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Abstract

Some questions have answers that are correct001
only if certain conditions apply. Conditions002
are used to distinguish answers as well as to003
provide additional information to support them.004
To answer questions with conditions, models005
need to first find eligible answers and condi-006
tions from context and then perform logical007
reasoning to check whether conditions have008
been satisfied. We propose TReasoner to model009
this challenging reasoning process. In addition010
to finding answers, TReasoner can also iden-011
tify unsatisfied conditions that are required to012
support the answers, as some answers are con-013
strained by multiple conditions but only one or014
a subset of the conditions are satisfied. TRea-015
soner consists of an entailment module, a rea-016
soning module, and a generation module (if017
answers are free-form text spans). TReasoner018
achieves state-of-the-art performance on two019
benchmark QA datasets, outperforming the pre-020
vious state-of-the-art by 3-10 points.1021

1 Introduction022

Recent work on QA has explored questions which023

have multiple possible answers, depending on con-024

ditions not explicitly given in the question (Min025

et al., 2020; Zhang and Choi, 2021; Dhingra et al.,026

2021; Chen et al., 2021). For example, "when was027

the first Covid vaccine approved" has different an-028

swers for different countries, so answers must be029

completed with implicitly assumed conditions (e.g.030

Dec 20th, 2020 [in the US]"). In this work, we fol-031

low this direction, but focus on a more challenging032

task, in which answers rely on multiple conditions033

that logically interact.034

An example is shown in Figure 1. The span035

“up to $1200” is an eligible answer, associated with036

two conditions, “you are partner . . . of the deceased”037

and “you didn’t claim other benefits”. These two038

conditions interact, as the answer “up to $1200”039

is only valid if both conditions are satisfied. We040

1Codes and data will be released.

Figure 1: An example of reasoning over conditions. The
answer “up to $1200” is only correct if “both” condi-
tions are true. The scenario suggests that the user is
a partner of the deceased but there’s no evidence sug-
gesting the condition “you didn’t claim any benefits”.
Answering this question requires not only finding prob-
able answers but also identifying unsatisfied conditions.

say that those conditions are a condition group and 041

the logical type of the group is “all” (as witnessed 042

by the span “if both”). In addition to predicting 043

eligible answers to the questions, QA in this con- 044

text additionally requires models to perform the 045

following two tasks. First, it must understand the 046

document well enough to parse it into eligible an- 047

swers, condition groups, and logical types; second, 048

it must identify which conditions are entailed by the 049

question (and the scenario), which are contradicted, 050

and which are not mentioned but are required to 051

support an eligible answer. With performing the 052

two tasks, a model can produce an answer together 053

with a description of when that answer is supported, 054

i.e. the unsatisfied conditions. 055

One of the challenges in this task is to perform 056

logical reasoning within condition groups to de- 057

termine the entailment status of conditions. The 058

entailment status of a condition is affected by two 059

factors: the entailment status of itself, i.e. whether 060

it is satisfied or contradicted by the provided evi- 061

dence, and the entailment status of other conditions 062
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in the same condition group. Similar tasks have063

