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Abstract
We are concerned in clustering continuous data
sets subject to nonignorable missingness. We per-
form clustering with a specific semi-parametric
mixture, avoiding the component distributions
and the missingness process to be specified, un-
der the assumption of conditional independence
given the component. Estimation is performed
by maximizing an extension of smoothed likeli-
hood allowing missingness. This optimization is
achieved by a Majorization-Minimization algo-
rithm. We illustrate the relevance of the approach
by numerical experiments.

1. Introduction
Clustering is a useful tool to analyze large data sets because
it aims to group the subjects into few homogeneous subpop-
ulations. Mixture models permit to achieve the clustering
purpose in a rigorous context (McLachlan & Peel, 2000;
Chauveau et al., 2015) but the case where data have miss-
ingness is generally neglected. However, the data sets often
contain missing values, like in social surveys. Thus, statisti-
cal analysis are performed on a complete data where missing
values have been either removed or imputed. Removing sub-
jects having missing values leads to severe bias and/or losses
of efficiency (Molenberghs et al., 2008). Imputing missing
values (Van Buuren, 2018) suffers from a lack of consistency
because imputations are generally performed with a model
different to the model used to cluster. Moreover, the missing
not at random (MNAR) scenario (Little & Rubin, 2019),
where the missingness depends on the missing values even
conditional on the observed covariates, is often the case in
practice (e.g., higher-income respondents may decline to
report income data) and the approaches mentioned above
produce biased results in such a case. Statistical analysis,
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under the MNAR scenario, generally requires the missing-
ness process to be considered. However, few statistical
methods permit this scenario because the models are often
not identifiable based on the observed data.

Two clustering approaches allow data subject to the MNAR
scenario to be analyzed. Thus, Chi et al. (2016) introduces
the K-POD algorithm that extends the K-means to the case
of missing data even if the missing mechanism is unknown.
However, this approach suffers from the standard drawbacks
of the K-means algorithm (i.e., assumptions of spherical
clusters and equals proportions of the clusters). Alterna-
tively, using a selection model approach (see Little (1993)
and the definition in Section 2), Miao et al. (2016) proposed
a specific Gaussian mixtures and t-mixtures to analyze data
under MNAR scenario. For such approach, the missingness
process must be specified (probit and logit distributions are
generally used). However, this approach produces strong
bias if the parametric assumptions (made on the covariate
distribution or on the missingness process) are violated.

In this paper, clustering is performed via a mixture model
that uses a pattern-mixture model approach (see Little (1993)
and the definition in Section 2) with non-parametric distri-
butions. Thus, no assumptions are made on the data distribu-
tion or on the missingness process except that the variables
are independent within components. Note that this assump-
tion is quite standard for semi-parametric mixtures (Hall
et al., 2003; Kasahara & Shimotsu, 2014; Chauveau et al.,
2015; Zheng & Wu, 2019). For each mixture component,
we estimate, for each variable, its probability to be observed
and its conditional distribution given the variable is ob-
served. We emphasize that our concern is clustering and not
imputation or density estimation. Indeed, without adding
assumptions, the distribution of the variables within compo-
nent cannot be estimated by our procedure. Estimation of
the semi-parametric mixture can be done by maximizing the
smoothed likelihood (Levine et al., 2011). In this paper, we
extend the concept of smoothed likelihood to mixed-type
data. Indeed, the model implies continuous (the covariates)
and binary (indicators of the missingness) variables. In our
extension, only the distribution of the continuous variables
are smoothed. Thus, the smoothed likelihood can be max-
imized by a Majorization-Minimization (MM) algorithm
(Hunter & Lange, 2004).
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The paper is organized as follows. Section 2 introduces the
semi-parametric mixture used for clustering data with nonig-
norable missingness. Section 3 presents the MM algorithm
used for estimation. Section 4 illustrates the relevance of
the approach on numerical experiments. Section 5 gives a
conclusion.

2. Mixture for nonignorable missingness
2.1. The data

The observed sample is composed of n independent and
identically distributed subjects arisen from K homogeneous
subpopulations. Each subject is described by d continuous
variables and some realizations of these variables may be
unobserved. The missingness process is allowed to be non-
ignorable. Thus, the probability, for a variable, to be not
observed is allowed to depend on the value of the variable
itself and the subpopulation membership.

