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Abstract

Spatial-Temporal Video Super-Resolution (ST-VSR) aims
to generate super-resolved videos with higher resolution
(HR) and higher frame rate (HFR). Quite intuitively, pi-
oneering two-stage based methods complete ST-VSR by
directly combining two sub-tasks: Spatial Video Super-
Resolution (S-VSR) and Temporal Video Super-Resolution
(T-VSR) but ignore the reciprocal relations among them.
Specifically, 1) T-VSR to S-VSR: temporal correlations help
accurate spatial detail representation with more clues; 2)
S-VSR to T-VSR: abundant spatial information contributes
to the refinement of temporal prediction. To this end, we
propose a one-stage based Cycle-projected Mutual learn-
ing network (CycMu-Net) for ST-VSR, which makes full
use of spatial-temporal correlations via the mutual learn-
ing between S-VSR and T-VSR. Specifically, we propose
to exploit the mutual information among them via itera-
tive up-and-down projections, where the spatial and tem-
poral features are fully fused and distilled, helping the
high-quality video reconstruction. Besides extensive exper-
iments on benchmark datasets, we also compare our pro-
posed CycMu-Net with S-VSR and T-VSR tasks, demonstrat-
ing that our method significantly outperforms state-of-the-
art methods. Codes are publicly available at: https:
//github.com/hhhhhumengshun/CycMuNet.

1. Introduction
Spatial-temporal video super-resolution (ST-VSR) aims

to produce the high-resolution (HR) and high-frame-rate
(HFR) video sequences from the given low-resolution (LR)
and low-frame-rate (LFR) input. This task has drawn great
attention due to its popular applications [29,30,53], includ-
ing HR slow-motion generation, movie production, high-
definition television upgrades, etc. Great success has been

†Equal Contribution
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recently achieved in ST-VSR tasks, as illustrated in Fig-
ure 1(a), which can be roughly divided into two cate-
gories: two-stage and one-stage based methods. The for-
mer decomposes it into two sequential sub-tasks: spatial
video super-resolution (S-VSR) and temporal video super-
resolution (T-VSR), which are individually completed with
image/video super-resolution technologies [19, 51, 58] and
video frame interpolation technologies [28, 40]. However,
more spatial information generated by the S-VSR task can
be used for the refinement of temporal prediction, while
more temporal information predicted by the T-VSR task can
be used to facilitate the reconstruction of spatial details. As
a result, the two-stage based approaches are far from pro-
ducing satisfied predictions due to lacking the ability to mu-
tually explore the coupled correlations between S-VSR and
T-VSR.

Recently, integrating these two sub-tasks into a unified
framework with a one-stage process becomes more pop-
ular. Naturally, based on the parallel or serially process-
ing modes (Figure 1(b) (i) for parallel process and (ii)(iii)
for serial process), diverse and effective schemes have been
developed [7, 8, 29, 30, 53, 55]. Unfortunately, the parallel
methods [29, 30] barely consider the coupled correlations
between the two sub-tasks, while the serial methods [53,55]
fail to fully exploit mutual relations since they only focus
on the unilateral relationship, such as “T-to-S” or “S-to-T”.
In particular, the unilateral learning will accumulate recon-
struction errors, which we define as cross-space (spatial and
temporal spaces) errors, consequently leading to obvious
aliasing effect in super-resolved results.

For thorough utilization of spatial and temporal infor-
mation, we propose to promote the one-stage method with
mutual learning, and devise a novel cycle-projected mutual
learning network (CycMu-Net) for ST-VSR. As shown in
Figure 1(c), the philosophy of CycMu-Net is to explore the
mutual relations and achieve the spatial-temporal fusion to
eliminate the cross-space errors. Specifically, the key part
of CycMu-Net is the iterative up-and-down projection units
between the spatial and temporal embedding spaces, involv-
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Figure 1. Different schemes for ST-VSR. (a) Two-stage based methods: (i) they perform ST-VSR task by independently using the advanced
S-VSR methods and then T-VSR methods or vice versa (ii). (b) One-stage based method: they unify S-VSR and T-VSR tasks into one
model with parallel or cascaded manners without considering the mutual relations between S-VSR and T-VSR. (c) Mutual method: Our
method makes full use of the mutual relations via mutual learning between S-VSR and T-VSR.

ing a process of aggregating temporal relations to achieve
an accurate representation of spatial details, and a feedback
refinement of temporal information via the updated spatial
prediction. We validate the proposed CycMu-Net on the
ST-VSR task and its two sub-tasks, involving S-VSR and
T-VSR. Experimental results demonstrate that CycMu-Net
achieves appealing improvements over the SOTA methods
on all tasks. Our contributions are summarized as follows:

1) We propose a novel one-stage based cycle-projected
mutual learning network (CycMu-Net) for spatial-temporal
video super-resolution, which can make full use of the cou-
pled spatial-temporal correlations via mutual learning be-
tween S-VSR and T-VSR.