been studied in Clark et al. (2020b) where they064

constructed examples that contain groups of condi-065

tions and evidences for the conditions. Conditions066

in the group are either satisfied or contradicted by067

the evidences, so the task is referred to as deduc-068

tive reasoning because all information needed to069

make a definite prediction is provided. We do not070

make such assumption, but instead only provide071

evidences for a subset of conditions in the group072

and ask models to identify unsatisfied conditions073

that need to be further checked. For example (Fig-074

ure 1), we say “you didn’t claim other benefits” is075

an unsatisfied condition because it is required by076

the candidate answer “up to $1200” but is not satis-077

fied by the user’s scenario. This task is commonly078

called abductive reasoning. Predicting unsatisfied079

conditions tests a model’s ability in logical rea-080

soning, including understanding logical operations,081

determining the entailment status of conditions in082

the logical groups, and finally determining whether083

an eligible answer is correct.084

We propose TReasoner to tackle the task of rea-085

soning with logically interacted conditions. TRea-086

soner contains two modules: an entailment module087

and a reasoning module. The entailment module088

takes a condition in the context with the question089

and the provided evidence to predict its entailment090

status. The reasoning module takes the entailment091

module’s outputs for all conditions and performs092

logical reasoning to identify unsatisfied conditions.093

If the answer is a free-form text span, TReasoner094

additionally uses a generation module to generate095

the answer span. The entailment module, reasoning096

module, and generation module are jointly trained.097

TReasoner shows excellent reasoning ability on098

a synthetic dataset and outperforms the previous099

state-of-the-art models on two Question Answering100

(QA) datasets, ConditionalQA and ShARC (Sun101

et al., 2021a; Saeidi et al., 2018), improving the102

state-of-the-art by 3-10 points on answer and un-103

satisfied condition prediction tasks.104

2 Related Work105

Models (Cohen, 2016; Cohen et al., 2020; Sun106

et al., 2020; Ren et al., 2020; Ren and Leskovec,107

2020) have been developed for the deductive rea-108

soning task with symbolic rules. Embedding-based109

methods (Sun et al., 2020; Ren et al., 2020; Ren110

and Leskovec, 2020) first convert symbolic facts111

and rules to embeddings and then apply neural112

network layers on top to softly predict answers.113

Recent work in deductive reasoning focused on 114

tasks where rules and facts are expressed in natural 115

language (Talmor et al., 2020; Saeed et al., 2021; 116

Clark et al., 2020b; Kassner et al., 2020). Such 117

tasks are more challenging because the model has 118

to first understand the logic described in the natu- 119

ral language sentences before performing logical 120

reasoning. 121

Different from deductive reasoning, the QA task 122

proposed in this paper provides a list of conditions 123

that if true would support an answer. (This is also 124

referred to as abductive reasoning.) The Condi- 125

tionalQA and ShARC dataset (Sun et al., 2021a; 126

Saeidi et al., 2018) were proposed, where a ques- 127

tion contains a user scenario that includes some 128

background information that suggests the answer 129

but is not enough to ensure its correctness. Simi- 130

lar examples were also seen in factual questions, 131

e.g. AmbigQA (Min et al., 2020), where multiple 132

answers are plausible given the facts asked in the 133

question, but each answer is only correct under cer- 134

tain conditions. Answering such questions requires 135

both finding the probable answers and identifying 136

their underlying conditions. 137

Very limited work has explored abductive rea- 138

soning for QA. Previous work (Gao et al., 2020a,b; 139

Ouyang et al., 2020) on the ShARC (Saeidi et al., 140

2018) dataset proposed to solve this problem by 141

predicting a special label “inquire” if there was not 142

enough information to make a definite prediction. 143

The reasoning process was performed in the em- 144

bedding space. Specifically, EMT and DISCERN 145

(Gao et al., 2020a,b) computed an entailment vec- 146

tor for each condition and performed a weighted 147

sum of those vectors to predict the final answer. 148

DGM (Ouyang et al., 2020) additionally introduced 149

a GCN-based model to better represent the entail- 150

ment vectors. Even though these models were able 151

to predict the answer labels as “inquire” when there 152

were unsatisfied conditions, none of them could 153

predict which conditions needed to be further sat- 154

isfied. Furthermore, they simply concatenated the 155

full context and the question into a single input and 156

encode it with a Transformer with O(N2) complex- 157

ity, making it not scalable to longer contexts. 158

3 Model 159

3.1 Task: QA with Conditions 160

We study the task of QA with logically interacted 161

conditions. The model learns to find eligible an- 162

swers to questions and additionally performs logi- 163

cal reasoning over conditions to check whether the 164
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Figure 2: TReasoner Overview. The entailment module in-
dependently encodes each condition c

(i)
j , its associated results

r(i) and logical types t(i), and the question q. The entailment
module outputs a condition embedding s(i)j that will be input
into the reasoning module to predict the answer labels and de-
termine unsatisfied conditions, and a token embedding h(i)

ki,p

that will be used by the decoding module to generate answer
spans (if the question has a free-form answer).

eligible answers are correct. If the answers require165

additional conditions to be satisfied, the model iden-166

tifies these unsatisfied conditions as well.167

We consider a context that contains results, con-168

ditions, and types.2 A result is a sentence that169

contains the answer, e.g. “You can get a Funeral170

Expense Payment of up to $1200 ...”. Questions171

with yes/no answers also need result statements.172

For example, “You don’t need to pay taxes if you173

...” is the result statement for the question “Do I174

need to pay taxes?”. A condition describes a re-175

quirement that needs to be meet for a result to be176

applicable, e.g. “physically or mentally disabled”177

in Figure 1. There could be multiple conditions for178

one result that interact under a logical type. For179

example, “if you’re both:” requires both conditions180

to be satisfied. In this project, we consider four181

logical types that are commonly seen in QA tasks:182

• “all”: all conditions under this logical type183

should be satisfied in order to make the answer184

true. The logical type “if you’re both:” in the185

example above is an example of this type.186

• “any”: only requires one of the conditions187

under the logical type “any” to be satisfied.188

For example, “if you satisfy at least one of189

the following conditions.”. It doesn’t matter190

whether other conditions have been satisfied,191

contradicted, or not mentioned in the question.192

• “required”: This is a special case of “all” /193

“any” when there is only one condition. Con-194

ditions with the logical type “required” must195

2In real cases, parsing context can be challenging. We do
not explicitly parse the context but leave it as a sub-task for
the entailment module. See below (§3.2 and §4.2)

