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Single attribute editing:
man → Iron Man

Multi attribute editing: man → Batman,
clay court → snow covered court, stone wall → iced wall

Multi object and attribute editing:
left man → Spider Man, right man → Iron Man,  

trees, ground  → sphalt road with  building under sky 

Multi object and attribute editing:
left man → Iron Man,  right man → Spider Man，

trees, ground → frosty yellow leaves

Source Video Source Video
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Fig. 1: EVA achieves multi-attribute editing for both single and multi-object scenarios, adhering
to the source video’s layout and faithfully preserving motion information.

Abstract. Current diffusion-based video editing primarily focuses on local edit-
ing (e.g., object/background editing) or global style editing by utilizing various
dense correspondences. However, these methods often fail to accurately edit the
foreground and background simultaneously while preserving the original layout.
We find that the crux of the issue stems from the imprecise distribution of atten-
tion weights across designated regions, including inaccurate text-to-attribute con-
trol and attention leakage. To tackle this issue, we introduce EVA, a zero-shot and
multi-attribute video editing framework tailored for human-centric videos with
complex motions. We incorporate a Spatial-Temporal Layout-Guided Attention
mechanism that leverages the intrinsic positive and negative correspondences of
cross-frame diffusion features. To avoid attention leakage, we utilize these corre-
spondences to boost the attention scores of tokens within the same attribute across
all video frames while limiting interactions between tokens of different attributes
in the self-attention layer. For precise text-to-attribute manipulation, we use dis-
crete text embeddings focused on specific layout areas within the cross-attention
layer. Benefiting from the precise attention weight distribution, EVA can be easily
generalized to multi-object editing scenarios and achieves accurate identity map-
ping. Extensive experiments demonstrate EVA achieves state-of-the-art results in
real-world scenarios. Full results are provided at project page.

https://knightyxp.github.io/EVA/
https://knightyxp.github.io/EVA/
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1 Introduction
Source Video Groud-A-VideoFatezero ControlVideo TokenFlow

A Batman is playing tennis on snow covered court before an iced wall   

Source Video Groud-A-VideoFatezero ControlVideo TokenFlow

(a) Edit results of  previous methods in single-object multi-attribute scene (b) Edit results of  previous methods in multi-object multi-attribute scene

 An Iron man and a Spider Man are running under frosty yellow
trees with golden leaves on the ground

Fig. 2: Previous methods failed results are displayed in single/multi-object scenes. EVA’s suc-
cessful edit result is shown in the third row of Fig 1 left and the second row of Fig 1 right.

Text-to-video (T2V) editing, which aims to change the visual appearance of a video
according to a given prompt, is an emerging field that harnesses strong generation abil-
ity from text-to-image/video models [29–32]. Previous works have employed dense
correspondences, such as depth/edge maps [41, 42], optical flow [8, 14, 38] and atten-
tion maps [27], for local attribute or global style editing, often compromising fidelity.

In this paper, we focus on multi-attribute editing because it enables us to finely ad-
just local attributes while maintaining the original video’s layout and background intact,
resulting in more authentic edits. Previous works have encountered many challenges in
multi-attribute editing (Fig 2). The main issues include: (1) overlooking or distorting
edits of individual attributes, with FateZero [27] unable to edit the object and Con-
trolVideo [41] failing to preserve the background unchanged (Fig 2 (a)); (2) the mixing
of different attributes, where ControlVideo leads to the blending of textures between
"Iron Man" and "Spider-Man", and TokenFlow [10] incorrectly associates the identities
of the two characters (Fig 2 (b)).

Ground-A-Video [15] is a recent approach to multi-attribute editing, which employs
a cross-frame gated attention mechanism with word-to-bounding box control. Yet, it
still has the aforementioned limitations. The word-to-bounding box control lacks the
necessary precision, leading to the loss of fine-grained details, such as the racket illus-
trated in Fig 2 (a). Furthermore, when bounding boxes are overlapping, it leads to the
mixing of textures in adjacent areas.

We identify the imprecise distribution of attention weights as the root cause of
these challenges, including inaccurate text-to-attribute control and attention leakage. To
ensure precise attention weight distribution, we introduce a Spatial-Temporal Layout-
Guided Attention (ST-Layout Attn) mechanism.

