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Abstract

This paper presents a novel image dataset with high intrinsic ambiguity specifi-1

cally built for evaluating and comparing set-valued classifiers. This dataset, built2

from the database of Pl@ntnet citizen observatory, consists of 306,146 images3

covering 1,081 species. We highlight two particular features of the dataset, inher-4

ent to the way the images are acquired and to the intrinsic diversity of plants mor-5

phology: i) The dataset has a strong class imbalance, meaning that a few species6

account for most of the images. ii) Many species are visually similar, making7

identification difficult even for the expert eye. These two characteristics make the8

present dataset well suited for the evaluation of set-valued classification methods9

and algorithms. Therefore, we recommend two set-valued evaluation metrics as-10

sociated with the dataset (top-k and average-k) and we provide the results of a11

baseline approach based on a deep neural network trained with the cross-entropy12

loss.13

1 Introduction14

The difficulty in classifying images comes from two main types of uncertainty [1]: i) the aleatoric15

uncertainty that arises from the intrinsic randomness of the underlying process, which is considered16

irreducible, and ii) the epistemic uncertainty that is caused by a lack of knowledge and is considered17

to be reducible with additional training data. In modern real-world applications, these two types of18

uncertainty are particularly difficult to handle. The large number of classes tends to increase the19

class overlap (and thus the aleatoric uncertainty), and, on the other hand, the long tail distribution20

makes it difficult to learn the less populated classes (and thus increase the epistemic uncertainty).21

The presence of these two uncertainties is a central motivation for the use of set-valued classifiers,22

i.e., classifiers returning a set of candidate classes for an image. A survey of existing methods for23

building set valued classifiers can be found in [2]. Although there are several datasets in the literature24

that have visually similar classes [3, 4, 5, 6], most of them do not aim to retain both the epistemic25

and the aleatoric ambiguity present in real world data.26
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In this paper, we propose a dataset designed to remain representative of real-world ambiguity, mak-27

ing it well suited for the evaluation of set-valued classification methods. This dataset is extracted28

from real world images collected by Pl@ntNet [7], a large-scale citizen observatory dedicated to the29

collection of plant occurrences data through image-based plant identification. The key feature of30

Pl@ntNet is a mobile application that allows citizen scientists to submit a picture of a plant to get a31

list of the most likely species for that picture. The application is used by more than 10 millions users32

in about 170 countries and is one of the main data publishers of GBIF [8], an international platform33

funded by the governments of many countries around the world to provide free and open access to34

biodiversity data. Another key feature of Pl@ntNet is that the training set used to train the classifier35

is collaboratively enriched and revised. Nowadays, Pl@ntNet covers over 35K species illustrated by36

nearly 12 million validated images.37

The entire Pl@ntNet database would be an ideal candidate for the evaluation of set-valued classifica-38

tion methods, but it is far too large to allow for widespread use by the machine learning community.39

Thus, the dataset presented in this paper is constructed by retaining only a subset of the genera in the40

entire Pl@ntNet database (sampled uniformly at random) while retaining the species that belong to41

these genera. Retaining all species in a genus is intended to preserve the large amount of ambiguity42

present in the original database, as species in the same genus are likely to share common visual43

features.44

The rest of the paper is organized as follows: we first introduce the set-valued classification frame-45

work in Section 2, focusing on two special cases: top-k classification and average-k classification.46

In Section 3, we describe the construction of the dataset, and show that it contains a large amount of47

ambiguity. Next, we describe in Section 4 the metrics of interest for the Pl@ntNet-300k dataset and48

propose benchmark results for these metrics, obtained by training several state-of-the art neural net-49

works architectures. In Section 5, we compare Pl@ntNet-300K to several existing datasets. Finally50

we provide the link to the dataset in Section 6 before concluding.51

2 Set-valued classification52

We adopt the classical statistical set up of multi-class classification. Random couples of image and53

label (X,Y ) ∈ X × {1, . . . , d} are assumed to be generated by an unknown joint distribution P.54

The integer d will denote the number of classes, and [d] will refer to {1, . . . , d}. In the following,55

k ∈ [d]. A set-valued classifier Γ is a function mapping the feature space X to the set of all subsets56

of [d], 2[d], Γ : X → 2[d]. Our goal is to build a classifier with low risk P(Y /∈ Γ(X)). However57

it is not desirable to simply minimize the risk: a set-valued classifier that always returns all of the58

classes achieves zero risk, but is useless. A set-valued classifier is useful if it returns only the most59

probable classes given a query image. Therefore a quantity of interest will be |Γ(x)|, the number of60

classes returned by the classifier Γ, given an image x ∈ X .61

In this section we will examine two optimization methods that lead to different set-valued classifiers.62