be satisfied. For example, “you must ... to get 196

an up to $1200 payment.” 197

• “optional”: Conditions have the type “op- 198

tional” if they are not relevant to the question. 199

For example, “You will need to pay a $30 200

processing fee if you apply online”. 201

Logical types are often not provided in real QA 202

datasets, but can be inferred from the context. We 203

discuss strategies to softly predict logical types to 204

perform reasoning tasks for ConditionalQA in §4.2 205

and ShARC in §4.3. We will also discuss strategies 206

to discover conditions and results from the context 207

since they are often not labeled. 208

Formally, let the context X consist of multiple 209

results r(1), . . . , r(n), and the result r(i) be con- 210

strained by a group of conditions {c(i)1 , . . . , c
(i)
ki
} 211

under the logical type t(i). We represent the context 212

X as a list of tuples {({c(1)1 , . . . , c
(1)
k1

}, r(1), t(1)), 213

({c(2)1 , . . . , c
(2)
k2

}, r(2), t(2)), . . . }. We learn a 214

model that operates on context X and question 215

q to predict the answer a with a list of unsatisfied 216

conditions Ĉ = {ĉ1, . . . , ĉm}.3 217

3.2 Model 218

TReasoner consists of an entailment module and a 219

reasoning module. The entailment module checks 220

whether a condition has been satisfied. Practically, 221

it takes a condition, a result, and a question as its 222

input, and outputs a learned embedding. Each con- 223

dition will be encoded independently. Embeddings 224

of conditions will be passed to the reasoning mod- 225

ule, which performs logical reasoning to predict an 226

answer (if it is a multi-class label) and unsatisfied 227

conditions. In cases where answers are text spans, 228

we apply a decoding module to generate answer 229

spans. All modules are jointly trained. 230

Input We independently encode each condition 231

along with its associated result and the question. 232

For condition c
(i)
j in {c(i)1 , . . . , c

(i)
ki
} with result r(i) 233

under logical type t(i), we concatenate them and 234

separate them with special prefixes. 235

s
(i)
j = “condition:” + c

(i)
j + “type:” + t(i)

+ “result:” + r(i) + “question:” + q
(1) 236

Entailment Module The entailment module en- 237

codes the concatenated input s(i)j into a vector s(i)j . 238

3Some questions in the ConditionalQA dataset have multi-
ple answers, but we do not handle these cases in this paper.
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We initialize the parameters of the entailment mod-239

ule from pretrained LMs, which will be finetuned240

together with other modules.241

s(i)j ,h(i)
j,1, . . . ,h(i)

j,m = Entail(s(i)j ) (2)242

The embedding of the first token of s(i)j in Eq.243

2 will be used as the embedding s(i)j for condition244

c
(i)
j and will be used by the reasoning module to245

predict the answer label (for multi-class answers).246

h(i)
j,1, . . . ,h(i)

j,m are the contextualized embeddings247

for the tokens in condition s
(i)
j . Token embeddings248

will not be used for reasoning but will be used for249

decoding if the answers are free-form answers.250

At the entailment stage, each condition s
(i)
j is en-251

coded independently. The embedding output s(i)j is252

expected to have information about the entailment253

state of the condition, the logical operation, and254

whether the result is relevant to the question. En-255

coding each condition independently also reduces256

the encoding complexity of all conditions in the257

passage from O(C2) to O(C) where C is the num-258

ber of conditions in the provided passage, and thus259

enables handling longer context with hundreds of260

conditions. This encoding strategy is motivated by261

FiD (Izacard and Grave, 2020)262

Reasoning Module The reasoning module takes263

the embeddings of conditions from the entailment264

module and reasons over them to predict the an-265

swer label (if the answer is a multi-class label).266

We use a Transformer model as our reasoner be-267

cause the self attention mechanism allows condi-268

tions {s(i)1 , . . . , s
(i)
ki
} to attend to each other to per-269

form reasoning steps. It is crucial for reasoning270

because, for example, if one of the conditions is271

satisfied and the operation type is “any”, then other272

conditions will be implicitly satisfied, regardless of273

their real entailment status.274

We prepend a learned vector s0 to the list of275

condition embeddings, which will be used as276

the [CLS] embedding to summarize the reason-277

ing result. The output of the reasoning module,278

ŝ0, ŝ(1)1 , . . . , ŝ(n)kn
, will be used to predict the final la-279

bel and unsatisfied conditions. Specifically, we use280

the first embedding ŝ0 to predict the answer label281

and use the subsequent embeddings ŝ(1)1 , . . . , ŝ(n)kn
282

to predict unsatisfied conditions.283

ŝ0, ŝ(1)1 , . . . , ŝ(n)kn
= Reason(s0, s(1)1 , . . . , s(n)kn

)

llabel = softmax_cross_entropy(WT
l ŝ0, Il)

lcond = softmax_cross_entropy(WT
c ŝ(i)j , Ic)

284

where Il and Ic are one-hot vectors for class labels. 285

The number of label classes is task-dependent, but 286

in most cases, the final labels Il are “yes”, “no”, and 287

“irrelevant”. The condition labels are “entailed”, 288

“contradicted”, “not mentioned”, “implied”, and 289

“to check”. The first three classes are as they are 290

named. The class “implied” means the entailment 291

state of this condition is implied by other conditions 292

with the same result, e.g. if one of the conditions 293

with the logical type “any” has been satisfied, the 294

rest of conditions are automatically “implied”. The 295

class “to check” means it is an unsatisfied condition. 296

It is important to note that the condition loss lcond 297

is an auxiliary loss and may not exist (or only exist 298

for a subset of conditions) in real datasets. 299

For questions that have free-form answers, e.g. 300

“up to $1200”, the answers will be generated from 301

the decoding module discussed in the next section. 302

We will not supervise their class labels in training 303

and can safely discard the predicted label in testing. 304

In this case, only the predictions of the unsatisfied 305

conditions will be kept. On the contrary, for ques- 306

tions that have multi-class answers, the reasoning 307

module is trained to predict the correct label while 308

the decoding module (discussed next) is trained to 309

generate a special token [MULTI]. 310

Decoding Module The decoding module takes to- 311

ken embeddings for all conditions h(1)
1,1, . . . ,h(n)

