 20%, SPIDER applied on LLaVA-Next-7B retains
98.7% of the overall performance, whereas skip-layer-based baselines such as ShortV degrade sub-
stantially. On challenging benchmarks such as MMVet and MMStar, which demand strong spatial
awareness and reasoning capabilities, SPIDER maintains competitive accuracy, underscoring its ro-
bustness under high compression.

More specific, we also ablate the separate performances of our token pruning method MSV-Prune
in Table 2 and layer skipping method ASL-Skip in Table 3. Under various extreme reduction rates,
MSV-Prune exceeds SOTA pruning methods. This superiority also proves the effectiveness of in-
troducing middle-layer tokens to assist pruning. ASL-Skip preserves overall MLLM performance
more effectively than existing layer-pruning approaches at the same computational cost, showing
the necessity of finer-grained sub-layer skipping.

5.3 ABLATION STUDY AND ANALYSIS

Anchor Ratio GQA TextVQA POPE Acc. (%)

LLaVA-1.5-7B 61.9 58.2 85.9 100.0%

0 59.3 54.7 83.7 95.74%
0.3 60.2 57.0 86.2 98.51%
0.5 60.6 57.5 86.4 99.09%
0.7* 60.9 57.9 86.6 99.56%
1.0 60.8 56.9 86.1 98.74%

Table 4: Ablation of anchor token ratio in our
token pruning method, MSV-Prune. Best results
are in bold. ’*’ denotes our default setting.

(a) Distribution of Skipped 
Visual Token Ratio

w1/w2 w1/w2

(b) Distribution of Acc on PoPE

𝑇 𝑠
𝑘
𝑖𝑝

𝑇 𝑠
𝑘
𝑖𝑝

Figure 5: Heatmap of token skipping propor-
tion (left) and PoPE accuracy (right) for different
Tskip and w1/w2 settings on Llava-1.5-7B. No
visual token is pruned.

Method GQA TextVQA POPE Acc. (%)

Upper Bound, All 2880 Tokens (100%)
LLaVA-Next-7B 62.9 59.6 86.3 100.0%

Retain 1920 Tokens

(a) Semantic Cluster

w/o Semantic Cluster 61.3 59.3 87.2 99.33%
Cluster Num =2 61.9 59.4 87.9 99.98%
Cluster Num =8 61.6 59.3 87.7 99.68%
Cluster Num =4* 62.6 59.7 88.2 100.64%

(b) Multi-Layer Tokens

w/o Middle Layer Tokens 62.2 58.5 86.6 99.13%
w/ Middle Layer Tokens* 62.6 59.7 88.2 100.64%

(c) Components of Sij

w/o Similarity with T anc
v 62.5 59.3 87.8 100.20%

w/o Inter-Layer Similarity 61.9 59.0 87.5 99.60%
All Equipped* 62.6 59.7 88.2 100.64%

Table 5: Ablation of our token pruning method,
MSV-Prune. Each set is evaluated on LLaVA-
Next-7B with 1920 tokens and r = 0.7. Best
results are in bold. ‘*’ denotes our default set-
ting.

Method MMStar TextVQA MME Acc. (%)

Upper Bound, All 576 Tokens (100%)
LLaVA-1.5-7B 33.7 58.2 1510.7 100%

(a) Components of Sfuse

w/o Ssa 33.5 57.6 1497.8 99.17%
w/o SLC 32.7 58.0 1483.6 98.30%
All Equipped* 33.7 58.1 1504.9 99.81%

(b) Accumulation Mode of Sskip

w/o Accumulation 33.4 57.8 1499.1 99.22%
w/ Accumulation* 33.7 58.1 1504.9 99.81%

(c) Components of Ssa

w/o Eii 33.6 57.9 1501.0 99.52%
w/o Fitc 33.5 57.7 1498.5 99.25%
Ssa* 33.7 58.1 1504.9 99.81%

Table 6: Ablation of our sub-layer skipping
method, ASL-Skip. No visual token is pruned.
Best results are in bold.
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Input image
576 visual tokens

Retain 384 tokens 
by MSV-Prune

Remain 60% unskipped
tokens by ASL-Skip

Remain 20% unskipped
tokens by ASL-Skip

Remain 5% unskipped
tokens by ASL-Skip

Q: What’s the man 
doing in this 

picture?

