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ABSTRACT

Recent advancements in multimodal slow-thinking systems have demonstrated re-
markable performance across various visual reasoning tasks. However, their ca-
pabilities in text-rich image reasoning tasks remain understudied due to the ab-
sence of a dedicated and systematic benchmark. To address this gap, we propose
OCR-Reasoning, a novel benchmark designed to systematically assess Multi-
modal Large Language Models on text-rich image reasoning tasks. Specifically,
OCR-Reasoning comprises 1,069 human-annotated examples spanning 6 core rea-
soning abilities and 18 practical reasoning tasks in text-rich visual scenarios. Un-
like existing text-rich image understanding benchmarks that only provide a final
answer, this benchmark additionally provides a detailed step-by-step reasoning
process. This dual annotation enables the evaluation of both the models’ final
answers and their reasoning processes, thereby offering a holistic assessment of
text-rich reasoning capabilities. By leveraging this benchmark, we conducted a
comprehensive evaluation of the latest MLLMs. Our results demonstrate that even
the most advanced MLLMs exhibit substantial difficulties in text-rich image rea-
soning tasks, with none achieving an accuracy above 50% on our benchmark,
indicating that the challenges of text-rich image reasoning are an urgent issue to
be addressed. The dataset and evaluation scripts will be made publicly available.

1 INTRODUCTION

Recently, slow-thinking systems in Large Language Models (LLMs), such as OpenAl-ol (Jaech
et al., [2024), DeepSeek-R1 (Guo et al. 2025a), Gemini-Thinking (Team et al., 2023), and
QwQ (Team, 2025) have demonstrated significant progress in addressing complex math, coding,
logical, and scientific problems. Building upon techniques like Chain-of-Thought (CoT) prompt-
ing (Wei et al., [2022) and test-time compute scaling (Jaech et al., 2024; |Guo et al., 2025a), slow-
thinking systems typically engage in critical thinking and reflection before providing the final an-
swer. Moreover, emerging evidence suggests these systems may even experience ‘Aha moments’
when solving complex problems (Guo et al., 2025a). In order to broaden their ability across diverse
contexts, multimodal slow-thinking systems have emerged as a rapidly evolving research direction,
driven by the need for more versatile Al applications (Yang et al., 2025} [Peng et al., [2025; [Meng
et al.,|2025} (Chen et al., [2025b; [Liu et al., [2025c; Wang et al., [2025b; |Liu et al., [2025b; Shen et al.}
2025; Wang et al.,|2025a} [Liu et al., 2025a).

To comprehensively assess the reasoning capabilities of multimodal slow-thinking systems, re-
searchers have developed specialized reasoning benchmarks targeting distinct scenarios. For in-
stance, MathVista (Lu et al.| 2023)), MathVerse (Zhang et al., [2024), Olympiadbench (He et al.,
2024), and MathVision (Wang et all 2024a)) are designed to evaluate the math-related reasoning
ability of the model. In college-level subject knowledge domains, MMMU (Yue et al., [2023) fo-
cuses on advanced reasoning in domains such as chemistry, physics, and scientific problem-solving.
While these domains are thriving with the corresponding benchmarks, a critical gap persists in text-
rich image scenarios. Current benchmarks for text-rich images, such as DocVQA (Mathew et al.,
2021), ChartQA (Masry et al.l [2022), and OCRBench (Liu et al., 2024d), are designed primarily
to assess the ability to merely extract textual content without requiring in-depth analysis (Mathew
et al.}[2021}; Xu et al., 2025). However, text-rich images involve many reasoning-intensive tasks such
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(a) The ratio of Q&A pairs with answer included in OCR
results.

(b) Example with answer included in OCR results.
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Figure 1: (a) The percentage of answers in the benchmark’s Q)& A pairs that can be retrieved from
the OCR results. (b) An example where the answers can be retrieved from the OCR results.

as financial report analysis, invoice analysis, and cost-effective purchase decisions (Gan et al.| [2024
2021). There is still a lack of benchmarks for systematically evaluating the reasoning
ability within text-rich visual scenarios.

To bridge this critical gap in multimodal evaluation, we introduce OCR-Reasoning, a novel bench-
mark designed to evaluate the text-rich image reasoning skills of Multimodal Large Language
Models (MLLMs). Specifically, our benchmark contains 1,069 meticulously collected and human-
annotated examples, which span 6 core reasoning abilities and 18 practical reasoning tasks com-
monly found in text-rich visual contexts. Furthermore, unlike other text-rich image understanding
benchmarks that only annotate the final answers, OCR-Reasoning provides annotations for both the
final answers and the step-by-step reasoning process. This comprehensive annotation scheme facil-
itates a more in-depth evaluation of MLLMSs’ reasoning capabilities. Additionally, through a simple
comparison with existing benchmarks, as shown in Fig. [T} we observe that in most cases the an-
swers in existing datasets are directly present in the images, whereas our benchmark contains very
few samples of this type. This implies that in our benchmark, to obtain the answer, the model needs
to engage in reasoning rather than extracting it from the OCR results of the image.

Using the OCR-Reasoning benchmark, we conduct extensive experiments to assess the text-rich im-
age reasoning capabilities of popular LLMs and MLLMs. For pure LLMs, we replaced images with
their OCR results and used these as input. The results show relatively low accuracy, which indicates
that text alone is insufficient for solving text-rich image reasoning tasks. For MLLMs, the strongest
performer achieves only 46.8% accuracy, with none surpassing 50% on our benchmark. As for
document-oriented MLLMs, their highest accuracy does not exceed 15%. These findings demon-
strate that existing models still have significant room for improvement in handling text-rich image
reasoning tasks. Additionally, we find that most of the existing reinforcement learning methods
perform poorly on text-rich image reasoning tasks. Designing reinforcement learning for text-rich
image reasoning is a potential direction for enhancing text-rich image reasoning capabilities.

The main contributions of this work are summarized as follows.

* We introduce OCR-Reasoning, a challenging rich-text image reasoning benchmark that
provides a systematic evaluation framework for assessing the reasoning capabilities of
MLLMs in text-rich scenarios. To the best of our knowledge, we are the first to concretely
define various core sub-abilities for text-rich image reasoning and conduct systematic eval-
uations.

* We conduct a systematic evaluation of leading MLLMs. Our results indicate that: 1) For
text-rich image reasoning tasks, pure OCR input cannot effectively replace image input;
2) Even the most leading MLLMs struggle with our proposed benchmark. Based on the
experiment results, we find several potential directions for future improvements.
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2 RELATED WORK

2.1 MULTI-MODAL BENCHMARK

Driven by innovations in slow-thinking systems in LLMs, the evaluation of reasoning capabilities
in Multimodal Large Language Models (MLLMs) has become a highly focused and widely dis-
cussed topic (Lu et al., 2023} |Zhang et al., [2024; Wang et al., 20244} |Yue et al.| [2023). Early
benchmarks such as CLEVR (Johnson et al.,[2017)) and GQA (Hudson & Manning} [2019)) pioneered
the integration of compositional language-vision abstraction to assess visual reasoning in structured
environments. Subsequent works expanded the evaluation of reasoning into diverse domains. For
instance, ScienceQA (Lu et al., [2022)) introduces scientific multimodal reasoning requiring domain
knowledge. Meanwhile, the emergence of benchmarks like MMMU (Yue et al.,[2023) further pushes
the boundaries by requiring a college-level reasoning across disciplines like physics and art. With
the development of test-time compute scaling (Jaech et al.l 2024; |Cui et al., [2025), mathematical
benchmarks requiring complex reasoning processes to obtain the answer are emerging as critical
benchmarks for evaluating the reasoning capabilities of MLLMs. For instance, MathVista (Lu et al.|
2023) systematically categorizes seven mathematical reasoning types through multimodal problem
decomposition. MathVision (Wang et al., [2024a) curates competition-level mathematical problems
with authentic visual contexts. Mathverse (Zhang et al.| [2024) introduces a comprehensive multi-
modal benchmark specifically designed to assess the visual mathematical reasoning capabilities of
MLLMs. Although these benchmarks have expanded the scope of evaluation to various domains,
there is still a lack of systematic evaluation in the widely applied field of text-rich image understand-
ing. The text-rich image encompasses numerous scenarios requiring reasoning, such as financial
report analysis, invoice analysis, cost-effective purchase decisions, and more.