kn,m
312

to generate answer spans. This module is mostly 313

used when final answers are text spans. If an an- 314

swer is a multi-class label, the decoding module 315

should simply generate a special token [MULTI]. 316

s We adopt the decoding strategy proposed by FiD 317

(Izacard and Grave, 2020) with the T5 architecture 318

(Raffel et al., 2019)4, i.e. the token embeddings are 319

concatenated for decoding even though the they 320

are generated independently for each condition. 321

The generation task is trained with teacher forc- 322

ing. We do not write out the explicit expression 323

for the teacher forcing decoding loss ldecode here. 324

Please refer to the T5 paper (Raffel et al., 2019) for 325

more information. The decoded tokens â are taken 326

as the predicted answer span. 327

â = Decode(h(1)
1,1, . . . ,h(n)

kn,m
) (3) 328

Loss Function We jointly train the entailment mod-
ule and reasoning module. We provide intermediate
supervision on the entailment state of each condi-
tion, i.e. s(i)j , if they are available. The final loss
function is the sum of the answer loss llabel and the

4The T5 encoder is used for the entailment module
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condition entailment loss lcond.

l = llabel + lcond

If the answers contain text spans, we jointly train
the decoding module as well. The loss function is
the sum of the three losses:

l = llabel + lcond + ldecode

3.3 Pretrained Checkpoints329

The entailment module and decoding module (if330

any) load pretrained LM checkpoints and finetune331

the parameters for downstream tasks. For the332

dataset that has both multi-class answers and free-333

form answers, we initialize the entailment mod-334

ule and decoding module with the pretrained T5335

encoder and decoder (Raffel et al., 2019). For a336

dataset that only has multi-class answers, the decod-337

ing module is not needed, so only the entailment338

module will be initialized. The entailment mod-339

ule can be initialized with T5 (encoder only) or340

any other pretrained LMs, e.g. BERT, RoBERTa,341

ELECTRA, BART, (Devlin et al., 2018; Liu et al.,342

2019; Clark et al., 2020a; Lewis et al., 2019), etc.343

We use ELECTRA for our entailment module if the344

decoding module is not needed (438M parameters),345

and T5 (873M parameters) otherwise.346

The reasoning module is randomly initialized347

and jointly trained with the entailment and decod-348

ing modules. The number of Transformer layers349

for the reasoning module is a hyper-parameter. We350

choose the number of layers l = 3 or l = 4. Please351

see §4.1.2 for ablation study on the number of352

Transformer layers for the reasoning task.353

4 Experiments354

We experiment TReasoner with a synthetic dataset,355

CondNLI, and two benchmark QA datasets, Con-356

ditionalQA (Sun et al., 2021a) and ShARC (Saeidi357

et al., 2018), that require reasoning over conditions358

to predict the answers.5359

4.1 CondNLI360

4.1.1 Task361

The CondNLI dataset is constructed from the ex-362

isting Natural Language Inference (NLI) dataset,363

MultiNLI (Williams et al., 2018). In the original364

NLI dataset, an example has a premise, a hypothe-365

sis, and a label, e.g. “entailed”, “contradicted” or366

5ConditionalQA and ShARC are both released for research
purposes.

Context: If all [“Aged 59 1/2 or older”, “Employed for two years”],
then“Get at least $60 a week”.

If any [not “Has two children”, “Has not applied before.”],
then “Waive the application fees”.

Facts: [“Tom is 65 years old”, “He has two sons”, “Rejected last year”]
Question: Is “Eligible for $60 a week” correct?
Label: Yes, if “Employed for two years”

Table 1: An example in CondNLI. The question is about the
first result “Get at least $60 a week” with only one of the
conditions “Aged 59 1/2 or older”. “Employed for two years”
is an unsatisfied condition in the answer.

Label (acc) Conditions (F1)

(template)
FiD (concat) 99.8 98.7
FiD (TReasoner) 99.6 99.2
TReasoner 99.8 99.2

(with NLI)
FiD (concat) 85.6 80.4
FiD (TReasoner) 86.7 82.8
TReasoner 95.0 91.3

Table 2: Experiment results on the CondNLI dataset in
label accuracy and condition F1. FiD (concat) is run on the
input that concatenates the question and context and is then
chunked into smaller pieces. FiD (TReasoner) use the same
input as TReasoner. “(template)” directly uses the templates
with variable letters as inputs, while “(with NLI)” uses the
examples that are instantiated with real NLI examples.

“neutral”. Please see Appendix A for more infor- 367

mation in dataset construction. Briefly, we treat 368

the premise as context and the hypothesis as ques- 369

tion, and make a few additional changes. First, 370

each premise is paired with a list of conditions cj’s 371

that interact under a logical type t. Second, a con- 372

text contains multiple premises, but at most one of 373

the premises are relevant to the hypothesis.6 The 374

model should first identify the relevant premise and 375

then check their conditions to predict labels and 376

unsatisfied conditions. Third, each example is pro- 377

vided an additional list of known facts for checking 378

the entailment status of the conditions. All premise, 379

hypothesis, conditions, and facts are obtained from 380

MultiNLI (Williams et al., 2018). Table 1 gives an 381

example in CondNLI. 382

4.1.2 Results 383

Previous work (Clark et al., 2020b) showed 384

that Transformer-based Language Models, e.g. 385

RoBERTa (Liu et al., 2019), have the ability to 386

reason over multiple conditions to answer the rea- 387

soning question in the deductive reasoning setting, 388

e.g. “if A and B then C” with facts on conditions A 389

and B provided. We replace RoBERTa with FiD to 390

6In some examples, none of the premises is relevant to the
hypothesis. Such examples will be labeled as “Irrelevant”.
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handle long contexts. FiD is trained to generate an-391

