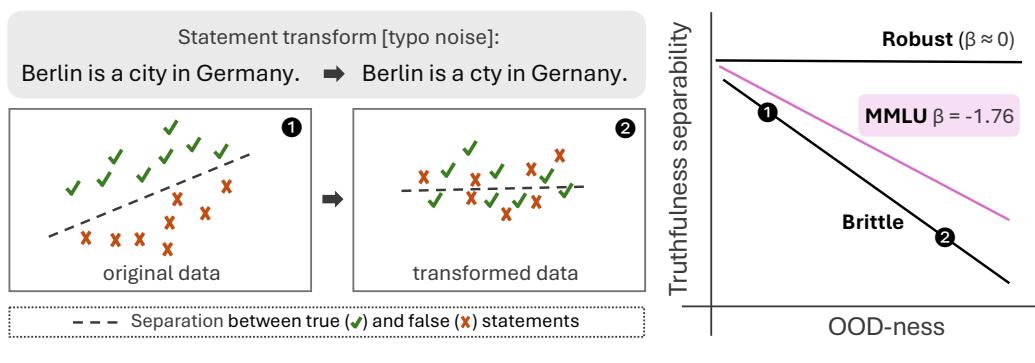


000 001 002 003 004 005 LLM KNOWLEDGE IS BRITTLE: TRUTHFULNESS RE- 006 PRESENTATIONS RELY ON SUPERFICIAL RESEMBLANCE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033
034 For Large Language Models (LLMs) to be reliable, they must learn robust knowl-
035 edge that can be generally applied in diverse settings—often unlike those seen
036 during training. Yet, extensive research has shown that LLM performance can
037 be brittle, with models exhibiting excessive sensitivity to trivial input variations.
038 In this work, we explore whether this brittleness is a direct result of unstable
039 internal knowledge representations. To explore this question, we build on previous
040 work showing that LLM representations encode statement truthfulness—
041 i.e., true, factual statements can be easily separated from false, inaccurate ones.
042 Specifically, we test the robustness of learned knowledge by evaluating represen-
043 tation separability on samples that have undergone superficial transformations to
044 drive them out-of-distribution (OOD), such as typos or reformulations. By apply-
045 ing semantically-preserving perturbations, we study how separability degrades as
046 statements become more OOD, across four LLM families, five evaluation datasets,
047 and three knowledge probing methods. Our results reveal that internal represen-
048 tations of statement truthfulness collapse as the samples’ presentations become
049 less similar to those seen during pre-training. While LLMs can often distinguish
050 between true and false statements when they closely resemble the pre-training
051 data, this ability is highly dependent on the statement’s exact surface form. These
052 findings offer a possible explanation for brittle benchmark performance: LLMs
053 may learn shallow, non-robust knowledge representations that allow for only lim-
054 ited generalizability. Our work presents a fundamental challenge for the utility of
055 truthfulness probes, and more broadly, calls for further research on improving the
056 robustness of learned knowledge representations.



080
081 Figure 1: **LLM truth representations degrade under superficial changes.** (a) We apply
082 semantically-preserving transformations to shift statements OOD, collapsing the representations of
083 **true** and **false** statements. (b) We quantify robustness as the relationship between separability and
084 OOD-ness. A hypothetical **Robust** model would have constant separability regardless of OOD-ness,
085 while a hypothetical **Brittle** model would rapidly degrade. On **MMLU**, we observe that knowledge
086 representations degrade with increasing perplexity.

054
055

1 INTRODUCTION

056
057
058
059
060
061
062
It is expected that LLMs acquire robust and general knowledge during pre-training, which is a critical factor in enabling strong and reliable downstream capabilities. Contemporary LLMs, however, appear to be strikingly brittle, with task performance and benchmark results being highly susceptible to subtle prompt changes and other irrelevant perturbations (Mizrahi et al., 2024; Sclar et al., 2024; Voronov et al., 2024). This brittleness raises a central question: do LLMs learn robust underlying knowledge *representations*, or are they fragile and tied to the exact phrasings and formulations seen during training?063
064
065
066
067
068
069
070
071
072
One approach to testing knowledge is via a “true or false” test: correctly determining whether a statement is true requires accurate knowledge of the world. Previous work has suggested that LLM representations encode statement truthfulness, such that representations of true statements are separable from those of false (Azaria & Mitchell, 2023; Li et al., 2023; Burns et al., 2022; Marks & Tegmark, 2023; Wang et al., 2025, *inter alia*). We build on this line of work in order to explore the *generality* and *robustness* of knowledge representations when statements are reformulated or perturbed. Specifically, we explore the extent to which LLMs have a robust internal representation of truthfulness as statements take on presentations increasingly dissimilar to those seen during pre-training, i.e., that are increasingly OOD. For an LLM to have robust knowledge, its knowledge representations should generalize and be robust to superficial changes.073
074
075
076
077
078
Our method has three components. First, we leverage average perplexity as a proxy measure for how OOD (with respect to pre-training) a given statement is. Second, we apply a range of semantically-preserving perturbations that drive samples OOD, without changing statement meanings. Finally, we test the separability of learned knowledge representations on the perturbed samples, using three different probing techniques. Our analysis of over 2,000 probes allows us to directly assess how separability degrades as a function of OOD-ness, across four model families and four datasets.079
080
081
082
083
084
085
086
Our findings reveal that, strikingly, the robustness of LLMs’ internal knowledge representations is tightly coupled to superficial resemblance to pre-training data. We find that truthfulness separability degrades as samples become increasingly OOD, across all tested truthfulness probing techniques, and regardless of model choice or dataset. Comparing different areas of knowledge, we note that some topics (e.g. marketing and sociology) appear to be less susceptible to distribution shifts than others (e.g. history), indicating they are learned more robustly. Surprisingly, topic robustness is not explained by topic representation in the pre-training data, suggesting that *scaling up pre-training corpora may be insufficient for encoding robust and general knowledge*.087
088
089
090
091
092
093
094
095
In summary, our results suggest that LLMs learn shallow, non-robust knowledge representations that fail to generalize to scenarios unlike those seen during training. While previous work has highlighted limited generalization performance of probing methods (Wang et al., 2025; Azizian et al., 2025; Orgad et al., 2024; Beigi et al., 2024; Levinstein & Herrmann, 2025), our work demonstrates that this problem stems from brittle internal representations, presenting a significant challenge for probing-based approaches to improving factuality or reliability. More broadly, our work points to a deeper limitation in how LLM knowledge is encoded and applied: rather than developing stable, generalizable representations, current LLMs appear to rely on brittle surface features, undermining their reliability in common contexts.096
097

2 RELATED WORK

098
099
100
101
102
103
104
105
106
107
LLM robustness. Though state-of-the-art LLMs continue to demonstrate increasing scores on popular benchmarks, a large body of research suggests this performance may be unusually brittle. Previous work has found that LLMs are highly sensitive to minor formatting variations (Gu et al., 2023; Sclar et al., 2024; Habba et al., 2025), semantically-equivalent paraphrases (Mizrahi et al., 2024; Sun et al., 2024) and human-validated adversarial perturbations (Wang et al., 2021). In multiple-choice question answering, LLMs are sensitive to option ordering (Pezeshkpour & Hruschka, 2024; Gupta et al., 2024; Alzahrani et al., 2024) and presentation (Alzahrani et al., 2024). In few-shot settings, example formatting and ordering can lead to performance degradations (Zhao et al., 2021; Turpin et al., 2023). While the causes of brittleness may vary by task (Chatterjee et al., 2024) and specific prompt features (Leidinger et al., 2023), these trivial variations suffice to significantly re-order benchmark model rankings (Alzahrani et al., 2024; Mizrahi et al., 2024). Exploring

108 robustness beyond benchmarking, recent works have also found that simple variations of political
 109 survey questions suffice to completely alter expressed opinions (Haller et al., 2024; Shu et al., 2024;
 110 Ceron et al., 2024).

111 One possible cause of such brittleness is that LLMs fail to generalize far beyond their training data.
 112 Razeghi et al. (2022) find that LLMs exhibit better numerical reasoning performance on prompts
 113 that are better represented during pre-training. Using prompt perplexity as a proxy measure of
 114 pre-training representation, Gonen et al. (2023) show that higher perplexity—i.e., more OOD—
 115 prompts lead to worse performance. Motivated by and building upon this line of research, in this
 116 work we attempt to distinguish between brittle *performance* and brittle *knowledge*, by evaluating the
 117 robustness of internal representations in increasingly out-of-distribution scenarios.

118 **Probing knowledge representations.** Extensive prior work has investigated the internal rep-
 119 resentations of LLMs as a way of understanding what they have learned during training. Azaria &
 120 Mitchell (2023) train multi-layer perceptron (MLP) classifiers on hidden layer activations to separate
 121 true, factual statements from false, inaccurate statements, suggesting that LLM internal representa-
 122 tions encode a notion of statement truthfulness that can be later recovered. Others (Burns et al.,
 123 2022; Li et al., 2023; Marks & Tegmark, 2023; Wang et al., 2025) have suggested that these internal
 124 representations of true and false statements are *linearly* separable. Slobodkin et al. (2023) find that
 125 answerable and unanswerable questions are also linearly separable, while Gottesman & Geva (2024)
 126 train linear probes to predict downstream task performance about a given subject.

127 Using model outputs rather than internal representations, Kadavath et al. (2022) test whether models
 128 can, given a question, distinguish between correct and incorrect answers. Kadavath et al.’s token
 129 likelihood-based method, “P(True)”, can separate true and false question-answer pairs for larger-
 130 scale models. In this work, we leverage output-based methods and both linear and non-linear internal
 131 probes to explore the robustness of learned knowledge representations.

132 **Probe generalization.** While Marks & Tegmark (2023) argue that LLMs encode a “geometry
 133 of truth” that is consistent across tasks, such that trained probes should generalize to novel settings,
 134 other researchers have found a more mixed picture. On the one hand, a significant body of work finds
 135 that trained probes for statement truthfulness fail to generalize across datasets and tasks (Wang et al.,
 136 2025; Azizian et al., 2025; Beigi et al., 2024; Orgad et al., 2024), and particularly across different
 137 domains (Beigi et al., 2024; CH-Wang et al., 2024). Directly relevant to our work, Levinstein &
 138 Herrmann (2025) find that Azaria & Mitchell’s non-linear truthfulness probes fail to generalize to
 139 even negated variants of their training data. On the other hand, truthfulness probes may generalize to
 140 tasks requiring similar skills (Orgad et al., 2024) or reasoning strategies (Zhang et al., 2025), while
 141 Slobodkin et al. (2023) find partial generalization of answerability probes to different datasets.

