LongWeave: A Long-Form Generation Benchmark Bridging Real-World
Relevance and Verifiability

Anonymous ACL submission

Abstract

Generating long, informative, and factual out-
puts remains a major challenge for Large Lan-
guage Models (LLMs). Existing benchmarks
for long-form generation typically assess real-
world queries with hard-to-verify metrics or
use synthetic setups that ease evaluation but
overlook real-world intricacies. In this paper,
we introduce LongWeave, which balance real-
world and verifiable assessment with Target-
Anchored Evaluation (TAE). TAE constructs
tasks by first defining verifiable targets within
real-world scenarios, then systematically gen-
erating corresponding queries, textual materi-
als, and anchors based on these targets. This
ensures that tasks are both realistic and objec-
tively assessable, enabling rigorous assessment
of model capabilities in meeting complex real-
world constraints. LongWeave supports cus-
tomizable input/output lengths (up to 64K/8K
tokens) across seven distinct tasks. Evalua-
tion on 23 LLMs show that even state-of-the-
art models encounter significant challenges in
long-form generation as real-world complex-
ity and output length increase. Dataset will be
publicly available.

1 Introduction

Large Language Models (LLMs) have significantly
enhanced their capabilities to process long inputs
(Yang et al., 2024a, 2025; Grattafiori et al., 2024;
Team et al., 2023) through architectural design
(Dao, 2024) and data engineering (Fu et al., 2024;
Gao et al., 2024). However, achieving robust long-
sequence generation remains highly challenging
(Que et al., 2024; Bai et al., 2024b). Several re-
search efforts have attempted to optimize LLMs
for long-form output generation (Pham et al., 2024;
Bai et al., 2024b; Yang et al., 2024b; Xiong et al.,
2025), which enables the model to generate outputs
up to 8,192 tokens in length. However, the gener-
ated content often lacks adequate informativeness,
comprehensiveness, and factuality (Qi et al., 2024;

Task Categorics
B Structured Data Analysis Il Document Processing Il Coding

B Tnstruction Following Article Writing

Salos R

Surxrg opoyy

Sty

——Qwen2.5-72B --e-- 03-mini GPT-40-1120
llama4-17b-maverick —— Deepseck-R1 Qwen2-5-7B
—=- - Gemini-2.0-tlash — - Llama-3.1-70B

Figure 1: Radar chart of different models across 7 tasks.

Pradeep et al., 2024; Song et al., 2024). The in-
herent complexity of long-form sequences further
complicates accurate assessment of these qualities,
highlighting the necessity for more reliable evalua-
tion benchmarks.

Long-form generation with real-world queries is
typically evaluated using similarity metrics (e.g.,
a-nDCG, Self-BLEU) or LLM-as-judge meth-
ods (Bai et al., 2024b). While straightforward to
implement, direct evaluation struggles with the in-
herent long-sequence complexity. To address this,
another line of work breaks long-text evaluation
into a set of verifiable sub-tasks, which can include
factual claims (e.g., a statement like "the Earth
orbits the Sun") or aspects (e.g., completeness,
logical consistency). Checklists are constructed
through expert-curated guidelines (Tan et al., 2024;
Que et al., 2024) or automated methods leverag-
ing LL.Ms to extract claims from outputs for fac-
tual verification via search engines (Song et al.,

Table 1: Comparison between long-context benchmarks. ‘Open-ended’ indicates whether the task allows for
diverse, creative responses. ‘Deterministic’ means the task produces step-by-step, logically structured outputs.
Our Target-Anchored Evaluation synthetically constructs tasks for real-world relevance. Color highlights indicate
strengths (green) or challenges (orange). The length refers to the number of tokens under the cl100k tokenizer.

Benchmark [Input Len Output Len Open-ended Deterministic Evaluator
Benchmarks for Long Input

LongBench (Bai et al., 2024a) ~16k ~100 v v Similarity

RULER (Hsieh et al., 2024) ~128k ~100 X v Rules

HELMET (Yen et al., 2025) ~128k ~100 v v LLM-as-judge

InfiniteBench (Zhang et al., 2024) Infinite ~100 X v Rules

Benchmarks for Long Generation

LongWriter-Bench (Bai et al., 2024b) ~100 ~5k NV X LLM-as-judge
LongGenBench[1] (Liu et al., 2024¢) ~1k ~4k X v Similarity
LongGenBench[2] (Wu et al., 2025) ~100 ~8k v v LLM-as-judge
Hello Bench (Que et al., 2024) ~300 ~8k ve X LLM-as-judge
LongProc (Ye et al., 2025) ~32k ~8k X v Rules
LongWeave 64k 8k v v Anchor-Target Pairs

2024; Wei et al., 2024; Samarinas et al., 2025) or
fixed databases (Samarinas et al., 2025). A critical
challenge lies in optimizing the degree of speci-
ficity scope: overly broad checklists produce vague
claims that hinder verification, while overly de-
tailed ones tend to over-complicate verification pro-
cesses by attempting to cover all corner cases.

To enhance verifiability, some approaches use
synthetic data rather than real-world data-for in-
stance, combining short questions from datasets
like MMLU (Liu et al., 2024c) into longer ones,
and then checking each segment individually.
Other benchmarks conduct procedural simulation
or utilize objective question-answering (QA) tasks
where fixed answers are associated with precise
constraints to limit the response scope (Wu et al.,
2025; Ye et al., 2025). Though these methods sim-
plify verification, they generally sacrifice realism
in real-world scenarios.

To bridge real-world relevance with verifiabil-
ity, we implement decomposition at the verifica-
tion stage through a new Target-Anchored Evalu-
ation (TAE) mechanism. Rather than extracting
checklists from raw materials which is error-prone
and hard to control, TAE reverses the test con-
struction process: it begins with predefined ver-
ifiable checklist objectives (Targets) grounded in
real-world tasks, then synthesizes corresponding
inference samples (including Anchors and materi-
als). The Anchor acts as a constrained input that
causally guides models toward generating the pre-
defined Target, enabling measurable verification
and evaluation. Each Anchor-Target (AT) pair in
TAE maintains a deterministic one-to-one relation-
ship under structurally defined rules, systematically
linked to source materials. TAE contains a series

of AT pairs, where each pair is linked to the cor-
responding material. These pairs can take various
forms, such as a question (A) and answer (T) in QA
tasks, or a triplet (A) and corresponding sentence
(T) in knowledge-to-text generation, as discussed
in subsection 2.3.

Based on TAE, we introduce LongWeave, a new
benchmark evaluating five challenge scenarios of
long-form generation through seven real-world rel-
evant tasks (Figure 1). LongWeave supports cus-
tomizable input lengths (up to 64K tokens) and
output lengths of 1K, 2K, 4K, and 8K tokens, with
adjustable difficulty settings for each task as de-
tailed in Table 1.

Our evaluation of 23 LLMs on LongWeave re-
veals critical limitations in long-form generation:
even top models (DeepSeek-R1) reach a perfor-
mance ceiling of 54.56%, with performance declin-
ing for 8K-token outputs (Figure 1). Furthermore,
models exhibit input-output disconnect, while sup-
porting inputs up to 64K tokens, they fail to effec-
tively synthesize inputs into coherent long-form re-
sponses. Expanding input context windows, e.g., to
IM tokens, does not resolve long-generation issues
but may degrade performance. Lastly, reasoning-
oriented LLMs consistently outperform general
counterparts, producing more concise and accurate
outputs in complex, constrained long-form genera-
tion scenarios. Our main contributions are:

* We introduce the long-form generation bench-
mark LongWeave, with TAE that bridges real-
world relevance with verifiability.

* We design seven tasks, with long input sizes
(up to 64K tokens), long output requirements
(1-8K), and varying difficulty levels.

X D .

[Task-based Instructions : Itask]

LLM

X

Response : Ogen

Paired

J’ Evaluation

A : Anchor
Ve N

@Compute score

—
1

3

» 1

x

o

D

7]

[1]

Qo

5

7]

=

o

c

7]

=4

o

=]

7]

-

=

2

=
‘X
o

[

S =Score (0gen ,T)

.- Tasks Pool e
Y
1 1
1y
: T QQ@ ! l[Xaw:Sales report table E}:
e. 0
i < /> CPY) 11 AI;Who's the top, output? 1
1 Biography 11| A2: Average deal size !
: Code fixes Generation 1 1
1
COXD g , 1 T1:John; $850,000; (15%) |i | —
! o1| T2: dealsizeis $12.500. |1 !
= 1
- = I -
, Al | e
1 CSV Analysis News Writing : F
1 . Eg. 2 : News Writing s :
1 A
=) 1 1 1
: ﬁzﬂ I l: Xraw: Instruction+Title+Cover : 1
= 1N 1 :
: > 1 : Al vjalora is creating orridors. : 1
i KVDict FSM Simulation : 1| 42: The Valoran wgifis being 1
1 ! reintroduced i 1!
1 Input ~ 64k | | 1~ o !
1 0utput ~8k/ 1 1| 1: Valora buildg A
1 1 ! to restore ecosystems.
! Sample size |1 '| T2: The Valoran wolf is being
: ;Z;ig;i?nhg 5600 ,| il reintroduced to the :_J
| T g w b m mm m m m m m m m m N - -

Figure 2: An illustration of evaluation pipeline

» Evaluation of 23 LLMs reveals critical limita-
tions and highlights future directions in long-
form generation and evaluation.

2 The LongWeave Benchmark

In this section, we first introduce the overall
pipeline of LongWeave, followed by a detailed for-
mulation of our Target-Anchored Evaluation and a
description of the individual tasks.

2.1 Pipeline of LongWeave

As shown in Figure 2, the LongWeave pipeline con-
sists of three steps: Construction, Evaluation, and
Scoring. In Construction, task-specific attributes
are systematically sampled through deterministic
rule-based algorithms to generate perfectly aligned
triples: (1) raw material, (2) anchor, and (3) tar-
get. The LLM processes the material and anchor
during Evaluation to produce a response that meets
task constraints. Finally, in Scoring, the output is
compared to the target using a scoring function that
aggregates metrics like accuracy, coherence, and
style to assess the model’s performance.