2) To eliminate the cross-space errors and promote the
inference accuracy, we devise iterative up-and-down pro-
jection units to exploit the mutual information between S-
VSR and T-VSR for a better spatial-temporal fusion. In
these units, more spatial information are provided for the
refinement of temporal prediction while temporal correla-
tions are used to promote texture and detail reconstruction.

3) We conduct extensive experiments on ST-VSR, S-
VSR and T-VSR tasks for a comprehensive evaluation,
showing that our method performs well against the state-
of-the-art methods.

2. Related Work
2.1. Spatial Video Super-Resolution

S-VSR aims to super-resolve LR frames to HR frames
with temporal alignment and spatial fusion. Thus, the key
to this task lies in fully exploiting temporal correlations
among multiple frames. Some methods perform tempo-
ral alignment using explicit motion estimation (e.g., opti-
cal flow) and then fuse all aligned reference frames for S-
VSR [3, 6, 42, 47, 50, 56]. However, optical flow estima-
tion is error-prone, which may degrade the S-VSR perfor-

mance [34]. To address this issue, some methods propose to
apply deformable convolution to sample more spatial pixels
based on multiple motion offsets [13,61] for implicit align-
ment [7, 49, 51]. It is effective but time-consuming, since
the alignment is required for all reference frames each time
when super-resolving the target frame. Other researchers
propose to explore the global temporal correlations with
recurrent networks that propagate inter-frame information
forward and backward independently [8, 26, 53, 55]. How-
ever, extra motion estimation networks are still required to
assist the recurrent network based S-VSR approach in deal-
ing with large and complex motions [53, 55].

2.2. Temporal Video Super-Resolution

T-VSR (i.e., video frame interpolation) aims to gener-
ate the non-existent intermediate frame between two con-
secutive frames. The key to this task is to find correspon-
dences between consecutive frames to synthesize interme-
diate frames. The popular T-VSR methods mainly fall into
two categories: kernel-based and flow-based methods. The
former implicitly aligns the input frames by learning the
dynamic convolution kernels, which are used to resample
the input frames to produce intermediate frames [11, 18,
33, 39, 40, 44]. Due to only resampling the local neigh-
borhood patches, the aforementioned methods usually lead
to ambiguous results. By contrast, the latter first esti-
mates bidirectional optical flows between two consecutive
frames and then warps to synthesize the intermediate frames
based on the predicted optical flows [2,3,24,25,28,37,38].
While achieving impressive progress, they rely heavily
on the accuracy of current advanced optical flow algo-
rithms [27, 41, 46, 48].

2.3. Spatial-Temporal Video Super-Resolution

ST-VSR technologies tend to increase spatial and tem-
poral resolution of LR and LFR videos [22, 30, 53, 55].
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Figure 2. Architecture of the proposed Cycle-projected Mutual learning network (CycMu-Net). Given two LR input frames, we first
extract representations from input frames by feature extractor (FE) and obtain an initialized intermediate representation by feature temporal
interpolation network (FTI-Net). We then adopt mutual learning to exploit the mutual information between S-VSR and T-VSR and obtain
M 2 × HR and LR representations via M up-projection units and M − 1 down-projection units. Finally, we concatenate and feed the
multiple 2× HR representations and LR representations into reconstruction network (R) to reconstruct corresponding HR images and LR
intermediate frame, respectively.