Both of them aim to minimize the risk, but they differ in the way they constrain the set cardinality:63

either pointwise or on average.64

For x ∈ X , we define pl(x) = P(Y = l|X = x), and estimators of these quantities will65

be denoted by p̂l(x). Finally, for x ∈ X , we define the topp operator as: topp(x, k) =66

{pσx(1)(x), pσx(2)(x), . . . , pσx(k)(x)}, where σx : [d] → [d] orders {p1(x), . . . , pd(x)} in decreas-67

ing order: pσx(1)(x) ≥ pσx(2)(x) ≥ · · · ≥ pσx(d)(x).68

The most straightforward constraint is to require the number of classes returned to be less than k for69

every input. This results in the following optimization problem :70

Γ∗top-k ∈ arg min
Γ

P(Y /∈ Γ(X))

s.t. |Γ(x)| ≤ k, ∀x ∈ X .
(1)

The estimation of the risk, given this point-wise constraint, is known as top-k error [9].71

There is a closed form solution to Problem (1) [10] which is:72

Γ∗top-k(x) = topp(x, k) . (2)

This is the Bayes classifier. However this is not practical since we do not know P. The plug-in73

estimator Γ̂top-k naturally follows from (2): Γ̂top-k = topp̂(x, k). While the top-k accuracy is often74
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Figure 1: Genus taxonomy : we display three genus present in the proposed dataset : Fedia, Pereskia
and Nyctaginia, which contain respectively two, three and one species.

reported in benchmarks, only a few works aim at directly optimizing that metric [9, 11, 10, 12]. An75

obvious limitation of top-k classification is that k classes are returned for every example, regardless76

of the difficulty of classifying that example. Average-k classification allows for more flexibility. In77

that setting, the constraint on the size of the predicted set is more flexible and must be satisfied only78

on average. The optimization problem then becomes:79

Γ∗average-k ∈ arg min
Γ

P(Y /∈ Γ(X))

s.t. EX |Γ(X)| ≤ k.
(3)

The closed form solution is derived in [2] :80

Γ∗average-k(x) = {l ∈ [d], pl(x) ≥ G−1(k)} , (4)

where G is defined as follows:81

∀t ∈ [0, 1], G(t) =

d∑
l=1

P(pl(X) ≥ t) , (5)

and G−1 refers to the generalized inverse of G:82

G−1(u) = inf{t ∈ R, G(t) ≤ u} . (6)

Note that if we define the classifier Γt by: ∀x ∈ X , Γt(x) = {l ∈ [d], pl(x) ≥ t}, then G(t)83

is the average number of classes returned by Γt: G(t) = EX |Γt(X)|. From (4) we see that the84

Bayes classifier corresponds to a thresholding operation. All classes having a conditional probability85

greater than G−1(k) are returned, where the threshold is chosen so that k classes are returned on86

average. To compute the plug-in estimator, we first have to estimate G with an unlabeled dataset87

x′1, x
′
2, . . . , x

′
N : Ĝ(t) = 1

N

∑N
i=1

∑d
l=1 1[p̂l(x

′
i) ≥ t]. The definition of the plug-in estimator then88

follows: Γ̂average-k(x) = {l ∈ [d], p̂l(x) ≥ Ĝ−1(k)}, where Ĝ−1 refers to the generalized inverse of89

Ĝ.90

3 Dataset91

3.1 Construction92

In the biological classification of plants, species are organized into genera. Each genus contains93

several species, and the different genera do not overlap. A schema is proposed in Figure 1.94

Instead of retaining randomly selected species or images from the entire Pl@ntNet dataset, we95

choose to retain randomly selected genera and keep all species belonging to these genera. This96
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Figure 2: Lorenz curves of the Pl@ntNet database and the proposed dataset. Note that for fair
comparison, we discard species with less than 4 images in the Pl@ntNet database.

choice aims to preserve the large amount of ambiguity present in the original database, as species97

belonging to the same genus tend to share visual features. The dataset presented in this paper is con-98

structed by retaining only 10% of the genera of the whole Pl@ntNet database (sampled uniformly99

at random).100

We then retain only species with more than 4 images, resulting in a total of 303 genera and d = 1,081101

species, representing ntot = ntrain + nval + ntest = 306,146 color images. At this point we have102

pairs of image and label (xi, yi)i=1,...,ntot
with yi ∈ [d]. The average image size is (570, 570, 3),103

ranging from (180, 180, 3) to (900, 900, 3).104

The images are divided into a training set, a validation set and a test set. The division is performed105

at the species level due to the long tail distribution. For each species, 80% of the images are placed106

in the training set (ntrain = 243,916), 10% in the validation set (nval = 31,118), and 10% in the107

test set (ntest = 31,112), with at least one image of each species in each set.108