First, to achieve accurate text-to-attribute control, we extract the corresponding text
embedding for each attribute from the global prompt. These discrete text embeddings
are applied to each attribute’s corresponding layout areas within the cross-attention
layer. For each layout area, we use masks as spatially disentangled information, lever-
aging the inherent characteristic that masks do not overlap. To further keep the fine-
grained details, we perform latent blend [1] to preserve the undesired edit areas.

Second, to avoid attention leakage, our goal is to ensure the mutual exclusivity of
different attributes while enhancing the correlation of the same attribute across frames.
We leverage the cross-frame diffusion feature similarity (DIFT [33]), which reveals
the intrinsic correlations across inter/intra attributes along a spatial-temporal axis. As
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Negetive Pair
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Fig. 3: Intrinsic Cross-frame DIFT [33] feature correspondence. We randomly select a “red point"
in the source image, extract its DIFT feature, and compute cosine similarity with the target image.
The target’s "red point" marks the highest similarity, and "blue point" is the lowest, showing the
potential to unsupervised identify intra/inter attributes correspondence.

demonstrated in Fig 3, for each token, we identify its corresponding positive pair in
other frames (sharing the same attribute) by maximizing the cosine DIFT similarity.
Similarly, we determine its negative pair (across different attributes) by minimizing
this similarity. Thus, leveraging this intrinsic correspondence, we assign positive and
negative values to each token across various layouts on a spatial-temporal axis. Conse-
quently, we enhance the attention scores for tokens within the same attribute and limit
interactions between tokens of different attributes across frames, thus significantly mit-
igating attention leakage.

Benefiting from precise attention-weight distribution and text-to-attribute control
brought by our attention mechanism, we realize accurate identity mapping and back-
ground editing in the multi-object scenario. Such as swapping identity while editing the
background (Fig 1 right).

Our key contributions can be summarized as follows:

– We propose EVA, a general framework for accurate attributes and multi-object
video editing, which realizes accurate weight distribution and identity mapping.

– Leveraging intrinsic cross-frame DIFT correspondence, we introduce ST-Layout
Attn for accurate text-to-attribute control and to avoid attention leakage.

– Without tuning any parameters, we achieve state-of-the-art results on existing bench-
marks and real-world videos both qualitatively and quantitatively.

2 Related Work

2.1 Text-to-Image Editing/Generation

In the realm of single attribute text-to-image editing, various approaches have been ex-
plored, from manipulating attention maps in Pix2Pix-Zero [23] and Prompt2Prompt
[13] to employing masks in DiffEdit [9] and Latent Blend [1, 2] for foreground modifi-
cations while preserving the background.

For multi-attribute editing, efforts such as Attention and Excite [6] and DPL [36]
focus on maximizing the attention scores for each subject token and reducing atten-
tion leakage. Recently, in single image generation, [17] adjusted modulate attention
value according to layout masks and dense caption. [25] proposed attention refocus
loss for regularization. However, guiding the attention map solely with single-frame
layout masks and dense captioning is inadequate in video editing, as it fails to maintain
the original video’s integrity and temporal consistency.
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2.2 Text-to-Video Editing

Video Editing based on Image Diffusion Models Tune-A-Video (TAV) [37] is the
first work to extend latent diffusion models to the spatial-temporal domain and en-
code the source motion implicitly by one-shot tuning but still fails to preserve local
details. Fatezero [27] is a prompt2prompt [13] based editing method, fusing self- and
cross-attention maps for temporal consistency. However, it requires extensive RAM
usage and suffers from layout preservation even when equipping TAV for local ob-
ject editing. [5] and [22], following the Neural Atlas [16] or dynamic Nerf’s defor-
mation field [21, 26], struggle with non-grid human motion. Subsequent methods like
Rerender-A-Video [38], Flatten [8] ControlVideo [41, 42] achieve strict temporal con-
sistency via optical-flow, depth/edge maps, but failed in multi-attribute editing while
preserving original layouts. Tokenflow [10] enforces a linear mix of nearest key-frame
features to ensure consistency but results in detail loss. Ground-A-VIDEO [15] lever-
ages groundings for multi-attribute editing, but it suffers from attention leakage when
bounding boxes overlap, even with dense guidance such as optical flow.
Video Editing based on Video Diffusion Models Previous video editing work pri-
marily utilized text-to-image SD model [30]. Recent advancements in video foundation
models [3, 12, 35, 39] have led efforts like MotionDirector [43] and VideoSwap [11] to
employ temporal priors for customized motion transfer. Yet, current video foundation
models are limited to fixed views and struggle with complex human motions. Addi-
tionally, these editing methods require tuning parameters, which poses a challenge for
real-time video editing applications. In contrast, our EVA method requires no parameter
tuning, enabling zero-shot, multi-object and multi-attribute video editing.