For example, Shechtman et al. adopt a directional
spatial-temporal smoothness regularization to constrain
high spatial-temporal resolution video reconstruction [43].
Mudenagudi et al. [36] formulate their ST-VSR method as
a posteriori-Markov Random Field [17] and optimize it by
achieving the Maximum of graph-cuts [5]. However, the
above methods cost great computational consumption and
fail to model complex spatial-temporal correlations. Re-
cently, learning-based methods attempt to unify S-VSR and
T-VSR into a single-stage framework for ST-VSR. Kim
et al. utilize a multi-scale U-net to learn ST-VSR based
on a multi-scale spatial-temporal loss [30]. Haris et al.
propose to explore spatial-temporal correlations by a pre-
trained optical flow model for frame interpolation and re-
finement [22]. Xiang et al devise a unified framework to
interpolate intermediate features by deformable convolu-
tion [51], explored global temporal correlations by bidi-
rectional deformable ConvLSTM [54], and finally recon-
structed high spatial-temporal videos by a reconstruction
network [53]. Inspired by [53], Xu et al. introduce a locally
temporal feature comparison module to extract local mo-
tion cues in videos, achieving better performance on various
datasets [55]. However, as shown in Figure 1(b), the mutual
relations between S-VSR and T-VSR are under-explored,
while leading to the accumulated reconstruction errors. To
address this issue, we propose a cycle-projected mutual
learning network that learns the spatial-temporal correla-
tions via the iterative operation of spatial and temporal fu-
sion (S-VSR and T-VSR) during the forward propagation
and backward optimization.

2.4. Mutual Learning

Mutual learning is to make a pool of untrained stu-
dents to learn collaboratively and teach each other for solv-
ing the task [59]. Dual-NMT utilizes mutual learning to

teach two cross-lingual translation models each other in-
teractively machine translation [23]. Tanmay Batra et al.
propose to learn multiple models jointly and communicate
object attributes each other for recognising the same set of
object categories [4]. Dong et al. adopted this tool to exploit
non-adjacent features for image dehazing by fusing features
from different levels [15]. The closest thing to our work is
DBPN [19], which proposes utilize mutually iterative up-
and down-sampling layers to learn nonlinear relationships
between LR and HR images to guide the image SR task.
Previous studies have validated the effectiveness of mutual
learning techniques for low-level tasks [14,16,21,60]. How-
ever, the existing methods tend to exploit the mutual learn-
ing to refine the mapping relations of different scale spaces
(“LR-to-HR” and “HR-to-LR”). Inspired by them, we in-
troduce a novel cycle-projected mutual learning mechanism
to cooperatively characterise the spatial and temporal fea-
ture representations.

3. Cycle-Projected Mutual Learning Network

In this section, we first provide an overview of the pro-
posed Cycle-projected Mutual learning network (CycMu-
Net) for ST-VSR. As shown in Figure 2, given two LR in-
put frames L0 and L1, our goal is to synthesize HR inter-
mediate frame Ht and the corresponding HR input frames
H0 and H1 (2×, 4×, or 8×). In addition, we also gener-
ate a LR frame Lt as a intermediate result. The proposed
CycMu-Net first extracts the representation from the input
frames by a feature extractor (FE). To synthesize the initial-
ized LR intermediate representation, we introduce a cascad-
ing multi-scale architecture as our feature temporal interpo-
lation network (FTI-Net), designed to learn bi-directional
motion offsets to handle complex motions and interpolate
intermediate representation by deformable convolution. To
make full use of the mutual relations (“T-to-S” or “S-to-T”)
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Figure 3. Illustration of the proposed up-projection unit (UPU)
and down-projection unit (DPU) in the CycMu-Net.

between S-VSR and T-VSR, we adopt mutual learning that
temporal correlations contribute to accurate spatial repre-
sentations and updated spatial predictions refine temporal
information via feedback, to eliminate the cross-space er-
rors, which can be achieved via iterative up-projection units
(UPUs) and down-projection units (DPUs). After several it-
erations, we obtain multiple HR and LR representations and
then concatenate them into the reconstruction network (R)
to generate the corresponding HR images H0, Ht and H1

(2×, 4×, or 8×) and LR image Lt.

3.1. Cycle-Projected Mutual Learning

Inspired by [19] that adequately addressed the mutual
dependencies of low- and high-resolution images via mutu-
ally connected up- and down-sampling layers, in this paper,
we propose a new mutual learning model including iterative
UPUs and DPUs to explore the mutual relations between
S-VSR and T-VSR. In particular, temporal correlations pro-
vide more clues to compensate detailed spatial representa-
tion via UPUs while abundant spatial details are used to re-
fine the temporal predictions via DPUs.

As shown in the top of Figure 3, the UPU captures tem-
poral correlations for S-VSR. We firstly project previous
LR temporal representations lm−1

0 , lm−1
t and lm−1

1 to corre-
sponding HR representations um−1

0 , um−1
t and um−1

1 based
on a scale up module, which can be described as follows:

[um−1
0 , um−1

t , um−1
1 ] = UP0([l

m−1
0 , lm−1

t , lm−1
1 ]), (1)

where UP0(·) denotes the scale up module. It first performs
multi-frame progressive fusion by fusion resblocks [57],
which implicitly exploit intra-frame spatial correlations and
inter-frame temporal correlations, then upsamples each fea-
ture by bilinear interpolation and 1×1 convolution. m =
1, 2...,M denotes the number of UPU.