: Surfing

Q: Describe the facial 
features of this cat.

: The cat has a distinctive appearance 
with a combination of orange and 
white fur. It has a pink nose, green 
eyes, and a white patch on its face. 
The cat's eyes are wide open, giving it 
a surprised or curious look.

582.8

529.7

457.3

400

450

500

550

600

1920 Tokens 640 Tokens 320 Tokens

76.8 76.3

69.5

65

70

75

80

1920 Tokens 640 Tokens 320 Tokens

13.1
13.6

14.4

12

13

14

15

1920 Tokens 640 Tokens 320 Tokens

Prefill (ms)

Decode Latency (ms)

Throughput (tokens/s)

Figure 6: (left) Visualization of retained tokens by MSV-Prune and unskipped tokens by ASL-Skip,
with anchors in purple (r = 0.7) and complementary tokens in yellow among the retained tokens.
(right) Efficiency analyses of SPIDER on LLaVA-NeXT-7B under different token reduction ratios.
The key image areas relevant to the text queries are highlighted with red dashed bounding boxes.

Ablation on MSV-Prune (Table 5). We evaluate the impact of each design in MSV-Prune under
an identical token budget (1920 tokens, r = 0.7). Removing any semantic clustering or middle
layer tokens during pruning leads to a noticeable drop in accuracy across benchmarks, affirming
the necessity of considering semantic shift across encoder layers. Specifically, eliminating middle-
layer tokens has more impacts on tasks requiring fine-grained reception, such as OCR that TextVQA
mainly evaluates. Similarly, ablating similarity components Sij consistently degrades performance,
with the full configuration (“All Equipped”) yielding the highest average accuracy, demonstrating
that each component contributes to robust token selection.

Ablation on Anchor Token Ratio in MSV-Prune (Fig. 4). Varying the anchor ratio in MSV-
Prune reveals that both insufficient and excessive anchoring degrade performance. Ratio=0.7 yields
the best overall accuracy, indicating that balanced retention of anchor and complementary tokens
maximizes efficiency without sacrificing quality.

Ablation on ASL-Skip (Table 6). When ablating Sfuse in (a), removing the Ssa component forces
all visual tokens to follow the offline SLC list, while omitting SLC makes skipped tokens bypass
entire subsequent layers, leading to higher performance variance and reduced robustness. In (b)
, the addition-based accumulation outperforms non-accumulative decisions, as tokens consistently
deemed unimportant across consecutive layers are more reliably skip candidates than those judged
by a single layer in isolation. In (c), both semantic uncertainty and image-text correlation are neces-
sary for deciding if and when a token should start sub-layer skipping.

Ablation on the Balance Between Token Skipping Ratio and Accuracy in ASL-Skip (Figure 5).
Heatmaps over Tskip and w1/w2 show that aggressive skipping increases computational savings but
can impair accuracy, while overly conservative skipping underutilizes efficiency gains. Appropriate
parameter tuning (w1/w2 = 3, Tskip = 20) achieves a favorable trade-off.

5.4 VISUALIZATION & EFFICIENCY ANALYSIS

The visualization samples in Figure 6 (left) show that MSV-Prune preserves semantically criti-
cal visual tokens, while ASL-Skip progressively allows less informative tokens to skip subsequent
sub-layers. Even at aggressive skip rates, core semantic content is maintained, enabling accurate re-
sponses for both scene and object queries. Efficiency results on the right demonstrate that reducing
retained tokens substantially lowers prefill and decode latency while increasing throughput, high-
lighting SPIDER’s ability to balance computational savings with minimal performance degradation.

6 CONCLUSION

We present SPIDER, a training-free framework that jointly performs multi-layer semantic visual to-
ken pruning and adaptive sub-layer skipping in MLLMs. By leveraging redundancy patterns across
vision encoder layers and differentiating the roles of Attention and FFNs, SPIDER achieves substan-
tial computational savings with minimal accuracy loss. Experiments across diverse architectures and
benchmarks confirm the superiority of our method.
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A APPENDIX

A.1 USE OF LLMS

We utilized large language models to assist with language editing and refinement to improve the
clarity and readability of this paper.