3 EVA
In this section, we start by analyzing the prerequisite for multi-attribute editing and
the necessity for precise attention weight distribution in section 3.1. Subsequently, we
present an overview of the proposed EVA pipeline in section 3.2. Following that, we
detail the Spatial-Temporal Layout Attention mechanism in 3.3. Notice that, our EVA
is a general zero-shot framework for editing both single and multiple objects, as well as
backgrounds, in human-centric videos with complex motion.

3.1 What is the Key to Multi-Attribute Video Editing?

Accurate Text-to-Attribute Control To accurately edit multiple attributes in a video,
it is essential to ensure the model’s capability for precise editing of each individual at-
tribute. The previous method, FateZero [27], addresses this challenge by implementing
word-swap in prompt-to-prompt editing [13], making the editing of multiple attributes
simultaneously. It also merges attention maps from the inversion process to preserve
the original motion and layout information. However, as depicted in Fig 4 (a), FateZero
struggles to edit “man" to “Iron Man" and “clay court" to “snow covered court" in
video with complex motion, even with pose guidance from ControlNet [40]. This issue
stems from the misalignment of attribute weights with their appropriate spatial regions.
Specifically, the weight of “man" is concentrated only on the head, and the weight of
"snow" is wrongly assigned to "man." Additionally, "court"’s weight doesn’t correctly
cover its area, spreading around the person instead.



EVA 5

(a)  Inaccurate text-to-attribute control

Edit prompt: An Iron Man is playing tennis
on snow covered court

FateZero 
Edit prompt: An Batman is playing tennis on 

snow covered court before an iced wall

Ground-A-Video 

(b)  Attention leakage

Fig. 4: Left: FateZero [27] fails in text-to-attribute control, incorrectly allocating weights to
"snow" and not fully covering "man." Right: Although Ground-A-Video [15] attempts to ground
each attribute individually, it still suffers from attention leakage, leading to texture blending on
"Batman’s" upper body and imprecise edits of "court" and "wall."

This challenge inspires us to employ spatially disentangled semantic masks as lay-
out information, leveraging their natural ability to capture each attribute’s shape fea-
tures. Moreover, we aim to ensure that each text embedding exclusively focuses on its
corresponding attribute’s spatial region, thus ensuring accurate text-to-attribute control.
Avoiding Attention Leakage However, relying solely on spatially disentangled infor-
mation is insufficient. Previous work Ground-A-Video [15] introduced gated attention
from [19] for text-to-bounding box control in multi-attribute editing. Yet, in complex
motion, [15] still faces challenges in accurately editing the man, ground, and walls.

As illustrated in Fig 4 (b), our visualization of the cross-attention map reveals a
phenomenon termed "attention leakage," where weights from other attributes, such as
"court" and "wall," leak onto "Batman," causing his upper body to appear white. To
address this, we introduce negative example awareness among different attributes to
ensure the mutual exclusivity of each attribute weight, thereby avoiding attention leak-
age. Additionally, the incomplete weight distribution across Batman’s body underscores
the necessity to strengthen the correlation within each attribute. Cross-frame DIFT fea-
tures inherently exist this kind of correspondence. For a query token, cross-frame DIFT
feature similarity identifies positive pairs within the same attribute across frames and
negative pairs in different attributes by calculating max/min similarity, as shown in Fig
3. Leveraging this correspondence, we introduce ST-Layout Attn mechanism. Our ST-
Layout Attn not only ensures that each text embedding concentrates on its respective
attribute, but also enhances the internal coherence within attributes and keeps the ex-
clusivity of attention weights among different attributes. Through this approach, we
effectively achieve accurate text-attribute control and prevent attention leakage.