3.2 Epistemic uncertainty109

In our case, epistemic uncertainty refers mainly to the lack of data necessary to properly estimate110

the conditional probabilities.111

In Pl@ntnet, the most common species are readily available to users and thus represent a large112

fraction of the images, while the rarest species are more difficult to find and therefore more rare in113

the database.114

The construction of the dataset described above preserves the class imbalance. To show this, we plot115

the Lorenz curves [13] of the entire Pl@ntNet dataset and of the Pl@ntNet-300K images dataset116

in Figure 2. In the proposed dataset, 80% of the species (the ones with the lowest number of im-117

ages) account for only 11% of the total number of images. This poses a challenge when training118

learning models, since for many classes the model only has a handful of images to train on, making119

identification difficult for these species.120

In addition to the long-tail distribution issue, epistemic uncertainty also arises from the high intra-121

species variability. Plants may take on different appearances depending on the season (flowering122

time). Furthermore, a user of the application may photograph only a part of the plant (for instance,123

the trunk and not the leaves). As a last example, flowers belonging to the same species can have124

different colors. These cases are illustrated in Figure 3 and contribute to a high intra-class variability125

which, combined with the long tailed distribution, makes it more challenging to model the species.126
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Figure 3: Examples of visually dissimilar images belonging to the same class

3.3 Aleatoric uncertainty127

In our case, the source of aleatoric uncertainty mostly resides in the limited information we are128

given to make a decision (i.e., assign a class to a plant). Some species, especially those belonging129

to the same genus, can be visually very similar. For example, consider the case where two species130

produce the same flowers but different leaves, typically because they have evolved differently from131

the same parent species. If a person photographs only the flower of a specimen of one of the two132

species, then it will be impossible, even for an expert, to know whether it is one or the other species.133

The discriminating information is not present in the image.134

135

The combination of this irreducible ambiguity with images of non-optimal quality (non-adapted136

close-up, low-light conditions, etc.) results in pairs of images that belong to different species but are137

difficult or even impossible to distinguish, see Figure 4 for illustration. In the figure, we show the138

ambiguity between pairs of species, but we could find similar examples involving a larger number139

of species. Thus, even an expert botanist might fail to assign a label to such pictures with certainty.140

This is embodied by pl(x) : given an image, multiple classes are possible.141

4 Evaluation142

4.1 Metric143

To evaluate set valued predictors on Pl@ntNet-300k, we will examine two main different metrics:144

top-k accuracy (as a baseline) and average-k accuracy. Top-k accuracy [11] is a widely used metric145

which is computed on the test set as follows :146

top-k accuracy =
1

ntest

∑
(xi,yi)∈test set

1[yi ∈ Γ̂top-k(xi)], s.t. |Γ̂top-k(xi)| = k , (7)

where Γ̂top-k is a set-valued classifier built with the training data.147

Average-k accuracy [14] is a metric which is evaluated as follows :148
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Figure 4: Examples of visually similar images belonging to two different classes

average-k accuracy =
1

ntest

∑
(xi,yi)∈test set

1[yi ∈ Γ̂average-k(xi)] s.t.
1

ntest

∑
xi

|Γ̂average-k(xi)| ≤ k ,

(8)

where Γ̂average-k is a set-valued classifier built with the training data.149

The most straightforward to derive both classifiers is to first obtain an estimate of the conditional150

probabilities p̂l(x) and then derive the plug-in classifiers, as explained in Section 2. Our hope is151

for the Pl@ntnet-300k dataset to encourage novel ways to derive the set-valued classifiers Γ̂top-k and152

Γ̂average-k to optimize respectively the top-k accuracy and the average-k accuracy. Notice that a few153

works already propose methods to optimize the top-k accuracy [9, 11, 10, 12].154

4.2 Baseline155

In this section we provide a baseline evaluation of the plug-in classifiers. We train several state-of-the156

art deep neural networks with the cross-entropy loss: ResNet-50 [15], DenseNet-121, DenseNet-169157