swer labels and a list of unsatisfied conditions. To392

simplify the generation task, we prepend a condi-393

tion id to each condition and let the model generate394

the condition id instead. We train the model on395

two types of input, one using templates with vari-396

ables in letters, and the other using examples where397

variables are instantiated with real NLI examples.398

Main Results The experiment results are shown399

in Table 2. We measure both the accuracy of la-400

bel prediction and the F1 of unsatisfied conditions.401

The results show that a plain Transformer-based402

sequence-to-sequence model (FiD) performs the403

logical reasoning task reasonably well if the con-404

text is simple, i.e. using the template with vari-405

ables A, B, . . . as inputs. However, the FiD per-406

forms significantly worse on examples with real407

NLI examples. TReasoner still performs well on408

the CondNLI dataset with NLI examples.409

Generalization to More Conditions The TRea-410

soner is trained on templates with 6 conditions or411

fewer. To test TReasoner’s ability to generalize412

to more conditions, we take a trained model and413

test it on the examples with more than 6 conditions.414

Figure 3 (left) shows the change of performance in415

both label classification and unsatisfied condition416

prediction tasks as the number of conditions in-417

crease.7 We observe more decrease in performance418

in predicting unsatisfied conditions (probably be-419

cause more conditions are unsatisfied), but it is still420

reasonable with 20 conditions.421

Number of Reasoning Layers We additionally422

experiment with different numbers of layers in the423

reasoner module. The results are shown in Figure424

3 (right). The Transformer-based reasoner module425

needs at least 3 layers to perform the reasoning task,426

especially for predicting unsatisfied conditions.427

4.2 ConditionalQA428

In the second experiment, we run TReasoner on a429

real QA dataset, ConditionalQA (Sun et al., 2021a)430

(CC BY-SA 4.0 License), that requires reasoning431

over long documents with much more conditions432

and more complex logical operations stated in nat-433

ural language.434

4.2.1 Task435

ConditionalQA is challenging because it requires436

the model to accurately locate relevant results and437

conditions from longer documents. Previous mod-438

els, e.g. RuleTaker, DGM (Clark et al., 2020b;439

7“any & all” indicates that the context only contains condi-
tions under the logical operation “any” or “all”.

Figure 3: Left: Generalization results of reasoning over more
conditions. Right: Results on the ablated model with different
numbers of Transformer layers in the reasoning module. We
report both label accuracy and F1 of unsatisfied conditions.
“any & all” indicates that examples only have two types of
logical operation: “any” and “all”.

Ouyang et al., 2020) concatenate the inputs into 440

a long sequence and then compute cross-attention 441

over the concatenate input. The length of the in- 442

put is constrained by the O(N2) complexity. Even 443

if we adopt the Fusion-in-Decoder (Izacard and 444

Grave, 2020) strategy to handle long sequences, 445

performance is still limited (see Table 2). 446

Another challenge in ConditionalQA is to iden- 447

tify logical operations for conditions. For example 448

in Figure 1, the model should predict the logical 449

operation “all” from the statement that “if you’re 450

both:”. One could possibly provide intermediate 451

supervision to predict logical operations. However, 452

such labels are not provided in ConditionalQA and 453

it is hard to find distant supervision labels. TRea- 454

soner encodes the logical operation in the condi- 455

tion’s embeddings s(i)j (Eq. 2) and does not need 456

additional supervision for the logical operation. 457

Furthermore, different from the CondNLI and 458

ShARC datasets (§4.3), the ConditionalQA dataset 459

contains questions with both yes/no answers and 460

free-form answer spans. We apply the decoder 461

module on the token embeddings h(1)
1,1, . . . ,h(n)

kn,m
462

to generate the final answer spans (Eq. 3). Please 463

see Appendix B for details on data preparation. 464

4.2.2 Evaluation 465

The predictions are evaluated using two sets of 466

metrics: EM/F1 and conditional EM/F1. EM/F1 467

are the traditional metrics that measures the pre- 468

dicted answer spans. The ConditionalQA dataset 469

introduced another metric, conditional EM/F1, that 470

jointly measures the accuracy of the answer span 471

and the unsatisfied conditions. Please refer to the 472

ConditionalQA paper (Sun et al., 2021a) for more 473

information. Briefly, the conditional EM/F1 is the 474

product of the original answer EM/F1 and the F1 475
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Yes / No Extractive Conditional Overall
EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds EM / F1 w/ conds

majority 62.2 / 62.2 42.8 / 42.8 – / – – / – – / – – / – – / – – / –
ETC 63.1 / 63.1 47.5 / 47.5 8.9 / 17.3 6.9 / 14.6 39.4 / 41.8 2.5 / 3.4 35.6 / 39.8 26.9 / 30.8
DocHopper 64.9 / 64.9 49.1 / 49.1 17.8 / 26.7 15.5 / 23.6 42.0 / 46.4 3.1 / 3.8 40.6 / 45.2 31.9 / 36.0
FiD 64.2 / 64.2 48.0 / 48.0 25.2 / 37.8 22.5 / 33.4 45.2 / 49.7 4.7 / 5.8 44.4 / 50.8 35.0 / 40.6
TReasoner 73.2 / 73.2 54.7 / 54.7 34.4 / 48.6 30.3 / 43.1 51.6 / 56.0 12.5 / 14.4 57.2 / 63.5 46.1 / 51.9