3.2 Overall Framework

Our framework aims to edit the source video V 1:N according to a textual prompt ∆τ

which contains a series of desired local attribute edits {τ1→τ1′ , τ2→τ2′ , · · · }. Follow-
ing previous work [27,37], we inflated the original StableDiffusion [30] (SD) along the
temporal axis to adapt for 3-dimension video input.

For human-centric complex motion, we want to decouple human motion from object
identity. Thus, we directly utilize the human pose as sparse motion information from the
source video object. Following [41,42], we employ ControlNet’s [40] pose guidance to
promote temporal consistency.
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Fig. 5: EVA pipeline. We integrate the ST-Layout Attn within the frozen SD in the denoising
process. In the self-attention layer, we compute the positive/negative value of each query token in
different attributes from a spatial-temporal perspective, This allows us to augment the attention
scores for tokens within the same attribute and reduce them for tokens in different attributes.
In the cross-attention layer, we extract each attribute’s text embeddings from the edit prompt,
ensuring they focus only on corresponding layouts across frames.

Fig 5 illustrates the overall pipeline of our EVA:
(1) Firstly, we obtain layout masks M1:N

n (n denotes the layout or attribute classes)
corresponding to each attribute through user-interactive Segment-and-Tracking any-
thing [7], which provides crucial layout information. We obtain pose condition P 1:N

through the OpenPose estimator [4] to encode source complex motion information. Fur-
thermore, we extract text embeddings for each attribute from the edit prompt, setting
the stage for their subsequent use in the cross-attention layer of ST-Layout Attn.

(2) Then, the input videos undergo DDIM inversion in the latent space of Stable
Diffusion (SD [30]) and ControlNet [40] to enhance the fidelity of the generated video.

(3) Finally, the inverted Latents Zt are fed into inflated SD and ControlNet dur-
ing the DDIM denoising process. In the denoising process, we incorporate ST-Layout
Attn to ensure accurate attention weight distribution in a zero-shot manner. In the self-
attention layer, based on the cross-frame DIFT similarity, we boost the attention scores
of tokens in the same attribute and restrict communication between different attributes
across all frames, avoiding attention leakage. In the cross-attention layer, we utilize
each attribute’s text embedding to enable direct text-to-attribute control.

3.3 Spatial-Temporal Layout-Guided Attention

DenseDiffusion [17] proposed modulating intermediate attention maps according to
layout mask guidance for single image generation. However, in the context of dy-
namic video scenes, the correlation between attributes across different frames con-
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stantly changes. Therefore, enhancing intra-attribute similarity while reducing inter-
attribute interaction becomes crucial in scenes with complex motion.

Notations We define a set of layout masks mi
L = [mi

1,m
i
2, · · · ,mi

l] for the ith

frame and multi attributes τL = [τ1, τ2, · · · , τl] ,where L denotes total classes of layout
attributes, and each pair (τl,ml) correspond to a single region.

Identify the correlations of intra/inter attributes Consider the original SD is
trained on the large-scale images, and lacks a built-in temporal module in the pretrain-
ing process. To incorporate temporal information effectively, we treat the full video
frames as “a larger picture”. Specifically, for each query Q at frame i, the key K or
value V is computed from the concatenated latents across all frames, this process can
be formulated as:

Q = WQzit, K = WKzNt , V = WV zNt , (1)

where WQ,WK ,WV project zt into query, key and value. zNt = [z1t , · · · , znt ] denotes
the concatenation of each frame latent state and n represents the total video frames.

Continually, we need to find each attribute’s correlations across different frames. As
illustrated in Fig 3, the maximum value in cross-frame DIFT feature similarity indicates
the strongest response among tokens within the same attribute, whereas the minimum
similarity points to the relationship between tokens of different attributes. To discern
the relationship of each query token with the same and different attributes throughout
the video, we identify the spatial-temporal positive/negative value for each query on the
spatial-temporal axis as follows:

M i
pos = max(Qi[K1, · · · ,Kn]⊤)−Qi[K1, · · · ,Kn]⊤)

M i
neg = Qi[K1, · · · ,Kn]⊤ − min(Qi[K1, · · · ,Kn]

⊤
)

(2)

These spatial-temporal positive/negative values represent the relationships within the
same/different attributes, respectively, allowing us to enhance attention scores among
tokens of the same attribute and reduce them among tokens of different attributes to
avoid attention leakage.