2.2 TEXT-RICH IMAGE UNDERSTANDING BENCHMARK

The evolution of Multimodal Large Language Models (MLLM:s) has driven corresponding advance-
ments in text-rich image understanding benchmarks. Early benchmarks for text-rich image under-
standing predominantly focused on assessing the perception capabilities of MLLMs within individ-
ual scenarios, such as documents (Mathew et al. 2021}, charts (Masry et al., |2022), infographic
images (Mathew et al.| 2022), and scene text (Singh et al.l 2019; Biten et al., [2019). In parallel,
recent advancements in high-resolution image processing (Ye et al., 2023} [Li et al.| [2024c; Huang
et al.; Hu et al, [2024b}; |Guan et al., 2025} [Liu et al. |2024a) and optimized computational effi-
ciency (Liu et al., 2024e; Hu et al.l 2025; |[Zhang et al., [2025a; Yu et al.l 2024) have significantly
improved the performance of these benchmarks. To address the growing need for holistic evalua-
tion of MLLMs, a series of benchmarks with broader, more diverse, and complex scenarios have
emerged (Wadhawan et al., 2024; |L1 et al., |2024a; [Liu et al., 2024cidib; |Ouyang et al., 2024). For
instance, OCRBench (Liu et al.,2024d), CC-OCR (Yang et al.,[2024b)), and OCRBenchv2 (Fu et al.,
2024) concentrate on assessing the perceptual capabilities of MLLMs across multiple domains,
while OmniDocBench (Ouyang et al.l 2024) provides a comprehensive evaluation of PDF docu-
ment parsing. However, despite these advancements, with the emergence of slow-thinking systems
requiring deliberate reasoning, current benchmarks reveal two critical limitations: 1. Overempha-
sis on textual extraction tasks (Mathew et al., 2021} [Xu et al., [2025), which can be solved through
fast-thinking processes; 2. Lack of systematic assessment of reasoning capabilities in text-rich im-
age understanding. This progression highlights the pressing need for next-generation benchmarks
to evaluate MLLMs’ complex reasoning capacities in text-rich visual understanding. To address
this limitation, we propose a comprehensive benchmark specifically designed to assess multimodal
slow-thinking systems in complex text-rich image reasoning tasks.

3 OCR-REASONING

In Sec.[3.1] we first present the data curation framework of OCR-Reasoning, comprising: (1) dataset
collection, (2) annotation curation, (3) data correction, and (4) detailed taxonomy. The data cura-
tion framework is shown in Fig.[2| Then, in Sec. we describe the statistics of OCR-Reasoning,
including its total scale, categorical distribution, and detailed question-answer characteristics. No-
tably, while existing benchmarks (Mathew et al., [2022; Masry et al., 2022} [Liu et al., [2024d)) focus
solely on final answers, OCR-Reasoning provides annotations for both the final answers and the
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Figure 2: Data curation framework of OCR-Reasoning. The framework includes: (1) dataset collec-
tion, (2) annotation curation, (3) data correction, and (4) detailed taxonomy.
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Figure 3: Examples of different categories in OCR-Reasoning. OCR-Reasoning includes six cate-
gories: spatial Reasoning, numerical analysis reasoning, mathematical reasoning, enumerative rea-
soning, logical reasoning, and multidisciplinary knowledge reasoning.

step-by-step reasoning process, facilitating a more in-depth evaluation of MLLMs’ reasoning capa-
bilities. The statistics of the annotations are presented in Sec. 3.2}

Additionally, OCR-Reasoning focuses on challenges in single-image. This design choice is based
on two well-founded design principles: 1. Capability isolation and focused evaluation: Multi-image
or multi-document tasks primarily assess long-context processing capabilities, which require spe-
cialized benchmarks for proper evaluation. Mixing single-image reasoning with multi-document
challenges would confound the evaluation and make it difficult to isolate specific reasoning defi-
ciencies. 2. Model compatibility and fair evaluation: Several document-oriented MLLMs
et al} 2025¢; [Xiao et al [2025; [Guan et al}, 2025) only focus on single images and have not been
trained on multiple images. Including multiple images in the benchmark would exclude these im-
portant models from evaluation, potentially reducing the focus on the reasoning problem itself.

3.1 DATA CURATION FRAMEWORK

Dataset Collection. We constructed the OCR-Reasoning dataset by aggregating images from three
primary sources: (1) Internet-sourced images from publicly available online repositories, (2) real-
world photographs capturing street views and handwritten notes, and (3) images curated from es-

tablished benchmarks including InfoVQA (Mathew et al, [2022), DocVQA (Mathew et all, [202T)),
ChartQA (Masry et al 2022), CharXiv (Wang et al., 2024c), WildReceipt (Sun et al., 2021), and
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Figure 4: Subject Distribution of OCR-Reasoning.
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MME-Finance (Gan et al.| [2024). During data collection, we prioritized comprehensive coverage
of text-rich scenarios commonly encountered in daily life. We also noted a severe lack of reason-
ing data related to handwritten content. To address this, our annotators selected and transcribed
college-level problems in chemistry, physics, geometry, functions, and statistics, which were then
photographed to create a set of handwritten reasoning data. In addition to college-level problems,
we also includes a portion of handwritten data about logical reasoning tasks. We filtered out those
with low resolution or excessive noise. The final dataset comprises 1022 images, a scale comparable
to previous reasoning benchmarks (Lu et al.}|2023; B1 et al., 2025; | Xu et al., 2025)). It consists of 476
Internet-sourced images, 253 real-world photographs, and 293 images from established benchmarks.

Annotation Curation. After collecting the images, we proceed to annotate them. First, our anno-
tators will design questions based on the images to evaluate the reasoning ability of MLLMs. To
guarantee the quality of the data, we engage PhD candidates in STEM fields as expert annotators.
For each image, three annotators independently propose a question. Then, other annotators score
and select the highest-quality question. Subsequently, we generate reasoning processes and answers
through two parallel pathways: 1. Human Annotation: Annotators manually produce one reason-
ing process along with the corresponding answer. 2. Model-Based Generation: We input both the
questions and answers into closed-source MLLMs (e.g., Gemini 2.0 Flash) to generate an alternative
reasoning process and answer.

Data Correction. After obtaining the questions, reasoning processes, and answers, three annotators
evaluate the annotations from both pathways. The pathway with the highest average score is chosen
as the final reasoning process and the corresponding answers. Finally, a manual review step is
conducted to examine and correct all question-answer pairs and reasoning processes.