142 Crucially, each of these works explore the generalization of the *trained probe*—i.e., a probe is trained
 143 on one dataset before being tested out-of-distribution. While this is a helpful test of the practical util-
 144 ity of probes, testing probe generalization tells us nothing about how generally the LLM can deploy
 145 its knowledge. In contrast, our work directly evaluates the generalizability of *internal represen-
 146 tations* via testing how separable they remain OOD—i.e., our probes are both trained and tested in
 147 out-of-distribution settings. We interpret the poor performance of an OOD-trained probe as evidence
 148 of non-robust knowledge representations.

149

150

151

152

3 METHODS

153

154

155

156 Our goal is to quantify the robustness of knowledge representations as statements become increas-
 157 ingly dissimilar to those seen during pre-training. See Fig. 1 for an overview of our approach. **First**,
 158 we evaluate three truthfulness probing methods that separate true statements from false (§3.1) on
 159 four model families (§3.2) and four datasets (§3.3). **Second**, we select a diverse set of meaning-
 160 preserving transformations to push dataset samples OOD (§3.4). **Third**, we measure how OOD
 161 a transformed statement is using statement perplexity as a proxy (§3.5). **Finally**, we evaluate the
 degradation of truthfulness representation separability as samples become increasingly OOD (§3.6).

162
163

3.1 PROBING TECHNIQUES

164
165
166

We evaluate the separability of internal representations according to statement truthfulness using three approaches, two activation-based and one output-based. Probe performance is evaluated using Area Under the Receiver Operating Characteristic Curve (AUC). See Appendix A for full details.

167
168
169
170
171
172

Non-linear activations classifier. Following Azaria & Mitchell (2023), we train a 3-layer feed-forward neural network to classify the internal representations of statements according to whether they are true or false.¹ Representations are the residual stream activations of the final token in the statement. Again following Azaria & Mitchell (2023), we test activations from multiple layers using six-fold cross-validation, and report performance via AUC on the best-performing layer for each combination of model and probe.

173
174
175
176
177

Linear activations classifier. In light of prior work suggesting that true and false statements may have linearly separable representations (Li et al., 2023; Burns et al., 2022; Marks & Tegmark, 2023), we implement a linear alternative to the non-linear activations classifier. We follow the same method as above, but replace the 3-layer feedforward neural network with a single-layer linear network, equivalent to logistic regression.

178
179
180
181
182
183
184
185

P(True). In addition to the activation-based probes, we employ one method based on the output next-token distribution. Kadavath et al. (2022) introduce $P(\text{True})$, where the model is prompted with a multiple-choice question as to whether the given statement is true or false. We employ standard practice for likelihood-based evaluation by extracting the probabilities of the tokens corresponding to true and to false, before normalizing to obtain a probability for the statement being true. Following Kadavath et al., we use a 6-shot approach, providing the model with six in-context examples. See Appendix A for full details and prompt examples.

186
187

3.2 MODELS

188
189
190
191
192
193

We probe the knowledge representations of ten decoder-only autoregressive language models across four model families: OLMo 7B Base and Instruct (Groeneveld et al., 2024), OLMo-2 Instruct (7B and 13B; Walsh et al., 2025), Llama 3.1/3.2 Instruct (1B, 3B, 8B and 70B; Llama Team, AI @ Meta, 2024) and Gemma-3 (4B and 12B; Gemma Team, Google DeepMind, 2025). We make use of Hugging Face transformers (Wolf et al., 2020) for extracting activations and vLLM (Kwon et al., 2023) for efficient inference. See Appendix A for full details and model hyperparameters.

194
195
196

3.3 DATASETS

197
198

We assess the robustness of truthfulness representations on four widely used benchmark datasets, which vary in knowledge domains, question formats, and reliance on retrieval vs. reasoning.

199
200
201
202
203

True-False. The dataset introduced by Azaria & Mitchell (2023) consists of simple true/false statements across six topics such as cities, animals and facts, making it the most retrieval-oriented benchmark in our suite. The questions are syntactically regular and have low variance in phrasing, which makes them particularly well-suited for testing superficial memorization and direct retrieval.

204
205
206
207

MMLU. The Massive Multitask Language Understanding benchmark (MMLU; Hendrycks et al., 2021) is a multiple-choice question-answering dataset covering a wide range of domains such as STEM, humanities, and professional knowledge. Each question has four candidate answers, and the benchmark includes fine-grained category labels that enable by-topic analysis.

208
209
210
211

OpenBookQA. OpenBookQA (Mihaylov et al., 2018) consists of questions that are less trivia-like than those in the True-False dataset, often requiring longer phrases and some degree of reasoning beyond direct retrieval.

212
213
214

TruthfulQA. TruthfulQA (Lin et al., 2022) is arguably the most challenging and diverse benchmark in our evaluation. The questions are designed to probe models’ susceptibility to common misconceptions and false beliefs, rather than simple retrieval. Each question is annotated with cate-

215

¹Where “true” and “false” describe the statement’s truth value with respect to the world, rather than some notion of concordance with hidden beliefs.

216 gories (e.g., misconceptions, superstitions), making the dataset particularly useful for understanding
 217 which types of knowledge are robust.

218 **Statement formatting.** For the True-False dataset, we directly use the original statements without
 219 modification. For the multiple-choice datasets (MMLU, OpenBookQA, and TruthfulQA), we
 220 combine each question with one of its candidate answers to form a complete question–answer pair.

222 **3.4 TRANSFORMATIONS**

224 We consider different types of semantically-preserving transformations to break the samples’ resem-
 225 blance to the pre-training data.² See Fig. 1 for examples and Appendix A for further detail.

226 **Typos and punctuation noise.** We introduce character-level perturbations in the form of typos
 227 and punctuation noise using the AugLy data augmentation library (Papakipos & Bitton, 2022), eval-
 228 uating multiple variants with progressively increasing intensity. Such noise-based augmentations
 229 allow us to test the extent to which probes and LLMs rely on exact lexical and orthographic cues
 230 when separating true from false statements.

231 **Negation.** We employ the `negate` Python library³ to generate syntactic negations. These
 232 negated sentences remain syntactically well-formed and semantically interpretable, while systemat-
 233 ically flipping the truth value of the original statement.

234 **Yoda speak.** We use the NL-Augmenter library (Dhole et al., 2023) to flip the clause struc-
 235 ture such that it reads like “Yoda speak”. This transformation typically results in sentences with a
 236 non-canonical word order as in the example: “Much to learn, you still have.” Because these config-
 237 urations are both syntactically valid and infrequent in ordinary English text, they are unlikely to be
 238 seen during pre-training.

239 **Translation.** We further drive samples OOD by translating them into French and Spanish using
 240 the NLLB-200 machine translation model (Costa-Jussà et al., 2022). This transformation preserves
 241 the semantic content but alters virtually all surface-level statistics of the input.

242 **3.5 MEASURING OOD-NESS**

243 Each transformation can be thought of as a different distribution shift. Thus, when plotting per-
 244 formance degradation under each transformation, we use OOD-ness as a common scale to evaluate
 245 robustness. Given LLM training data is typically unavailable, we are unable to *directly* evaluate
 246 whether a statement is OOD, so we instead follow previous work (Razeghi et al., 2022; Gonen et al.,
 247 2023) and use statement perplexity as a proxy. Assuming a given LLM is a reasonable model of its
 248 training data, it should assign low likelihoods to less well-represented, i.e., more OOD, samples.

249 Given a token sequence $\mathbf{u} = \langle u_1, \dots, u_N \rangle$, and a language model P_θ , the perplexity of \mathbf{u} is the
 250 exponentiated average negative log-likelihood of the sequence,

$$251 \text{PPL}(\mathbf{u}) = \exp \left\{ -\frac{1}{N} \sum_{i=1}^N \log P_\theta(u_i | \mathbf{u}_{<i}) \right\},$$

252 where $P_\theta(u_i | \mathbf{u}_{<i})$ is the model’s estimated conditional probability of observing token u_i given
 253 preceding tokens $\mathbf{u}_{<i}$.

254 **Validating perplexity as a proxy OOD measure.** To validate that perplexity is an appropriate
 255 proxy for measuring how OOD a statement is, we make use of the OLMo model family (Groeneveld
 256 et al., 2024) and its publicly-available pre-training data, Dolma (Soldaini et al., 2024). We use
 257 the Infini-gram API (Liu et al., 2024) to access the Dolma n-gram statistics for each sample. In
 258 Appendix C, we show that OLMo statement perplexities are highly correlated with Dolma n-gram
 259 counts, suggesting perplexity can proxy how well-represented a sample is in the pre-training corpus.
 260 We additionally reevaluate our main findings using average n-gram counts rather than perplexity,
 261 finding that our conclusions remain consistent regardless of approach.

262 ²To verify that our transformations preserve the original statements’ truth value, we conducted a human
 263 validation study, provided in Appendix B.

264 ³<https://pypi.org/project/negate>

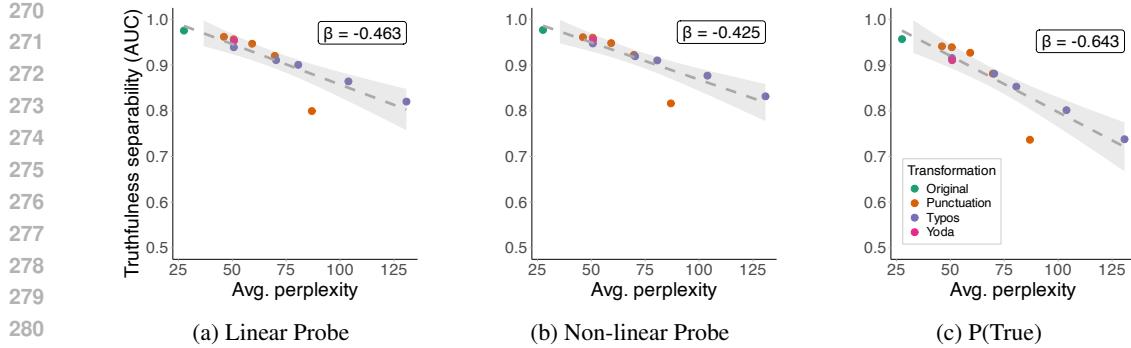


Figure 2: Truthfulness separability (probe AUC) against average perplexity on the True-False dataset for Llama 3.1 8B Instruct for the (a) linear, (b) non-linear, and (c) $P(\text{True})$ probes. **Probe performance degrades as samples become more OOD across all tested probes, suggesting knowledge representations are not robust.**