Modulate Spatial-Temporal Attention Value We follow [17], and modulate the
attention map Ai to A′

i for each frame i based on the spatial-temporal positive/negative
value, this can be formulated as:

A′
i = softmax(

Qi[KN ]⊤ +M√
d

),

M = λt ·Ri
st ⊙M i

pos ⊙ (1− Si
st)− λt · (1−Ri

st)⊙M i
neg ⊙ (1− Si

st),

(3)

where Ri
st ∈ R|queries|×|keys| indicates the query-key pair condition map at frame i, ma-

nipulating whether to increase or decrease the attention score for a particular pair. For
the tokens in the same attribute across different frames, which will be viewed as a pos-
itive pair, leading to an increase in their attention score. In contrast, when the tokens
are from different attributes (layouts) in the video, they constitute a negative pair, re-
sulting in a reduced attention score. λt is a regularization parameter for timestep t,
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controlling modulation function intensity. Si
st represents the spatial-temporal regular-

ization for each attribute size. We calculate each attribute class area proportions across
video frames, enabling dynamic attention weight adjustments to layout size variations.

Regularize Self Attention Map Beyond Spatial. In the self-attention layer, we
aim to avoid attention leakage by increasing attention scores for tokens within the same
attribute, while restricting interactions between tokens in different attributes within the
same frame or across various frames. Consequently, our query-key condition map is
defined as:

R
(i),self
st :=

{
0,∀j ∈ [1 : N ], if m(i)

l [a] ̸= m
(j)
l [b],

1, otherwise
(4)

where a and b are token indexes of the query and key in the condition map, respectively.
i, j are frame indices, and ml represents a binary map for a single attribute. If tokens
belong to different attributes across frames, the value is zero.

Discrete Text control in Cross-Attention Layers In the cross-attention layer, to
achieve precise text-to-attribute control, we employ discrete text embeddings for each
attribute focused on corresponding layouts. Based on layout masks mi

L, we tailor the
cross-attention query-key condition maps for textual cues to target specific regions:

R
(i),cross
st :=

{0, if k[b] = 0
mi

k[b], otherwise (5)

where mi
k[b] is a binary map fitting the spatial resolution at ithframe. k[b] ∈ R|keys| maps

the bth text token to its attribute index, with zero indicating no association. Take the
phrase "An Iron Man on a snow covered court": we have two attributes, with τ1 = man
and τ2 = court. The value of k[0, 3, 4] is zero for unrelated tokens, k[1, 2] = 1 for "Iron
Man", and k[5, 6, 7] = 2 for "snow covered court".

4 Experiments

4.1 Experimental Settings

Datasets We validate our EVA model on a dataset comprising 26 videos, sourced from
DAVIS [24], TGVE3, and the Internet4. This dataset includes 14 single-object and 12
multi-object human-centric complex motion videos. For each video, we manually an-
notate the descriptions of the source video and create 3 creative textual prompts, en-
compassing single-attribute, multi-attribute, multi-object and background editing. Ul-
timately, this process results in the construction of 78 video-text pairs. Each video is
cropped and resized to a resolution of 512x512, containing 16-32 frames.
Metrics Following [27,37], we assess the video quality using five metrics: Frame Acc
measures frame-wise editing accuracy, which computes the percentage of frames with
higher CLIP similarity to the target prompt than the source, following [27]. CLIP-T
is the average cosine similarity between the input prompt and all video frames, which

3
https://sites.google.com/view/loveucvpr23/track4

4
https://www.istockphoto.com/

https://sites.google.com/view/loveucvpr23/track4
https://www.istockphoto.com/
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(1) Man → Iron Man, ground → grassland (2) Girl → Batwoman, ground → snow covered ground

(4) Man → The Flash, groove → red groove,
background → stormy lightning night

(3) Woman →  Scarlet Witch ,  sofa → a moonlit pond,
background  →  starry dark night, 

Fig. 6: Single-object multi-attribute editing results. We refer the reader to our webpage for more
examples and full-video results.