[16], InceptionResNet-v2 [17] and MobileNetV2 [18].158

First a pre-processing step is performed on the original images as follows: we extract the largest159

centered square in the image and resize it to 299 × 299. No data augmentation is used. The model160

are optimized for 70 epochs with SGD with a learning rate of 1.10−2, a momentum of 0.9 with the161

Nesterov acceleration [19]. The learning rate is divided by 10 at epoch 40, 50 and 60. We use a162

batch size is 64 for all models except for InceptionResNet-v2 and DenseNet-169 which are trained163

with a batch size of 32. The criteria for early stopping is the accuracy on the validation set. For164

the plug-in classifier Γ̂average-k, plug-in, we compute the threshold λval on the validation set and use165

that same threshold to compute the average-k accuracy on the test set. All results in this section are166

reported on the test set and are the result of an average over four different seeds.167

We report accuracy, top-k accuracy and average-k accuracy in Table 1.168

We also compute top-k accuracy and average-k accuracy for each class and report the average over169

classes in Table 3. Table 2 illustrates the discrepancy between the accuracy (69.8% for ResNet-50)170

and the average (over classes) of class accuracies (25.7% for ResNet-50), each class accuracy being171

computed as the number of correctly classified examples in the class divided by the total number of172

examples in the class. The difference can be explained by the long tail distribution. The model easily173

identifies images from the most populated classes, which account for most images in the dataset, as174

6
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Figure 5: Relation between class accuracy and number of images in the class (evaluated on the test
set with a ResNet-50).

top-1 avg-1 top-3 avg-3 top-5 avg-5 top-10 avg-10
ResNet-50 69.8 70.3 84.2 84.1 88.2 87.2 91.9 90.7

MobileNetV2 72.1 72.9 87.2 89.0 91.1 92.1 94.2 95.1
DenseNet-121 75.7 76.1 89.5 90.1 92.7 92.7 95.4 95.2
DenseNet-169 75.7 76.2 89.5 89.9 92.8 92.5 95.4 94.9

InceptionResNet-v2 76.8 77.2 89.8 89.7 92.9 91.9 95.4 94.3
Table 1: Top-k and Average-k accuracy on the test set for different values of k and various neural
network architectures (evaluated on the test).

seen in Figure 2. When the class accuracies are averaged (over classes), species with few images175

(which are a majority, see Figure 2) significantly degrade the overall result. To support this claim,176

we show the correlation between class accuracy and number of images in Figure 5.177

These results illustrate the difficulty of the Pl@ntNet-300k dataset. The accuracy (69.8% with a178

ResNet-50 [15]) is significantly lower than that of ImageNet (79.3% for a ResNet-50), which can179

be explained by the multiple sources of uncertainty described in Section 3. The main interest of180

these results is to show that the basic plug-in predictor obtained with the cross-entropy loss does not181

systematically give an average-k accuracy significantly better than the top-k accuracy (sometimes it182

is even worse, see Table 1), as one would expect. Thus, we believe there is a need for new average-k183

prediction methods for improved performance.184

5 Related work185

Fined-Grained Visual Categorization (FGVC) is about discriminating visually similar classes. In186

order to better learn fine-grained classes, several approaches have been proposed by the FGVC187

community, including multi-stage metric learning [20], high order feature interaction [21, 22], and188

Accuracy Average of class accuracies
ResNet-50 69.8 25.7

MobileNetV2 72.1 28.1
DenseNet-121 75.7 32.5
DenseNet-169 75.7 32.5

InceptionResNet-v2 76.8 32.4
Table 2: Accuracy and Average of class accuracies (evaluated on the test set).

7



top-1 avg-1 top-3 avg-3 top-5 avg-5 top-10 avg-10
ResNet-50 25.7 25.9 45.5 50.7 55.8 59.3 67.9 69.8

MobileNetV2 28.1 28.0 49.4 56.5 58.7 66.9 71.0 78.0
DenseNet-121 32.5 32.3 55.0 61.8 65.0 70.6 75.9 79.6
DenseNet-169 32.5 32.5 55.2 62.5 65.3 71.1 76.2 79.7

InceptionResNet-v2 32.4 32.2 54.6 61.5 64.7 69.2 76.0 78.8
Table 3: Average (over classes) of top-k class accuracies and Average (over classes) of average-k
class accuracies for different values of k (evaluated on the test set).