Then we try to project the super-resolved representations
back to LR representations and compute the correspond-

ing residuals (errors) em−1
0 , em−1

t and em−1
1 between back-

projected representations and original LR representations,
respectively, which can be defined as follows:

[em−1
0 , em−1

t , em−1
1 ] = DN([um−1

0 , um−1
t , um−1

1 ])

− [lm−1
0 , lm−1

t , lm−1
1 ],

(2)

where DN(·) denotes the scale down module. It first re-
duces the input to the original input resolution via 4×4 con-
volution with stride 2, and then further implicitly explores
intra-frame spatial correlations and inter-frame temporal
correlations of LR representations by fusion resblocks [57].

Finally, we project residual representations again back
to HR representations (back-project) and eliminate the cor-
responding original super-resolved representations errors
(cross-space errors) to obtain the final super-resolution out-
puts of the unit by

[hm
0 , hm

t , hm
1 ] = UP1([e

m−1
0 , em−1

t , em−1
1 ])

+ [um−1
0 , um−1

t , um−1
1 ],

(3)

where UP1(·) denotes the scale up module.
As shown in the bottom of Figure 3, the procedure for

DPU is very similar, while its main role is to obtain refined
LR temporal representations by projecting the previously
updated HR representations, which can provide abundant
spatial details. (Please refer to the supplementary materials
for more details about formula proof, scale up module and
scale down module)

3.2. Spatial-Temporal Video Super-Resolution

The overall framework of CycMu-Net is shown in Fig-
ure 2, consisting of the following sub-modules: feature ex-
traction network, feature temporal interpolation network,
multiple up-projection units, multiple down-projection
units, and reconstruction network. Specifically, we extract
representations among multiple frames via feature extrac-
tion network (FE) and interpolate the intermediate represen-
tations via the feature temporal interpolation network (FTI-
Net). Then we use the proposed multiple UPUs and DPUs
to obtain multiple LR and HR representations with the mu-
tual learning. Finally, the reconstruction network (R) gen-
erates LR intermediate frame and HR intermediate frames
by concatenating all LR and HR representations. Below we
describe the details of each sub-module.
Feature temporal interpolation network. Deformable
convolution [13, 61] has been shown to be effective
for video frame interpolation [10] and video super-
resolution [49]. Some methods extended deformable convo-
lution and explored a wider range of offsets by employing a
multi-scale framework to handle feature alignment for small
and large displacements [51, 53, 55]. Inspired by them, we
utilize a cascading multi-scale architecture for our feature
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temporal interpolation network (FTI-Net) to estimate the bi-
directional motion offsets from input frames. Along with
the motion offsets estimation, we adopt deformable convo-
lution to interpolate forward and backward representations
from the missing intermediate frames. To blend these two
representations for obtaining an initial intermediate repre-
sentation, we use the two learnable convolution kernels to
estimate the weights, which can adaptively fuse the two rep-
resentations according to their importance. (More details on
FTI-Net are provided in the supplementary materials)
Reconstruction network. After the mutual relations be-
tween S-VSR and T-VSR are exploited by the proposed it-
erative up-and-down projections, we concatenate and feed
multiple HR representations into convolution layers to re-
construct the corresponding HR frames. In addition, we
also reconstruct a LR intermediate frame based on multi-
ple LR representations. To optimize the whole CycMu-Net,
we use a reconstruction loss function:

Lr = λ1ρ(Lt − LGT
t ) + λ2ρ(Ht −HGT

t )

+ λ3ρ(H0 −HGT
0 ) + λ4ρ(H1 −HGT

1 ),
(4)

where LGT
t , HGT

0 , HGT
t and HGT

1 refer to the correspond-
ing ground-truth video frames. ρ(x) =

√
x2 + ω2 is the

Charbonnier penalty function [9,32]. We set the constant ω
and weights λ1, λ2, λ3 and λ4 to 10−3, 1, 1, 0.5 and 0.5,
respectively.