Each subject i is described by a vector of three variables
(X>i ,R

>
i ,Z

>
i )> where Xi = (Xi1, . . . , Xid)> ∈ Rd

is set of continuous variables, Ri = (Ri1, . . . , Rid)> ∈
{0, 1}d indicates whether Xij is observed (Rij = 1) and
Zi = (Zi1, . . . , ZiK)> indicates the subpopulation of sub-
ject i (Zik = 1 if subject i belongs to subpopulation k and
otherwise Zik = 0). Each subject belongs to one subpop-
ulation such that

∑K
k=1 Zik = 1. The realizations of Zi

are unobserved and a part of the realizations of Xi can
be unobserved too. Therefore, the observed variables for
subject i are (Xobs>

i ,R>i )> where Xobs
i is composed of

the elements of Xi such that Rij = 1 and the unobserved
variables for subject i are (Xmiss>

i ,Z>i )> where Xmiss
i is

composed of the elements ofXi such that Rij = 0.

2.2. General mixture model

We use mixture models in a purpose of clustering and not for
density estimation. Clustering aims to estimate the subpop-
ulation memberships given the observed variables (i.e., the
realization of Zi given (Xobs>

i ,R>i )>) without assump-
tion on the missingness process (i.e., no assumption are
made on the conditional distribution ofRi |Xi,Zi). The
probability distribution function (pdf) of (X>i ,R

>
i )> for

subpopulation k (i.e., Zik = 1) is denoted by gk(·). Thus,
the pdf (X>i ,R

>
i )> is defined by the pdf of aK-component

mixture

g(xi, ri) =

K∑
k=1

πkgk(xi, ri), (1)

where πk > 0,
∑K

k=1 πk = 1 and gk(·;θ) is pdf of com-
ponent k. From (1), the distribution of the observed values
can be defined by two approaches: the selection model and
the pattern-mixture model. The approach named selection
model defines the joint distribution of (X>i ,R

>
i )> | Zi

as the product between the distribution of Xi | Zi and
the distribution of Ri | Zi,Xi. This approach requires
to model the missingness process (i.e., the conditional dis-
tribution of Ri | Zi,Xi) and should be considered when
the aim is to fit the marginal distribution of Xi. Alterna-
tively, the approach named pattern-mixture model defines
the joint distribution of (X>i ,R

>
i )> | Zi as the product

between the distribution ofRi | Zi and the distribution of
Xi | Zi,Ri. Thus, using the pattern-mixture model, the
pdf of component k is given by

gk(xi, ri) = gk(ri)gk(xi | ri). (2)

For clustering, the approach named pattern-mixture model
should be preferred because it does not require to specify the
missingness process, allows this process to be nonignorable
and permits to easily obtain the conditional probabilities of
the subpopulation membership given the distribution of the
observed values

P(Zik = 1 | xobs
i , ri) =

gk(xobs
i , ri)∑K

`=1 π`g`(x
obs
i , riθ)

. (3)

Indeed, integrating the pdf of component k over the missing
variablesXmiss

i , we have

gk(xobs
i , ri) = gk(ri)gk(xobs

i | ri). (4)

Note that this approach does not permit to estimate the
marginal distribution of Xi | Zi without adding assump-
tions on the missing process. Thus, the proposed approach
can be used for clustering but not for density estimation.

2.3. Semi-parametric mixture for nonignorable
missingness

A wide range of literature focuses on models assuming that
conditionally on knowing the particular subpopulation the
subject i came from, its coordinates Xi are independent.
Thus, we extend this model for nonignorable missingness.
The couples of variables (Xij , Rij)

> are assumed to be
conditionally independent given Zi. Thus, the distribution
of Ri | Zi is a product of Bernoulli distributions and the
conditional density ofXi | Zi,Ri is defined as the product
of univariate densities. Thus, from (2), the pdf of component
k is also defined as

gk(xi, ri) = gk(ri; τ k)

d∏
j=1

p
rij
kj (xij)q

1−rij
kj (xij), (5)

with

gk(ri; τ k) =

d∏
j=1

τ
rij
kj (1− τkj)1−rij , (6)

where τ k = (τk1, . . . , τkd), τkj is the probability that Xij

is observed given that subject i belongs to subpopulation
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k, pkj(·) is the conditional density of Xij given Zik = 1
and Rij = 1 and qkj(·) is the conditional density of Xij