2.2 Target-Anchored Evaluation

We formulate long-form constrained generation as
the task where a LLM, denoted as £, must pro-
duce an output sequence Ogepn. The input consists
of a potentially lengthy raw material X.,y, and
task-specific instruction Iy, Which specifies re-
quirements for the target output length | Ogen |,
content accuracy, structural formatting, and logical

coherence. The generation process is modeled as:
Ogen - E(XraW7 Itask) (1)

The primary challenge lies in ensuring Oge, ad-
heres to all facets of Ii,q, especially as the input
and output lengths increase, and as Ii,sx becomes
more complex.

Algorithm 1: LongWeave Construction

Input: Generator fgn, Attribute space ©
Output: Material X,y, Anchor A, Target T’

Preparation Phase:

1. Sample attributes @ ~ ©

2. Generate aligned components via the generator:
(Xraw7 A7 T) «— fgen(e)

//Material, Anchor, and Target are jointly

derived and semantically linked

To ensure a realistic yet verifiable setup, we
propose Target-Anchored Evaluation (TAE). TAE
strategically constructs raw material X,y along-
side an Anchor-Target pair (A, T') for assessment,
see Algorithm 1. The input instruction incorpo-
rates both the material and the anchor, while the
output is evaluated based on whether it correctly
reflects the target T" associated with the anchor A.
Specifically, the generation process is modeled as:

Ogen = E(XraWa Itask, A)a (2)

then the quality S of Ogye, is quantified by a
task-specific scoring function Score:

S = Score(Oyen, T) 3)

Table 2: LongWeave Tasks: A summary of the tasks, outlining their names, abbreviations, core challenges, important
configuration settings, and evaluation metrics. Metric types are color-coded as described in the table’s legend.
Purple represents rule-based metrics. Red refers to anchor-target metrics. Blue indicates length scores.

Task Name Abbrev. Challenge Configuration Metrics
Code Fixing with CF Coding violation_prob = 0.85 Runnability
Flake8 Compliance error_lines o gen_len Style score
length score

KG to Text Biography BioG Structured Data triple_count x gen_len Coverage Rate.
Generation Analysis
CSV Sales Report SR Structured Data record_count o gen_len Coverage Rate
Analysis Analysis target_count o< gen_len Correctness Rate
AP Style News NW Article Writing ~ fact_counts ccgen_len ~ Coverage Rate
Writing ap_stylebook_rules Style Score
KV Dictionary KVG ~ Instruction ~ entry_countoccgen len Existence Score
Generation Following key_length = 32 Length score

value_length = 32 Position score
State Machine SMS Instruction num_states = 3 Step Match Ratio
Simulation Following input_size =3

output_size =3
el __________steplengthocgenlen
Paragraph Reordering PR Document para_length o gen_len Kendall’s Tau.

Processing

LongWeave evaluates LLMs by measuring S
across diverse tasks that vary in input/output
lengths and task complexity.

2.3 Tasks

We now introduce each of the tasks, where the An-
chor-Target pair takes different forms depending
on the task—for example, a negative—positive pair
in code fixing and AP style news writing, or a ques-
tion—answer pair in sales report analysis.

Code Fixing. This task requires LLMs to fix
Python code with Flake8 style violations (line
length, indentation) while ensuring the code re-
mains runnable. We design the code polluter to
inject Flake8 violations into randomly generated
runnable Python scripts (M, T), forming a polluted
code (A). The LLLM is prompted to fix the code.
KG to Text Biography Generation. This task
evaluates LLLMs’ ability to generate coherent and
factual biographies based on given knowledge
graph triples. The designed knowledge graph gen-
erator creates a large set of task relationships
around a central character, then extracts triples
(subject-predicate-object) (A) and corresponding
sentences (T) starting from the nearest nodes. The
evaluated model needs to incorporate all triples
into a fluent narrative within the specified word
count. The target is a rule-based natural language
statement derived from these triples. The model is

evaluated on its ability to accurately integrate all
triples into the generated text, with penalties for
missing or fabricated information.

CSYV Sales Report Analysis. This task evaluates
LLMs’ ability to generate a sales report based on
a CSV of sales data, including answering specific
questions. We designed an Excel sales report gen-
erator that creates the file (M), while generating
biased natural language questions (A) and answers
(T). The model analyzes the data, presents insights,
and answers predefined questions. Evaluation is
based on the answer and correctness rates.

AP Style News Writing. This task evaluates
LLMs’ ability to write a news article following
the Associated Press Stylebook (AP Style) (Gold-
stein, 1998), based on a central idea (M) and a
series of fact statements generated by GPT-40. The
central idea is generated for the random scenario,
and the LLM generates fact statements that violate
AP Style rules (A) based on the central idea. The
corresponding corrected statements (T) are the tar-
gets. The model is to incorporate the central idea
with all required facts while adhering to AP Style
rules on punctuation, capitalization, and other con-
ventions. The final score is based on both content
recall and style score of each target.

KV Dictionary Generation. This task, the inverse
of KV Retrieval in (Hsieh et al., 2024), evaluates
LLMs’ ability to generate a dictionary string with

a target key-value pair placed at the correct index,
following strict formatting rules (e.g., keys in up-
percase with underscores, values in lowercase with
numbers). The model is evaluated w.r.t. accuracy
in placement and valid dictionary formatting.
State Machine Simulation. This task involves
simulating state transitions based on a finite state
machine (FSM) (Lee and Yannakakis, 1996) and
processing an input string step-by-step. The model
generates output sequences based on FSM rules.
We use an FSM validation script to verify the output
against the correct state transitions (M) and signals
(A). The anchors are the input string and the states
generated by the model, while the targets are the
correct FSM sequences (T) generated by the FSM
script. Models are evaluated based on match ratio
and accuracy in simulating all steps without errors.
Paragraph Ordering. This task requires LLMs to
reorder shuffled paragraphs (A) into the collected
coherent sequence(T). The material consists of ran-
domly sampled paragraphs, with the anchors being
the shuffled order and the target being the correct
sequence. Evaluation uses Kendall’s Tau to mea-
sure the consistency of the predicted order (Liu
et al., 2020; Shen and Baldwin, 2021).

2.4 Data Construction

The majority of the data within LongWeave is syn-
thetically generated to ensure precise control over
task parameters and facilitate the Target-Anchored
Evaluation (TAE). The algorithmic approach al-
lows for the systematic creation of raw materials
across most tasks, such as code snippets for Code
Fixing, triples for KG-to-Text, CSV data for Sales
Reports, KV pairs for Dictionary Generation, state
machine definitions for Simulation, and paragraph
sets for Reordering. In contrast, the AP Style News
Writing task employs a hybrid data generation: an
LLM creates a news theme, ten AP Stylebook rules
are chosen, and factual statements (material) are
subsequently produced. To enable objective veri-
fication, some statements intentionally violate AP
rules (forming the Anchors), while their correct
integration serves as the Targets.

2.5 Input Length Statistic

Generative tasks with long input contexts are crit-
ical yet underexplored. To reduce hallucinations,
users often provide extensive context for generating
complex outputs. Unlike prior benchmarks capped
at 1k tokens, LongWeave supports up to 64k-token
inputs, enabling evaluation in real-world scenarios

like structured file analysis and document process-
ing. We provide the input length distribution of
LongWeave in fig. 3.

1750 1812

Category

1500 == Overall
ChronoWeave/News_Writing
longeval/Code_Fixing

S
3

longeval/Gen_KV_Dictionan y
longeval/KG_2_Text
longeval/Paragraph_Ordering

H
1)
3
=3

longeval/Sales_Report_Generation
longeval/State_Machine

662
538
476
400 400
12
ol NI | 1 | Wl il _ L
K 2%

0.5k 1 4k 8k 16k 32k 64k

Number of Samples
N
g

=]
3

~
=

Input Length

Figure 3: Input length distribution of LongWeave

2.6 Evaluation Metrics

LongWeave evaluates model performance across
three main categories: anchor-task metrics, length
score, and rule-based metrics. Each task’s com-
posite score is derived from the harmonic mean of
its sub-metrics to prevent a model from having a
particularly poor performance in one area while
still achieving a high overall score.

Anchor-Task metrics use LLMs as judges to ver-
ify whether targets, corresponding to defined an-
chors, are accurately reflected in the model’s output.
These include style, factual coverage, and question
answering. The Style Score measures adherence to
Flake8 standards, penalizing unresolved violations.
The Factual Coverage Rate tracks the proportion
of knowledge graph triples in the text, while the
Answer Coverage Rate measures the proportion of
answered analytical questions. The Correctness
Rate calculates answer accuracy, and the Factual
Statement Coverage Rate tracks recall of required
factual statements. The AP Style Score quantifies
adherence to AP Stylebook guidelines.

Length Score is used to test whether the model out-
puts according to the required length. The implicit
length score is applied when truncation occurs af-
ter exceeding the length, while the explicit length
score is used in CF and KVG, where the length
score is treated as a sub-score.

Rule-Based Metrics use tools to evaluate whether
the model’s response aligns with task instructions
and accurately reflects targets corresponding to de-
fined anchors. These include the Runnability score,
indicating whether the fixed code compiles cor-
rectly; the Target Key Existence and Position Score,
measuring if the target key exists and is placed at

the specified index in generated dictionaries; and
Kendall’s Tau Coefficient, assessing the model’s
ability to preserve correct order in outputs.

3 Experiments

3.1 Models and Inference Setup

We evaluated a range of LLMs using Long-
Weave, comprising proprietary and commercial
API-accessed models, open-source models, and
reasoning models. The long-generation mod-
els assessed include LongWriter-glm4-9b (GLM
et al.,, 2024; Bai et al., 2024b). The open-
source models include the Llama-3-series, Llama-4-
series (Grattafiori et al., 2024), Phi-4-mini-instruct,
Qwen2-5-series (3B, 7B, 14B, 72B) (Yang et al.,
2024a), and the newer Qwen3 series (4B, 8B, 14B,
32B). Additionally, we evaluated Deepseek-V3
(Liu et al., 2024a). The commercial models include
GPT-40-1120 (Achiam et al., 2023), Gemini-2.0-
flash (Team et al., 2023), and Qwen-long. Special-
ized reasoning models, such as 03-mini-2025-01-
31 and Deepseek-R1 (Guo et al., 2025), were also
included in the evaluation. The open-source model
uses VLLM for inference deployment on an A100.