3.3. Implementation Details

We implement the proposed CycMu-Net using Pytorch
1.9 with four NVIDIA 2080Ti and optimize the model using
AdaMax optimizer [31] with a momentum of 0.9. The batch
size is set to 10 with image resolution of 64×64. The initial
learning rate is set to 4×10−4 and reduced by a factor of
10 every 20 epochs for a total of 70 epochs. We compare
HR intermediate frame Ht for the evaluation of ST-VSR. In
addition, we also compare our proposed CycMu-Net with
S-VSR and T-VSR methods, where 4× HR frame H0 and
LR intermediate frame Lt are used for the evaluations of
S-VSR and T-VSR, respectively.

4. Experimental Results
4.1. Datasets and Metrics

Vimeo90k [56]. We use Vimeo90K dataset to train our pro-
posed CycMu-Net. This dataset consists of many triplets
with different scenes from 14,777 video clips with image
resolution of 448×256. Among them, 51,312 triplets and
3,782 triplets are used for training and testing, respectively.
In order to increase the diversity of data, we use horizontal
and vertical flipping or reverse the order of input frames for
data augmentation. For a fair comparison with other algo-
rithms during training, we downscale to original images to

64×64 with Bicubic interpolation for 2× and 4× SR, and
downscaled to original images to 32×32 with Bicubic inter-
polation for 8× SR.
UCF101 [45]. The UCF101 dataset consists of videos with
a large variety of human actions. There are 379 triplets with
the resolution of 256×256 for testing. The original images
are sampled to 32×32, 64×64 and 128×128 with Bicubic
for 8×, 4× and 2× SR tasks in testing.
Middlebury [1]. The Middlebury dataset is widely used to
evaluate video frame interpolation algorithms [2,10]. Here,
we select Other set which provides the ground-truth middle
frames, only to test our method on T-VSR task. The image
resolution in this dataset is around 640×480 pixels.
Metric. We use Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM) [52] and the average Inter-
polation Error (IE) for performance evaluation. The higher
PSNR and SSIM and lower IE values indicate better super-
resolution and interpolation performance.

4.2. Comparisons with State-of-the-Art Methods

ST-VSR. We compare our CycMu-Net with state-of-the-
art two-stage and one-stage based ST-VSR methods. For
the two-stage based ST-VSR methods, SepConv [40], Ada-
CoF [33] and CAIN [12] are introduced for T-VSR task,
while Bicubic Interpolation, RBPN [20], DBPN [19] and
EDVR [51] are used for S-VSR. For one-stage based ST-
VSR methods, we compare our CycMu-Net with Zooming
SlowMo [53], STARnet [22] and TMNet [55]. For fair com-
parison, three triplets from Vimeo90K dataset are used to
retrain SlowMo and TMNet methods.
Quantitative results. Quantitative results are presented
in Table 1. We can see that besides fewer parameters,
one-stage based methods show significant superiority than
the two-stage based methods in all metrics. In particu-
lar, the best two-stage based method (SepConv+RBPN) is
0.66dB lower than our method for 8× VSR on Vimeo90K
dataset. Furthermore, compared to the state-of-the-art one-
stage based methods, our proposed CycMu-Net outper-
forms STARNet [22], Zooming Slow-Mo [53] and TMNet
[55] on all datasets with all metrics, while with only one-
tenth of parameters to STARnet. All these results validate
the effectiveness of our proposed method for ST-VSR task.
Qualitative results. The qualitative results of seven ST-
VSR baselines with their PSNR and SSIM values are shown
in Figure 4. As expected, two-stage based ST-VSR meth-
ods tend to produce blurry results (see the yellow boxes)
since they ignore the mutual relations between S-VSR and
T-VSR, which help the accurate texture inference. Com-
pared to two-stage based methods, one-stage based ST-VSR
methods can generate complete results. However, these
methods ignore that S-VSR provides abundant spatial infor-
mation for the refinement of temporal prediction, leading
to the generated results without more texture information
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T-VSR S-VSR UCF101 Vimeo90K UCF101 Vimeo90K UCF101 Vimeo90K Parameters
Method Method PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE PSNR SSIM IE (millions)