Data Taxonomy. After completing the data annotation process, we will categorize the data into
six categories based on the reasoning skills required to answer the questions. To mitigate human
bias, we implement a two-stage classification approach. In the initial phase, three annotators inde-
pendently classified each example into one of six predefined categories. Then, we implemented a
majority voting system where the final category assignment was determined by plurality consensus
among the three annotators. The definitions of each category are as follows: Spatial Reasoning fo-
cuses on the model’s ability to reason about spatial relationships between text and visual elements, as
well as layout elements within text-rich images. Numerical Analysis Reasoning involves calcula-
tions related to numerical variations in text-rich images, including cost-effective purchase decisions,
growth rate estimation, financial report analysis, schedule planning, and data interpretation. Numer-
ical Analysis Reasoning also encompasses samples related to scenarios involving web screenshots,
financial documents, or product manuals. Mathematical Reasoning entails solving mathematical
problems (e.g., functions, geometry, statistics) in text-rich images using mathematical knowledge.
Compared to other mathematical benchmarks, the mathematical reasoning-related data in our bench-
mark is handwritten by our annotators, which requires models to possess stronger OCR capabilities
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to accomplish these tasks. Enumerative Reasoning focuses on counting text and visual elements in
text-rich images that satisfy specific query conditions. Logical Reasoning requires critical thinking
and drawing inferences from provided text-rich images to arrive at conclusions. Multidisciplinary
Knowledge Reasoning involves applying cross-domain knowledge (e.g., physics, chemistry) to in-
terpret text and visual elements in text-rich images. We provide some examples in Fig.

3.2 DATASET STATISTICS

The key statistics of OCR-Reasoning are summarized in Tab. [T} This benchmark contains 1,069
questions categorized into two distinct formats: multiple-choice (with provided answer options) and
free-form responses. The free-form answers are further classified into three data types: integers,
floating-point numbers, and strings. Notably, our benchmark contain extended analytical reasoning
processes, evidenced by an average combined length of 421 characters for reasoning chains and
final answers. The maximum length reaches 3,106 characters, highlighting the complexity of the
OCR-Reasoning. As shown in Fig.[d] the question distribution spans six reasoning categories: Spa-
tial Reasoning (10.0%), Numerical Analysis (37.0%), Logical Reasoning (12.8%), Mathematical
Reasoning (10.2%), Multidisciplinary Knowledge (13.5%), and Enumerative Reasoning (16.7%).
Numerical Analysis Reasoning covers 5 real-world task types, more than the 2-3 task types in other
categories, hence it accounts for a larger proportion. More examples are presented in the Sec.

3.3 EVALUATION PROTOCOLS

Following previous methods (Lu et al., 2023} [Zhang et al.| 2024)), OCR-Reasoning adopts a three-
stage evaluation framework: (1) Response Generation, (2) Answer Extraction, and (3) Score Com-
putation. First, the multimodal large language model (MLLM) processes an input query to generate
detailed responses. Subsequently, an LLM-based answer extractor (e.g., GPT-40) extracts concise
answer text from these responses through semantic parsing. Our preliminary study on 200 exam-
ples shows that this extraction process achieves over 99.5% accuracy. Finally, the extracted answers
undergo normalization into standardized formats (e.g., option letters, integers, or strings) before
accuracy-based metric calculation for deterministic evaluation.

For the evaluation of reasoning processes, inspired by evaluation in large language models (Zheng
et al.,|2023;|Chang et al.,2024), we employed the LLM-as-judge (Zheng et al.,|2023) approach to as-
sess the reasoning process. Given a question, a detailed response from an MLLM, and a ground truth
of the reasoning trajectory, an LLM judge is asked to directly assign a score to detailed responses.
Our adoption of this methodology is based on solid empirical justification: 1) Human evaluation
is costly, while LLM can quickly process large amounts of data. 2) LLM can reduce the variance
among human evaluators. 3) LLM as Judge is commonly used in NLP to evaluate reasoning pro-
cesses. We tried to use human-grounded validation across different models to compare their scores
with those of the LLM-as-Judge: the human-grounded validation score for DouBao-1.5-Vision-Pro
is 53.1 (vs. LLM-as-Judge score 55.4), for Qwen2.5-VL-72B is 50.2 (vs. LLM-as-Judge score
51.8), for Llama4-Scout-109B-A17B is 43.8 (vs. LLM-as-Judge score 44.9), and for OpenAl-ol is
47.6 (vs. LLM-as-Judge score 48.5). The scores of human-grounded validation are close to those of
the LLM-as-Judge.

4 EXPERIMENT

In this section, we conduct a comprehensive evaluation of existing MLLMs on OCR-Reasoning.
We first describe the experimental setup in Sec.[d.1] Then, the overall results and the corresponding
analysis are presented in Sec.

4.1 EXPERIMENT SETUP

Evaluation Models. We evaluate three distinct types of foundation models on OCR-Reasoning:
(a) Large Language Models (LLMs) with OCR results (Extracting by PP-OCRvV3 (L1 et al., |2022)),
including Deepseek-R1 (Zhou et al.||2025) and OpenAl-03-mini. (b) closed-source MLLMs, com-
prising Gemini-2.0-Flash (DeepMind, 2025)), GPT-40 (Hurst et al.}|2024), OpenAl-ol (Jaech et al.,
2024])), Claude-3.7-Sonnet (Anthropicl 2025), and DouBao-1.5-Vision-Pro (Guo et al., [2025b). (c)
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Table 2: Accuracy scores on the OCR-Reasoning. The results include OCR + LLM, closed-source
MLLMs, and open-source MLLMs. Bold denotes the best performance.

Method ‘ Overall ‘ Spatial N::;;;:l Mathematical | Enumerative | Logical Mull(t:t)l::llel:;lg:ary
OCR + LLM
OpenAl-03-mini (Open Al Team|[2025) 333 174 41.2 25.5 41.3 243 27.7
DeepSeek-R1-Distill-Qwen-32B (Guo et al.|[2025a) 26.5 11.9 28.9 23.5 34.6 18.8 30.7
Qwen2.5-32B|Yang et al.|(2024a) 26.5 13.7 299 16.6 29.1 264 314
Closed-Source MLLM
Gemini-2.0-Flash (Team et al.|{2023) 39.3 19.3 47.2 24.5 49.7 36.8 32.1
GPT-40 (Hurst et al.|[[2024) 30.7 21.1 359 18.6 40.8 26.4 23.4
OpenAl-ol (Jaech et al.|[2024) 44.4 275 46.2 43.1 50.8 40.3 49.6
Claude-3.7-Sonnet (Anthropic!2025) 35.8 20.2 354 235 60.3 30.6 32.1
DouBao-1.5-Vision-Pro (Guo et al.][2025b) 46.8 27.5 54.0 333 50.8 34.7 58.4
Open-Source MLLM
Qwen2.5-VL-3B (Bai et al.|2025) 122 11.0 11.8 9.8 19.0 7.6 11.7
Qwen2.5-VL-7B (Bai et al.||2025) 15.7 13.8 11.6 8.8 20.1 9.0 35.8
Qwen2.5-VL-32B (Bai et al.[|2025) 36.2 21.1 38.7 255 46.9 34.7 36.5
Qwen2.5-VL-72B (Bai et al.|[2025) 375 24.8 447 225 475 285 343
InternVL3-2B (Zhu et al.||2025) 10.8 119 4.8 7.8 18.4 11.8 18.3
InternVL3-8B (Zhu et al.|[2025) 11.5 12.8 5.8 11.8 17.9 7.6 22.6
InternVL3-32B (Zhu et al.![2025) 17.1 14.7 10.3 14.7 24.0 11.8 37.2
InternVL3-78B (Zhu et al.{[2025) 19.9 13.8 224 9.8 14.0 27.1 25.5
Llama4-Scout-109B-AT7B (Meta!|2025) 27.7 15.6 34.7 16.7 413 229 124
Kimi-VL-A3B-Thinking (Team et al.||2025a) 20.5 11.9 224 14.7 24.6 21.5 19.7
VL-Rethinker-7B (Wang et al.[[2025a) 14.6 8.3 16.1 9.8 19.6 8.3 19.0
MM-Eureka-Qwen-7B (Meng et al.[[2025) 132 9.2 7.0 10.8 18.4 153 27.0
VLAA-Thinker-Qwen2.5VL-7B (Chen et al.}[2025a) 144 11.9 10.3 7.8 21.2 11.8 27.0
QvQ (Wang et al.[|2024b} 327 24.8 347 15.7 44.1 319 32.1
Keye-VL-8B (Team et al.![2025b) 22.6 13.8 21.9 26.5 25.7 17.4 30.7
Thyme-RL-7B (Zhang et al.[[2025b) 15.2 12.8 10.8 10.8 20.7 18.1 234
DeepEyesV2 (Hong et al.l/[2025a) 20.9 11.9 18.8 13.7 279 18.85 32.8
MiMo-VL-RL-7B (Xiaomi/[2025) 38.8 20.2 41.2 225 51.4 38.9 423
GLM-4.1V-Thinking-9B (Hong et al.}[2025b} 4.1 229 49.2 353 53.1 354 50.4
Document-Oriented MLLMs
mPLUG-DocOwI2-8B (Hu et al.|[2024a) 33 3.7 0.3 1.0 7.3 9.7 1.5
Docopilot-8B (Duan et al.||2025) 11.6 11.9 6.5 6.9 19.6 83 22.6
DocMark-2B (Xiao et al.|[2025] 7.4 8.3 0.3 6.9 14.5 3.5 22.6
TokenVL-8B (Guan et al.[|2025) 14.3 10.1 8.8 8.9 25.7 139 234