3.2 Task Configurations

LongWeave evaluates LLMs across seven distinct
tasks, each with four variants targeting output
lengths of 1k, 2k, 4k, and 8k tokens. For each
variant, 200 test samples are used, resulting in a
total of 5,600 samples per model. We primarily
used Qwen2-5-72B-Instruct for LLM-as-judge
evaluations. To control output length, we adjust the
configuration as illustrated by the "gen_len" config-
urations in 2. Furthermore, LongWeave supports
fine-grained control over task difficulty through ad-
justments to input complexity (e.g., key_length in
KVG,), the strictness of constraints (e.g., AP style-
book rules in NW), and structural requirements of
the target output (e.g., step_length, para_length).

3.3 Main Results

The results are summarized in Table 3. In the table,
we have divided all the models into long-generation
models, open-source models, commercial models,
and reasoning models. We have listed the average
performance across seven tasks at four different
input lengths, as well as the overall average perfor-
mance across all tasks at four lengths.

Existing models struggle in long form gener-
ation. Frontier proprietary models demonstrate

. Ll
chn‘J'HB Qwen3-32B
us Quwem-5-72B
- .o
o !
5 wen2-5-14B Llama-3.1-70B
& 40 e ¢
o Qwen3-8B
=) L]
5]
535
> g
< Quend-4B o e0n
= Pod .
g 30 - Llama3-1-8B
6 QenZ-5-3B
L]
25
LongWriter-9B
L]
3B 10B 30B 100B

Model Size (Billion Parameters)

Figure 4: Performance of different model size

the best performance. DeepSeek-R1 and Gemini-
2.0-flash 03-mini achieve nearly 60% performance
at 1k length, but when generating 8k, the perfor-
mance drops to around 40%. GPT-40 only achieves
42.99% while it tends to generate short responses.
Increasing model scale can improve long gen-
eration quality. Llama4-17b-128e achieves the
best performance due to having the largest number
of parameters. The three smallest models, Phi-4-
mini, Qwen-2.5-3B, and Qwen3-4b, all perform
below 30%. We visualize the relationship between
model size and corresponding performance in Fig-
ure 4, where the regression curve shows a positive
correlation between the two.

3.4 Reasoning Models Perform Better on
Long-Sequence Generation Tasks.

We found that large-scale reasoning models per-
form significantly better on long-sequence gen-
eration tasks, as shown in Table 3. However,
smaller inference models face challenges with
long-sequence tasks. Specifically, models such
as DeepSeek Distill-7/32B struggle to follow in-
structions in tasks involving both long inputs and
outputs. During the reasoning process, they of-
ten produce repetitive, meaningless English letters,
leading to a decline in quality.

Reasoning Models Have Higher Information
Density in Long Outputs Reasoning models
achieve higher scores despite producing shorter out-
puts on average. This is likely due to their ability
to refine and organize information more effectively
in the thinking stage, hence meeting task require-
ments with less redundancy and off-topic content.

4 Analysis
4.1 Stability of the Benchmark

To assess the stability of the benchmark, we con-
ducted multiple experiments using the Llama-3.1-

Table 3: Model performance summary (task-average and length-average scores). The highest model performance
for each task and score is bolded, and for the overall performance, the rank 5 model is bolded.

Task scores Length scores Overall
Model CF BioG SR NwW KVG SMS PR 1k 2k 4k 8k Avg
LongWriter-glm4-9B 29.67 67.27 18.23 14.62 4.48 3.68 13.99 2455 23.11 20.69 18.48 21.71
Phi-4-mini-Inst 0.02 69.86 10.50 18.30 3.62 3.25 39.51 23.64 20.27 20.58 18.40 20.72
Llama3-1-8B-Inst 46.76 60.66 13.93 20.29 15.97 3.82 5246 40.11 34.75 27.13 20.25 30.56
Llama3-1-70B-Inst 58.45 69.36 20.04 24.08 40.35 6.43 60.26 53.58 46.92 33.85 25.07 39.85
Llama4-scout-17B-16e-Inst 33.24 76.38 24.47 28.25 33.32 6.20 67.88 48.65 37.55 37.22 30.72 38.53
Llama4-maverick-17b-128e-Inst ~ 64.63 84.09 22.94 27.96 55.11 9.84 91.51 55.81 54.93 50.61 42.12 50.87
Qwen2-5-3B-Inst 16.33 66.42 9.82 20.27 20.82 2.85 47.05 30.64 28.16 24.76 21.33 26.22
Qwen2-5-7B-Inst 26.09 73.16 1491 21.27 19.64 4.94 56.45 38.13 33.77 27.19 24.60 30.92
Qwen2-5-14B-Inst 49.48 80.94 19.33 23.80 22.80 5.72 76.18 47.60 4297 36.07 32.35 39.75
Qwen2-5-72B-Inst 60.43 84.41 24.48 31.76 18.84 13.77 73.67 51.67 48.69 40.99 34.29 43.91
Qwen3-4B 28.36 73.29 17.89 18.19 24.87 11.87 47.02 44.28 35.92 27.18 19.18 31.64
Qwen3-8B 45.92 76.88 18.98 18.90 17.70 13.40 67.50 46.86 40.08 34.06 27.17 37.04
Qwen3-14B 59.10 79.00 21.96 22.12 33.88 18.45 86.43 56.87 49.34 42.28 34.91 45.85
Qwen3-32B 63.44 79.77 2495 21.46 44.36 16.18 83.71 59.71 52.68 44.57 33.82 47.70
DeepSeek-v3 59.43 80.62 23.25 27.11 33.25 11.47 91.12 56.30 51.61 43.19 35.34 46.61
Qwen-long 35.78 77.65 24.87 26.67 27.78 12.68 78.88 49.50 44.03 39.15 29.78 40.62
GPT-40-2024-11-20 40.60 82.72 27.20 28.96 42.82 9.16 64.58 56.18 50.30 37.65 25.03 42.29
Gemini-2.0-flash 56.93 88.58 28.22 29.91 4894 1346 86.68 60.44 56.17 49.20 35.75 50.39

" DeepSeek-R1-Distill-Qwen-7B~ ~ 0.00 ~47.19 ~ ~ 477 ~ 1176 ~ 5.62° ~ 2.39 30.50 18.63 ~13.43 14.21 = 1214 = 14.60

DeepSeek-R1-Distill-Qwen-32B 54.14 66.65 22.25 21.31 14.54 8.86 73.70 45.06 39.59 35.74 29.01 37.35
DeepSeek-R1 70.10 86.16 24.62 30.56 60.14 19.60 90.73 63.86 59.25 52.85 42.28 54.56
Qwq-plus-2025-03-05 57.22 80.71 26.66 25.66 40.96 26.10 85.04 62.40 51.82 44.20 37.21 48.91
03-mini-2025-01-31 38.76 89.30 28.06 24.21 43.51 33.06 78.88 62.06 56.12 43.04 30.66 47.97

Table 4: Performance comparison across different tasks under varying sample sizes. Values represent mean
performance metrics with standard deviations (format: mean sq).

Task Number of Samples
20 40 60 80 100 120 140 160 180 200

CF 36.234+2.72 35.3142.80 35.88+250 36.124230 37.41i065 36.65+055 36.4510.45 36.37+050 36.8210.32 36.97+0.28
BioG 60.4240.16 61.2110.18 61.1010.20 61.1510.18 61.0310.2s 61.0840.25 61.2010.23 61.484+0.30 61.3540.28 61.1410.41
SR 13.16+0.25 12.26+0.30 12.60+0.28 12.80+0.24 13.8140.29 13.50+0.22 13.60+0.18 13.86+0.20 14.05+0.16 14.13+0.14
NW 20.0310.01 19.0610.10 19.4010.15 19.50£0.18 19.7510.20 19.8540.18 19.90x0.16 19.37x0.30 19.5510.35 19.6210.45
KVG 14.5541.47 13.804+1.50 14.0041.40 14.3041.20 15.2940.17 14.6040.30 14.8040.25 14.2040.30 14.95+0.45 15.2040.6s
SMS 3.1940.07 3.6610.10 3.6010.00 3.63+0.08 3.691003 3.7010.02 3.74t0.02 3.7410.02 3.7810.02 3.81io0.01
PR 54.6710.13 58.0210.20 58.10+0.15 58.151+0.12 57.2310.86 57.90+0.s0 58.10+0.75 58.0210.10 59.2010.15 60.05+0.12
Overall 28.9240.30 29.0410.35 29.1040.40 29.3040.35 29.80+0.01 29.60+0.10 29.80+0.15 29.69+0.10 30.0540.12 30.13+0.11

8B model with varying sample sizes (20-200), as
shown in Table 4. We found that as the sample size
increased, the total score gradually stabilized, and
the variance decreased from 0.3 to 0.11. Once the
sample size exceeded 100, the results converged
within a margin of 0.15. For the official evaluation,
we used 200 samples to ensure the stability of the
benchmark’s total score.

4.2 Efficiency of LLM-as-a-Judge

For the CF, BioG, SR, and NW tasks, we used the
Qwen-2.5-72B model as an LLM judge. To ensure
accuracy, we evaluated whether a short, clearly de-
fined target sentence appeared in the output, which
is simpler than judging whole ultra-long outputs.
We further validated this method by testing the
Llama-3.1-8B model on 100 samples with different
evaluation models, computing scores for four tasks
and the total score across seven tasks, as shown
in Table 5. he results showed that models such as
DeepSeek-v3, GPT-40, and GPT-03-mini had an

overall performance fluctuation variance of 0.45.