Table 3: Experimental results on ConditionalQA (EM / F1). The “EM/F1” columns reports the original EM/F1 metrics that
are only evaluated on the answer span. The “w/ conds” is the conditional EM/F1 metric discussed in §4.2.2. Numbers of the
baseline models are obtained from Sun et al. (2021a).

of the predicted unsatisfied conditions. The con-476

ditional EM/F1 is 1.0 if and only if the predicted477

answer span is correct and all unsatisfied condi-478

tions are found. If there’s no unsatisfied condition,479

the model should predict an empty set.480

4.2.3 Results481

We compare TReasoner with a few baseline mod-482

els, including ETC (in a pipeline) (Ainslie et al.,483

2020), DocHopper (Sun et al., 2021b), and Fusion-484

in-Decoder (FiD) (Izacard and Grave, 2020). The485

ETC pipeline first extracts possible answers from486

the context and then takes the question and ex-487

tracted answers as input to find unsatisfied condi-488

tions. The answer extraction model and the condi-489

tion prediction model are trained separately. Do-490

cHopper is a multi-hop attention system that iter-491

atively attends to sentences to jointly predict the492

answers and unsatisfied conditions. The iterative493

process in DocHopper is updated in the embed-494

ding space so it is end-to-end differentiable. FiD495

is a encoder-decoder model based on T5. FiD im-496

proves over T5 by proposing to split long input497

sequences into short sequences, encode the short498

sequences independently, and jointly decode over499

all encoded embeddings to generate the outputs.500

For the ConditionalQA dataset, we train the FiD501

model to generate the answers followed by the list502

of unsatisfied conditions.503

Main Results The experimental results are pre-504

sented in Table 3. TReasoner achieves the state-505

of-the-art on both yes/no and extractive questions.506

TReasoner also significantly outperforms all the507

baselines on the questions with conditional answers508

with 166% and 148% relative improvement in the509

conditional EM/F1 metrics (w/ conds).510

Condition Accuracy Since there’s not a metric511

that directly measure the quality of predicted condi-512

tions, we additionally report the F1 of the predicted513

unsatisfied conditions (Table 2). The best baseline514

models, FiD, rarely predicts any conditions. This515

is likely because only a subset of the questions516

Answer
(w/ conds)

Conditions
(P / R / F1)

FiD 3.2 / 4.6 98.3 / 2.6 / 2.7
FiD (conditional only) 6.8 / 7.4 12.8 / 63.0 / 21.3
TReasoner 10.6 / 12.2 34.4 / 40.4 / 37.8

Table 4: Experimental results on the subset of questions in
ConditionalQA (dev) that has conditional answers. Accuracy
for the answers is evaluated using the conditional EM/F1 (w/
conds) metrics defined by Sun et al. (2021a). Conditions are
evaluated in precision, recall and F1.

have unsatisfied conditions. Even though we train 517

the FiD model only on the subset of questions that 518

have conditional answers, its performance slightly 519

improves but is still much lower than TReasoner 520

by 16.5 points in condition F1. 521

4.3 ShARC 522

We additionally experiment TReasoner with the 523

ShARC (Saeidi et al., 2018) (CC BY 3.0 License) 524

dataset. The ShARC dataset examples have shorter 525

context, usually a few sentences or a short passage, 526

but the logical operations between conditions are 527

more complex, as is discussed below. 528

4.3.1 Task 529

The ShARC dataset has two subtasks: Decision 530

Making and Question Generation. The decision 531

making task asks the model to predict one of the fol- 532

lowing labels as the answer: “yes”, “no”, “inquire”, 533

and “irrelevant”. The label “inquire” means that 534

information provided by the question is not enough 535

to make a definite prediction, i.e. there are unsat- 536

isfied conditions. In this case, the model should 537

perform the Question Generation task to generate 538

a followup question to clarify the unsatisfied con- 539

ditions. The decision making task evaluates the 540

predicted labels using micro and macro accuracy. 541

The question generation task evaluates the BLEU 542

scores of the generated question with the ground 543

truth annotation. Note that some example could 544

have multiple unsatisfied conditions, but only one 545

of them will be annotated as ground truth followup 546

7



Decision Question
(micro / macro) (BLEU1 / BLEU4)

CM 61.9 / 68.9 54.4 / 34.4
BERTQA 63.6 / 70.8 46.2 / 36.3
UcraNet 65.1 / 71.2 60.5 / 46.1
Bison 66.9 / 71.6 58.8 / 44.3
E3 67.7 / 73.3 54.1 / 38.7
EMT 69.1 / 74.6 63.9 / 49.5
DISCERN 73.2 / 78.3 64.0 / 49.1
DGM 77.4 / 81.2 63.3 / 48.4
TReasoner 80.4 / 83.9 71.5 / 58.0

Table 5: Experimental results on the ShARC dataset. Num-
bers for the baseline models (Saeidi et al., 2018; Zhong and
Zettlemoyer, 2019; Verma et al., 2020; Lawrence et al., 2019;
Gao et al., 2020a,b; Ouyang et al., 2020) are borrowed from
Ouyang et al. (2020).