Open-source MLLMs, represented by models like Qwen2.5-VL (Bai et al., [2025)), InternVL3 (Zhu
et al., 2025), Llama4-Scout (Meta, 2025)), Kimi-VL (Team et al., [2025a), VL-Rethinker (Wang
et al.}[2025a), MM-Eureka (Meng et al.}[2025)), VLAA-Thinker (Chen et al.,2025a). (d) Document-
Oriented MLLMs, including mPLUG-Docow2 (Hu et al., [2025), Docopilot (Duan et al., |2025)),
DocMark (Xiao et al.,[2025)), and TokenVL (Guan et al., 2025)).

Implementation Details. To evaluate the generalization capacity of Multimodal Large Language
Models (MLLMs), we adopt a zero-shot evaluation protocol without model fine-tuning or few-shot
prompting. Following the standardized chain-of-thought paradigm, we present MLLMs with both
visual inputs (images) and textual questions, accompanied by explicit instructions: “Solve the com-
plex problem through step-by-step reasoning.” For text-only Large Language Models (LLMs), we
substitute visual inputs with the OCR results (using PP-OCRv3 (Li et al., |2022) to obtain the OCR
results) while retaining identical textual queries. Given the inherent variability in output formats
across text-rich image scenarios (e.g., monetary values like $15, temporal expressions like 20 days,
or timestamps like 19:00:00), we implement format-specific prompting. This involves appending
the directive: “The composition of the final answer should be: xxxxx” to each query. For instance,
when expecting currency outputs “$15”, the format-specific prompting is: “The composition of the
final answer should be: $ + Integer”.

4.2 OVERALL RESULTS

The use of visual images as input is crucial. To assess its importance, we replace the images with
their OCR results and feed them into the LLMs for comparison. As shown in Tab. [2] substitut-
ing image input with OCR text leads to a significant decline in model performance. For instance,
when using the same LLM, the performance of even a strong reasoning model like DeepSeek-R1-
Distill-Qwen-32B remains 9.7% lower than that of Qwen2.5-VL-32B. This demonstrates the critical
importance of image input for text-rich image reasoning tasks. We present some qualitative results
in Appendix[A.3]
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Table 3: Impact of Chain-of-Thought prompting on different MLLMs.

Method ‘ CoT ‘ Overall ‘ Spatial N: merlgal Mathematical | Enumerative | Logical Multidisciplinary
nalysis Knowledge
Qwen2.5-VL-32B (Bai et al.||2025) X 33.0 12.8 33.7 245 48.0 284 38.7
Qwen2.5-VL-32B (Bai et al.|[2025) v 36.2 21.1 38.7 255 46.9 347 36.5
GPT-40 (Hurst et al.|[2024} X 26.5 119 334 15.7 29.1 25.0 24.1
GPT-40 (Hurst et al.||2024) v 30.7 21.1 35.9 18.6 40.8 264 234
Kimi-VL-A3B-Thinking (Team et al.|2025a) x 20.1 11.0 19.1 16.7 30.2 19.4 20.4
Kimi-VL-A3B-Thinking (Team et al.|[2025a) v 20.5 119 224 14.7 24.6 215 19.7
VL-Rethinker-7B (Wang et al.||2025a) x 19.1 13.7 16.6 9.8 25.7 14.6 33.6
VL-Rethinker-7B (Wang et al.||2025a) v 14.6 83 16.1 9.8 19.6 83 19.0
MM-Eureka-Qwen-7B (Meng et al.[[2025) X 12.2 10.1 6.3 8.8 16.8 14.6 255
MM-Eureka-Qwen-7B (Meng et al.||2025) v 13.2 9.2 7.0 10.8 18.4 15.3 27.0

Table 4: Reasoning scores on the OCR-Reasoning benchmark. Bold denotes the best performance.

Method ‘ Overall ‘ Spatial N: merl?al Mathematical | Enumerative | Logical Multidisciplinary
nalysis Knowledge
Closed-Source MLLM
Gemini-2.0-Flash (Team et al.|{2023) 49.5 31.5 57.1 42.6 49.3 474 49.2
GPT-40 (Hurst et al.[[2024) 45.4 354 48.9 33.0 48.7 48.0 45.5
OpenAl-ol (Jaech et al.[[2024) 48.5 369 53.9 50.0 394 49.4 51.8
Claude-3.7-Sonnet (Anthropic][2025) 50.3 37.7 55.0 38.8 58.1 48.6 46.5
DouBao-1.5-Vision-Pro (Guo et al.[|2025b}) 554 38.2 61.8 50.2 524 52.8 61.2
Open-Source MLLM
Qwen2.5-VL-3B (Bai et al.||2025) 223 18.5 25.6 15.7 229 20.8 213
Qwen2.5-VL-7B (Bai et al.|[2025) 34.0 24.9 39.2 27.5 41.5 28.9 27.3
Qwen2.5-VL-32B (Bai et al.[|2025) 54.6 38.5 58.9 459 55.8 56.3 579
Qwen2.5-VL-72B (Bai et al.||2025) 51.8 359 58.6 41.3 54.7 49.9 50.8
InternVL3-2B (Zhu et al.|[2025) 15.7 15.3 134 13.3 214 16.5 15.7
InternVL3-8B (Zhu et al.||2025) 16.3 16.1 14.9 13.8 21.5 15.0 16.6
InternVL3-32B (Zhu et al.|[2025) 42.6 32.1 43.9 38.0 453 43.6 46.1
InternVL3-78B (Zhu et al.}[2025) 433 29.2 50.3 355 38.6 46.9 422
Llama4-Scout-109B-AT7B (Meta![2025) 44.9 33.0 493 36.7 47.1 45.4 44.1
Kimi-VL-A3B-Thinking (Team et al.[|2025a) 40.8 30.9 43.1 374 45.6 38.5 40.7
VL-Rethinker-7B (Wang et al.||2025a) 29.8 23.1 33.7 23.7 314 26.5 29.8
MM-Eureka-Qwen-7B (Meng et al.||2025) 219 20.7 20.5 16.5 24.8 22.2 26.9
VLAA-Thinker-Qwen2.5VL-7B (Chen et al.|[2025a) 24.8 222 25.8 18.0 259 242 28.5
Document-Oriented MLLMs
mPLUG-DocOwI2-8B (Hu et al.|[2024a) 12.9 13.6 12.6 10.3 13.8 15.6 10.9
Docopilot-8B (Duan et al.[[2025) 20.6 17.1 224 13.2 252 19.6 19.1
DocMark-2B (Xiao et al.|[2025] 15.3 13.9 135 12.3 22.7 15.3 13.9