Table 5: Evaluation of LLM-as-Judge Stability in Target-
Anchor Evaluation using Different Scoring Models

Scoring Models
DeepSeek o3 40 Qwen25 Qwen25 Qwen2.5
Tasks V3 Mini 1120 72B 32B 14B
CF 51.64 452 40.96 46.76 3.53 0.76
BioG 59.86 59.87 60.13 60.66 58.01 57.88
SR 13.52 136 117 13.93 13.7 21.71
NwW 19.95 104 28.88 20.29 10.39 10.67
Total Score 31.75 30.14 31.27 30.56 23.27 24.04

4.3 Output Length Distribution

During inference, we provided the models with re-
quired word counts and analyzed the output word
lengths, categorizing them into four ranges: below
1k, 1k-2k, 2k-4k, and 4k-8k, as shown in Fig-
ure 5. It was observed that, with the exception
of the 03-mini, other reasoning models tend to
generate shorter outputs after processing. In con-
trast, smaller open-source models tend to generate

Meta-Llama-3.1-70B 662.1 1504.6 2613.9

Meta-Llama-3.1-8B 1148.6 1525.1 2003.6 2473.1

2318.0

llama-4-maverick-17b 779.1 1160.0 1331.5

llama-4-scout-17b 953.6 1484.9 1888.5

Qwen2.5-72B 12429 1831.2 2515.5

Qwen2.5-14B 1360.8

Qwen2.5-7B 1069.8 1669.7

Qwen2.5-3B 1130.8 1558.7

Qwen3-32b 655.3 1354.9

Qwen3-14b 7278

Qwen3-8b 670.2 1552.8

1k 2k 4k
Required Generation Length

DS-R1-Distill-Qwen-32B 874.2 1271.8 1404.6 1585.3

DS-RI1-Distill-Qwen-7B 1430.5 1731.6 1809.3

03-mini-2025-01-31
gemini-2.0-flash
£pt-40-2024-11-20 649.5 802.6 917.0 947.9
qwg-plus-2025-03-05 606.0 857.4 1263.6 16542

LongWriter-glmd-9b

3000

Deepseck-R1 559.3 746.5 1078.0 1558.4

5
Deepseek-V3 674.7 11203 1405.2 1696.3 2500

-2000

- 1500

- 1000

qwen-long

Phi-4-mini

1k 2k 4k 8k
Required Generation Length

Figure 5: Output length distribution

longer outputs, despite their overall performance
scores not being as high, indicating that output
quality is not directly correlated with length. No-
tably, the Qwen-3 series demonstrates better length-
following ability compared to the Qwen-2.5.

4.4 Potential Optimization Direction

Performance Degradation when Input Context
is Long. As shown in Table 3, output quality de-
teriorates significantly with long input sequences.
This is particularly evident in tasks like generating
sales reports and writing AP-style news articles,
which involve large datasets and detailed guide-
lines. However, handling both long inputs and
outputs is essential for practical applications. Incor-
porating more relevant information into the input
window can significantly reduce hallucinations. It
highlights a critical direction for optimizing long-
sequence generation models.

Optimizing long-form output data is possible.
Although the structural differences between mod-
els are not significant, the Qwen3-32b model out-
performs the previous generation’s larger Qwen?2.5-
72b. Smaller models in the Qwen3 series can also
be compared with models of the same scale in
Qwen2.5. However, while Longwriter can gen-
erate outputs up to 10,000 tokens, the generation
quality declines.

Increasing the Context Window Does Not Im-
prove Long-Form Generation. We compared the
performance of the Qwen2.5-14B and 7B models
with a 1M context window version. As shown
in Figure 6, there was little difference in overall
scores. Specifically, long-input models performed
better than standard models at 1K, 2K, and 4K
lengths but showed decreased performance at 8K
when generating ultra-long sequences. This sug-
gests that while long-context understanding and
long-form generation share similar mechanisms,

factors such as error accumulation can hinder effec-
tive long-output generation. Therefore, optimizing
data for long-output tasks specifically is more im-
portant than merely increasing the context window.

90
80 N Qwen2.5-14B
B Qwen2.5-14B-1IM
70 I Qwen2.5-7B
60 B Qwen2.5-7B-1M
250 - .. @ Overall Score
S
@ 40
30
20
10
0

CF BioG SR NW KVG SMS

Figure 6: Input length distribution of LongWeave

5 Conclusion

Evaluating long, constrained LLM outputs is chal-
lenging. We introduce LongWeave, featuring
Target-Anchored Evaluation (TAE) to bridge real-
world relevance with objective verifiability. This
suite spans seven tasks across five domains with
customizable input/output lengths. Our evaluation
of 23 LLMs using LongWeave demonstrates that
even top models falter for long generations, with
performance degrading significantly as length rises;
reasoning models, however, navigate these chal-
lenges more effectively. LongWeave thereby pro-
vides a precise instrument to diagnose these sys-
temic issues and guide the development of truly
capable long-form generation.

Limitations

While LongWeave and its Target-Anchored Evalu-
ation (TAE) offer diverse tasks for long-form gen-
eration evaluation, certain limitations, particularly
concerning computational resources and evaluation
efficiency, should be acknowledged:

¢ High Computational Cost for Evaluation:
The nature of LongWeave, involving long in-
put materials (up to 64K tokens) and the gener-
ation of long outputs (up to 8K tokens), inher-
ently makes evaluating a wide range of mod-
els computationally expensive. Each test run
consumes significant GPU time and resources,
potentially limiting the scale and frequency of
benchmarking.

* Resource-Intensive LLM-as-Judge: Several
tasks within LongWeave rely on a large LLM
(e.g., Qwen2-5-72B-Instruct) as the judge for
verifying target achievement. Running such
a large evaluation model further adds to the
computational burden and cost. Developing
methods to achieve comparable accuracy with
smaller, more efficient evaluator models is a
potential.

e Limited Coverage of Creative Tasks and
Stylistic Qualities: LongWeave can be ex-
panded to better address tasks requiring cre-
ativity, imaginative storytelling, or novel con-
tent generation. This could involve incorpo-
rating metrics for fluency, stylistic diversity,
and literary merit, which would allow the
benchmark to assess models on more subjec-
tive aspects of long-form generation, comple-
menting its current focus on factual accuracy,
instruction adherence, and structural correct-
ness.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Tlge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024a. LongBench: A bilingual, mul-
titask benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi
Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi
Li. 2024b. Longwriter: Unleashing 10,000+ word
generation from long context llms. arXiv preprint
arXiv:2408.07055.

Aydar Bulatov, Yuri Kuratov, Yermek Kapushev, and
Mikhail S Burtsev. 2023. Scaling transformer to
Im tokens and beyond with rmt. arXiv preprint
arXiv:2304.11062.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:
Efficient fine-tuning of long-context large language
models. In The International Conference on Learn-
ing Representations (ICLR).

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In Infer-

national Conference on Learning Representations
(ICLR).

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, and Furu Wei. 2023.
Longnet: Scaling transformers to 1,000,000,000 to-
kens. In Proceedings of the 10th International Con-
ference on Learning Representations.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han-
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024.
Data engineering for scaling language models to
128K context. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages
14125-14134. PMLR.

Tianyu Gao, Alexander Wettig, Howard Yen, and
Danqgi Chen. 2024. How to train long-context
language models (effectively). arXiv preprint
arXiv:2410.02660.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Norm Goldstein. 1998. The Associated Press Style-
book and Libel Manual. Fully Updated and Revised.
ERIC.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What'’s the real
context size of your long-context language models?
arXiv preprint arXiv:2404.06654.

David Lee and Mihalis Yannakakis. 1996. Principles
and methods of testing finite state machines-a survey.
Proceedings of the IEEE, 84(8):1090-1123.

https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://proceedings.mlr.press/v235/fu24d.html
https://proceedings.mlr.press/v235/fu24d.html
https://proceedings.mlr.press/v235/fu24d.html

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2024b.
Ringattention with blockwise transformers for near-
infinite context. In The Twelfth International Confer-
ence on Learning Representations.

Sennan Liu, Shuang Zeng, and Sujian Li. 2020. Evalu-
ating text coherence at sentence and paragraph levels.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 1695-1703, Mar-
seille, France. European Language Resources Asso-
ciation.

Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen Chu.
2024c. LongGenBench: Long-context generation
benchmark. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 865—
883, Miami, Florida, USA. Association for Compu-
tational Linguistics.

Chau Minh Pham, Simeng Sun, and Mohit Iyyer. 2024.
Suri: Multi-constraint instruction following for long-
form text generation. Preprint, arXiv:2406.19371.

Ronak Pradeep, Nandan Thakur, Shivani Upadhyay,
Daniel Campos, Nick Craswell, and Jimmy Lin. 2024.
Initial nugget evaluation results for the trec 2024
rag track with the autonuggetizer framework. arXiv
preprint arXiv:2411.09607.

Zehan Qi, Rongwu Xu, Zhijiang Guo, Cunxiang Wang,
Hao Zhang, and Wei Xu. 2024. long?rag: Evaluat-
ing long-context & long-form retrieval-augmented
generation with key point recall. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 4852-4872, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Shanghaoran Quan, Tianyi Tang, Bowen Yu, An Yang,
Dayiheng Liu, Bofei Gao, Jianhong Tu, Yichang
Zhang, Jingren Zhou, and Junyang Lin. 2024. Lan-
guage models can self-lengthen to generate long texts.
arXiv preprint arXiv:2410.23933.

Haoran Que, Feiyu Duan, Liqun He, Yutao Mou,
Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,
Zekun Moore Wang, Jian Yang, Ge Zhang, et al.
2024. Hellobench: Evaluating long text generation
capabilities of large language models. arXiv preprint
arXiv:2409.16191.

Chris Samarinas, Alexander Krubner, Alireza Salemi,
Youngwoo Kim, and Hamed Zamani. 2025. Beyond
factual accuracy: Evaluating coverage of diverse fac-
tual information in long-form text generation. arXiv
preprint arXiv:2501.03545.

Aili Shen and Timothy Baldwin. 2021. A simple yet
effective method for sentence ordering. In Proceed-
ings of the 22nd Annual Meeting of the Special In-
terest Group on Discourse and Dialogue, pages 154—

10

160, Singapore and Online. Association for Compu-
tational Linguistics.

Yixiao Song, Yekyung Kim, and Mohit Iyyer. 2024.
VeriScore: Evaluating the factuality of verifiable
claims in long-form text generation. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 9447-9474, Miami, Florida,
USA. Association for Computational Linguistics.

Haochen Tan, Zhijiang Guo, Zhan Shi, Lu Xu, Zhili
Liu, Yunlong Feng, Xiaoguang Li, Yasheng Wang,
Lifeng Shang, Qun Liu, and Linqgi Song. 2024. Prox-
yQA: An alternative framework for evaluating long-
form text generation with large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 68066827, Bangkok, Thailand.
Association for Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,
Nathan Zixia Hu, Jie Huang, Dustin Tran, Daiyi Peng,
Ruibo Liu, Da Huang, Cosmo Du, and Quoc V Le.
2024. Long-form factuality in large language models.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Yuhao Wu, Ming Shan Hee, Zhigiang Hu, and Roy
Ka-Wei Lee. 2025. Longgenbench: Benchmark-
ing long-form generation in long context LLMs. In
The Thirteenth International Conference on Learning
Representations.