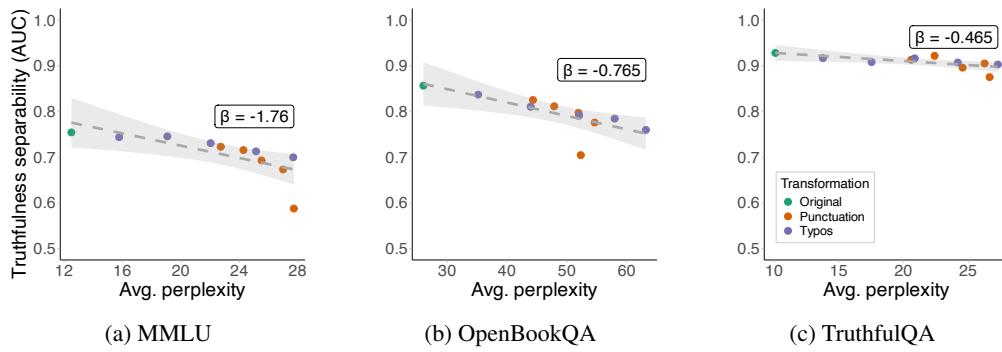


Figure 3: Non-linear probe performance (AUC) against average perplexity for Llama 3.1 8B Instruct on (a) MMLU, (b) OpenBookQA, and (c) TruthfulQA. **Despite differences in AUC on the original dataset (green dots), truthfulness representations consistently degrade on all datasets.**

3.6 PUTTING IT ALL TOGETHER: TESTING REPRESENTATION ROBUSTNESS

Given a transformed dataset, we measure the separability of true and false statements using probe AUC, and measure how OOD the transformed dataset is via average statement perplexity. Then, we measure robustness as the standardized slope (β) of a linear regression model, where the predictor is average perplexity, and the response is probe AUC. A steeper negative slope indicates rapid degradation and less robust representations, while a flatter slope indicates higher robustness.

4 TRUTHFULNESS REPRESENTATIONS RELY ON SUPERFICIAL RESEMBLANCE

First, we test the robustness of knowledge representations across different probing methods, datasets, and models. Later, in §5, we explore variability in robustness in greater depth.

Knowledge representations degrade OOD. First, we test the robustness of three different probing methods, $P(\text{True})$, the non-linear probe, and the linear probe, as statements become increasingly OOD, as measured by perplexity. In Fig. 2, we show probe AUC as a function of average statement perplexity for Llama 3.1 8B Instruct on the True-False dataset. All three methods achieve high AUC on the original, untransformed True-False dataset ($AUC \geq .96$), indicating that true and false statements are initially separable. However, AUC consistently degrades as we move out of distribution, with $P(\text{True})$ exhibiting lower robustness ($\beta = -.64$) compared to the linear and non-linear probe ($\beta = -.43$ and $\beta = -.46$, respectively).⁴

⁴As a sanity check, we additionally analyze robustness across all model layers. See Appendix C.4.

324 **Representations degrade consistently across datasets.** Next, we test robustness across datasets
 325 using the non-linear probe on Llama 3.1 Instruct 8B. Across TruthfulQA, OpenBookQA, MMLU,
 326 and True-False, probe performance again begins well above chance on the original data (AUC \in
 327 $[.75, .98]$), though all exhibit degradation under distribution shift (Figure 3). The steepest decline
 328 occurs for MMLU ($\beta = -1.76$), followed by OpenBookQA ($\beta = -0.77$), True-False ($\beta = -0.43$)
 329 and finally TruthfulQA ($\beta = -0.47$). For results with additional models and probes, see Appendix C.

330 **Representations degrade consistently across model families and**
 331 **scales.** Finally, we show that
 332 truthfulness representations degrade regardless of the LLM choice. Using
 333 the non-linear probe, Fig. 4a illustrates that most models exhibit
 334 similar rates of degradation, with Llama 3.1 Instruct 70B—the largest
 335 model—being the least robust ($\beta = -1.53$), and Gemma-3 4B the most
 336 ($\beta = -0.07$). For additional probes and datasets, see Appendix C. In
 337 Fig. 4b, comparing different Llama 3.1 model scales, we see that the non-
 338 linear probe exhibits much sharper degradation for 70B models. In
 339 contrast, P(True) shows a slight positive effect of scale on robustness, aligning
 340 with Kadavath et al.’s (2022) finding that larger models are better calibrated.
 341

342 **Summary.** We find that truthfulness representations consistently degrade under superficial mod-
 343 ifications, across probing methods, datasets, and models, indicating an over-reliance on the exact
 344 phrasings and formulations seen during training.

354 5 NOT ALL REPRESENTATIONS ARE EQUAL

355 Having explored the robustness of truthfulness representations *in general*, we now ask whether
 356 certain types of knowledge are learned more or less robustly.

357 **Benchmark performance does not imply robust representations.** We first ask whether cor-
 358 rectly answering benchmark questions corresponds to more robust representations. To do so, we
 359 prepare a filtered subset of MMLU questions where the model responds correctly during bench-
 360

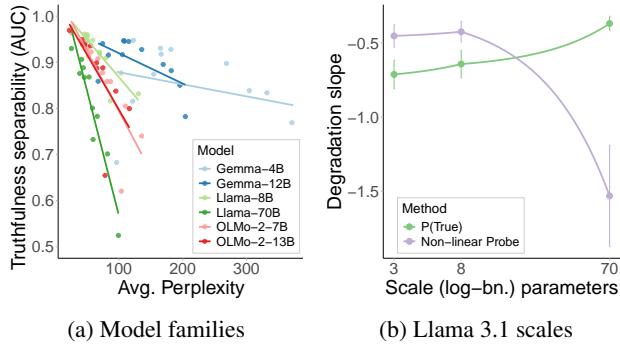


Figure 4: (a) Non-linear probe performance (AUC) against average perplexity for various model families. (b) Degradation slope for the non-linear and P(True) probes at increasing Llama 3.1 Instruct scales. **All models suffer degraded representations under OOD shift; increasing scale may worsen representation robustness.**

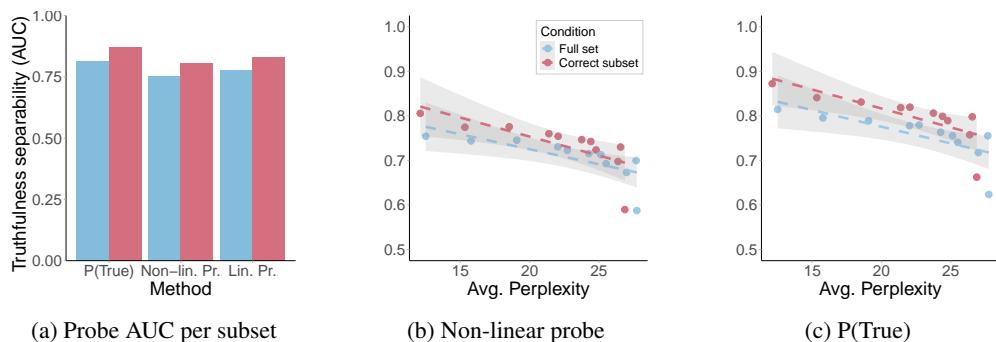


Figure 5: (a) Probe performance (AUC) for Llama 3.1 8B Instruct on the correct-only MMLU subset (red) and the full dataset (blue). (b) Non-linear probe and (c) P(True) performance (AUC) against average perplexity for correct and full sets. **Knowledge representations still degrade even when the model responds correctly during benchmarking.**

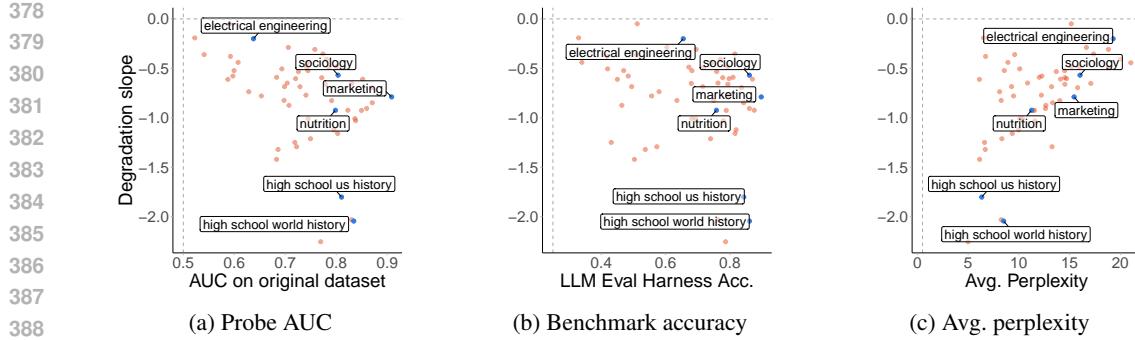


Figure 6: Non-linear probe robustness by MMLU topic against original, unmodified dataset **(a)** probe AUC, **(b)** benchmark accuracy, **(c)** and average perplexity for Llama 3.1 8B Instruct. **Certain topics are robustly separable, even with higher perplexity.**

marking (see Appendix A), before comparing probe AUC on this subset against AUC on the full dataset. As shown in Fig. 5a, AUC scores are consistently higher for the correctly-answered subset.

However, Fig. 5b and Fig. 5c show that for both P(True) and the non-linear probe, the degradation slopes on the full dataset and the correct subset are nearly parallel (P(True): $\beta_{\text{full}} = -.59$ vs. $\beta_{\text{subset}} = -.67$; non-linear: $\beta_{\text{full}} = -.53$ vs. $\beta_{\text{subset}} = -.67$), suggesting that knowledge representations degrade equally whether or not the model can answer the question in a benchmarking setting.

Certain topics have more robust representations. Next, we break out our analysis by statement topic, using the non-linear probe on Llama 3.1 8B Instruct, over the full set of MMLU topics (see Appendix A.5). Figure 6a shows the robustness of each MMLU topic (degradation slope) against the initial separability (AUC on the original dataset). Topics in the upper-right quadrant can be considered “well learned”, achieving high AUC while degrading only minimally under OOD shifts. Example topics with robust and separable representations include sociology and marketing. By contrast, topics such as high school world history achieve high separability in-distribution, but degrade sharply under minor perturbations. Interestingly, high school world history questions also tend to have relatively long sentences, and we observe that topics with longer sentences sometimes exhibit lower robustness (Fig. S6b).

Figure 6b shows topic robustness (degradation slope) against benchmark accuracy on the original dataset. Even for topics where models achieve high benchmark scores, the robustness varies: certain high-scoring topics (e.g., sociology) display greater robustness than others (e.g., marketing).

We explore whether topics that are more in-distribution are more robust in Fig. 6c, which shows topic robustness (degradation slope) against the topic’s average perplexity—again making use of perplexity as a proxy for training data coverage. Interestingly, topics that begin *more* OOD (higher perplexity) might also be *more* robust to subsequent shifts (e.g., electrical engineering), while better-represented topics can degrade sharply (e.g., high school US history).