is used to measure textual alignment. We also follow [8, 10] to measure the tempo-
ral consistency by CLIP-F and Warp-Error [18]. CLIP-F measures the average cosine
similarity between all pairs of consecutive frames, indicating global-level temporal con-
sistency. Warp-Err calculates the pixel-level difference by warping the edited video
frames according to the estimated optical flow of the source video, extracted by RAFT-
Large [34]. This metric provides a more detailed measure of temporal consistency at
the pixel level. Assessing editing performance solely with these metrics may not offer a
holistic view, as unedited videos could still yield low Warp-Err or high CLIP-F scores.
Therefore, following [8], we adopt Q-edit = CLIP-T/Wrap-Err as a comprehensive
score for video editing quality. For brevity, we scale up Frame Acc/CLIP-F/CLIP-
T/Warp-Err all by 100.
Implementation details For our implementation, we inflate a pretrained 2D Stable Dif-
fusion [30] v1.5 model along with ControlNet [40] as the pretrained model. We employ
the user-interactive mode of SAM-Track [7] for layout condition, which allows users
to specify the areas they wish to edit by clicking to create masks. PCA & clustering
or thresholding from cross-attention maps falls short in accurately isolating tiny objects
such as “tennis ball" and “racket" due to their limited resolution. To enhance the consis-
tency of edited videos, we adopt DDIM inversion. Our DDIM inversion and denoising
steps are all set to 50. To improve efficiency, we have implemented slice attention within
ST Layout Attn, which further saves memory usage. We apply ST Layout Attn in the
initial 15 denoising steps and set other hyper-parameters the same as [17]. All the ex-
periments are done with one NVIDIA A40 GPU.

https://knightyxp.github.io/EVA/
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(1) Back man → Iron Man, front man → Batman
bridge, ground → snow covered bridge and ground

 (3) Left man → Iron Man, right man → Batman
leaves → crimson maple trees,

road→ snow covered  road

(2) Left man → Iron Man, rightman → Batman
ground → yellow floor 

(4) Man → Batman, woman → Batwoman
ground →  rain soaked ground

red wall →  stormy lightning night

swap identity swap identity

Fig. 7: Multi-object multi-attribute editing results. Our EVA supports accurate identity mapping
in complex motion videos.
Baselines We compare with 4 state-of-the-art video editing methods: (1) Fatezero [27]
preserves layout information using source video attention maps. (2) ControlVideo [41]
is a training-free method conditioned on ControlNet [40]. (3) Tokenflow [10] sam-
ples keyframes and performs linear combinations of features for visual consistency. (4)
GroundVideo [15] uses a word-to-bounding box approach for multi-attribute control.
For fairness, all baselines are equipped with ControlNet pose guidance.
4.2 Results

Single Object Multi-Attribute Editing In Fig 6 and 8 top, we showcase EVA’s editing
results in single-object editing. Our method maintains the original layout and critical
local details like “railing” in Fig 6 (1) and “mountains” in Fig 8 top. By decoupling
object motion and identity, edited objects seamlessly follow the original movements,
even in complex scenarios with view changes. Additionally, EVA can edit backgrounds
that contrast with the original video’s style, such as “a pond under moonlight” in Fig 6
(3) or “a stormy lightning night” in Fig 6 (4).
Multi Object and Attribute Editing Fig 7 displays EVA’s multi-object editing out-
comes. Our method omits the need for detailed object descriptions. Simple phrases like
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Edit prompt: An Iron Man is surfing  with a kite rope on a pink wave over blue sea under falling snow sky

Source Video Groud-A-VideoFatezero ControlVideo TokenFlowEVA(Ours)

Edit prompt:  A Spider Man and a Wonder Woman are playing badminton before charcoal grey wall

Fig. 8: Qualitative comparisons to the existing video editing methods. The top figure shows
single-object editing results, and the bottom displays multi-object editing results. We refer the
reader to our project page for full-video comparisons.

"a man and another man" suffice to define source objects’ identities. More importantly,
our approach enables identity swapping in multi-object scenes, as shown in Fig. 1 right
and Fig. 7 (3) (4). This is enabled by discrete text embedding control over each attribute.