Ruibin Xiong, Yimeng Chen, Dmitrii Khizbullin,
Mingchen Zhuge, and Jiirgen Schmidhuber. 2025.
Beyond outlining: Heterogeneous recursive planning
for adaptive long-form writing with language models.
arXiv preprint arXiv:2503.08275.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024a. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei
Huang, Haoyan Huang, Jiandong Jiang, Jianhong
Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai
Dang, Kexin Yang, Le Yu, Mei Li, Minmin Sun,
Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao
Yin, Wenyuan Yu, Xiafei Qiu, Xingzhang Ren, Xin-
long Yang, Yong Li, Zhiying Xu, and Zipeng Zhang.

https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://aclanthology.org/2020.lrec-1.210/
https://aclanthology.org/2020.lrec-1.210/
https://aclanthology.org/2020.lrec-1.210/
https://doi.org/10.18653/v1/2024.findings-emnlp.48
https://doi.org/10.18653/v1/2024.findings-emnlp.48
https://doi.org/10.18653/v1/2024.findings-emnlp.48
https://arxiv.org/abs/2406.19371
https://arxiv.org/abs/2406.19371
https://arxiv.org/abs/2406.19371
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2024.findings-emnlp.279
https://doi.org/10.18653/v1/2021.sigdial-1.16
https://doi.org/10.18653/v1/2021.sigdial-1.16
https://doi.org/10.18653/v1/2021.sigdial-1.16
https://doi.org/10.18653/v1/2024.findings-emnlp.552
https://doi.org/10.18653/v1/2024.findings-emnlp.552
https://doi.org/10.18653/v1/2024.findings-emnlp.552
https://doi.org/10.18653/v1/2024.acl-long.368
https://doi.org/10.18653/v1/2024.acl-long.368
https://doi.org/10.18653/v1/2024.acl-long.368
https://doi.org/10.18653/v1/2024.acl-long.368
https://doi.org/10.18653/v1/2024.acl-long.368
https://openreview.net/forum?id=4M9f8VMt2C
https://openreview.net/forum?id=3A71qNKWAS
https://openreview.net/forum?id=3A71qNKWAS
https://openreview.net/forum?id=3A71qNKWAS

2025. Qwen2.5-1m technical report. arXiv preprint
arXiv:2501.15383.

Ruihan Yang, Caiqi Zhang, Zhisong Zhang, Xinting
Huang, Sen Yang, Nigel Collier, Dong Yu, and
Deqing Yang. 2024b. Logu: Long-form genera-
tion with uncertainty expressions. arXiv preprint
arXiv:2410.14309.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard
Yen, Tianyu Gao, Greg Durrett, and Danqgi Chen.
2025. Longproc: Benchmarking long-context lan-
guage models on long procedural generation. arXiv
preprint arXiv:2501.05414.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding,
Daniel Fleischer, Peter Izsak, Moshe Wasserblat, and
Dangi Chen. 2025. Helmet: How to evaluate long-
context language models effectively and thoroughly.
In International Conference on Learning Representa-
tions (ICLR).

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,
Qiwei Ye, and Zhicheng Dou. 2025. Long context
compression with activation beacon. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024.
ooBench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262—
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.

A Appendix
B Related Work
B.1 Long Input and Output Models

Recent advancements in large language models
(LLMs) have significantly improved long-context
input processing through techniques such as effi-
cient attention (e.g., Flash Attention (Dao, 2024),
Ring Attention (Liu et al., 2024b)), sparse atten-
tion methods (e.g., shifted sparse attention in Lon-
gLoRA (Chen et al., 2024), dilated attention (Ding
et al., 2023)), and memory mechanisms like recur-
rent caching (Zhang et al., 2025; Bulatov et al.,
2023). For long output generation, methods like
Suri (Pham et al., 2024) have explored multi-
constraint instruction following, while LongWriter
(Bai et al., 2024b) introduced AgentWrite to enable
ultra-long outputs by decomposing tasks into sub-
tasks. Additionally, the Self-Lengthen framework
(Quan et al., 2024) iteratively expands initial out-
puts, training models to generate longer responses

11

without requiring auxiliary data. These innovations
enable LLMs to handle both long inputs and gener-
ate extended outputs.

B.2 Long Generation Benchmarks

Long generation benchmarks typically rely on
similarity-based metrics like a-nDCG and Self-
BLEU, or LLM-as-judge approaches (Que et al.,
2024; Bai et al., 2024b), which struggle with longer
texts due to their complexity. An alternative is to
decompose evaluation into atomic statements, ei-
ther extracted automatically using search engines
or fixed databases for factual accuracy (Song et al.,
2024; Wei et al., 2024; Samarinas et al., 2025), or
manually designed through expert discussions (Tan
et al., 2024) or checklists (Que et al., 2024). How-
ever, these methods face verification challenges
due to broad or trivial claims from automated ex-
traction and incompleteness from manual design.
To address this, objective tasks, such as MMLU
(Liu et al., 2024c) and procedural verification, pro-
vide more controlled evaluations but often misalign
with real-world scenarios. While they support up
to 4k tokens, they remain limited for longer texts.

B.3 Code Fixing Evaluation

We evaluate LLM-generated code (Ciixeq) against
the original (Cyrig) using several metrics, applied
only after ensuring the submission is a relevant
and complete code fix via an auxiliary LLM judge.
Irrelevant or incomplete responses receive zero
scores.

Runnability Indicates syntactic validity: r
I(compile(Cfixed) succeeds), where I(-) is the indi-
cator function.

Style Quality Measures Flake8 adherence based
on violation count NV, > 0. With scaling factor
k = 50.0:

{

Length Control Assesses structural fidelity via
top-level function counts NV, Ny (original, fixed).
Penalizes difference Ay = [Ny — N,| relative to
scale Sy = max(1,0.25N,).

g

if r = 1 & Flake8 ok

otherwise

(1+ Ny/k)~
0

“)

if AST ok

otherwise

(1+ (An/Sn)*)

0 &)

https://openreview.net/forum?id=1eQT9OzfNQ
https://openreview.net/forum?id=1eQT9OzfNQ
https://openreview.net/forum?id=1eQT9OzfNQ
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814

Overall Score The harmonic mean aggregates
the metrics, penalizing any weak component:
3rt+qt+fH7 ifrg f>e
otherwise

(6)
for small € > 0 (e.g., 10™%). This suite balances
correctness, style, and structure.

Total =

B.4 Answer Length

Model Name 1k 2k 4k 8k
DeepSeek-R1-Distill-Qwen-32B 8742 1271.8 1404.6 1585.3
DeepSeek-R1-Distill-Qwen-7B 1430.5 1731.6 1931.0 1809.3
LongWriter-glm4-9b 1791.0 2156.1 2895.6 32774
Meta-Llama-3 70B Instruct 662.1 1504.6 2180.7 26139
Meta-Llama-3 8B Instruct 11558 1592.0 2119.5 2520.0
Meta-Llama-3 8B Instruct (100 samples) 1206.3 1590.4 2092.3 2556.6
Meta-Llama-3 8B Instruct (160) 1189.9 1561.0 1978.3 2540.4
Meta-Llama-3 8B Instruct (200 samples) 1148.6 1525.1 2003.6 2473.1
Meta-Llama-3 8B Instruct (200 samples 2) 1184.8 1646.3 20609 2514.3
Meta-Llama-3 8B Instruct (200 samples 3) 1187.8 1608.1 1994.1 2584.1
Meta-Llama-3 8B Instruct (20 sample 3) 1221.6 1551.3 2051.6 2613.2
Meta-Llama-3 8B Instruct (20 samples) 11642 1620.5 21052 2694.7
Meta-Llama-3 8B Instruct (20 samples 2) 12724 1675.2 2085.7 2560.1
Meta-Llama-3 8B Instruct (40 samples) 1156.2 1557.6 20873 2568.7
Phi-4-mini-instruct 2088.7 25943 2649.3 2606.7
Qwen?2 14B Instruct 1360.8 2188.8 27448 2987.2
Qwen?2 14B Instruct (1M) 913.2 14773 16784 2092.7
Qwen?2 3B Instruct 1130.8 1558.7 1938.7 2178.6
Qwen?2 72B Instruct 12429 1831.2 2341.0 25155
Qwen?2 7B Instruct 1069.8 1669.7 21934 23514
Qwen?2 7B Instruct (1M) 933.1 1370.8 1666.8 2087.3
deepseek-rl 559.3 746.5 1078.0 1558.4
deepseek-v3 6747 11203 14052 1696.3
gemini-2.0-flash 700.2 1139.4 17489 23853
gpt-40-2024-08-06 442.8 541.3 636.4 739.4
gpt-40-2024-11-20 649.5 802.6 917.0 947.9
Ilama-4-maverick-17b-128e-instruct 779.1 1160.0 13315 1780.2
1lama-4-scout-17b-16e-instruct 953.6 14849 18885 2318.0
03-mini-2025-01-31 1057.0 21364 2958.8 2948.1
qwen-long 647.4 952.8 13644 17338
qwen3-14b 727.8 2208.0 2836.7 3750.7
qwen3-32b 6553 13549 24112 32783
qwen3-4b 658.5 1436.0 24558 32275
qwen3-8b 670.2 15528 2666.7 3635.0
qwq-plus-2025-03-05 606.0 8574 1263.6 1654.2

Table 6: Average Answer Lengths

B.5 AP stype critiaion
B.6 Details of tasks
B.7 Details of sample construction

Excel2text: The methodology facilitates the gener-
ation of synthetic transactional sales data intrin-
sically correlated with corresponding analytical
conclusions. The process commences with the
definition of foundational sales scenario param-
eters, including sales region, target fiscal period,
currency, overarching sales targets, and antecedent
period sales figures, alongside a predefined cor-
pus of sales representatives, product lines, and
operational cities. A pivotal aspect involves the
stochastic injection of predefined systemic biases
during each operational instance; these biases may
pertain to overall target achievement (e.g., exceed-
ing, meeting, or missing targets), growth trajectory

12

(positive, neutral, or negative), the anomalous per-
formance of specific sales representatives or prod-
ucts, and variations in new customer acquisition
rates. These stochastically determined biases subse-
quently modulate the synthesis of individual trans-
actional records. Attributes of each transaction,
such as sales representative assignment, product
selection, customer provenance (new versus exist-
ing), and critically, the final transaction value, are
probabilistically influenced by the afore-mentioned
biases. This ensures that the generated dataset not
only achieves a specified volume but also exhibits
inherent, bias-driven characteristics across multiple
dimensions, thereby providing a feature-rich foun-
dation for subsequent analytical procedures. Upon
completion of data synthesis, the resultant struc-
tured dataset is subjected to a multi-dimensional
analytical engine. This engine emulates real-world
business intelligence reporting by performing com-
prehensive quantitative aggregations and inferential
processing across diverse facets, including overall
performance metrics (e.g., total sales versus tar-
get, period-over-period growth, average transaction
value), sales representative efficacy (e.g., top and
bottom performers, target attainment distributions),
product performance (e.g., leading revenue gener-
ators, category contributions), geographical sales
distribution, and customer segment analysis (e.g.,
new versus existing customer value, key account
contributions). Key metrics and identified trends
derived from this analysis are then articulated as
concise, natural language analytical conclusions.
To enhance utility and stimulate further inquiry,
each conclusion is systematically paired with a rel-
evant analytical query, designed to prompt deeper
investigation into the causal factors underpinning
the observed phenomena. The system culminates
in the delivery of two principal outputs: the raw,
granular transactional dataset (typically in CSV
format), which serves as the evidentiary basis for
analysis, and a structured compendium (typically
in JSON format) containing metadata, key perfor-
mance indicators, and a curated, prioritized set of
"conclusion-query" pairings, offering directly con-
sumable insights for simulated business reporting.
This integrated pipeline underscores a design phi-
losophy centered on the coherent synthesis of data
with its analytical interpretation.