LLMs are more susceptible to certain transformations. Finally, we examine whether knowledge representations are more susceptible to certain kinds of transformation. Figure 7 shows the change in AUC of each transformed dataset variant against the change in average perplexity, using the non-linear probe with Llama 3.1 8B Instruct on the True-False dataset. Results for the linear probe and P(True) are shown in Fig. S7 for comparison. For the punctuation noise, typo, and Yoda transformations, we see that change in AUC is proportional to change in perplexity: the further samples move OOD, the greater the degradation.

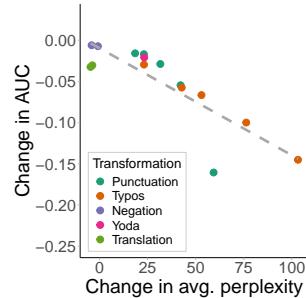


Figure 7: Change in non-linear probe performance (AUC) against change in average perplexity on True-False dataset. **While most transformation types degrade AUC in line with increasing perplexity, translation breaks representations while remaining in-distribution.**

432 In contrast, while translation does not measurably increase perplexity, it has a more pronounced
 433 effect on AUC. This suggests that knowledge representations may degrade rapidly even when trans-
 434 lated samples remain relatively in-distribution.

435 For the non-linear probe, negation neither shifts samples OOD nor impacts AUC, suggesting repre-
 436 sentations that are robust to negation. While prior work (Levinstein & Herrmann, 2025) has high-
 437 lighted limited generalization of non-linear probes to negated samples, our finding suggests this is a
 438 problem with the trained probe, rather than the underlying representations.

439 **Summary.** While truthfulness representations are generally brittle, LLMs may learn certain top-
 440 ics more robustly, and be more robust to certain types of shift. Lower perplexity topics are not
 441 necessarily learned more robustly.

443 6 DISCUSSION

444
 445 We have explored whether LLMs learn robust and generalizable knowledge representations. Our
 446 results show that learned truthfulness representations degrade under superficial changes in input
 447 presentation across probing methods, model families, and datasets. Even when an LLM typically
 448 responds correctly in a standard benchmarking setup, its internal representations are no more robust.
 449 While certain subject areas appear to be learned more robustly, this does not appear to be explained
 450 by coverage in the pre-training data.

451 **Connection to benchmark brittleness.** As discussed in §2, LLM benchmark scores can be
 452 significantly influenced by trivial changes including paraphrasing and formatting changes (e.g. Gu
 453 et al., 2023; Sclar et al., 2024; Habba et al., 2025; Mizrahi et al., 2024; Sun et al., 2024). Yet, it
 454 remains unclear whether such brittleness stems from an inability to generalize and apply robustly-
 455 learned knowledge when performing a task (i.e. brittle *performance*), or a lack of robustness in
 456 the underlying knowledge representations themselves (i.e. brittle *knowledge*). While not ruling out
 457 additional factors that may cause brittle performance, our results indicate that brittle knowledge
 458 representations are likely to play a key role.

459 **Eliciting latent knowledge.** During pre-training, it is expected that LLMs jointly learn how to
 460 use language and store knowledge about the world (allal et al., 2025). Our finding that benchmark
 461 performance need not imply robust representations is in line with previous work suggesting a dis-
 462 connect between latent knowledge and performance (Li et al., 2023). Previous work has argued
 463 that subsequent post-training primarily “elicits” or “sharpens” pre-existing latent knowledge, rather
 464 than teaching fundamentally new capabilities (Zhou et al., 2023; Burns et al., 2024; Ye et al., 2025;
 465 Muennighoff et al., 2025; Yue et al., 2025). If this is the case, developing robust and generalizable
 466 knowledge representations—which our work suggests are lacking—will be of paramount impor-
 467 tance.

468 **Effect of pre-training coverage.** Surprisingly, our experiments on MMLU topics reveal that
 469 lower-perplexity topics are not necessarily more robust. Interpreting statement perplexity as a proxy
 470 for pre-training coverage (Razeghi et al., 2022; Gonen et al., 2023), this suggests that increasing the
 471 number and variability of occurrences does little for robustness, though improved data quality (Li
 472 et al., 2025; allal et al., 2025) is an exciting avenue for future research.

473 **Limitations.** In order to explore representation robustness in settings where statements superfi-
 474 cially differ from those seen in training, we make use of a variety of artificial transformations. A key
 475 limitation of this approach, however, is that not all transformations are equally naturalistic. While
 476 a transformation such as punctuation noise is unlikely to occur during regular user interaction, we
 477 are principally interested in it as a tool for driving samples OOD, rather than being a realistic test of
 478 deployed behavior. A more naturalistic way of driving statements OOD would be through reformu-
 479 lating statements into less expected or less common linguistic forms. However, reliably generating
 480 paraphrases that preserve meaning while ensuring sufficient distributional shift is non-trivial and
 481 difficult to automate.

482 **Conclusion.** We explored the robustness of learned knowledge representations, finding that LLMs
 483 rely on superficial resemblance to their training data in order to determine statement truthfulness. In
 484 light of our results, an exciting area for future work is in methods for improving the robustness of

486 knowledge representations. Ultimately, we see improving the generalizability and applicability of
 487 learned knowledge as a fruitful path toward more robust and reliable LLMs.
 488

489 **490 REPRODUCIBILITY STATEMENT**

491 Our work is fully reproducible: all methods rely on published research, open-weight models (see
 492 Appendix A.4), and publicly available datasets (see Appendix A.5). Full details of the linear and
 493 non-linear probes, including representation extraction and classifier training, are provided in Ap-
 494 pendix A.1.1 alongside code snippets in Appendix D, and details for the P(True) method are given
 495 in Appendix A.2. Data preprocessing, perturbation pipelines, and evaluation procedures are de-
 496 scribed in the main paper and appendix (see §3 and Appendix A), ensuring that all experiments can
 497 be readily replicated.
 498

499 **500 REFERENCES**

501 Loubna Ben allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Blazquez, Guilherme Penedo,
 502 Lewis Tunstall, Andrés Marafioti, Agustín Piqueres Lajarín, Hynek Kydlíček, Vaibhav Srivastav,
 503 Joshua Lochner, Caleb Fahlgren, Xuan Son NGUYEN, Ben Burtenshaw, Clémentine Fourrier,
 504 Haojun Zhao, Hugo Larcher, Mathieu Morlon, Cyril Zakka, Colin Raffel, Leandro Von Werra,
 505 and Thomas Wolf. SmolLM2: When smol goes big — data-centric training of a fully open small
 506 language model. In *Second Conference on Language Modeling*, 2025.

507 Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay, Sultan AlRashed, Shaykhah Alsubaie, Yousef
 508 Almushayqih, Faisal Mirza, Nouf Alotaibi, Nora Al-Twairesh, Areeb Alowisheq, M Saiful Bari,
 509 and Haidar Khan. When Benchmarks are Targets: Revealing the Sensitivity of Large Language
 510 Model Leaderboards. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings*
 511 *of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 512 *Papers)*, pp. 13787–13805, Bangkok, Thailand, 2024. Association for Computational Linguistics.

513 Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In Houda
 514 Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Lin-*
 515 *guistics: EMNLP 2023*, pp. 967–976, Singapore, 2023. Association for Computational Lin-
 516 *guistics*.

517 Waïss Azizian, Michael Kirchhof, Eugene Ndiaye, Louis Béthune, Michal Klein, Pierre Ablin, et al.
 518 The Geometries of Truth Are Orthogonal Across Tasks. In *ICML 2025 Workshop on Reliable and*
 519 *Responsible Foundation Models*, 2025.

520 Mohammad Beigi, Ying Shen, Runing Yang, Zihao Lin, Qifan Wang, Ankith Mohan, Jianfeng He,
 521 Ming Jin, Chang-Tien Lu, and Lifu Huang. InternalInspector I’2: Robust Confidence Estimation
 522 in LLMs through Internal States. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 523 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 12847–12865,
 524 Miami, Florida, USA, 2024. Association for Computational Linguistics.

525 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 526 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 527 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
 528 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
 529 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
 530 and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
 531 R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*,
 532 volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

533 Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering Latent Knowledge in
 534 Language Models Without Supervision. In *The Eleventh International Conference on Learning*
 535 *Representations*, 2022.

536 Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
 537 ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu. Weak-
 538 to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision. In *Proceedings*
 539 *of the 41st International Conference on Machine Learning*, ICML’24, 2024.

540 Tanise Ceron, Neele Falk, Ana Barić, Dmitry Nikolaev, and Sebastian Padó. Beyond Prompt Brittleness-
 541 ness: Evaluating the Reliability and Consistency of Political Worldviews in LLMs. *Transactions*
 542 *of the Association for Computational Linguistics*, 12:1378–1400, 2024.

543 Sky CH-Wang, Benjamin Van Durme, Jason Eisner, and Chris Kedzie. Do Androids Know They’re
 544 Only Dreaming of Electric Sheep? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 545 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 4401–4420, Bangkok,
 546 Thailand, 2024. Association for Computational Linguistics.

547 Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, and Tanmoy Chakraborty.
 548 POSIX: A Prompt Sensitivity Index For Large Language Models. In Yaser Al-Onaizan, Mohit
 549 Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics:*
 550 *EMNLP 2024*, pp. 14550–14565, Miami, Florida, USA, 2024. Association for Computational
 551 Linguistics.

552 Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan,
 553 Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling
 554 human-centered machine translation. *arXiv preprint arXiv:2207.04672*, 2022.

555 Kaustubh Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood,
 556 Abinaya Mahadiran, Simon Mille, Ashish Shrivastava, Samson Tan, Tongshang Wu, Jascha Sohl-
 557 Dickstein, Jinho Choi, Eduard Hovy, Ondřej Dušek, Sebastian Ruder, Sajant Anand, Nagender
 558 Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caro-
 559 line Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanx-
 560 iang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Da-
 561 gan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana
 562 Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fab-
 563 rice Harel-Canada, Antoine Honoré, Ishan Jindal, Przemysław Joniak, Denis Kleyko, Venelin
 564 Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James
 565 Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate,
 566 Gerard de Melo, Simon Meoni, Maxine Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Me-
 567 unnighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli,
 568 Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji,
 569 Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicholas Roberts, Juan Diego Rodriguez,
 570 Claude Roux, Vasconcellos Samus, Ananya Sai, Robin Schmidt, Thomas Scialom, Tshephisho
 571 Sefara, Saqib Shamsi, Xudong Shen, Yiwen Shi, Haoyue Shi, Anna Shvets, Nick Siegel, Damien
 572 Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William
 573 Soto, Aman Srivastava, Aditya Srivatsa, Tony Sun, Mukund Varma, A Tabassum, Fiona Tan,
 574 Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Zijie Wang, Gloria Wang,
 575 Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyu Wu, Witold Wydmanski, Tianbao Xie,
 576 Usama Yaseen, Michael Yee, Jing Zhang, and Yue Zhang. NL-augmenter: A framework for task-
 577 sensitive natural language augmentation. *Northern European Journal of Language Technology*,
 578 9, 2023.