question.8 See Appendix C for data preparation.547

4.3.2 Results548

Main Results We compare TReasoner to a few549

strong baseline models, including the previous550

state-of-the-art model, e.g. DISCERN and DGM551

(Gao et al., 2020b; Ouyang et al., 2020). Different552

from the baseline models, which use separate mod-553

els for label classification and unsatisfied condition554

prediction, TReasoner performs both tasks jointly.9555

The results are shown in Table 5. TReasoner out-556

performs the previous baselines by 3 points on the557

classification task and more than 8 points on the558

question generation task.559

Condition Accuracy One problem with the current560

question generation task is that the ground-truth561

question only asks about one of the unsatisfied con-562

ditions, even though there could be multiple unsat-563

isfied conditions. To further evaluate TReasoner’s564

performance in predicting unsatisfied conditions,565

we manually annotate the logical operations in 20566

passages that have more than one condition (857567

data total),10 and use the annotated logical opera-568

tions to find all unsatisfied conditions. We report569

the F1 of the predicted unsatisfied conditions (see570

Table 6). Compared to the baselines (Gao et al.,571

2020b; Ouyang et al., 2020), TReasoner improves572

the F1 by 11.4.573

Label Accuracy v.s. Conditions We additionally574

measure the accuracy versus the number of condi-575

tions in the context. We consider the number of576

all followup questions on each context as its num-577

8To mitigate this issue in evaluation, we run an additional
evaluation that measures the F1 of the predicted unsatisfied
conditions. Please see results in Table 6.

9Previous models, e.g. DISCERN and DGM, additionally
use a generation model to paraphrase the unsatisfied conditions
into questions, similar to our generation process with T5.

10Each passage in ShARC has 32.9 data on average.

Decision Question Condition
(micro / macro) (BLEU1 / 4) (F1)

DISCERN 74.9 / 79.8 65.7 / 52.4 55.3
DGM 78.6 / 82.2 71.8 / 60.2 57.8
TReasoner 79.8 / 83.5 71.7 / 60.4 69.2

Table 6: Experiment results on the ShARC dataset (dev)
compared to the baselines, DISCERN and DGM (Gao et al.,
2020b; Ouyang et al., 2020). The Condition (F1) number is
obtained by reruning their open-sourced codes.

# conditions 1 2 3 4

DGM 90.4 70.3 80.0 73.4
TReasoner 90.3 72.7 80.6 75.2

diff -0.1 2.4 0.6 1.8

Table 7: Ablation study on the label accuracy vs. the number
of conditions in the context. Numbers of DGM (Ouyang et al.,
2020) is obtained by reruning their open-sourced codes.

ber of conditions. Results in Table 7 show that 578

the improvement in TReasoner’s performance over 579

the previous state-of-the-art model (DGM) mostly 580

come from questions that have more than one con- 581

ditions. 582

5 Conclusion 583

We study the problem of QA with answers that are 584

constrained by a list of conditions that interact with 585

each other under logical operations, such as “any” 586

or “all”. We propose a system, TReasoner, that con- 587

tains an entailment module to check the entailment 588

status of conditions and a jointly trained reason- 589

ing module that performs the logical reasoning to 590

predict the final answers and the unsatisfied condi- 591

tions. TReasoner shows excellent reasoning ability, 592

and can easily generalize to more conditions on 593

a synthetic dataset CondNLI. Furthermore, TRea- 594

soner achieves state-of-the-art performance on two 595

challenging question answering datasets Condition- 596

alQA (Sun et al., 2021a) and ShARC (Saeidi et al., 597

2018). However, reasoning over logically inter- 598

acted conditions is still a very challenging task, 599

and wrong predictions may lead to severe conse- 600

quences in real world applications in professional 601

domains. We advocate for more research in this 602

direction. 603
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(Template)
Context: If all (A, B), then U.

If any (not C, D), then V.
Facts: a, c, not d.
Question: Is u correct?
Label: entailed, if B

(Variables)
A: Aged 59 1/2 or older. a: Tom is 65 years old.
B: Employed for two years. b: NOT_USED
C: Has two children c: He has two sons.
D: Has not applied before. not d: Rejected last year.
U: Get at least $60 a week u: Eligible for $60 a week.
V: Waive the application fees v: NOT_USED

Table 8: An example of CondNLI. Variables A, B, . . . and
U , V , . . . represent the conditions and premises. Variables a,
b, . . . represent the known facts. u is the question. Each pair
of variables, e.g. (A, a), is instantiated with an NLI example.