Fix Code: The system employs a generative
methodology to synthesize Python source code
exhibiting a high density of nuanced linting vio-
lations, intended to serve as challenging test in-

CODE FIX

Role: Python Developer

FLAKES8 CATEGORIES TO CHECK:
- E/ W —pycodestyle

length violations (E501).
- F — Pyflakes

- B — flake8-bugbear

(B008).
- N — pep8-naming

- SIM — flake8-simplify

over manual key checks (SIM108).
- C4 — flake8-comprehensions

‘dict()" calls with generator expressions (C401).

s

import decimal,string # E401

Input Python Code:

_main__ "

if _ name___
! MainEntryPoint()
i #--- END OF CODE ---

Instructions:
- Fix Syntax Errors: Ensure the code is valid Python.

explanations before or after.

Complete, Corrected Python Code:

Task: You are given a Python code file that may contain syntax errors or violate style guidelines. Your goal is to fix the code
so that it is runnable and complies with the following coding standards:

Basic PEP 8 formatting errors (E) and warnings (W), such as inconsistent indentation (E111), extra spaces (E221), or line

Potential runtime issues, e.g., undefined names (F821) or unused imports/variables (F401).

Code patterns prone to bugs or pitfalls, like modifying a list while iterating (B007) or using mutable default arguments

Naming convention violations, such as function names not in snake case (N802) or class names not in CamelCase (N801).

Suggestions to simplify and streamline code, for instance redundant "if x == True" checks (SIM102) or favoring 'dict.get’

Best practices around comprehensions: avoid unnecessary list() wrappers (C400) or use dict comprehensions instead of

- Correct Style Violations: Fix all style issues under the categories above.
- Preserve Functionality: Keep the original behavior, keep the number of functions unchanged, prioritize runnability.
- Output Only Code: Return only the complete, corrected Python code within a single **“python block, without any

Figure 7: An illustrative prompt example for the Code Fix task. The prompt presents a segment of "dirty’ Python
code and instructs the LCLM to rectify it according to comprehensive Flake8 standards (E/W/F, B, N, SIM, C4)

while maintaining runnability and core functionality.

stances for static analysis tools and code quality
assessment. The generation process is initiated by
establishing global configuration parameters, in-
cluding stylistic targets (e.g., line length) and com-
plexity constraints (e.g., maximum nesting depth,
function length), alongside lexical resources such
as curated lists of nouns, verbs, and adjectives for
constructing semantically plausible, albeit poten-
tially misleading, identifiers. A core component
is a dynamic scope management system, which
tracks variable definitions and usage across nested
lexical contexts. This enables the generation of
syntactically valid code where identifier-related
violations, such as improper naming conventions
(e.g., N-series violations from flake8-naming) or
unused variables (F841), are contextually embed-
ded. Identifier generation itself is a probabilistic

13

process, designed to stochastically introduce devia-
tions from Python Enhancement Proposal 8 (PEP
8) style guidelines, while also attempting to create
names that might subtly obscure their true purpose
or shadow existing identifiers in parent scopes. The
synthesis of executable code blocks and function
bodies is orchestrated through a weighted, proba-
bilistic selection of diverse code constructs. These
constructs range from simple assignments and print
statements to complex control flow structures like
conditional statements and loops. Each construct
generator is imbued with the capability to intro-
duce specific categories of violations. For instance,
conditional statement generators might create ex-
plicit boolean comparisons (SIM21x) or if-else pat-
terns amenable to ternary expressions (SIM108).
Loop generators may produce unconventional iter-

Generate a Python dictionary with the following requirements:

- Total entries: 20

- MUST include the entry: ' DKUNULZASGUKBXPBVUNROMKQMOKMTFBC":

'twidr01birzxfv6s8hkdxysaoyw8ce4i'

- The special entry should be placed at index 12

- Other keys and values must follow these rules:

* Keys must be random strings of length 32, consisting

ONLY of uppercase letters (A-Z) and underscores ()

* Values must be random strings of length 32, consisting
ONLY of lowercase letters (a-z) and digits (0-9)

* Keys and values MUST NOT contain

any special characters (e.g., /, =, $, @, :, etc.) or spaces

- Output ONLY the dictionary in the following format (as a single-line string):

{| (]
000 6 600 g 000

'DKUNULZASGUKBXPBVUNROMKQMOKMTFBC"

'twidr01birzxfv6s8hkdxysaoyw8ce4i', ...,
}

- Ensure the dictionary string is valid JSON

and can be parsed by “json.loads()” without errors.

- DO NOT include any code or explanations. Only return the dictionary string.

Figure 8: An illustrative prompt example for the Gen KV Dictionary task. The prompt details the requirements for
generating a Python dictionary, including the total number of entries, a specific key-value pair to be inserted, its

target index, and formatting rules for other entries.

ator variable names or inefficient comprehensions
(C4xx series from flake8-comprehensions). Fur-
thermore, generators for function definitions are
specifically designed to introduce more complex
issues, such as mutable default arguments (BO06
from flake8-bugbear) or function calls within de-
fault argument expressions (B008), often obfus-
cated by the presence of other parameters and non-
trivial function bodies. Whitespace and formatting
violations (E-series and W-series) are pervasively
introduced at various granularities, from inconsis-
tent spacing around operators and after commas to
improper blank line usage and trailing whitespace.
The system also synthesizes a sequence of inter-
dependent functions, simulating a rudimentary pro-
gram flow (e.g., data loading, validation, analysis,
reporting), which are ultimately orchestrated within
a main execution block. This structural coherence
provides a more realistic backdrop for the embed-

14

ded violations, moving beyond isolated infractions
to scenarios requiring more holistic refactoring.
The overall probability of introducing a violation is
a configurable parameter, allowing for control over
the density of infractions, with the system actively
aiming to make these violations less trivial to au-
tomatically or manually remediate by intertwining
them with functional, albeit flawed, program logic.
The final output is a runnable Python script, replete
with these intentionally challenging, multi-category
linting issues.

KG2Text: system synthesizes rich, protagonist-
centric knowledge graphs (KGs) and subsequently
translates salient subgraphs into natural language
narratives. The generative process for each KG
commences with the instantiation of a unique
protagonist, whose attributes, including socio-
economic background and a randomly assigned
character archetype (e.g., Scientist, Artist, En-

KG2TEXT

Role: Biographer / Content Writer

(Triple) format. Combine the facts naturally into a narrative.

i Input Facts (Triples):

i - Ambassador Cathy Allen - authored year - 2005
i - Ambassador Cathy Allen - birth year - 1977

i -- Justin Bowman - death year - 1998

i - Justin Bowman - job - Senator

i - Justin Bowman - nationality - Sri Lanka

i - Justin Bowman - socioeconomic background - Upper Cl
i - Justin Bowman - stated motivation - Sought to crea
i - Major Promotion (1821) - context description - T
i tensions.

i - Major Promotion (1821) - event type - Personal Milestone
i - Major Promotion (1821) - historical era - Pre-WWI Era

i - Major Promotion (1821) - significance - Medium
i - Major Promotion (1821) - year - 1821
i - Nevada - place type - Region

Writing Style:
be informative and neutral.

Required Content:

Length Specifications (TARGET WORD COUNT):

i - Major Promotion (1821) - participant - Ambassador Cathy Allen

Task: Write a coherent and readable biography about the entity associated with the slug '00006 _ambassador cathy allen'.
Your biography must be based **exclusively** on the factual statements provided below in Subject-Predicate-Object

i - A Manifesto for Incubate Impactful E-Markets - authored by - Ambassador Cathy Allen
i - A Manifesto for Incubate Impactful E-Markets - publication year - 1874

i - A Manifesto for Incubate Impactful E-Markets - work type - Manifesto

i - Ambassador Cathy Allen - authored - A Manifesto for Incubate Impactful E-Markets

auring a period of industrialization and rising global |

Produce a well-structured paragraph or paragraphs. Ensure smooth transitions between facts where possible. The tone should

Ensure that the core information from *each* of the input triples is included in your generated biography.

- The biography should be around 1024 words. Strive for this length, but prioritize covering all facts accurately.

You may now begin writing the biography based on the provided triples around 1024 words:

Figure 9: An illustrative prompt example for the KG 2 Text task. The prompt provides a set of knowledge graph
triples and asks the LCLM to synthesize them into a coherent biographical text of a specified target word count.

trepreneur), are stochastically determined. These
initial conditions significantly influence the sub-
sequent probabilistic expansion of the KG. The
protagonist’s lifespan and historical era are also
established to ensure temporal coherence for re-
lated entities and events. The KG is then incre-
mentally constructed through an iterative expan-
sion process originating from the protagonist. At
each step, existing nodes are selected for expansion
based on their proximity to the protagonist and pre-
defined archetypal relationship propensities. New
nodes, representing persons, organizations, places,
creative works, or events, are generated with con-
textually relevant attributes, or existing nodes are
connected, adhering to a set of permissible relation-
ship types defined within a structured map. This
map also dictates the likelihood of specific rela-
tionships based on the source node’s type and, for

15

persons, their current life phase (e.g., Childhood,
Education, MidCareer). Attribute generation for
new entities, such as names, job titles, or event
descriptions, leverages procedural generation tech-
niques and controlled randomness, often influenced
by the protagonist’s established background and
archetype to foster narrative consistency. Temporal
plausibility is rigorously maintained by ensuring
that dates associated with relationships and events
align with the lifespans of involved entities. Once
a KG reaches a target size or expansion limits, a
focused subgraph is extracted. This subgraph typi-
cally comprises nodes within a specified graph dis-
tance from the protagonist, representing the most
narratively relevant portion of the larger KG. This
subgraph then serves as the direct input for the text
generation phase. Each node attribute (excluding
the primary name) and each relationship within

Instructions:

Werite a news report titled 'Rewilding the Earth: A Revolutionary Approach to Ecosystem

Restoration.'