579 Gemma Team, Google DeepMind. Gemma 3 technical report. *arXiv preprint arXiv:2503.19786*,
 580 2025.

581 Hila Gonen, Srinivas Iyer, Terra Blevins, Noah Smith, and Luke Zettlemoyer. Demystifying prompts in
 582 language models via perplexity estimation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
 583 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 10136–10148,
 584 Singapore, 2023. Association for Computational Linguistics.

585 Daniela Gottesman and Mor Geva. Estimating Knowledge in Large Language Models Without
 586 Generating a Single Token. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 587 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 588 3994–4019, Miami, Florida, USA, 2024. Association for Computational Linguistics.

589 Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
 590 Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Au-
 591 thur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,
 592 Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crys-
 593 tal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh

594 Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,
 595 Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,
 596 Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In
 597 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meet-
 598 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15789–15809,
 599 Bangkok, Thailand, 2024. Association for Computational Linguistics.

600 Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu Nie, Hongyuan Mei, and Wenpeng Yin. Robustness
 601 of Learning from Task Instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
 602 (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 13935–13948,
 603 Toronto, Canada, 2023. Association for Computational Linguistics.

604 Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing answer
 605 order can decrease mmlu accuracy. In *Workshop on Datasets and Evaluators of AI Safety*, 2024.

606 Eliya Habba, Ofir Ariv, Itay Itzhak, Yotam Perlitz, Elron Bandel, Leshem Choshen, Michal
 607 Shmueli-Scheuer, and Gabriel Stanovsky. DOVE: A large-scale multi-dimensional predictions
 608 dataset towards meaningful LLM evaluation. In Wanxiang Che, Joyce Nabende, Ekaterina
 609 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational
 610 Linguistics: ACL 2025*, pp. 11744–11763, Vienna, Austria, 2025. Association for Computational
 611 Linguistics.

612 Patrick Haller, Jannis Vamvas, and Lena Ann Jäger. Yes, no, maybe? Revisiting language models'
 613 response stability under paraphrasing for the assessment of political leaning. In *First Conference
 614 on Language Modeling*, 2024.

615 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 616 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
 617 tional Conference on Learning Representations (ICLR)*, 2021.

618 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 619 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
 620 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

621 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 622 Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
 623 Serving with PagedAttention. In *Proceedings of the 29th Symposium on Operating Systems Prin-
 624 ciples*, SOSP '23, pp. 611–626, New York, NY, USA, 2023. Association for Computing Machin-
 625 ery.

626 Alina Leidinger, Robert van Rooij, and Ekaterina Shutova. The language of prompting: What
 627 linguistic properties make a prompt successful? In Houda Bouamor, Juan Pino, and Kalika Bali
 628 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 9210–9232,
 629 Singapore, 2023. Association for Computational Linguistics.

630 Benjamin A. Levinstein and Daniel A. Herrmann. Still no lie detector for language models: Probing
 631 empirical and conceptual roadblocks. *Philosophical Studies*, 182(7):1539–1565, 2025.

632 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
 633 Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
 634 Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bit-
 635 ton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej
 636 Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras,
 637 Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic,
 638 Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,
 639 Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groen-
 640 eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair
 641 Carmon, Achal Dav, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: in search of the next
 642 generation of training sets for language models. In *Proceedings of the 38th International Confer-
 643 ence on Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran
 644 Associates Inc.

648 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
 649 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information
 650 Processing Systems*, 36:41451–41530, 2023.

651

652 Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
 653 falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings
 654 of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 655 Papers)*, pp. 3214–3252, Dublin, Ireland, 2022. Association for Computational Linguistics.

656

657 Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram:
 658 Scaling unbounded n-gram language models to a trillion tokens. In *First Conference on Language
 Modeling*, 2024.

659

660 Llama Team, AI @ Meta. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

661

662 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 663 model representations of true/false datasets. In *First Conference on Language Modeling*, 2023.

664

665 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 666 electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
 667 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical
 668 Methods in Natural Language Processing*, pp. 2381–2391, Brussels, Belgium, 2018. Association
 for Computational Linguistics.

669

670 Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky. State
 671 of What Art? A Call for Multi-Prompt LLM Evaluation. *Transactions of the Association for
 Computational Linguistics*, 12:933–949, 2024.

672

673 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 674 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. S1: Simple test-time
 675 scaling. *arXiv preprint: 2501.19393*, 2025.

676

677 Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and
 678 Yonatan Belinkov. LLMs Know More Than They Show: On the Intrinsic Representation of
 679 LLM Hallucinations. In *The Thirteenth International Conference on Learning Representations*,
 2024.

680

681 Zoë Papakipos and Joanna Bitton. AugLy: Data augmentations for adversarial robustness. In *2022
 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp.
 682 155–162, 2022.

683

684 Pouya Pezeshkpour and Estevam Hruschka. Large Language Models Sensitivity to The Order of
 685 Options in Multiple-Choice Questions. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
 686 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 2006–2017, Mexico
 687 City, Mexico, 2024. Association for Computational Linguistics.

688

689 Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of Pretraining
 690 Term Frequencies on Few-Shot Numerical Reasoning. In Yoav Goldberg, Zornitsa Kozareva, and
 691 Yue Zhang (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp.
 692 840–854, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics.

693

694 Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
 695 sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
 formatting. In *The Twelfth International Conference on Learning Representations*, 2024.

696

697 Bangzhao Shu, Lechen Zhang, Minje Choi, Lavinia Dunagan, Lajanugen Logeswaran, Moontae
 698 Lee, Dallas Card, and David Jurgens. You don’t need a personality test to know these models are
 699 unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments. In
 700 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of
 the North American Chapter of the Association for Computational Linguistics: Human Language
 Technologies (Volume 1: Long Papers)*, pp. 5263–5281, Mexico City, Mexico, 2024. Association
 for Computational Linguistics.

702 Aaditya K Singh, Muhammed Yusuf Kocyigit, Andrew Poulton, David Esiobu, Maria Lomeli,
 703 Gergely Szilvassy, and Dieuwke Hupkes. Evaluation data contamination in LLMs: How do we
 704 measure it and (when) does it matter? *arXiv preprint arXiv:2411.03923*, 2024.

705 Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido Dagan, and Shauli Ravfogel. The Curious Case
 706 of Hallucinatory (Un)answerability: Finding Truths in the Hidden States of Over-Confident Large
 707 Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023*
 708 *Conference on Empirical Methods in Natural Language Processing*, pp. 3607–3625, Singapore,
 709 2023. Association for Computational Linguistics.

710 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 711 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
 712 Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 713 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
 714 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
 715 Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
 716 and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining
 717 research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 718 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 719 15725–15788, Bangkok, Thailand, 2024. Association for Computational Linguistics.

720 Jiuding Sun, Chantal Shaib, and Byron C Wallace. Evaluating the zero-shot robustness of
 721 instruction-tuned language models. In *International Conference on Learning Representations*.
 722 ICLR, 2024.

723 Lintang Sutawika, Hailey Schoelkopf, Leo Gao, Baber Abbasi, Stella Biderman, Jonathan Tow, ben
 724 fattori, Charles Lovering, farzanehnakhaee70, Jason Phang, Anish Thite, Fazz, Aflah, Niklas,
 725 Thomas Wang, sdtblck, nopperl, gakada, ttyuntian, researcher2, Julen Etxaniz, Chris, Han-
 726 wool Albert Lee, Leonid Sinev, Zdeněk Kasner, Kiersten Stokes, Khalid, KonradSzafer, Jeffrey
 727 Hsu, and Anjor Kanekar. EleutherAI/lm-evaluation-harness: v0.4.9.1, 2025. URL <https://doi.org/10.5281/zenodo.16737642>.

728 Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always
 729 say what they think: Unfaithful explanations in chain-of-thought prompting. In A. Oh, T. Nau-
 730 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information*
 731 *Processing Systems*, volume 36, pp. 74952–74965. Curran Associates, Inc., 2023.

732 Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your format: Towards consistent evaluation
 733 of in-context learning improvements. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 734 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 6287–6310, Bangkok,
 735 Thailand, 2024. Association for Computational Linguistics.

736 Evan Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yul-
 737 ing Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
 738 Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
 739 Allyson Ettinger, Michal Guerquin, David Heineman, Hamish Ivison, Pang Wei Koh, Jiacheng
 740 Liu, Saumya Malik, William Merrill, Lester James Validad Miranda, Jacob Morrison, Tyler
 741 Murray, Crystal Nam, Jake Poznanski, Valentina Pyatkin, Aman Rangapur, Michael Schmitz,
 742 Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali
 743 Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 OLMo 2 furious (COLM's version). In
 744 *Second Conference on Language Modeling*, 2025.

745 Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan
 746 Awadallah, and Bo Li. Adversarial GLUE: A Multi-Task Benchmark for Robustness Evalu-
 747 ation of Language Models. In *Thirty-Fifth Conference on Neural Information Processing Systems*
 748 *Datasets and Benchmarks Track (Round 2)*, 2021.

749 Tianlong Wang, Xianfeng Jiao, Yinghao Zhu, Zhongzhi Chen, Yifan He, Xu Chu, Junyi Gao, Yasha
 750 Wang, and Liantao Ma. Adaptive Activation Steering: A Tuning-Free LLM Truthfulness Im-
 751 provement Method for Diverse Hallucinations Categories. In *Proceedings of the ACM on Web*
 752 *Conference 2025*, WWW '25, pp. 2562–2578, New York, NY, USA, 2025. Association for Com-
 753 puting Machinery.

756 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 757 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 758 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 759 Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
 760 language processing. In Qun Liu and David Schlangen (eds.), *Proceedings of the 2020 Confer-
 761 ence on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 38–45,
 762 Online, October 2020. Association for Computational Linguistics.

763 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is more
 764 for reasoning. In *Second Conference on Language Modeling*, 2025.

765 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
 766 Huang. Does reinforcement learning really incentivize reasoning capacity in LLMs beyond the
 767 base model? In *2nd AI for Math Workshop @ ICML 2025*, 2025.

768 Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
 769 models know when they’re right: Probing hidden states for self-verification. In *Second Confer-
 770 ence on Language Modeling*, 2025.

771 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate Before Use: Im-
 772 proving Few-shot Performance of Language Models. In *Proceedings of the 38th International
 773 Conference on Machine Learning*, pp. 12697–12706. PMLR, 2021.