4.3 Qualitative and Quantitative Comparisons

Qualitative Comparison Fig 8 compares our editing results with other baseline meth-
ods on single/multi-object videos. (1). In single-object editing (Fig 8 top), FateZero [27]
failed to edit the object and mistakenly edited the pink wave onto the sky. This error
arose because attention weights were not precisely aligned with each attribute’s words
before the word swap. ControlVideo [41] also incorrectly modified the pink wave onto
the sky and could not preserve the layout of the source video. TokenFlow [10] edits
the object into “Ironman" but erases the background mountains and is unable to edit
the background. Ground-A-Video [15], using word-to-bounding box control, confuses
the “kite rope" with the “Iron Man" and fails to edit the “snow sky" and “pink wave”.
It struggles with preserving local details within the bounding box and lacks awareness
of negative examples for adjacent layout weights, which should be mutually exclusive.
(2). In multi-object editing (Fig 8 bottom), FateZero, ControlVideo, and Tokenflow all
mistakenly confused the “man" and “woman" subjects due to a lack of text-to-attribute
control. Ground-A-Video edits the “man" into “Spiderman" but suffers from attention
leakage, where textures of “Spiderman" leak onto the “woman," and it fails to retain the

https://knightyxp.github.io/EVA/
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local details of the source video, such as “badminton rackets" and “nets." For additional
comparison, please refer to the project page.

Method Frame Acc ↑ CLIP-F ↑ CLIP-T ↑ Warp-Err ↓ Qedit ↑
FateZero 73.68 95.75 33.78 3.08 10.96

ControlVideo 95.03 97.71 34.41 4.73 7.27
TokenFlow 89.26 96.48 34.59 2.82 12.28

Ground-A-Video 95.03 95.17 35.09 4.43 7.92
EVA(ours) 98.92 96.09 36.56 2.73 13.39

Table 1: Quantitative comparison with other methods, the best results are bolded

Quantitative Comparison (1) Automatic Metrics Table 1 presents a quantita-
tive comparison with other methods. Our EVA, with precise text-to-attribute control,
achieves the highest frame edit accuracy and the best CLIP-T scores. Although our
frame consistency on CLIP-F is slightly lower than ControlVideo [41], we significantly
outperform it in Warp-error and CLIP-T scores. This stems from the fact that Con-
trolVideo keeps the background static. Evaluating temporal consistency with pixel-level
optical flow provides a more accurate measure than calculating a global temporal score
with CLIP [28]. Moreover, our method achieves the highest overall editing score Qedit.
In general, our EVA demonstrates superior performance on all evaluation metrics.

(2)User Study While automatic metrics provide a general comparison, they often
fail to align well with human perception [20] and cannot accurately verify the accurate
editing of each local attribute or the preservation of layout and undesired editing areas.
Therefore, we conducted a user study for a more detailed comparison. We evaluated the
quality of edited videos from four aspects: (1). Subject edit accuracy (accuracy of each
attribute’s editing), (2). Layout preservation (accuracy of preserving undesired editing
areas and overall layout), (3). Motion Alignment, and (4). Overall Preference.

Subject Layout Motion Overall
Method Edit Acc ↑ Preservation ↑ Alignment ↑ Preference ↑
FateZero 2.99 3.37 3.93 2.98

ControlVideo 2.66 2.04 2.50 2.18
TokenFlow 2.27 2.65 2.52 1.99

Ground-A-Video 3.45 3.64 3.60 3.16
EVA(ours) 4.42 4.21 4.25 4.15

Table 2: User study comparison with other methods, The number denotes the average score on a
scale from 1 to 5 (worst to best). The best results are bolded.

We invited 20 participants to rate 78 video-text pairs on a scale of 1 to 5 across
these four criteria. Table 2 shows that our method significantly outperformed FateZero,
Tokenflow, and ControlVideo in subject edit accuracy, layout preservation, and motion
alignment. Furthermore, our approach exceeded competing related work Ground-A-
Video [15] in four human evaluation metrics.

4.4 Ablation Study
To assess the contributions of different components in our proposed EVA framework,
we conducted ablation studies with the following designs:

https://knightyxp.github.io/EVA/
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Source video Modulated Attn w/o ControlNet  Ours Source video Modulated Attn w/o ControlNet  OursSparse Layout Attn

(1) man → Iron Man,   
clay court → snow covered court

(2) man → Batman,   
ground → frozen lake, sky → night sky 

Fig. 9: Comparison of Modulated Attention [17], the absence of ControlNet, and EVA in complex
motion, with Sparse Layout Attn results for video object size changes displayed on the right.