A.2 REPLACED SUB-LAYERS

For the selection of replaced layers, the SLC metric is computed based on a randomly sampled
dataset comprising 150 cases, with 50 instances sampled equally from GQA, MMVet, and PoPE.
Layers are then replaced, either with VSkip-Attn or VSkip-FFN modules, in ascending order of their
SLC values. Specifically, replacement initiates from the lowest SLC value and proceeds towards
higher values. Table 7 enumerates the layer IDs corresponding to the replaced components within
the default SPIDER architecture.

Table 7: Replaced layers for different MLLM series and parameter scales.

Model Series Replaced Sub-Layers
LLaVA-1.5-7B Attention: 25,27,28,30,23,26,22,24,21,0,20,3,18,4,

19,17,14,15,5,16,12,1,13,7,8,9,10;
FFN: 31,29,2,11,6

LLaVA-NeXT-7B Attention: 28,29,27,30,23,24,25,22,21,26,20,19,18,17,
15,16,14,12,4,13,5,0,7,6,8;
FFN: 31,1,2,3,11,9,10

A.3 BENCHMARKS

VQAv2 (Goyal et al., 2017). VQAv2 evaluates visual recognition through open-ended questions on
265,016 MSCOCO images. Each image features at least three questions with adversarially balanced
answers, preventing models from relying on statistical biases. We use the test-dev set (107,394
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image-question pairs), where each question has 10 ground truth answers, scored by automatic eval-
uation metrics.

GQA (Hudson & Manning, 2019). GQA assesses structured understanding and reasoning in im-
ages. Beyond images and questions, it provides scene graph annotations (from Visual Genome)
detailing objects, attributes, and relationships. Questions are generated via scene graphs, ensuring
clear semantic paths. Evaluation uses accuracy on the test-dev set (12,578 image-question pairs).

TextVQA (Singh et al., 2019). TextVQA tests models’ ability to recognize and integrate textual
information (OCR) from images with natural language understanding. Images, primarily from Open
Images v3, feature rich text (e.g., signs, packaging). Answers may require direct text extraction or
contextual reasoning. Performance is evaluated on a validation set of 5,000 image-question pairs.

POPE (Li et al., 2023b). POPE measures hallucination in LVLMs by querying object presence in
MSCOCO images. It assesses object hallucination degree. Evaluation uses the average F1 score
across three sampling strategies on the test set (8,910 image-question pairs).

MME (Zhang et al., 2021). MME comprehensively evaluates multi-modal models’ perceptual and
cognitive capabilities across 14 subtasks. Perception includes OCR, coarse-grained (presence, count,
position, color) and fine-grained (posters, celebrities, landmarks) recognition. All questions are
binary. We report the perception score based on 2,374 image-question pairs.

MMB (Liu et al., 2024c). MMBench provides a comprehensive multi-modal evaluation with a three-
level competence framework: two basic abilities (perception, reasoning), six specific capabilities,
and twenty concrete tasks, all using multiple-choice questions. Both English (4,377 image-question
pairs) and Chinese (MMBench-CN, 4,329 pairs) versions are utilized for evaluation.

MMVet (Yu et al., 2023). MM-Vet focuses on integrating diverse core vision-language capabilities.
It defines six core capabilities (recognition, OCR, knowledge, language generation, spatial aware-
ness, mathematics), combined into 16 specific tasks. ChatGPT assists evaluation, providing unified
metrics for varied answer styles across 218 image-question pairs.

MMStar (Chen et al., 2024c). MMStar is a multi-modal benchmark designed to rigorously evalu-
ate LVLMs by addressing issues of unnecessary visual content and data leakage in existing bench-
marks. It comprises 1,500 human-curated samples that exhibit strong visual dependency, minimal
data leakage, and require advanced multi-modal capabilities. MMStar assesses LVLMs across 6
core capabilities and 18 detailed axes, providing a purified and balanced evaluation to accurately
measure true multi-modal gains and identify data leakage.
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