given Zik = 1 and Rij = 0. Thus, clustering is achieved
by modeling, for each subpopulation, the marginal proba-
bility of missingness and the conditional density given that
the variable is observed. Integrating out the unobserved
variablesXmiss

i , we have

gk(xobs
i , ri;θ) =

K∑
k=1

πkgk(xobs
i , ri;θ), (7)

with

gk(xobs
i , ri;θ) = gk(ri; τ k)

d∏
j=1

p
rij
kj (xij), (8)

where θ groups all the finite parameters (πk and τ k) and
all the infinite parameters pkj(·). Note, we do not need
to estimate qkj(·) for the clustering purpose but that this
implies that we are not able to estimate the distribution of
Xi | Zi.

The following assumptions provide sufficient conditions
for the model identifiability stated by Lemma 1 which is
consequences of Allman et al. (2009).

Assumption 1 The pkj’s are linearly independent, πk > 0
and τkj > 0.

Lemma 1 If Assumption 1 holds true, then the model de-
fined by (7)-(8) is identifiable, up to label swapping.

3. Estimation by maximization of the
smoothed likelihood

3.1. Maximum smoothed likelihood

To perform parameter estimation, we extend the approach of
Levine et al. (2011) that uses the smoothed likelihood to the
case of mixed-type variables. Indeed, the observed variables
contains continuous variables xobs

i and binary variables ri.
Note that the smoothing is only performed on the densities
and thus on the distributions of xobs

i . To perform parameter
estimation, we consider that Assumptions 1-2 hold true.

Assumption 2 Let Ωj a compact subset of R such that for
i = 1, . . . , n, xij ∈ Ωj , then we have pkj ∈ L1(Ωj) and
ln pkj ∈ L1(Ωj), for j = 1, . . . , d.

Let S be the smoothing operator defined by

Sgk(xobs
i | ri) =

d∏
j=1

(Spkj(xij))rij (9)

and

Spkj(xij) =

∫
Ωj

1

h
K

(
xij − u
h

)
pkj(u)du, (10)

where K is a kernel function and h > 0 its bandwidth. We
consider the non linear smoothing operator defined by

N gk(xobs
i , ri;θ) = gk(ri; τ k) exp{S ln gk(xobs

i | ri)}.

where gk(xobs
i | ri) =

∏d
j=1 p

rij
kj (xij).

The smoothed log-likelihood function is defined by

`n(θ) =

n∑
i=1

ln

(
K∑

k=1

πkN gk(xobs
i , ri;θ)

)
. (11)

Parameter estimation is performed by maximizing the
smoothed likelihood over θ. This maximization is achieved
by a MM algorithm presented in the next section.

3.2. Majorization-Minimization algorithm

The maximization on θ of the smoothed log-likelihood func-
tion is performed via an MM algorithm. This iterative al-
gorithm starts at the initial value of the parameters θ[0]. At
iteration [r], it performs the following two steps

• Computing the smoothed probabilities of subpopula-
tion memberships

tik(θ[r]) =
π

[r]
k N gk(xobs

i , ri;θ
[r])∑K

`=1 π
[r]
` N g`(xobs

i , ri;θ
[r])

. (12)

• Updating the estimators

π
[r+1]
k =

1

n

n∑
i=1

tik(θ[r]), (13)

τ
[r+1]
kj =

∑n
i=1 rijtik(θ[r])∑n
i=1 tik(θ[r])

(14)

and

p
[r+1]
kj (u) =

∑n
i=1 rijtik(θ[r]) 1

hK
(

xij−u
h

)
∑n

i=1 rijtik(θ[r])
. (15)

The monotony of the algorithm is stated by Lemma 2 whose
proof is similar to the proof of Theorem 1 in Levine et al.
(2011). This implies that the algorithm converges to a local
optimum of the smoothed log-likelihood, hence different
random initializations should be performed.

Lemma 2 Let θ[r] and θ[r+1] be the estimators obtained at
iterations [r] and [r + 1] respectively, we have `n(θ[r]) ≤
`n(θ[r+1]).
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4. Numerical experiments
We generate complete data from a bi-component mixture
with equal proportions and independence between variables
within components such thatXij = (Zi1−Zi2)+εij where
the εij are independent from all the variables. Then, we add
missing values from the logistic model

P(Rij = 0 | Xij ,Zi) =

(1 + exp(α(zi1 − zi2) + βxij))
−1.