Human-
in-the-
loop

labeling

Long tail
distribution

Intra-class
variability

Focused
domain

Ambiguity
preserving
sampling

CUB200 x x x X x
Oxford flower dataset x x X X x
Aircraft dataset X x x X x
Compcars x x x X X
Census cars x x x X X
ImageNet x x X x x
iNat2017 X X X x x
Pl@ntNet-300k X X X X X

Table 4: Comparison of several datasets with Pl@ntNet-300k. ”Focused domain” indicates whether
the dataset is made up of a single category (i.e., cars) and ”Ambiguity preserving sampling” indicates
whether in the construction of the dataset, all classes belonging to the same parent in the class
hierarchy were kept or not (in our case, the parent corresponds to the genus level).

different network architectures [23, 24]. However, these approaches focus on optimizing top-1 ac-189

curacy. Set-valued classification, on the other hand, consists in returning more than a single class190

to reduce the error rate, with a constraint on the number of classes returned. Therefore, FGVC and191

set-valued classification methods are not mutually exclusive but rather complementary.192

Several FGVC datasets, which exhibit visually similar classes, have been made publicly available by193

the community. They cover a variety of domains: [4], cars [5, 25], birds [26], flowers [3]. However,194

most of these datasets focus exclusively on proposing visually similar classes (aleatoric uncertainty)195

with a limited amount of epistemic uncertainty. This is the case for balanced datasets which have196

approximately the same number of images per class, or with small intra-class variability such as197

aircraft and cars datasets, where most examples within a class are nearly the same except for angle,198

lightning, etc... ImageNet [6] has several visually similar classes, organized in groups : it contains199

many bird species and dog breeds. However, these groups of classes are very different: dogs, vehi-200

cles, electronic devices, etc. Besides, ImageNet does not exhibit a strong class imbalance. Several201

of these datasets were constructed by web-scraping, which can be prone to noisy labels and low202

quality images. Most similar to our dataset is the iNat2017 dataset. It contains images from the citi-203

zen science website iNaturalist. The images, posted by naturalists, are validated by multiple citizen204

scientists. The iNat2017 dataset contains over 5000 classes that are highly unbalanced. However,205

iNat2017 does not only focus on plants but proposes several other ‘super-classes’ such as Fungi,206

Reptilia, Insecta ... Moreover, the authors selected all classes with a number of observations greater207

than 20, whereas we choose to randomly sample 10% of the genera of the entire Pl@ntNet database208

and keep all species belonging to these groups with a number of observations greater than 4. We ar-209

gue that keeping all species of the same genus maximizes aleatoric uncertainty, as species belonging210

to a genus tend to share visual features. We summarize the properties of the mentionned datasets in211

Table 4 and Table 5.212
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Number
of images

Number
of classes

CUB200 6,033 200
Oxford flower dataset 8,189 102
Aircraft dataset 10,000 100
Compcars 136,727 1,687
Census cars 712,430 2,657
ImageNet 1,331,167 1,000
iNat2017 857,877 5,089
Pl@ntNet-300k 306,146 1,081

Table 5: Number of images and number of classes of several datasets

6 Data access and additional ressources213

The Pl@ntNet-300K images dataset [27] can be downloaded at:214

https://doi.org/10.5281/zenodo.4726653215

It is organised in three folders named ”train”, ”val” and ”test”. Each of these folders contains216

d = 1,081 subfolders. We provide the correspondence between the names of the subfolders and the217

names of the classes. Class names are of the form Genus species, e.g., Cymbalaria aequitriloba.218

We also provide a metadata file containing for each image the following information: the species219

identifier (class), the organ of the plant (flower, leaf, bark, . . . ), the author’s name, the licence and220

the split (i.e., train, validation or test set).221

The github repository containing the code to reproduce the experiments of this paper can be found222

at:223

https://github.com/plantnet/PlantNet-300K/.224

It will also be used to report potential issues related to the dataset.225

7 Conclusion226

In this paper, we share and discuss a novel plant image dataset, called Pl@ntNet-300k, obtained as a227

subset of the entire Pl@ntnet database and intended for evaluating set-valued classification methods.228

Unlike previous datasets, Pl@ntNet-300k is designed so as to preserve the high level of ambiguity229

across classes of the initial real-world dataset as well as its long tail distribution. To evaluate set-230

valued predictors on Pl@ntNet-300k, we examine two main different metrics: top-k accuracy (as231

a baseline) and average-k accuracy which is a more challenging task requiring to predict sets of232

various size but still equal to k on average. Our baseline result using a ResNet-50 trained with233

cross-entropy suggests that there is plenty of room for new set-valued prediction methods that would234

improve the average-k accuracy over top-k. We hope that Pl@ntNet-300K can serve as a reference235

dataset for this problem, which is why we created it and share it with the scientific community.236
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