774 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
 775 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
 776 LIMA: Less is more for alignment. In *Proceedings of the 37th International Conference on Neural
 777 Information Processing Systems*, NIPS ’23, pp. 55006–55021, Red Hook, NY, USA, 2023. Curran
 778 Associates Inc.

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 SUPPLEMENTARY MATERIALS OVERVIEW
811812 In the following supplementary materials, we present details of additional methods used in Ap-
813 pendix A, including further details of probe methods, models, datasets, dataset transforms, and an
814 ablation study using n-gram statistics rather than perplexity as an OOD metric. We provide addi-
815 tional supporting evidence in Appendix C, including replications of our main results with different
816 combinations of probing methods, models, and datasets.
817818 A ADDITIONAL METHODS
819820 A.1 PROBE METHODS
821822 A.1.1 NON-LINEAR ACTIVATIONS CLASSIFIER
823824 For the non-linear classifier we implement the Statement Accuracy Prediction based on Language
825 Model Activations (SAPLMA; Azaria & Mitchell, 2023): a multi-layer perceptron classifier to pre-
826 dict the truthfulness of a statement from a language model’s hidden layer activations. The hidden
827 state of the final token is passed as input to a 3-layer feedforward neural network (256–128–64
828 hidden units with ReLU activations, sigmoid output), trained for 5 epochs on a balanced dataset
829 of true/false statements using stratified 6-fold cross-validation. Unlike Azaria & Mitchell (2023),
830 we do not treat separate topics as folds for cross-validation, instead concatenating across topics
831 and drawing each fold via uniform sampling. We trained the probe with the Adam optimizer us-
832 ing a learning rate of $1e^{-2}$, without weight decay or learning rate scheduling. Following Azaria &
833 Mitchell (2023), we test six layers (layers 16, 20, 24, 28, -8, and -1) and report results from the
834 best-performing layer for each model/probe combination. For the smaller Llama 3.2-1B model, we
835 test four layers (layers 4, 8, 12, -1). Note that for each dataset, we determine the best layer accord-
836 ing to its original (i.e., non-transformed) samples and use this layer to extract the activations of the
837 transformed counter-parts.
838839 A.2 LINEAR ACTIVATIONS CLASSIFIER
840841 Our approach to the linear activations classifier is identical to the non-linear classifier, but the MLP
842 is replaced with a single-layer linear network. We follow the same cross-validation, layer selection,
843 and optimization procedure as with the non-linear classifier.
844845 A.3 P(TRUE)
846847 We deploy P(True) (Kadavath et al., 2022) as a test of output-based probing. We prompt the model
848 using a template $T(\cdot)$ that wraps a statement in prompt Fig. S1a which asks the model whether the
849 statement is correct or incorrect in a multiple-choice setup.
850851 Given a statement \mathbf{u} , we extract the probability mass the model assigns to the letter A, corresponding
852 to correct, $p_A = P(A|T(\mathbf{u}))$ and to letter B, corresponding to incorrect, $p_B = P(B|T(\mathbf{u}))$, and
853 then compute the final score as the normalized probability $\tilde{p}_A = \frac{p_A}{p_A + p_B}$. Following Kadavath et al.
854 (2022), we use a 6-shot approach, providing the model with six in-context examples.
855856 As shown in Fig. S1a, we use a different prompt for statement-based datasets (e.g., True-False) than
857 for question-answer datasets (e.g., MMLU).
858859 A.4 MODEL DETAILS
860861 See Table S1 for all models evaluated and corresponding Hugging Face links. We use vLLM (Kwon
862 et al., 2023) for extracting statement perplexity and P(True) token probabilities. Internal represen-
863 tations were extracted using Hugging Face transformers (Wolf et al., 2020). For the comparison
864 against benchmark performance in §5, we use the LM Evaluation Harness (Sutawika et al., 2025)
865 with default settings unchanged. Llama 3.1 70B Instruct was tested at 16-bit precision. Our experi-
866 ments were conducted on a private compute cluster using NVIDIA Tesla V100 GPUs.
867

864
865
866
867
868
869
870
871
872
873
874
875

Statement: <statement>
 Is the above statement
 (A) correct
 (B) incorrect
 The statement is (

Question: <question>
 Response: <response>
 Is the above response
 (A) correct
 (B) incorrect
 The response is (

(a) Statement prompt

(b) QA prompt

Fig. S1: Prompt templates used for P(True). Statements (True-False dataset) were wrapped in template (a), the QA pairs (remaining datasets) were wrapped in template (b).

876
877
878
879
880
881
882
883
884
885
886

Model	Hugging Face ID
Gemma 3 4B Instruct	google/gemma-3-4b-it
Gemma 3 12B Instruct	google/gemma-3-12b-it
Llama 3.1 8B Instruct	meta-llama/Llama-3.1-8B-Instruct
Llama 3.1 70B Instruct	meta-llama/Llama-3.1-70B-Instruct
Llama 3.2 1B Instruct	meta-llama/Llama-3.2-1B-Instruct
Llama 3.2 3B Instruct	meta-llama/Llama-3.2-3B-Instruct
OLMo 7B Base	allenai/OLMo-7B-hf
OLMo 7B Instruct	allenai/OLMo-7B-Instruct-hf
OLMo 2 7B Instruct	allenai/OLMo-2-1124-7B-Instruct
OLMo 2 13B Instruct	allenai/OLMo-2-1124-13B-Instruct

Table S1: List of models evaluated.

A.5 DATASET DETAILS

Note that for the MMLU results reported in §4, we use a representative subset of 11 topics for computational efficiency as well as to ensure comparable sample sizes with respect to the other tested datasets. The subset consists of: anatomy, business ethics, clinical knowledge, global facts, high-school European history, high-school geography, high-school government and politics, high-school US history, high-school world-history, pre-history, and public relations. For the by-topic analyses based solely on Llama 3.1 8B and the non-linear probe presented in §5, we use the full set of topics.

A.6 TRANSFORM DETAILS

For the typo transform, we use AugLy (Papakipos & Bitton, 2022) to insert between 1 and 5 character substitutions, deletions, or insertions at random positions.

For the punctuation noise transform, we insert spurious punctuation symbols every 25, 20, 15, 10, or 5 characters, respectively.

A.7 MEASURING OOD WITH N-GRAM STATISTICS

As we discuss in §3.5, our main results rely on statement perplexity as a proxy measure for how OOD a given statement is, following prior work (Razeghi et al., 2022; Gonen et al., 2023). To validate this approach, we also directly inspect the pre-training data of an open weights language model, OLMo 2 (Groeneveld et al., 2024). We use the infini-gram API (Liu et al., 2024)⁵ to obtain the n-gram counts, specifically, 6-gram counts, of all samples, using DOLMA (Soldaini et al., 2024) and OLMo-2 13B (Walsh et al., 2025) as the reference dataset.

Using these n-gram counts, we test an alternative measure of OOD-ness based on the frequency of n-gram occurrences. *Log-average n-gram count* is an extension of metrics such as token and n-gram match, both commonly employed to measure contamination (Singh et al., 2024; Brown et al., 2020).

⁵<https://infini-gram.readthedocs.io/en/latest/api.html>

918 Log-average n-gram count quantifies the *density* with which n-grams from the pre-training corpus
 919 appear in the evaluation sequence. Concretely, for each n-gram in the evaluation sequence, we count
 920 the number of times that n-gram appears in the pre-training corpus, average these counts over all
 921 n-grams in the sequence, and then take the logarithm of this average.

922 Formally, for a sequence s with m n-grams g_1, g_2, \dots, g_m , and where $c(g_i)$ is the count of g_i in the
 923 pre-training corpus, the score is defined as:

$$925 \quad \text{log-avg-ngram-count}(s) = \log \left(\frac{1}{m} \sum_{i=1}^m c(g_i) \right).$$

929 This metric captures not only whether n-grams appear in the pre-training corpus, but also *how frequently* they appear. We hypothesize that this degree of representation—i.e., how densely a sequence
 930 is represented in the pre-training data—is relevant for this work.

932 In Appendix C we demonstrate that statement perplexity is highly correlated with log average n-
 933 gram counts, supporting its use as a proxy for OOD-ness.

935 A.8 MMLU BENCHMARKING

938 For the exploration of the connection benchmarking performance and robustness in §5, we follow
 939 the standard MMLU benchmarking setup, running a likelihood-based evaluation using Language
 940 Model Evaluation Harness (Sutawika et al., 2025) to extract predicted multiple-choice responses for
 941 each question. Then, we use these predictions to prepare a filtered subset of questions where the
 942 model responds correctly.

944 B HUMAN VALIDATION STUDY

946 To verify that our transformations preserve truth value from a human perspective, we conducted a
 947 small-scale human validation study. The goal of this experiment was to test whether human an-
 948 notators assign the same truth value to the original version of a statement and to its transformed
 949 counterpart. If the transformations altered meaning or introduced semantic drift, we would expect a
 950 measurable drop in agreement between these two conditions.

951 **Setup.** We constructed a set of 90 items, each consisting of (i) an original statement and (ii) one
 952 transformed version. We also included original–original pairs as a baseline to estimate natural an-
 953 notation variability. We considered three types of transformations: Yoda-style syntactic reordering,
 954 punctuation noise, and typos. Four annotators participated in the study. Each annotator saw only one
 955 version of any given item (either the original or the transformed version), avoiding priming effects.
 956 We used a Latin square design with two counterbalanced lists to ensure that across annotators, each
 957 item was evaluated exactly once in its original form and once in its transformed form.

958 Annotators were asked to assign a binary truth value (true/false) to each statement.

960 **Analysis.** For each item, we compared the truthfulness judgments given by annotators who saw
 961 the original version and those who saw the corresponding transformed version. We computed the
 962 proportion of items for which annotators agreed in truth value across versions. These original–
 963 transformed agreement rates were then compared to the baseline agreement rates between annotators
 964 who saw two independent original versions (original–original pairs).

965 **Results.** Across all transformation types, the inter-annotator agreement between original–
 966 transformed pairs ranged from 0.78 to 0.80, which is effectively identical to the original–original
 967 baseline. This indicates that the transformations do not systematically alter the perceived truth value
 968 of the statements for humans.

969 **Conclusion.** The human validation study confirms that our transformations are semantically pre-
 970 serving with respect to truth value. Therefore, the degradation in truthfulness separability observed
 971 in our probing experiments cannot be attributed to semantic changes introduced by the transforma-
 tions.