We consider data sets composed by n = 100 observations,
d = 4 variables and three distributions for εij (standard
Gaussian, Student with 3 degrees of freedom and exponen-
tial with rate 3). Parameters α and β allow to set the impact
of the subpopulation membership and the value of the vari-
ables on the missingness. For each scenario, we generated
100 data sets, we use a Gaussian kernel with bandwidth
h = n−1/5 and we compare the proposed method to the
following approaches:

• K-pod: K-pod approach performed with the function
kpod of the R package kpodclustr (Chi & Chi, 2014);

• NPimputed: non parametric mixture on the imputed
data performed with the functions np and imputePCA
of the R packages mixtools (Benaglia et al., 2009b) and
missMDA (Josse & Husson, 2016).

To compare the methods, we compute the Adjusted Rand
index (ARI; Hubert & Arabie (1985)) between the true
partition and the estimators of the partition given by the
methods. Table 1 presents the results. Results show that
when the missing completly at random (MCAR) assumption
holds true (i.e., α = β = 0) all the methods have the same
performances. However, the proposed method outperforms
the competing methods under the MNAR scenario.

We now compare the methods on three benchmark data pre-
sented in Table 2. Each data set contains a true partition
which is not used during the estimation. We cluster the orig-
inal data sets then we add missing values in the data sets by
considering three scenarios: MCAR where each observation
is missing with probability 0.2; missing at random (MAR)
where variable X2j−1 is always observed and variable X2j

is not observed with probability (1 + exp(X2j−1))−1; and
MNAR where each variable Xj is not observed with proba-
bility (1 + exp(Xj))

−1.

For each scenario, we generated 10 data sets. Table 3
presents the ARI between the true partition and the esti-
mated partitions. It confirms the results of the previous sim-
ulation. The three methods obtain similar results under the
MCAR and MAR scenario. However, the proposed meth-
ods outperforms the competing methods under the MNAR
scenario (except for the coffee data set where K-pod obtains
slightly better results).

εij (α, β) SPMNM K-pod NPimputed
Gaussian (0,0) 0.47 0.55 0.48

(1,0) 0.74 0.31 0.39
(0,1) 0.63 0.34 0.37
(1,1) 0.85 0.11 0.22

Student (0,0) 0.24 0.25 0.32
(1,0) 0.59 0.12 0.21
(0,1) 0.41 0.10 0.12
(1,1) 0.74 0.02 0.07

Exp (0,0) 0.87 0.87 0.86
(1,0) 0.95 0.54 0.53
(0,1) 0.96 0.68 0.65
(1,1) 0.99 0.24 0.40

Table 1. Mean of the Adjusted Rand index obtained by the pro-
posed semi-parametric mixture for nonignorable missingness
(SPMNM), K-pod algorithm (K-pod) and non parametric mixture
on imputed data (NPimputed). Best values are in bold.

Name n d K Reference
bank 200 6 2 Flury & Riedwyl (1988)

coffee 43 12 2 Streuli (1973)
wine 178 13 3 Forina & al (1991)

Table 2. Information about the benchmark datasets.

Data Scenario SPMNM K-pod NPimputed
Bank original 0.98 0.85 0.98

MCAR 0.89 0.80 0.84
MAR 0.57 0.64 0.63

MNAR 0.71 0.55 0.58
Coffee original 1.00 1.00 1.00

MCAR 0.96 0.76 0.99
MAR 1.00 1.00 1.00

MNAR 0.87 0.92 0.80
Wine original 0.95 0.90 0.91

MCAR 0.83 0.79 0.80
MAR 0.87 0.85 0.83

MNAR 0.66 0.42 0.34

Table 3. Mean of the Adjusted Rand index obtained by the pro-
posed semi-parametric mixture for nonignorable missingness
(SPMNM), K-pod algorithm (K-pod) and non parametric mixture
on imputed data (NPimputed). Best values are in bold.

5. Conclusion
The proposed method allows continuous data set with non-
ignorable missingness to be clustered with no more assump-
tion than the independence within components. Selecting
the number of components is a difficult task that could be
achieved by extending the approach of Kasahara & Shi-
motsu (2014) to the mixed-type data. Finally, a procedure
of bandwidth selection should be investigated like in Be-
naglia et al. (2009a).
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