SepConv [40] Bicubic 29.988 0.944 4.531 30.628 0.937 4.234 26.189 0.874 7.154 27.287 0.866 6.582 22.877 0.779 11.201 24.181 0.782 9.989 21.7
SepConv [40] DBPN [19] 32.041 0.958 3.729 32.179 0.955 3.415 28.380 0.915 5.573 28.969 0.903 5.268 25.135 0.845 8.298 26.016 0.834 7.717 21.7+10.4
SepConv [40] RBPN [20] 31.859 0.957 3.795 32.377 0.958 3.300 28.650 0.920 5.400 29.507 0.914 4.912 25.323 0.823 8.067 26.409 0.846 7.275 21.7+12.7
SepConv [40] EDVR [51] — — — — — — 28.650 0.920 5.388 29.481 0.914 4.909 — — — — — — 21.7+20.7
AdaCoF [33] Bicubic 30.056 0.945 4.458 30.760 0.936 4.203 26.187 0.874 7.133 27.243 0.864 6.624 22.877 0.778 11.193 24.160 0.781 10.029 21.8
AdaCoF [33] DBPN [19] 32.167 0.958 3.630 32.341 0.954 3.401 28.557 0.917 5.430 29.214 0.903 5.207 25.164 0.845 8.253 25.935 0.832 7.804 21.8+10.4
AdaCoF [33] RBPN [20] 31.997 0.958 3.692 32.537 0.957 3.288 28.840 0.922 5.237 29.584 0.914 4.865 25.349 0.851 8.026 26.155 0.841 7.466 21.8+12.7
AdaCoF [33] EDVR [51] — — — — — — 28.848 0.923 5.226 29.700 0.916 4.810 — — — — — — 21.8+20.7
CAIN [12] Bicubic 29.931 0.941 4.627 30.578 0.931 4.412 25.987 0.865 7.456 26.908 0.851 7.035 22.505 0.743 12.166 23.820 0.759 10.691 42.8
CAIN [12] DBPN [19] 31.741 0.954 3.904 31.796 0.946 3.819 27.814 0.901 6.105 28.100 0.877 6.125 23.672 0.779 10.561 24.764 0.784 9.478 42.8+10.4
CAIN [12] RBPN [20] 31.721 0.955 3.896 31.980 0.949 3.702 27.995 0.906 5.930 28.377 0.887 5.855 23.566 0.781 10.498 24.605 0.787 9.437 42.8+12.7
CAIN [12] EDVR [51] — — — — — — 28.339 0.911 5.711 28.690 0.893 5.642 — — — — — — 42.8+20.7

STARnet [22] — — — — — — 28.829 0.920 — 30.608 0.926 — — — — — — — 111.6
Zooming Slow-Mo [53] 32.200 0.959 3.630 33.270 0.963 2.982 28.931 0.923 5.184 30.621 0.927 4.354 25.376 0.850 8.054 26.829 0.851 7.018 11.1

TMNet [55] 32.211 0.960 3.620 33.298 0.964 2.974 28.988 0.924 5.149 30.699 0.929 4.311 25.424 0.852 7.984 26.994 0.854 6.874 12.3
CycMu-Net 32.258 0.960 3.608 33.545 0.965 2.885 29.020 0.925 5.130 30.750 0.929 4.287 25.486 0.853 7.931 27.062 0.856 6.827 11.1

Table 1. Quantitative comparisons (×2, ×4, ×8 from left to right) of the state-of-the art methods for ST-VSR. The numbers in red and
blue represent the best and second best performance.

Overlayed LR AdaCoF+Bicubic AdaCoF+DBPN SepConv+RBPN AdaCoF+RBPN
(24.425/0.804) (26.995/0.858) (28.383/0.885) (27.835/0.877)

CAIN+RBPN Zooming Slow-Mo TMNet CycMu-Net Ground-Truth
(25.700/0.810) (28.582/0.887) (28.829/0.890) (28.983/0.893)

Figure 4. Visual comparisons (8×) with state-of-the-art methods on Vimeo90K dataset.

Methods UCF101 Vimeo90K Parameters
PSNR SSIM IE PSNR SSIM IE (millions)

Bicubic 27.254 0.889 6.232 28.135 0.879 5.994 —
DBPN [19] 30.898 0.938 4.211 31.484 0.928 4.137 10.4
RBPN [20] 31.309 0.943 4.035 32.417 0.939 3.759 12.7
EDVR [51] 31.452 0.944 3.974 32.558 0.941 3.680 20.7
CycMu-Net 31.463 0.944 3.980 32.472 0.940 3.735 11.1

Table 2. Quantitative comparisons of the state-of-the art methods
for S-VSR (H0) on UCF101 and Vimeo90K datasets.