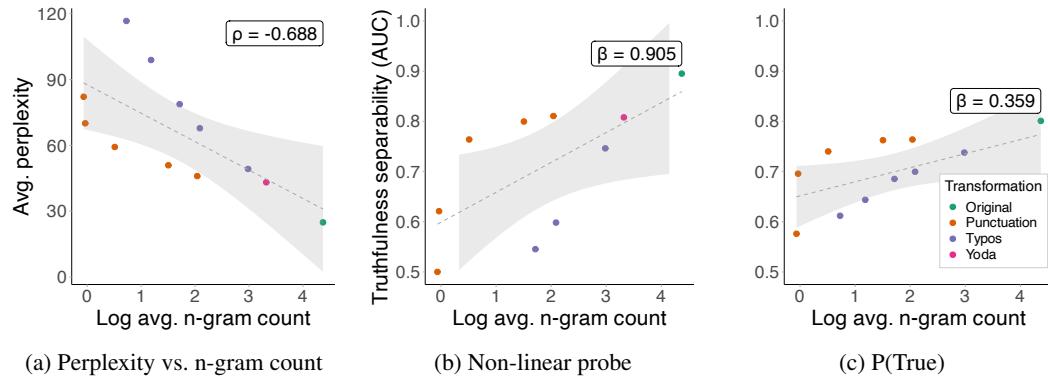


Fig. S2: Comparison of two OOD metrics. We find a strong correlation between the model-free log average n-gram count, based on DOLMA and OLMo-7B Instruct average statement-perplexity (a). Furthermore, representations of truthfulness within the True-False dataset for OLMo-7B Instruct degrade consistently as samples become more OOD (low log-average n-gram count) under various transformations.

C ADDITIONAL RESULTS

C.1 PERPLEXITY IS A GOOD PROXY FOR OOD-NESS

As laid out in §3.5, estimating log-average n-gram counts requires direct access to pre-training data. For our fleet of models, this is only feasible for models of the OLMo family. In order to test the degree to which perplexity and log-average n-gram counts are interchangeable as measures of out-of-distribution, we first assess the correlation between the log-average n-gram count measure, measured with respect to DOLMA (Soldaini et al., 2024) as the reference dataset, and the average statement perplexity, based on OLMo 7B Instruct, for each transform of the True-False dataset.

Fig. S2a illustrates that there is a strong negative correlation between log-average n-gram count and average statement perplexity ($\rho[df = 10] = -.69, p < .05$), suggesting that statements with dense representations in the pre-training data tend to exhibit low average perplexity.

While this result is a good indicator that the model-based measure and the direct, n-gram based appear to capture the same aspect of out-of-distribution measures, we explore whether the estimated degree of degradation using log-average n-gram count approximates the values obtained in the above experiments using statement perplexity. Figs. S2b and S2c show that truthfulness representations degrade consistently, both for $P(\text{True})$ ($\beta = .36$) and the non-linear probe ($\beta = .91$).

In comparison to the analogous analysis using average statement perplexity as the OOD measure, the absolute standardized slopes are higher here ($\beta = -.64$ for $P(\text{True})$ and $\beta = -.46$ for the non-linear probe), suggesting that the degradation pattern is more pronounced when using log-average n-gram counts.

C.2 DEGRADATION SLOPES ACROSS DATASETS, MODELS AND PROBES

In the following, we report the magnitudes of degradation slopes across datasets and models in Fig. S3 and in tabular format in Table S2, Table S3, and Table S4. Finally, we show the degradation slopes as scatter plots for a subset of models and for all three probing methods in Fig. S4.

C.3 EFFECT OF MODEL SCALE

In the analysis of the effect of model scale in §4 we have excluded the smallest Llama model, Llama 3.2 1B Instruct, because the original AUC on the untransformed data is substantially lower (AUC=0.59) compared to its larger counterparts (.94 for 3B, .96 for 8B and .98 for 70B, respectively). Because it starts from a lower AUC, its degradation slope would necessarily be less nega-

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

Model name	Slope magnitude (β)			
	True-False	TruthfulQA	OpenBookQA	MMLU
GEMMA-3-12B-Instruct	-0.17 \pm 0.07	-0.44 \pm 0.14	-0.17 \pm 0.21	0.08 \pm 0.68
GEMMA-3-4B-Instruct	-0.07 \pm 0.07	-0.10 \pm 0.19	-0.05 \pm 0.08	0.29 \pm 0.29
Llama-3.1-70B-Instruct	-1.53 \pm 0.34	-2.22 \pm 0.92	-1.77 \pm 0.75	-5.30 \pm 1.54
Llama-3.1-8B-Instruct	-0.43 \pm 0.07	-0.46 \pm 0.16	-0.77 \pm 0.23	-1.76 \pm 0.56
Llama-3.2-1B-Instruct	-0.71 \pm 0.06	-0.78 \pm 0.13	-0.44 \pm 0.05	-0.47 \pm 0.06
Llama-3.2-3B-Instruct	-0.45 \pm 0.08	-0.75 \pm 0.17	-0.73 \pm 0.15	-1.30 \pm 0.28
OLMo-2-13B-Instruct	-0.62 \pm 0.20	-0.63 \pm 0.29	-0.50 \pm 0.30	-1.20 \pm 0.85
OLMo-2-7B-Instruct	-0.68 \pm 0.15	-0.54 \pm 0.17	-0.66 \pm 0.23	-1.66 \pm 0.49
OLMo-7B-Base	-1.45 \pm 0.18	-0.45 \pm 0.13	-0.47 \pm 0.15	-0.40 \pm 0.17
OLMo-7B-Instruct	-1.37 \pm 0.17	-0.38 \pm 0.09	-0.50 \pm 0.19	-0.49 \pm 0.24

Table S2: Magnitudes of regression line slopes for non-linear probe.

1042

1043

1044

1045

1046

Model name	Slope magnitude (β)			
	True-False	TruthfulQA	OpenBookQA	MMLU
GEMMA-3-12B-Instruct	-0.11 \pm 0.08	0.00 \pm 0.00	-0.00 \pm 0.00	0.00 \pm 0.00
GEMMA-3-4B-Instruct	0.00 \pm 0.00	0.00 \pm 0.00	-0.00 \pm 0.00	-0.00 \pm 0.00
Llama-3.1-70B-Instruct	-0.98 \pm 0.26	-2.14 \pm 0.95	-1.42 \pm 0.46	-3.35 \pm 1.17
Llama-3.1-8B-Instruct	-0.46 \pm 0.08	-0.42 \pm 0.15	-0.87 \pm 0.25	-1.89 \pm 0.51
Llama-3.2-1B-Instruct	-0.47 \pm 0.05	-0.78 \pm 0.14	-0.40 \pm 0.03	-0.46 \pm 0.06
Llama-3.2-3B-Instruct	-0.49 \pm 0.07	-0.64 \pm 0.15	-0.77 \pm 0.13	-1.13 \pm 0.21
OLMo-2-13B-Instruct	-0.69 \pm 0.15	-0.52 \pm 0.28	-0.56 \pm 0.32	-1.20 \pm 0.70
OLMo-2-7B-Instruct	-0.69 \pm 0.11	-0.47 \pm 0.18	-0.68 \pm 0.20	-1.39 \pm 0.27
OLMo-7B-Base	-0.79 \pm 0.14	-0.36 \pm 0.11	-0.49 \pm 0.18	-0.23 \pm 0.16
OLMo-7B-Instruct	-0.84 \pm 0.14	-0.30 \pm 0.08	-0.49 \pm 0.20	-0.66 \pm 0.34

Table S3: Magnitudes of regression line slopes for linear probe.

1059

1060

1061

1062

1063

1064

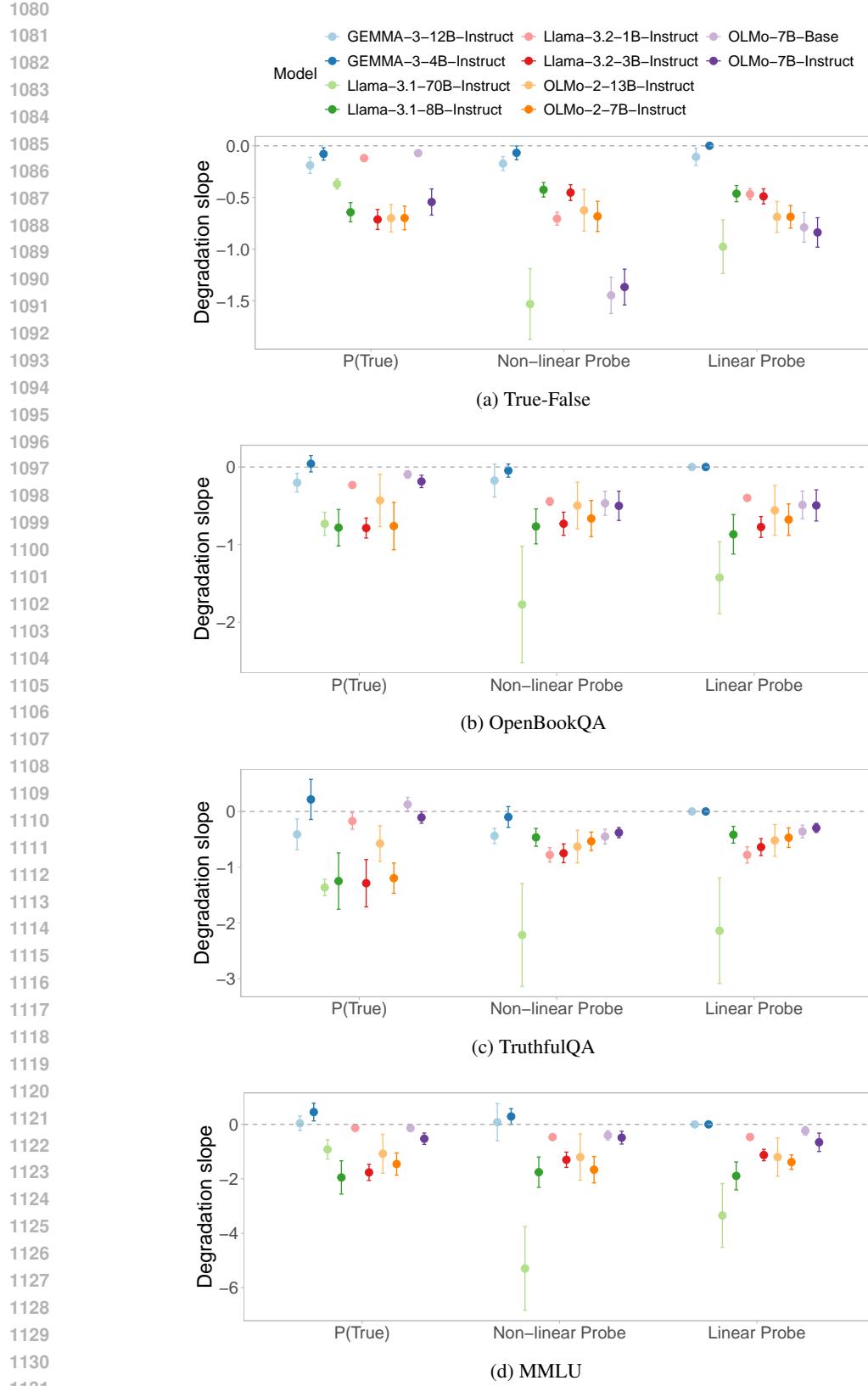
Model name	Slope magnitude (β)			
	True-False	TruthfulQA	OpenBookQA	MMLU
GEMMA-3-12B-Instruct	-0.19 \pm 0.08	-0.41 \pm 0.28	-0.20 \pm 0.12	0.04 \pm 0.27
GEMMA-3-4B-Instruct	-0.08 \pm 0.06	0.22 \pm 0.36	0.04 \pm 0.11	0.45 \pm 0.32
Llama-3.1-70B-Instruct	-0.37 \pm 0.05	-1.36 \pm 0.15	-0.73 \pm 0.15	-0.92 \pm 0.35
Llama-3.1-8B-Instruct	-0.64 \pm 0.09	-1.25 \pm 0.51	-0.78 \pm 0.23	-1.95 \pm 0.61
Llama-3.2-1B-Instruct	-0.12 \pm 0.01	-0.17 \pm 0.15	-0.23 \pm 0.02	-0.13 \pm 0.04
Llama-3.2-3B-Instruct	-0.71 \pm 0.10	-1.29 \pm 0.42	-0.79 \pm 0.13	-1.76 \pm 0.30
OLMo-2-13B-Instruct	-0.70 \pm 0.13	-0.58 \pm 0.32	-0.43 \pm 0.34	-1.08 \pm 0.72
OLMo-2-7B-Instruct	-0.70 \pm 0.11	-1.20 \pm 0.27	-0.76 \pm 0.31	-1.46 \pm 0.41
OLMo-7B-Base	-0.07 \pm 0.01	0.13 \pm 0.13	-0.10 \pm 0.05	-0.14 \pm 0.05
OLMo-7B-Instruct	-0.54 \pm 0.13	-0.11 \pm 0.10	-0.19 \pm 0.08	-0.53 \pm 0.21