Method CLIP-F ↑ CLIP-T ↑ Warp-Err ↓ Qedit ↑
w/o ControlNet 94.72 36.00 2.75 13.09

w/o Latent Blend 97.02 32.56 2.88 11.31
w/o Layout guidance 95.31 35.37 3.11 11.37

Sparse-casual Layout Attn 95.75 35.63 2.83 12.59
EVA(ours) 96.09 36.56 2.73 13.39

Table 3: Quantitative ablation of key components of EVA.

Latent Blend In the second and last column of Fig 9 (1) and (2), we compare the
original modulated attention in DenseDiffusion [17] with our method. For fairness, we
equip it with ControlNet pose guidance. Our findings show that the modulated attention
fails to maintain the source background, resulting in varied backgrounds across frames
under the same random seed. Furthermore, using [17] alone struggles to preserve details
like the “tennis racket" in Fig 9 (1) and “motorcycle" ,“smoke” in Fig 9 (2).
ControlNet Next, we ablate the use of ControlNet-Pose, showcased in the third col-
umn of Fig 9. It is evident that the edited result’s posture does not match the source
human posture. Therefore, in human-centric complex motion videos, employing pose
conditions for intra-object structure information is necessary.
Spatial-Temporal Layout-Guided Attention Fig 10 contrasts three conditions: with-
out ST-Layout Attn (second row), Sparse Casual Layout-guided Attention (SC-Layout
Attn, third row), and with ST-Layout Attn (fourth row). As shown in the second row,
the absence of our ST-Layout Attn leads to incorrect identity mapping. For instance, the
left man was supposed to be “Iron Man," and the right is “Batman," but their identities
were swapped in the second row of Fig 10 left. This underlines the effectiveness of our
ST-Layout Attn on accurate identity mapping in multi-object scenes.

Also, sparse layout (the first and the preceding frame) guidance exhibits several lim-
itations, notably: (1) Limited Receptive Field for Negative Values: The sparse method’s
reduced receptive field for query tokens positive/negative value selection across dif-
ferent layouts. The unsuitable selection of negative values results in attention leakage,
manifesting as a yellow head of “Batman” in Fig 10 left third row and disordered web-
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Source video

Sparse-Casual Layout-guided Attention 

 Spatial-Temporal Layout-guided Attention 

Source video

w/o ST-Layout Attn 

Sparse-Casual Layout-guided Attention 

 Spatial-Temporal Layout-guided Attention 

 left man → Iron Man, right man → Batman,  
trees  →  golden ginkgo trees

left man → Iron Man, right man → Spider man,  
ground, trees  →  frosty yellow trees

w/o ST-Layout Attn 

Fig. 10: Qualitative comparison of results without ST-Layout Attn, Sparse-Casual Layout-guided
Attention (SC-Layout Attn) and our Spatial-Temporal Layout-guided Attention (ST-Layout
Attn). Our method results in accurate identity mapping and distinct local details without attention
leakage.

like textures in Fig 10 right across Iron Man’s chest (red box). (2) Reduced Interaction
Across Full Frames: A lack of interaction across the entire video frames results in the
loss of local details, such as the distinctive blue sides of Spider-Man (green box in Fig
10 right). Moreover, this limited interaction contributes to an overall duller color tone.
The quantitative results in Table 3 further confirm the effectiveness of ST-Layout Attn.

5 Conclusion

In scenarios of complex human-centric motion, we propose EVA, a general framework
for multi-attribute and multi-object video editing. We introduce a Spatial-Temporal
Layout-Guided Attention mechanism, which leverages the intrinsic positive and neg-
ative correspondences of cross-frame diffusion features; our ST-Layout Attn not only
ensures that each text embedding concentrates on its respective attribute, but also en-
hances the internal coherence within attributes and keeps the exclusivity of attention
weights among different attributes. Benefiting from precise attention weighting, EVA
can be extended to editing in multi-object scenes. We demonstrate EVA’s superior per-
formance in multi-attribute and multi-object editing through extensive experiments.
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