The performance of current MLLMs still has significant room for improvement. Specifically,
our analysis reveals several key observations: 1. As shown in Tab. 2] the top-performing model
is Doubao-1.5-Vision-Pro. While Doubao-1.5-Vision-Pro performs strongly on text-rich image un-
derstanding tasks—such as DocVQA (96.7%), InfoVQA (89.3%), and ChartQA (87.4%)—its per-
formance on OCR-Reasoning does not exceed 50%. This highlights the particular challenge of
integrating visual, textual, and logical information in reasoning scenarios. 2. Among different rea-
soning types, MLLMs perform most strongly on enumerative reasoning, which consistently ranks
as the first or second best capability in both closed-source and open-source models. 3. Furthermore,
scaling up model parameters is positively correlated with performance gains, as illustrated by the
Qwen2.5-VL series: the 7B model surpasses the 3B version by 3.5%, and the 32B model outper-
forms the 7B version by 20.5%. 4. Additionally, we observe that document-oriented MLLMs still
face difficulties in complex reasoning. Although document-oriented MLLMs are effective at basic
comprehension, their limitations in deeper reasoning underscore the need for innovations in model
architecture or training strategies.

CoT prompting performs differently across different models. The results of the influence of
CoT prompts are presented in Tab. [3] We observe that CoT prompting performs differently across
different models. On most models, CoT prompting consistently enhances their capabilities. This
improvement is particularly pronounced in spatial reasoning, where CoT prompting exerts the most
significant impact. Specifically, CoT prompting improves performance by 3.2% on Qwen2.5-VL-
32B, and 4.2% on GPT-40, respectively. However, for VL-Rethinker-7B (Wang et al.| 2025a)), the
application of CoT prompting typically results in performance degradation. This phenomenon may
stem from the forced rethinking machine on VL-Rethinker-7B. Adding an additional CoT prompt
during inference creates a discrepancy between training and testing conditions, ultimately leading to
reduced performance.
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Table 5: Impact of few-shot prompting on Qwen2.5-VL-7B.

Method Overall | Spatial Numerlgal Mathematical | Enumerative | Logical Multidisciplinary
Analysis Knowledge
Qwen2.5-VL-7B (Bai et al.|[2025) 15.7 13.8 11.6 8.8 20.1 9.0 35.8
One-shot prompting 16.1 12.8 14.6 10.8 22.3 13.9 21.1
Three-shot prompting 16.4 13.7 14.8 10.0 229 13.2 223

Impact of Reasoning path. The scores of the reasoning path are presented in Tab.[d] Overall, we
observe that the ranking based on Reasoning Path scores aligns with that based on final answer accu-
racy, with the exception of Gemini and Claude-3.7-Sonnet. Specifically, the high scores of Gemini
and Claude-3.7-Sonnet are primarily due to the high quality of their reasoning path. We find that
for many erroneous samples, the reasoning steps are largely sound, with only minor errors leading
to the incorrect outcome. Additional qualitative analyses are provided in the appendix (Sec.[A2) to
further illustrate these observations.

Some reinforcement learning methods perform poorly on text-rich image reasoning tasks. The
performance of some reinforcement learning methods on text-rich image reasoning tasks is relatively
poor compared to their baseline. There are several possible reasons for this. First, the reward
function: The reward functions in these reinforcement learning methods are not specifically designed
for text-rich image reasoning tasks. Most existing reward functions are tailored for mathematical
reasoning tasks. How to design a reward function applicable to text-rich image reasoning tasks is a
highly worthwhile research direction. Second, a notable discrepancy exists between the training data
and the benchmark. The majority of training data is primarily designed for printed mathematical
problems, while our benchmark contains data from a wide variety of scenarios. How to select
training data to improve OCR inference performance is a highly valuable research direction.

Impact of Few-shot Prompting. We also conducted experiments to explore the impact of few-shot
prompting. We annotated three additional samples as few-shot demonstrations and validated the
performance of one-shot and three-shot prompting on Qwen2.5-VL-7B. As shown in the Tab.{3]
few-shot prompting improves overall performance—particularly on subtasks requiring adherence to
specific logical steps (e.g., Numerical Analysis Reasoning and Logical Reasoning). This demon-
strates that moderate task-specific guidance helps the model understand and comply with task re-
quirements. We observed a decline in the performance of Multidisciplinary Knowledge Reasoning.
The potential reasons may be: The increased length of input tokens caused by few-shot examples,
combined with the extended reasoning path inherently required by multidisciplinary knowledge rea-
soning, poses a significant challenge to the model’s long-text processing and reasoning capabilities.

The “thinking with images” approach represents a promising direction for enhancing rea-
soning capabilities over text-rich images. “Thinking with images” has demonstrated tremendous
potential in general-scene reasoning; therefore, we also evaluated the two latest “’thinking with im-
ages” methods on the OCR-Reasoning task. The experimental results are presented in Table 2]
which illustrate the potential of this approach to enhance the model’s reasoning ability on text-rich
images.

4.3 COMPARISON WITH EXISTING BENCHMARKS

We conducted experiments to quantitatively compare our OCR-Reasoning dataset with existing
benchmarks (including DocVQA, ChartQA, TextVQA, OCRBench) using three multimodal large
language models (MLLMs): Qwen2.5-VL-7B, InternVL3-8B, and TokenVL-8B. The experimental
results are presented in Tab. [} As observed, while existing methods achieve strong performance
on conventional datasets, they exhibit significant performance degradation on text-rich image rea-
soning tasks. This discrepancy stems from the fundamental difference in evaluation focus: existing
datasets primarily assess models’ perceptual capabilities (e.g., text detection, recognition, and basic
visual-linguistic alignment), whereas OCR-Reasoning requires the model to achieve accurate per-
ception and further conduct thinking and reasoning. These findings indicate that the text-rich image
reasoning ability of current MLLMs still has substantial room for improvement.
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Table 6: Comparison with Existing Benchmarks

Models | DocVQA | ChartQA | OCRBench | TextVQA | OCR-Reasoning
Qwen2.5-VL-7B 95.7 87.3 864 84.9 15.7
InternVL3-8B 92.7 86.6 880 80.2 11.5
TokenVL-8B 94.2 86.6 860 79.9 14.3

4.4 ERROR ANALYSIS

We analyzed the error types of DouBao-1.5-Vision- :;S“mfsgi
Pro and classified them into six major categories: (1) errors O
calculation errors (37.5%), (2) spatial comprehen-

sion errors (27.2%), (3) logical errors (19.9%), (4)

text perception errors (7.7%), (5) knowledge appli-

cation errors (5.6%), and (6) summary errors (3.1%).

Calculation errors occur when layout understand-

ing and text perception are correct, but mistakes are

made during the calculation process. Spatial com-

prehension errors arise when the model fails to prop-

erly understand the spatial layout information of text

in images. Logical errors result from unreasonable Spatial
assumptions or inverted cause-and-effect relation- ~ comprehension
ships. Knowledge application errors occur in cases e
such as the incorrect application of theorems or mis-
understanding of common sense. Text perception er- Figure 5: Error analysis for DouBao-1.5-
rors happen when text recognition is incorrect. Sum-  Vision-Pro reveals six main issues: Cal-
mary errors occur when the reasoning process is nor- culation errors, Spatial comprehension er-
mal but the final answer is incorrect. This distribu- rors, Logical errors, Text perception errors,
tion reveals that the DouBao-1.5-Vision-Pro’s pri- Knowledge application errors, and Summary
mary challenges lie in higher-level cognitive tasks €ITOrS.

rather than basic perception tasks.