(see red and yellow boxes). On the contrary, our proposed
method explores the mutual relations between S-VSR and
T-VSR, which contribute to generating sharper results with
clearer structure and texture. (More visual comparisons are
provided in the supplementary materials)
S-VSR. We compare the proposed network with image SR
methods including Bicubic and DBPN [19], and S-VSR

methods including RBPN [20] and EDVR [51]. The results
on S-VSR are shown in Table 2, showing that S-VSR meth-
ods (EDVR [51] and RBPN [20]) can achieve superior per-
formance than image SR methods (bicubic and DBPN [19])
by referring to multiple frames for temporal correlations. In
addition, we can see that our CycMu-Net has comparable
results with EDVR, but it requires only half of the param-
eters of EDVR and three triplets rather than seven frames
for training. This also validates the powerful generalization
ability of our network, and our proposed up-projection units
are helpful for S-VSR tasks by exploiting temporal correla-
tions from T-VSR.
T-VSR. We compare our proposed network with state-of-
the-art T-VSR which include SpeConv-Lf [40], SepConv-

3579



Overlayed LR EDSC DAIN AdaCoF++ CAIN CycMu-Net Ground-truth
(1.826) (1.868) (1.812) (3.054) (1.539)

Figure 5. Visual comparisons of temporal video super-resolution on Middlebury dataset.

Overlayed LR Model (a) Model (b) Model (c) Model (d) Ground-truth
(27.182/0.887) (27.276/0.893) (27.528/0.897) (27.673/0.900)

Figure 6. Visual comparisons (4×) of four variants for the ablation studies on Vimeo90K dataset.

Methods UCF101 Vimeo90K MB-Other Parameters
PSNR SSIM IE PSNR SSIM IE IE (millions)

SpeConv-Lf [40] 37.883 0.982 2.264 36.506 0.985 1.936 1.355 21.6
SpeConv-L1 [40] 37.953 0.983 2.221 36.788 0.986 1.845 1.310 21.6

EDSC [11] 37.946 0.983 2.271 37.326 0.988 1.824 1.302 8.9
DAIN [2] 38.172 0.983 2.131 36.686 0.986 1.862 1.346 24.0

CyclicGen++ [35] 37.644 0.981 2.261 33.935 0.973 2.660 1.750 19.8
AdaCoF++ [33] 38.387 0.983 2.088 36.874 0.987 1.857 1.304 21.8

CAIN [12] 35.407 0.979 2.849 34.857 0.979 2.729 2.369 42.8
CycMu-Net 38.850 0.984 2.012 39.074 0.990 1.422 0.983 11.1

Table 3. Quantitative comparisons of the state-of-the art methods
for T-VSR (Lt).

L1 [40], EDSC [11], DAIN [2], CyclicGen++ [35], Ada-
CoF++ [33] and CAIN [12]. The results on T-VSR are
shown in Table 3. We can find that our proposed method
is significantly better than the state-of-the-art video frame
interpolation. For example, PSNR values of our proposed
CycMu-Net are 1.1dB and 1.6dB higher than EDSC [11] on
UCF101 and Vimeo90K datasets, respectively. In addition,
we show the visualized results and IE value from four tem-
poral video super-resolution method in Figure 5, our pro-
posed method produces intermediate frame with more de-
tails (e.g., the shoe). We attribute this to the fact that when
we train the ST-VSR network, we make full use of HR in-
formation from S-VSR via down-projection units. There-
fore, the interpolated frame can obtain more texture and de-
tailed information from S-VSR.

4.3. Model Analysis

Ablation Study. To further verify the key modules in
CycMu-Net, comprehensive ablation studies are conducted
for 4× SR.

Methods FTI PU UCF101 Vimeo90K
FFI DFI PP CP PSNR SSIM IE PSNR SSIM IE

Model (a) ✓ 28.861 0.922 5.243 30.170 0.921 4.616
Model (b) ✓ 28.926 0.924 5.161 30.510 0.926 4.415
Model (c) ✓ ✓ 28.940 0.924 5.150 30.544 0.926 4.390
Model (d) ✓ ✓ 28.996 0.924 5.144 30.650 0.928 4.338

Table 4. Quantitative comparisons on the performance (4×) of
different modules. FTI denotes feature temporal interpolation, FFI
denotes fusion feature interpolation, DFI denotes deformable fea-
ture interpolation, PU denotes projection units. PP denotes plain-
projected units and CP denotes cycle-projected units.