Haitian Sun, William W. Cohen, and Ruslan Salakhutdi-716
nov. 2021b. End-to-end multihop retrieval for com-717
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CoRR, abs/2106.00200.719

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-720
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A CondNLI Dataset Construction748

We first construct templates for the CondNLI exam-749

ples and then replace the variables in the template750

with real NLI examples.751

Construct Templates We use capital letter vari-752

ables U , V , . . . to represent the premises in the753

context, and A, B, . . . to represent the conditions. 754

As discussed above, a premise is paired with a 755

list of conditions and a logical operation. We ex- 756

press the relationship between the premise and the 757

conditions with the statement “if ... then ...”. For 758

example in Table 8, we say “If all (A, B), then U” 759

to represent that the premise U has the conditions 760

A and B, and the logical operation “all”. 761

Since the question is only about one of the 762

premises in the context, we randomly sample a 763

premise, e.g. U , and take its corresponding hypoth- 764

esis u as the question. With the question u, only the 765

conditions of the premise U need to be satisfied. 766

We also provide a list of facts that are used to 767

check the entailment state of the conditions. To 768

construct the facts, we randomly sample a subset 769

of the conditions from the context, e.g. {A, C, D}, 770

and take the facts of the selected conditions, e.g. 771

{a, c, d}. Furthermore, we randomly add the term 772

“not” to a fact, e.g. not d, to indicate that the fact d 773

contradicts with its condition D. 774

With the question, e.g. u, and the list of facts 775

e.g. {a, c, not d}, we can infer the answer label 776

and identify unsatisfied conditions. We keep the 777

label “entailed”, “contradicted”, and “neutral”, and 778

add an additional label “irrelevant” if none of the 779

premise in the context is relevant to the document. 780

Generate Examples For a templates with variables 781

A, B, U , V , . . . , a, b, u, v, . . . , we instantiate 782

the variables with NLI examples to get the real 783

data. We use the premises of original NLI exam- 784

ples for premises or conditions, i.e. capital letter 785

variables, and the hypothesis for question and facts, 786

i.e. lower-case variables. Note that sampling re- 787

quires matching the entailment state of conditions, 788

e.g. “not d” requires sampling from NLI examples 789

with the original label “contradict”. 790

We restrict the number of conditions in the con- 791

text to 6 and randomly generate 65 distinct tem- 792

plates.11 During training, we randomly pick a tem- 793

plate and instantiate it with NLI examples to gener- 794

ate real training examples. This random generation 795

process enables creating (almost) unlimited amount 796

of training data. We randomly generate another 797

5000 examples for development and testing. 798

B ConditionalQA Data Preparation 799

Examples in the ConditionalQA dataset provide a 800

parsed web page as context, a question, and a user 801

11Restricting the number of conditions is only for the pur-
pose of reducing training complexity. The experiment in Fig-
ure 3 (left) shows the model’s capability of generalizing to
more conditions.
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scenario that describes some relevant information802

about the question. We parse the provided con-803

text into the format that contains a list of tuples804

{({c(1)1 , . . . , c
(1)
k1

}, r(1), t(1)), . . . } as in §3.1.805

The context in ConditionalQA is provided as a806

list of HTML elements. We treat each element at807

the leaf of the DOM tree as a condition, and all808

its parents (from its direct parent to the root) as809

the result. Conditions under the same parent are810

considered to be in the same list {c(i)1 , . . . , c
(i)
ki
}. As811

discussed before, the logical operations t(i) need812

to be inferred from the context. We drop the field813

“type:” in the input in Eq. 1 and ask the model to814

discover it from the context and implicitly encode815

it into the condition embeddings s(i)j . The question816

q is the combination of the question and scenario.817

C Sharc Data Preparation818

Different from ConditionalQA, where each sen-819

tence in the context is treated as a condition, con-820

ditions in the ShARC dataset are shorter and are821

sometimes short phrases (sub-sentence). For ex-822

ample, the context “If you are a female Vietnam823

Veteran with a child who has a birth defect, you824

are eligible for ...” contains two conditions, “If825

you are a female Vietnam Veteran” and “with a826

child who has a birth defect”.12 In order to han-827

dle sub-sentence conditions, we follow the strat-828

egy proposed in two of the baseline models, DIS-829

CERN (Gao et al., 2020b) and DGM (Ouyang et al.,830

2020), that split a sentence into EDUs (Elementary831

Discourse Units) using a pretrained discourse seg-832

mentation model (Li et al., 2018). The discourse833

segmentation model returns a list of sub-sentences,834

each considered as a condition.835

While we could treat each condition indepen-836

dently as we did previously for other datasets, the837

segmented EDUs are different in that they are not838

full sentences and may not retain their semantic839

meaning. Thus, we jointly encode all EDUs s(i)j as840

a single passage and select embeddings at specific841

tokens in the sentence as the condition embeddings842

s(i)j . We construct the input s for the entailment843

module as followed.844

s = “condition:” + c
(1)
1 + · · ·+ c

(n)
kn

+ “question:” + q845

Similar to ConditionalQA, we drop the “type:”846

argument because the logical operation is not pro-847

vided and needs to be inferred from the context.848
12It is arguable that this could be generally treated as one

condition, but it is treated as two conditions with the logical
operator “all” in the ShARC dataset.

We additionally drop the argument “result:” and let 849

the model to implicitly select EDUs (with the pre- 850

fix “condition:”) as the result. The input s is used 851

to compute condition embeddings. The condition 852

embedding s(i)j for the EDU c
(i)
j is the embedding 853

at the start of each condition c
(i)
j . 854

s(1)1 , . . . , s(n)kn
= Entail(s)

For the question generation task, we use the 855

same input s as in decision making, except that 856

we replace the prefix “condition:” with “unsatis- 857

fied condition:” for “unsatisfied” conditions. We 858

fine-tune a T5 model for question generation. 859

D Dataset Statistics 860

Dataset statistics are shown in Table 9.

Train Dev Test

ShARC 15581 1622 5866
ConditionalQA 2338 285 804

Table 9: Dataset statistics.

861
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