Summary

Calculation
errors

5 CONCLUSION

In this paper, we introduce OCR-Reasoning, a comprehensive benchmark designed to systematically
evaluate the reasoning capabilities of state-of-the-art Multimodal Large Language Models (MLLMs)
in text-rich image scenarios. The benchmark provides a structured framework comprising 1,069
human-annotated examples, which cover 6 core reasoning abilities across 18 distinct tasks. In con-
trast to existing benchmarks that focus solely on final-answer accuracy, OCR-Reasoning incorpo-
rates annotations for both the final answers and the corresponding step-by-step reasoning processes.
This dual annotation enables a more comprehensive evaluation of model reasoning. Through exten-
sive experiments, we reveal critical limitations of current MLLMs and identify potential avenues for
future improvement.

Limitations. This work has two main limitations. First, since most of our data collection and
annotation processes are performed manually, the high costs associated with these processes have
resulted in our dataset size being comparable to previous methods (Liu et al, 2024d}, [Xu et all}
[2025). In the future, we plan to combine automated annotation with human efforts to expand the
dataset scale. Second, following the evaluation process of LLMs, we employed the LLMs-as-Judges
approach to assess model reasoning processes. However, issues such as biases in LL.Ms-as-Judges,
adversarial attacks, and inherent weaknesses in the methodology may affect evaluation accuracy
2024b). We intend to develop more robust evaluation approaches in future work.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS(LLMS)

We used LLMs only to polish and correct the grammar of this paper. This involved rephrasing
sentences, checking grammar, and improving the overall flow for better readability and clarity. All
research ideation, experiments, and analyses were developed by the authors, with no involvement
from the LLM in these stages.

A.2 QUALITATIVE ANALYSIS OF REASONING PATH

Here, we illustrate this with an example. As shown in Fig. Eka), (b), and(c), we observe that in mod-
els such as Gemini and Claude-3.7-Sonnet, many errors occur where minor mistakes in the reasoning
process lead to incorrect final answers, while the overall reasoning process remains fundamentally
sound. Consequently, the LLM assigns a relatively high score to their problem-solving procedures.

A.3 QUALITATIVE ANALYSIS OF OCR INPUT

We have provided some examples where OCR errors led to incorrect final results, as shown in
Fig. [8(d). We found that LLMs generally struggle to provide correct answers when OCR results
contain errors.

A.4 QUALITATIVE ANALYSIS OF ERROR CASE

Fig. [6] presents a systematic comparison of MLLM reasoning processes. For OpenAl-ol, the main
error lies in its failure to correctly understand the problem. In the scenario, the Green Salad had
already been purchased and paid for, but OpenAl-ol still included it when calculating the new price.
As for DouBao-1.5-Vision-Pro, it exhibits similar issues to O1 and additionally made a mistake in
understanding the product name. According to the menu, “6 jumbo shrimp” refers to a single dish
instead of six individual jumbo shrimp. However, both Qwen2.5-VL-72B and DouBao-1.5-Vision-
Pro misinterpret it as six separate food items. made the same error as DouBao-1.5-Vision-Pro.

A.5 USE THE DATA CURATION FRAMEWORK TO ANNOTATE TRAINING DATA

We leveraged our annotation logic to replace human annotators with DouBao-1.5-Vision-Pro, select-
ing 5000 images from DocVQA, InfoVQA, TextVQA, and ChartQA for synthetic data generation.
As presented in Tab. [7} the results of fine-tuning Qwen2.5-VL-7B using this synthetic data. These
results demonstrate that the proposed data curation framework cannot only be used for building
benchmark data but also be migrated to the construction of training datasets.

A.6 A ROADMAP FOR OCR-REASONING

We outline a concrete roadmap for how OCR-Reasoning might evolve into a standardized bench-
mark suite for multimodal reasoning. We outline three core steps:
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Problem

If you have already bought a Green Salad, and then want to buy two
4-piece fish and one 6 jumbo shrimp, how much will it cost in total?

LD o |

D 57

D D b
2 H

=
= ey =
309

|

Reference Solution
stepl: You buy a Green Salad, but this is already bought, so
we ignore it. The price of two 4-piece fish is $10.99%2=$21.98.
step2: The price of one 6 jumbo shrimp is $9.99.
step3: The total cost is $21.98+$9.99=$31.97.
The final answer is: $31.97

OpenAl-ol X
Step by step:
* Green Salad: $4.99
* Two orders of 4-piece fish (2 x $10.99):
$21.98
* One order of 6 jumbo shrimp: $11.49 Sum:

$4.99 +$21.98 + $11.49 = $38.46 $38.46
c

Qwen2.5-VL-72B X

To calculate the total cost, let's break down the
prices step by step:

1. **Green Salad**: The price is $4.99.

2. **Two 4-piece fish**:

The price for one 4-piece fish is $10.99.
Therefore, for two 4-piece fish, the costis: 2 x
10.99=21.98

3. **One 6 jumbo shrimp**:

The price is $9.99.

4. Now, let’s add up all the costs: 4.99 + 21.98 +
9.99 = 36.96. So, the total cost is $36.96.

5. The final answer is: '$36.96'. d

DouBao-1.5-Vision-Pro X

Find the price of each item:

- The price of a Green Salad is $4.99.

- The price of a 4 - Piece Fish is $10.99. Since
we want to buy two, the cost for fish is (2 x
10.99 = 21.98).

- The price of 6 Jumbo Shrimp is $9.99.

2. Calculate the total cost:

- Add up the costs of all items: (4.99+21.98 +

9.99).

- First, (4.99+21.98=26.97).

- Then, (26.97+9.99 = 36.96).

So the total cost is ($36.96). e

I

Figure 6: Solution examples generated by different models. (a) presents the input image and cor-
responding question; (b) shows the reference solution; (c)-(e) demonstrate outputs generated by
different Al systems: (c) OpenAl-ol model, (d) Qwen2.5-VL-72B model, and (e) DouBao-1.5-
Vision-Pro model.

Table 7: Performance comparison of Qwen2.5-VL-7B before and after fine-tuning on the synthetic
data generated by our data curation framework.

Method Overall Spatial Numerl?al Mathematical Enumerative Logical Multidisciplinary
Analysis Knowledge

Qwen2.5-VL-7B (base model) 15.7 13.8 11.6 8.8 20.1 9.0 35.8

Qwen2.5-VL-7B (Fine-tune) 17.0 14.7 10.6 21.6 229 17.4 26.3

1. For reward design, we will leverage our annotation logic, replace the manual parts with leading
models, and construct a batch of training data through standardized processes. Using this data,
we will train a process-aware reward model that evaluates not only answer correctness but also the
rationality of reasoning steps—delivering more granular, objective signals than rule-based reward
functions. The model will be fully open-sourced to help the community systematically enhance
models’ reasoning capabilities on text-rich images.

2. We will make the benchmark open-source on Hugging Face to facilitate downloading and use
by researchers in the community. Subsequently, we will open-source the code on commonly used
evaluation frameworks for MLLMs, enabling researchers to quickly evaluate their models’ perfor-
mance.

3. Existing benchmarks often focus on evaluating capabilities in a single dimension. This benchmark
(OCR-Reasoning) focuses on assessing models’ reasoning abilities on single images. Therefore,
for dataset expansion, we will include more complex tasks such as reasoning on multilingual text,
domain-specific documents, or multi-page handwritten materials.

A.7 THE UNDERLYING MECHANISMS OF VL-RETHINKER-7B
When testing RL-trained models, we used their official prompts to ensure consistency between

training and testing. On this basis, we further added the CoT prompt: ’Solve the complex prob-
lem through step-by-step reasoning.” We found that this approach improved performance on MM-
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Eureka, but degraded performance on VL-Rethinker. We hypothesize that this is due to a conflict
between the generic CoT prompt and the model’s built-in reflection/reasoning mechanism.