Model (a): A fusion feature interpolation (FFT) network is
used to direct fuse input information from input frames and
produce intermediate representation without motion estima-
tion. Then two pixel-shuffle layers take the representations
as inputs, and produce the 4× SR video with a convolution.
Model (b): We add deformable convolution as implicit mo-
tion estimation into feature interpolation network (FTI-Net)
in Model (a) as our deformable feature interpolation (DFI)
network, as stated in section 3.2
Model (c): Based on Model (b), we add addition iterative
plain-projection units (PP) without up-down sampling be-
tween the feature temporal interpolation network and recon-
struction network.
Model (d): The complete version of CycMu-Net.

The visual and numerical comparisons are shown in Fig-
ure 6 and Table 4. Compared to Model (a) that produces the
intermediate representations without motion estimation, the
results of Model (b) show that adopting deformable convo-
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Overlayed LR M=2 M=4 M=6 M=8 M=10 Ground-truth
(26.095/0.897) (26.195/0.901) (26.214/0.901) (26.229/0.902) (26.330/0.904)

Figure 7. Visual comparisons (4×) of different numbers of up-projection and down-projection units for the ablation studies on Vimeo90K
dataset.

M UCF101 Vimeo90K Parameters
PSNR SSIM IE PSNR SSIM IE (millions)

2 28.939 0.923 5.181 30.480 0.926 4.420 7.3
4 28.982 0.924 5.149 30.601 0.927 4.360 9.2
6 29.020 0.925 5.130 30.750 0.929 4.287 11.1
8 29.030 0.925 5.130 30.753 0.929 4.282 13.0

10 29.044 0.925 5.128 30.791 0.929 4.273 14.9

Table 5. Quantitative comparisons on the performance (4×) of
different number of projection units.

lution for implicit frame interpolation can bring 0.34dB gain
on Vimeo90K dataset and improves the visual result (e.g.,
the edge of the moving car). Based on Model (b), the ad-
dition of plain projection units (Model (c)) can help Model
(b) to generate a car with clearer structure. Unfortunately,
they fail to recover key details (e.g., license plate). On the
contrary, our proposed Model (d) can generate more cred-
ible SR results. It demonstrates the fact that our proposed
up- and down-projection units eliminate cross-space errors
while plain-projection units magnify errors.
Impacts of Up-projection and Down-projection Units.
To demonstrate the effectiveness of our up-projection units
and down-projection units, we construct multiple networks
(M = 2, 4, 6, 8, 10) by setting different numbers of pro-
jection units. The visual and numerical results on 4 × are
shown in Figure 7 and Table 5. As the numbers of up-
projection and down-projection units increase, CycMu-Net
produces results with more complete structure and details
(e.g., the basketball), and achieves better results in term of
PSNR, SSIM and IE on two datasets. Considering the trade-
off between efficacy and efficiency, we set M to 6 to predict
the final results of the proposed CycMu-Net. These also
verify that the proposed up-projection and down-projection
units play important roles in mutually benefiting from S-
VSR and T-VSR. In addition, in order to analyze the spe-
cific role of the projection units that temporal correlations
are exploited to promote the texture and detail information.
In Figure 8, it is shown that each up-projection unit gener-
ates feature map, which contains different types of HR com-
ponents and increases the quality of S-VSR. This demon-
strates that multiple up-projection units can obtain diverse
HR representations for guiding the better super-resolution
reconstruction.

Overlayed LR h1
t h2

t h3
t

Ground-truth h4
t h5

t h6
t

Figure 8. Feature maps from up-projection units in CycMu-Net
where M = 6. Each feature map has been visualized using same
grayscale colormap.

5. Conclusion

In this work, we propose a novel one-stage based
Cycle-projected Mutual learning network (CycMu-Net) for
spatial-temporal video super-resolution. Theoretically, we
introduce mutual learning to explore the interactions be-
tween spatial video super-resolution (S-VSR) and tempo-
ral video super-resolution (T-VSR), from which the abun-
dant spatial information and temporal correlations are ag-
gregated to infer accurate intermediate frame. Specifically,
an elaborate iterative representation between up-projection
units and down-projection units is introduced to make full
use of the spatial-temporal features while eliminating the
inference errors. Extensive experiments demonstrate our
proposed method performs well against the state-of-the-
art methods in both S-VSR, T-VSR and ST-VSR tasks.
While achieving impressive performance, one limitation of
this study is that since videos might contain dramatically
changing scenes, the spatial-temporal correlations of large
motion or SR factors is hardly predicted via the iterative
up-projection and down-projection units. One reasonable
scheme is to alleviate the learning burden by dividing it into
multiple sub-tasks with small motion, which is helpful for
accurate texture inference.
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