Cover: Introduce the concept of rewilding in the fictional country of 'Valora,' where massive

wildlife corridots are being created to restore ecosystems and reintroduce extinct species.

Style Guidelines (AP Style):

Content Requirements:

You MUST include ALL of the following **STATEMENTS** as listed below:
1. The pilot results show that two-thirds of the rewilded areas exhibit increased wildlife

activity.

2. In Valora's project, the government has decided to reintroduce extinct species like the

saber-toothed tiger, woolly mammoth; to restore ecosystem balance.

Length Specifications:

- **TARGET WORD COUNT:** Generate an article that is **around to 1024 words**.

Significant deviation from this length will be penalized.

You may now begin your {self.test_length} words writing:

Figure 10: An illustrative prompt example for the News Writing task. The prompt includes a news query, a list of
factual statements to incorporate (and potentially correct for AP style), the AP style rubric, and a target word count

for the generated article.

this subgraph, along with significant attributes of
these relationships (e.g., roles, dates, specific de-
tails like degree or investment amount), are sys-
tematically converted into individual descriptive
sentences using predefined, templated linguistic
patterns. These patterns map structural KG ele-
ments (subject-predicate-object triples, or subject-
attribute-value) to natural language constructs. The
system’s output for each generated KG is multi-
faceted, including the full KG data, the extracted
subgraph data, and the derived natural language
sentences, typically stored in structured JSON files.
Optionally, visualizations of both the full KG and
the subgraph can be produced using graph layout
algorithms. Finally, as an aggregative step, the nat-
ural language sentences generated from all individ-
ual KGs within a single execution run are compiled
into a consolidated dataset, facilitating larger-scale
analysis or downstream natural language process-
ing tasks. This methodology emphasizes the cre-
ation of datasets where structured knowledge and
its textual manifestation are coherently and trace-
ably linked, grounded in simulated sociological and

16

temporal contexts.

News Writing: The system under discussion is
designed to rigorously evaluate a large language
model’s (LLM) proficiency in generating news re-
ports that conform to the Associated Press (AP)
style guidelines. This evaluation is predicated on
the model’s ability to synthesize a coherent narra-
tive based on a given news topic query, integrate a
series of predefined factual statements, and adhere
to a specified target word count, all while meticu-
lously applying AP style conventions. The process
of generating verifiable test data, specifically the
factual statements, is a critical precursor to the eval-
uation. These statements are meticulously crafted
to serve as direct inputs that the LLM must incorpo-
rate into its generated news article. Crucially, each
statement is designed to test a specific facet of the
AP style guide; thus, many are intentionally formu-
lated to violate these rules. For instance, a state-
ment might employ incorrect number usage (e.g.,
writing out "eleven" instead of using the numeral
"11"), misuse punctuation (e.g., including an Ox-
ford comma), or improperly format dates, times, or

Please rearrange the following paragraphs into a logically coherent article:

[[Segment 0]]

The result is completely random, except for the first 3 cards from the Whimsical machine.

In particular, ---

[[Segment 2]]

XX

Requirements:

1. Keep the original content of paragraphs unchanged, only adjust their order

2. Use [[Segment X]] to identify original paragraph numbers, starting from 0 up to 2.

3. Output the complete content in final order (include paragraph identifiers)

4. The final output must contain exactly 3 segments

Example:
[[Segment 0]]
Paragraph content
[[Segment 1]]

Another paragraph content

Figure 11: An illustrative prompt example for the Paragraph Ordering task. The prompt presents a set of shuffled
paragraphs, each tagged with an identifier (e.g., "[[Segment i]]"), and requires the LCLM to output the correct

sequence of these identifiers to form a coherent text.

titles. Accompanying each such potentially flawed
statement in the test dataset is its corresponding
correct AP style expression and a clear rationale
explaining the nature of the original stylistic error.
This structured approach ensures that each state-
ment serves as a verifiable unit for assessing the
LLM'’s capacity for rule-based stylistic correction.
The construction of the prompt provided to the
generative LLM is a multi-component process. It
begins with the query, which defines the overarch-
ing news topic, often suggesting a narrative struc-
ture or specific angles to be explored. To this, the
complete AP style rubric—a comprehensive guide
detailing rules across numerous categories with il-
lustrative examples—is appended. A key element
of the prompt is a curated list of the aforementioned
factual statements. These statements, presented in
their original, potentially non-compliant form, are
explicitly designated as mandatory inclusions for

17

the generated article. The prompt also specifies the
target word count, imposing a length constraint on
the LLM’s output. This careful assembly of the
prompt creates a challenging scenario where the
LLM must not only generate fluent and relevant
content based on the query but also actively en-
gage with the AP style guide to identify and rectify
the stylistic infelicities within the provided state-
ments as they are woven into the narrative. The
verifiability of the task lies in the direct comparison
of the model’s treatment of these embedded state-
ments against their known correct AP style forms,
all within the context of the broader news writing
assignment.

SALES REPORT

Role: Senior Business Analyst

Task: You are provided with raw sales transaction data in CSV format. Your goal is to perform a detailed analysis based
only on this data and generate a comprehensive sales performance report.

Input Sales Data (CSV Format): Excel
csv
A B [D E F G H I] K L M N o] P Q R S

1 OrderlD OrderDate Region City Salesperson Salesperson Salesperson CustomerlD CustomerNz IsNewCusto ProductlD ProductNan ProductCate Quantity UnitPrice TotalSaleAm WeekOfYea DayOfWeek DayOfMonth |
2 ORD-2025-(2025/4/7 East Region Philadelphic EMP008 Meghan Rot 130000 CUST-9151- Tran-Griffitt FALSE ~ PROD-OO01 Extended W Other 1 1200 1073.07 15 Monday 7
3 ORD-2025-(2025/4/29 East Region Pittsburgh EMP009 Danielle Har 93000 CUST-3153- Mullen, Johi___FALSE PROD-S03 Predictive M Software 2 7500 17188.87 18 Tuesday 29
4 ORD-2025-(2025/4/20 East Region New York EMP002 Matthew Jor 87000 CUST-8239- Cruz-M| ore__ FALSE = PROD-CO1 Sensor Pack Consumable 20 500 8739.04 16 Sunday 20
5 ORD-2025-(2025/4/9 East Region Newark EMP001 Carlos Malo 105000 CUST-3292- Rodger: Vi FAES PROD-001 Extended W Other 1 1200 1166.24 15 Wednesday 9
6 ORD-2025-(2025/4/27 East Region Miami EMP016 Kimberly Oc 98000 CUST-4750- Mcneil € rou.... EALS PROD-VO1 Platinum Su Service 1 3000 5752.21 17 Sunday 27
7 ORD-2025-(2025/4/1 East Region Philadelphi: EMP008 Meghan Rot 130000 CUST-1750- Skinner| Bis™= 77 t3’ PROD-S04 Reporting D Software 1 2000 2803.01 14 Tuesday 1
8 ORD-2025-(2025/4/18 East Region Newark EMP001 Carlos Malo 105000 CUST-NEW- Stewart| PROD-S02 Data Integrz Software 2 4500 1044119 16 Friday 18
9 ORD-2025-(2025/4/16 East Region Philadelphic EMPO03 Duane Garci 112000 CUST-9875- Weaver EXCEL PROD-S02 Data Integrz Software 1 4500 4995.17 16 Wednesday 16
10 ORD-2025-(2025/4/13 East Region Washingtor EMP014 Michael Jon: 94000 CUST-NEW- Gutierrez-B: ~ TRUE PROD-HO03 Network Sw Hardware 8 3500 29921.17 15 Sunday 13
11 ORD-2025-(2025/4/24 East Region Newark EMP017 Patrick Mart 103000 CUST-NEW-Anderson-T ~ TRUE PROD-S04 Reporting D Software 4 2000 9919.8 17 Thursday 24

Analysis Structure Guidance:

Please structure your sales performance report logically. Start with an overall performance summary, then delve into analyses
of sales representative performance, product performance, and any other relevant insights identified from the data. Use a
narrative style suitable for a management report, ensuring all insights are directly derived from the provided CSV data.

Required Content - Address These Specific Questions:
Within your structured analysis, ensure you specifically attempt to answer the following questions based *only* on the
provided data:
- **Question 1:** Who was the top sales representative by revenue and what was their contribution?
Question 2: What was the average deal size across all transactions?
**Question 3:*¥* Which product generated the most revenue and what was its contribution?
**Question 4:¥* How many sales representatives met or exceeded their sales targets?

- **Question 15:** Who was the second-ranked sales representative and how far behind the leader were they?
- **Question 16:** How did the top performer's average deal size compare to the team average?

Question 17: What were the top 3 products by revenue?

Question 18: How did the top product's average sale value compare to the overall average deal size?
Question 19: What percentage of total revenue did the top 3 products contribute collectively?
Question 20: What was the contribution of new customers to total revenue (count and percentage)?

- Length Specifications (TARGET WORD COUNT):
- The report should be **around 1024 words**. The deviation from this length may affect your evaluation.

You may now begin your analysis and write the approximately 1024 words report:

Figure 12: An illustrative prompt example for the Sales Report task. The prompt provides sales data (as a Markdown
table derived from CSV) and a list of analytical questions, instructing the LCLM to generate a structured report that
includes answers to these questions.