To further validate this, we conducted an ablation study by removing the model’s official built-in
prompt and then testing the effect of the generic CoT prompt. The results are presented below. The
performance improved when the official prompt was removed (comparing the third and fourth rows).
It supports our hypothesis that the degradation occurs specifically because the two prompts conflict
within the model’s input processing.

Table 8: Ablation study of the underlying mechanisms of VL-Rethinker-7B.

Method | Official Prompt | CoT | Overall | Spatial | Numerical Analysis | Mathematical | Enumerative | Logical | Multidisciplinary Knowledge
Official Setting v X 19.1 13.7 16.6 9.8 25.7 14.6 33.6
Original + CoT v v 14.6 8.3 16.1 9.8 19.6 8.3 19.0
Ablation 1 (No Prompt) X X 17.5 13.8 15.8 7.8 212 16.7 28.5
Ablation 2 (CoT) X v 18.7 14.7 13.1 11.7 279 18.8 31.3

A.8 PRACTICAL REASONING TASKS

In this Section, we provide some examples of the 18 practical reasoning tasks in text-rich visual
scenarios, as presented in Fig.[7]
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D denotes belonging to spatial reasoning. El denotes belonging to mathematical reasoning. D denotes belonging to enumerative reasoning.

D denotes belonging to logical reasoning. El denotes belonging to multidisciplinary knowledge reasoning. D denotes belonging to numerical analysis reasoning.
Route Reasoning Layout Reasoning Relation Extraction

Question: The optimal path is what?

Question: What is the minimum total cost for

Answer: purchasing both the second-row items from the lower .
SERHieleiedey s apre i Ry column and the last-row items from the upper column? Qusstonboyere Dore e Carmen pletedy)
The first selection is between R (Red) with

Answer:

step1: Dora s the daughter of Kathy and James, and
Carmen is the grandmother to both Kathy and James
through her daughter Rachel. Therefore, Dora is
Carmen's great-granddaughter.

The final answer is: great-granddaughter

probabily of \rac(310)5 and B (Bl wih

S\irac(7){10}$. Given the higher probabiliy, we select Answer
E

step1: Find the price of the second row of goods:
CHEF SALAD is 4.50 for a small size.

step2: Find the price of the last row of goods: Roast
Beef-Turkey-Ham-Swiss is 3.10 for a small size,
step3: Add the price of these two goods: 4.50 + 310

p 2: The second selection follows the same
pmnanmues $\frac{3H10)$ for R and $\frac{7){10}$ for
B. Consequently, B is chosen again.

Step 3: The optimal path analysis reveals that the
sequence B — B maximizes the probability of
achieving the desired outcome.

The final answer is: BB

=7.
The final answer is: 7.60

Commonsense Reasoning ‘Game-theoretic Logic 1Q Test

Question:EIZ 8 B, MARARE, WRUKADEN
T, MRRMEE, FRRRHEE.

140 ety

Question: What's the date of the first Monday after ke aEiat \.‘ il Question: Find the missing value in this math
Y et 1+44=5 puzzle.
re fo :e A, * AeN
it n»um' -
D) ks h. wmd 1F> i 151 oy 2+5=12
Answer: o 1ok o8 BH Q. ¢ AN BAREIE, WAKERRI-INRAE. LT
step1: The race starts on December 20th, which is a ‘qmq m-ll!! 346=21 i o e
Saturday. ﬂ:e BIEEE. A ZERTIEE, M;m:ma L Slepj-‘/l/e find that 1 + (1"4) —_,2+(2 5)=12;3
step2: The first Monday is two days later. i RERS, 0 PARGETE KESR. T 841127 +(3"6) = 21. Therefore, A+ B = A + (AX B)
stepd: Therefore, the first Monday is December 22nd. A0 2ot el ! step2: Calculate the final answer: 8 + 11 =8 +
‘The final answer is: December 22nd .i‘tm A Tk SERE AR, o @11)=
4 g‘rﬁxu&umﬁmmgzm» FAWE The final answer is: 96

IR ————

‘THE TOP GLOBAL RISKS IN 2024

Mathematical Statistics Problems

Question: What's the average of the last three
values in the green graph?

Answer:
step?: Identify the last three values in the green graph
(Satisfied). From the graph, the values for the years
2013, 2014, and 2015 are 29, 30, and 27, respectively.
step2: Calculate the average of ast three values
together: (29+30 + 27) /3= 28.6667. Round the
result to one decimal place:28.6667 rounded to one.
decimal is 28.7.
“The final answer

8.7

Physics Problems

Question: Answer the question in the image. If itis a
multiple-choice question, please provide the option you
think is correct, If itis free-form, please provide your
answer.

Answer:
step1: The speed is initially uniform.

step2: The speed then uniformly decelerates to zero.
step3: The speed is zero at point B.

stepd: The speed then uniformly accelerates back to its
initial value.

step5: Graph C is the best match.

The final answer is: C

Conditional Counting

Question: How many times does the icon of
‘Geopolitical' appear?

Answer
step: Locate the ‘Risk Categories' section of the
image. Identify the icon of ‘GeopoHﬂcal’ ‘within that
section, which is a globe with ar

2 Scan the enire Image and count sech Instance
of the icon of ‘Geopolitical

step3: The icon of 'Geopolitcal' appears next to
‘Escalation or outbreak of armed conflict, ‘Attacks on
“Accidental or intentional nuclear
event', 'Violent civil strikes and riots', 'Accidental or
intentional release of biological agents' and i the Risk
Categories box.

The final answer is: 6

Candlestick Analysis

Question: How much higher s the highest price
compared to the lowest price in the curve?

wer.
step1. Find the relevant values from the image.
OCR:* Highest price: 452.750° Lowest price:
339,650

step2. Calculate the difference between the Nghes(
and lowest prices: 452,750 - 339,650 = 113.1

The final answer is: 113.100

Geometry Problems

Question: Answer the question in the image. I itis a
multiple-choice question, please provide the option you
think s correct, Ifit s free-form, please provide answer.

step1: Establish the relationship between the area of
the heptagon and the area of triangle ABC, stating that.
they are equal.

step2: Define variables x snd n as the length of DF and
the alttude from A to DF, respecively.

step3: Use similarity of Mangles ADF and AEG to find
EG = 5x and the altitude of DFGE a:

tepd: Calclals th aree of quadriatora OFGE using
the given information (area = 288) and derive xh = 24.
steps: Calculate the area of triangle ABC using the.
value of xh, resulting in an area of 588,

The final answer is: 588

Chemistry Problems

Question: Answer the question in the image. If itis a
multiple-choice question, please provide the option you
think Is correct, If it s free-form, please provide answer.
Answer.

stept: A. b is benzene, and its isomers can be cyic or
chain structures. For example, HC = C - CH = CH - CH =
CH2, 50 isomers are not just d and p, hence A s incorrect;
step2: B. The dichlorinated derivatives of d can have the
two chlorine atoms at positions 1,
6, etc., hence B s incorrect;
step3: C. p is an alkane, and it does not react with
potassium permanganate, and neither does b, C incorrect;
. Both d and p contain saturated carbon atoms,
which have the structural characteristics of methane, so
all atoms in d and p cannot be in the same plane, only b
has a planar structure, hence D is correct.

The final answer is: D",

Text Counting

Question: How many times does the number '0.00'
‘appear on the receipt?

nswer:
step1: The number 0.00' appears five times on the
receipt,

step2: The occurrences are as the sub. total, tax, total,
change, and exact dollr.

step3: Thus, the number of times '0.00" appears is ive.
The final answer is: §

Schedule Analysis

Question: If the Rugby train departure is delayed by 3
minutes while the Reading train leaves 10 minutes early,
what is the total time difference between their scheduled
departure times?

Ansy

5|£p1 Rughy train departure time = 12:14 + 00:03 =

uepz * Reading train departure time = 12:38 - 00:10 =

steps Difference between Rugby and Reading train
=00:11

departure times = 12:28 - 12:17
The final answer is: 11 minutes

13i1,412,3,2,5,3,

1

Function Problems

Question: Answer the question in the image. If it is a
‘multiple-choice question, please provide the option you
think is correct. If it is free-form, please provide your
answer.

Answer:

(%) = —xcos(=x) = sin(~x) = —xcosx + sinx =
~f(x), implying symmetry about the origin, thus
excluding optons B and D.

f@) = 1+ cosm +
1 < 0, further excluding option B (although
already excluded in step2).
The final answer is: A

Quantitative Analysis

Question: If someone orders all the foods
marked with a check next to their names, how
much wil he have to pay?

Answer
step: Identify the items marked with a check:
Quesadilla Loca ($15.95), and Quesadilla
Azteca ($14.95).

step2: Sum up the prices of the identified
items: $15.95 + $14.95 = $30.9.

The final answer is: $30.9

Financial Analysis

Question: What is the difference between the price.
before the 4:00 PM EDT close time and the price at
7:59 PM EDT?

Answer:

fentify the stock price at close: The image
9 (-2.03%) as the price at close.
: price before the 4:00 PM EDT close
time: 415.55 + 8.59 = 424.14.
fentify the price at 7:59 PM EDT (after hours):

41674
stepa: Calculate the difference: 424.14 - 416.74 = 7.4
The final answer is: 7.

Statistical Analysis

Question: How many products are there in New
York, excluding Products A, B, C, and D?

stepi: Identify the components of sales for New
York. From the graph, New York sales are
comprised of Product A, Product B, Product C,
and Product D. Their ratio is Product A (43%),
Product B (20%), Product C (20%), and Product
D (16%). The sum of Product A, Product B,
Product C, and Product D is 787.

step2: Calculate the percent of other products
excluding Product A, B, C, and D: 100- 43 -20 -
20-16 = 1%.

step3: Calculate the rumber of other products:
789/99 *1=7.97. Round to 8

The final answer is: 8

Figure 7: Examples of the 18 practical reasoning tasks in text-rich visual scenarios.
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Problem Reference Solution Gemini-2.0-Flash
step1: The animals without a backbone are the invertebrates. From the
image, the invertebrates listed are:

How many animals in the picture do not have a backbone?

The animals that do not have a backbone are invertebrates.

Protozoa, _ ) ;
FlatWorms) The image shows the following types of invertebrates:
Coelenterates,
Annelid Worms, ;romma, v
Echinoderms, atworms, v
Molluscs, Coelenterates, v
ids AnneldWormsie
Arachnids,
Arthropods, X

Crustaceans, Athropace, X

i 3 4 Score: 0.7
Insects, and Myriapods. Eebinoderm
step2: Count how many of the invertebrate classes are listed: Protozoa, é’“{‘""’sf v
Flatworms, C Annelid Worms, Echi Mollusc: ; rust c:Ce‘a,f'sn/
Arachnids, Crustaceans, Insects, and Myriapods. There are 10 classes e
listed. Myriapods. v/

The final answer is: 10 There are 11 such groups.

OCR Results

OCR + OpenAl-03-mini

To solve the problem we first have to identify which groups in the picture represent animals without backbones (invertebrates

This is the grouping together of animals with similar characteristics., Classification of |
| and then count each individual depicted.
1

Animals, Animals can be classed as either vertebrates orinvertebrates., Animals,
Vertebrates, Invertebrates, These are animals that have a backbone., These are animals
that do not have a backbone., Protozoa, Flatworms, Annelid Worms, Echinoderms,
Reptiles, Fish, Amphibians, Single-cell organisms., Simple and soft-bodied., Segmented |
bodies., Spiny sea creatures., Allmicroscopic., Have dry scaly skin., Have scales on their
bodies., Have moist slimy skin., (Tapeworm, Flukes), (Earthworm,Leech), (Starfish,Sea
urchin), Lay eggs on dry land., Have gills for breathing., Lay eggs in water, Are cold

Step 1. The image splits animals into two major classes: * Vertebrates — animals that have a backbone. « Invertebrates —
animals that do not have a backbone.

Step 2. Lok for illustrated examples in parentheses. Reviewing the OCR text, we see several pairs of animals in parentheses. We
must decide whether each pair is shown as an example of invertebrates or vertebrates. The listed parenthesized pairs are: 1.
(Tapeworm, Flukes) ~ These are flatworms (invertebrates).2. (Earthworm, Leech) —These are annelid worms (invertebrates).3.
(Starfish, Sea urchin) —These are echinoderms (invertebrates).4. (Snake, Crocodile) — These are reptiles (vertebrates).5. (Shark,

blooded., Are cold blooded., Are cold blooded., (Snake,Crocodile), (Shark,Tuna), Tuna) - These are fishes (vertebrates).6. (Frog, Newt) —These are amphibians (vertebrates).7. (Jellyfish, Sea anemone) —
(Frog,Newt), Arthropods, Hardexternal skeleton, and jointed limbs., Coelenterates, | These are coelenterates (Gl s Wi, Guar) <Tieesa

Molluscs, Soft bodies,stinging cells., Soft bodied, most have shells., (Jellyfish,Sea | birds hese are mamm hese are arachnids
anemone), (Snails, Limpet), Birds, Mammals, Havefeathers and wings., Have fur or hair.,
Havebeaksandlay eggs., Feed young on milk., Arewarm blooded, Are warm blooded.,
(Wren,Swan), (Cow;Human), Arachnids, Crustaceans, Insects, Myriapods, Eight legs,two]
body, Mostly sea creatures., Wings,six legs,three, Many legs and, parts,no antennae.,
Many legs and two, body parts,one pair, body segments., (Spider,Scorpion), sets
ofantennae., ofantennae., (Centipede, Millipede), (Crab,Lobster), (Bee,Ladybird), 1
daydream

10. (Cow, Human)
wertebrates).12. (Cent
invertebrates).14. (Bee, Ladybird) — These are insects (invertebrates).Step 3. Count only the invertebrates (animals that do not
have a backbone):s From pair 1 (Tapeworm, Flukes): 2 animalss Pair 2 (Earthworm, Leech): 2 animalse Pair 3 (Starfish, Sea urchin)
2 animalse Pair 7 (Jellyfish, Sea anemone): 2 animalse Pair 8 (Snails, Limpet): 2 animalse Pair 11 (Spider, Scorpion): 2 animalss Pair
[12 (Centipede, Millipede): 2 animalse Pair 13 (Crab, Lobster): 2 animalse Pair 14 (Bee, Ladybird): 2 animals There are 9 groups of
pairs, each with 2 animals. So the total number of invertebrate animals = 9 x 2 = 18.Thus, the final answer is: 18.

d
Figure 8: Qualitative analysis of the reasoning path. (a) presents the input image and corresponding

question; (b) shows the reference solution serving as ground truth; (c) demonstrates outputs gener-
ated by Gemini-2.0-Flash. (d) demonstrates outputs generated by O3-mini with OCR results input.

20



	Introduction
	Related Work
	Multi-modal Benchmark
	Text-rich Image Understanding Benchmark

	OCR-Reasoning
	Data Curation Framework
	Dataset Statistics
	Evaluation Protocols

	Experiment
	Experiment Setup
	Overall Results
	Comparison with Existing Benchmarks
	Error Analysis

	Conclusion
	Appendix
	The Use of Large Language Models(LLMs)
	Qualitative Analysis of Reasoning Path
	Qualitative Analysis of OCR Input
	Qualitative Analysis of Error Case
	Use the Data Curation Framework to Annotate Training Data
	A Roadmap for OCR-Reasoning
	The Underlying Mechanisms of VL-Rethinker-7B
	Practical Reasoning Tasks