18

STATE MACHINE

Your task is to simulate a state transition process based on the following rules.
The input string for this simulation is:
'2020112011201010121112012102100022202000222211212010110".

i The state machine operates with the following configuration:

1. Initial State: SO

2. State Transition Rules:

Current State | Input | Next State | Output Signal

S0 |0 |S0 | 0
S0 |1 |st | 1
S0 12 |s2 | 2
st |0 |t | 1
st |1 |S2 | 2
s1 |2 |S0 | 0
s2 |0 |S2 | 2
s2 |1 |80 | 0
s2 |2 |l | 1

Here is an example of a valid state transition process:
i Assume the input string is '202". The state transition process would be as follows:
Current State | Input | Next State | Output Signal

S0 |2 |S2 | 2
s2 [0 |S2 |2
) |2]St 1

i Note: The above example is dynamically generated based on the state transition rules

and the input string. The actual output may vary depending on the specific input string.

Based on the above rules, please generate a simulated state transition process for the
input string '2020112011201010121112012102100022202000222211212010110".
Display the current state, input, next state, and output signal for each step.
| Ensure that the generated process strictly adheres to the state machine rules.
Important:
1. Do NOT generate any code ot explanatory text. 2. Do **NOT** use any form of
truncation. You **must** list all steps.
Only provide the state transition process in the following format:
Current State | Input | Next State | Output Signal

<State> | <Char>| <NextState>| <Output>

Figure 13: An illustrative prompt example for the State Machine task. The prompt defines a complete finite state
machine (initial state, transition table) and provides an input string, requiring the LCLM to simulate the state
transitions step-by-step and output the resulting states and signals.

19

CODE FIX

Role: Python Developer

Task: You are given a Python code file that may contain syntax errors or violate style guidelines. Your goal is to fix the code
so that it is runnable and complies with the following coding standards:

FLAKES8 CATEGORIES TO CHECK:
- E /W —pycodestyle

Basic PEP 8 formatting errors (E) and warnings (W), such as inconsistent indentation (E111), extra spaces (E221), or line
length violations (E501).
- F — Pyflakes

Potential runtime issues, e.g., undefined names (F821) or unused imports/variables (F401).
- B — flake8-bugbear

Code patterns prone to bugs or pitfalls, like modifying a list while iterating (B007) or using mutable default arguments
(B00S).
- N — pep8-naming

Naming convention violations, such as function names not in snake case (N802) or class names not in CamelCase (N801).
- SIM — flake8-simplify

Suggestions to simplify and streamline code, for instance redundant “if x == True' checks (SIM102) or favoring ‘dict.get’
over manual key checks (SIM108).
- C4 — flake8-comprehensions

Best practices around comprehensions: avoid unnecessary list() wrappers (C400) or use dict comprehensions instead of
“dict()" calls with generator expressions (C401).

bM Input Python Code: Code

i import decimal,string # E401

__main__ "

——n

if __name__
i MainEntryPoint()
i #--- END OF CODE ---
Instructions:
- Fix Syntax Errors: Ensure the code is valid Python.
- Correct Style Violations: Fix all style issues under the categories above.
- Preserve Functionality: Keep the original behavior, keep the number of functions unchanged, prioritize runnability.
- Output Only Code: Return only the complete, corrected Python code within a single **“python block, without any
explanations before or after.

Complete, Corrected Python Code:

Figure 14: Another illustrative prompt example for the Code Fix task, showcasing the input format where ’dirty’
Python code is provided alongside instructions for Flake8-compliant correction and functionality preservation.

20

James Williams PhD

. A Thesis on Reinvent Kill...
North Connie Department

Policy Recommendations Re...j

influenced b
authored

autfored by
bmploys| .
Py St. Amanda Medical Center

authored'by
authored

lived in

employs

. . . worked at authored by
Function-based national i...
Future-Proofed User—Facin...j

Alabama

livedin

experienced

participant

authoreg| p
quthored by Lecture on incubate dynam...

knows

employs

!
influenced!

Coach Labs Policy Recommendations Re...j

Wesley Roth

Figure 15: An example visualization of a synthetic Knowledge Graph (KG) segment used in the KG 2 Text task.
Such graphs provide the structured triple data (subject-predicate-object) that LCLMs are tasked with converting into
narrative text.

21

"Scoring_Criteria": "- Number writing rules:\n 1-9 should be written in words; 10 and above should use Arabic numerals.\n Always use
Arabic numerals for ages, amounts, percentages, dates, and times.\n- Ordinal numbers:\n Do not use 'st, 'nd’, 'rd’, or 'th'.\n- Plural forms:\n
Do not add an apostrophe to plural numbers (e.g., '7s").",

"Incorrect_Examples": "- 'T have 7 apples."\n- "The event is on the 3rd day."\n- 'She is twenty-five years old."\n- 'All 7’s rolled.",
"Correct_Examples": "- 'T have seven apples."\n- "The event is on the third day."\n- 'She is 25 years old."\n- 'All 7s rolled.""

won

"Scoring_Criteria": "- Quotation marks:\n Periods and commas always go inside quotation marks.\n- Oxford comma:\n Avoid using the
Oxford comma in lists.\n- Space rules:\n Use only one space after a period.\n- Colons:\n Capitalize the first letter after a colon only if it starts
a complete sentence or is a proper noun.",

"Incorrect_Examples": "- He said, 'Let’s go'.\n- Red, white, and blue.\n- This is a sentence. Another one follows.\n- "The following: rules."',

"Correct_Examples": "- He said, 'Let’s go."\n- Red, white and blue.\n- This is a sentence. Another one follows.\n- "The following: Rules."

"Scoring_Criteria": "- Date rules:\n Do not use ordinal indicators like '1st'.\n Abbreviate months as Jan., Feb., Aug., Sept., Oct., Nov., Dec.

\n- Time rules:\n Use a.m./p.m. format and omit :00' for whole hours.\n Write 'midnight' and 'noon' instead of '12 a.m.' or '12 p.m."",

"Incorrect_Examples": "- "The event is on July 3rd."\n- 'It starts at 8:00 p.m."\n- 'Meet me at 12 p.m."",
"Correct_Examples": "- "The event is on July 3.'\n- 't starts at 8 p.m."\n- 'Meet me at noon."
"Scoring_Criteria": "- Street address rules:\n Abbreviate 'Ave.', 'Blvd.', 'St." but spell out 'Road'.\n- State name rules:\n Abbreviate state
names after city names (except Alaska, Hawaii, Idaho, etc.).\n- Direction rules:\n Use lowercase for directions like 'north' and 'south".",
"Incorrect_Examples": "- '1600 Pennsylvania Avenue'\n- 'Nashville, Tennessee'\n- 'We went to the East last year.",
"Correct_Examples": "- '1600 Pennsylvania Ave.'\n- 'Nashville, Tenn."\n- 'We went east last year."
"Scoring_Criteria": "- Title rules:\n Capitalize formal titles before a person's name; use lowercase after the name or when used alone.\n

Avoid courtesy titles like Mr., Mrs., Ms.\n- Gender-neutral language:\n Use gender-neutral terms (e.g., 'police officer' instead of 'policeman’).”,

"Incorrect_Examples": "- President Joe Biden visited."\n- Joe Biden, President, spoke."\n- "The policeman arrived.",
"Correct_Examples": "- 'President Joe Biden visited.'"\n- 'Joe Biden, the president, spoke.'"\n- "The police officer arrived."
"Scoring_Criteria": "- Reference rules:\n Add quotation marks around titles of articles, books, movies, songs, etc.\n Do not use quotation

marks for newspaper or magazine names; capitalize them.\n Use website titles instead of URLs.\n- Reference format:\n Provide full

information on first mention; simplify subsequent mentions.",

"m

"Incorrect_Examples": "- 'l read the New York Times today."\n- 'Check out www.google.com."\n- '"According to the study.
"Correct_Examples": "- 'I read The New York Times today."\n- 'Check out Google."\n- 'According to the study by Smith et al."

"Scoring_Criteria": "- Proper nouns:\n Capitalize specific names (e.g., places, institutions).\n- Seasons and directions:\n Only capitalize

seasons/directions in specific cases (e.g., 'Winter Olympics').\n- Abbreviations:\n Follow capitalization rules for abbreviations.",

"Incorrect_Examples": "- "The River flows north."\n- 'We went to the East last year."\n- "The study was conducted in the Summer.",
"Correct_Examples": "- "The river flows north."\n- 'We went east last year."\n- "The study was conducted in the summer.""
"Scoring_Criteria": "- Technical terms:\n Spell technical terms correctly (e.g., 'email', 'smartphone').\n Capitalize brand names like

'iPhone'.\n Write 'website' as one word and 'web page' as two words.\n- Spelling:\n Ensure accurate spelling of technical terms.",

"Incorrect_Examples": "- ' sent an E-mail."\n- 'Check out my new Iphone."\n- 'Visit our Webpage.",
"Correct_Examples": "-'I sent an email."\n- 'Check out my new iPhone."\n- 'Visit our web page."
"Scoring_Criteria": "- Brevity:\n Avoid long or complex sentences.\n- Readability:\n Use simple language suitable for general audiences.

\n- Consistency:\n Maintain consistent style throughout the text.",

"Incotrect_Examples": "- "The aforementioned individual arrived at the location."\n- "This is a highly technical subject matter.",
"Correct_Examples": "- "The person arrived at the site."\n- "This is a technical topic."
"Scoring_Criteria": "- Consistency:\n Maintain consistent style for numbers, punctuation, capitalization, etc.\n- Style:\n Avoid mixing

styles (e.g., APA, Chicago).\n- Structure:\n Ensure logical flow and clear paragraph transitions.",
"Incotrect_Examples": "- Mixed numbet formats (e.g., 'seven' and '8')\n- Inconsistent punctuation (e.g., 'quote.' vs. 'quote.)\n- Large jumps
between paragraphs.”,

"Correct_Examples": "- Unified number formats.\n- Consistent punctuation.\n- Smooth paragraph transitions."

Figure 16: Generation and Evaluation Rules for Anchors in the News Writing Task. Ten dimensions, each containing

rules, positive examples, and error cases.

22

	Introduction
	The LongWeave Benchmark
	Pipeline of LongWeave
	Target-Anchored Evaluation
	Tasks
	Data Construction
	Input Length Statistic
	Evaluation Metrics

	Experiments
	Models and Inference Setup
	Task Configurations
	Main Results
	Reasoning Models Perform Better on Long-Sequence Generation Tasks.

	Analysis
	Stability of the Benchmark
	Efficiency of LLM-as-a-Judge
	Output Length Distribution
	Potential Optimization Direction

	Conclusion
	Appendix
	Related Work
	Long Input and Output Models
	Long Generation Benchmarks
	Code Fixing Evaluation
	Answer Length
	AP stype critiaion
	Details of tasks
	Details of sample construction