Table S4: Magnitudes of regression line slopes for P(True).

1077

1078

1079



1132 Fig. S3: Magnitudes (mean \pm standard error) of degradation slopes for all probing methods and
1133 model combinations across the four different datasets.

tive, giving a false impression of robustness. Thus, it is impossible to compare the robustness of this smaller model against the larger models, so it is excluded from our analysis.

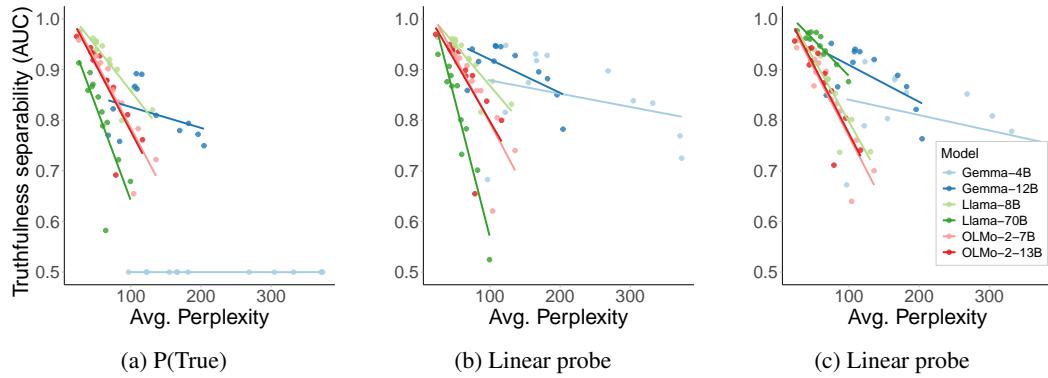


Fig. S4: **(a)** linear probe, **(b)** non-linear probe, and **(c)** $P(\text{true})$ performance (AUC) against average perplexity for various model families on True-False dataset.

C.4 INTER-LAYER ANALYSIS OF REPRESENTATION ROBUSTNESS

To address the concern that truthfulness degradation might occur in layers other than the best-performing in terms of AUC on the original, un-transformed dataset, we conducted an inter-layer analysis on a representative model–dataset pair.

Setup. We re-ran the non-linear probe experiments on Llama 3.1 8B using the True-False dataset. For this analysis, we extracted hidden representations from all even-numbered layers (2, 4, 6, ..., 32). For each layer, we trained and evaluated a probe under increasing OOD shifts and plotted truthfulness separability (AUC) as a function of average statement perplexity.

Results. We show the degradation curves for all layers in Figure S5 and in tabular format in Table S5. We observe three consistent patterns across layers:

(1) **Lower layers** begin near chance-level AUC on the original data and remain near chance across all OOD conditions. (2) **Middle layers**, which typically correspond to the best-performing layers reported in our main results, show high separability in-distribution and clear degradation under OOD shift. (3) **Upper layers**, including the final layer, also exhibit high separability on untransformed samples but show the steepest degradation as inputs become more OOD.

Conclusion. This analysis shows that any layer that encodes truthfulness in-distribution—middle and upper layers alike—exhibits consistent collapse as statements move out-of-distribution. Lower layers, which do not encode truthfulness to begin with, remain near chance regardless of OOD shift. Therefore, reporting a conservative choice: even the most in the inter-layer trends reinforce our ce

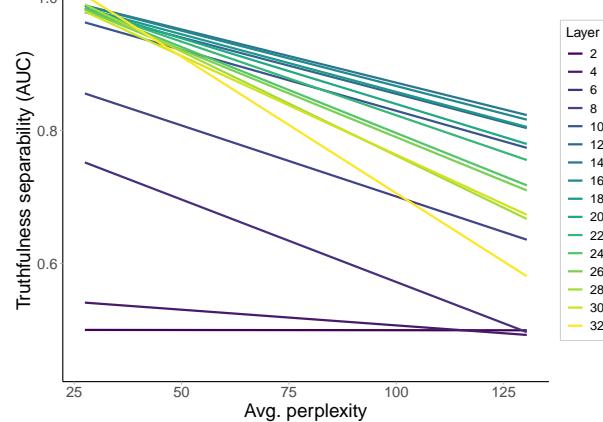


Fig. S5: AUC vs. perplexity across layers of Llama 3.1 8B Instruct on True–False. **Middle and upper layers degrade under OOD shift, while lower layers remain at chance.**

	Layer	Initial AUC	Degradation Slope
1188	2	0.500	-0.001
1189	4	0.571	-0.083
1190	6	0.813	-0.436
1191	8	0.901	-0.376
1192	10	0.961	-0.322
1193	12	0.971	-0.298
1194	14	0.979	-0.282
1195	16	0.976	-0.293
1196	18	0.975	-0.305
1197	20	0.971	-0.348
1198	22	0.970	-0.389
1199	24	0.960	-0.455
1200	26	0.962	-0.463
1201	28	0.960	-0.551
1202	30	0.960	-0.522
1203	32	0.955	-0.722
1204			

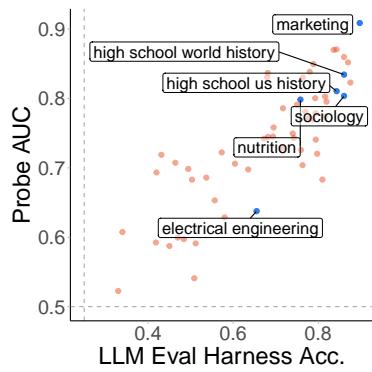
Table S5: Initial AUC and degradation slopes for each layer of Llama-3.1-8B on the true-false dataset using the non-linear probe.

C.5 CERTAIN TOPICS HAVE MORE ROBUST REPRESENTATIONS

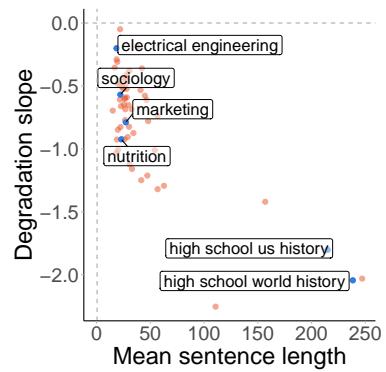
In this appendix, we provide topic-level analyses complementing the main results in §5. Specifically, we include figures illustrating relationships between benchmark accuracy, statement length, and robustness, and the full set of topic-wise statistics for the non-linear probe on Llama 3.1 8B.

Figure S6 are included to further contextualize the by-topic results from §5. Fig. S6a illustrates the relationship between LM Evaluation Harness accuracy and the non-linear probe AUC, showing that overall, high benchmark scores are associated with high separability of true from false statements. In Fig. S6b, we show that while there is no clear association between average (by-topic) statement lengths and degradation slopes, we note that topics with particularly large average statement length exhibit higher absolute degradation rates (i.e., lower robustness).

In Table S6, we report the full by-topic results for the non-linear probe based on Llama 3.1 8B, presented in Fig. 6, including degradation slopes and probe AUC as well as additional metrics such as benchmark accuracy, average perplexity, log-average n-gram count, and average sentence length.



(a) Benchmark accuracy vs. probe AUC.



(b) Mean sentence length vs. degradation.

Fig. S6: (a) Benchmark accuracy vs. non-linear probe AUC and (b) mean sentence length vs. degradation rate of non-linear probe based on Llama 3.1 8B Instruct. **Topics with high benchmarks tend to exhibit high true-false separability.**

1242
1243

C.6 TYPE OF TRANSFORMATION

1244
1245
1246
1247
1248
1249
1250
1251

Figure S7 shows the change in AUC of each transformed True-False dataset variant against the change in average perplexity for all three probes. We note similar trends for all three probing methods, except in the case of negation. For both the linear and non-linear probes, negation leaves average perplexity unchanged and has no effect on AUC, indicating that truthfulness representations remain stable under syntactic negation. By contrast, P(True), depicted in Fig. S7c, exhibits a noticeable drop in AUC despite no corresponding change in perplexity, suggesting that while negated statements are not driven out-of-distribution, the output-based method is nonetheless sensitive to the transformation and yields lower separability.



1263

Fig. S7: Change in (a) linear probe, (b) non-linear probe, and (c) P(true) performance (AUC) against change in average perplexity on True-False dataset.

1264

1265

D REPRODUCIBILITY

1266

1267

1268

Below we provide code samples for the non-linear and linear probe methods to aid reproducibility. For P(True), see Kadavath et al. (2022).

1269

1270

D.1 NON-LINEAR PROBE

1271

1272

```
class MLPClassifier(nn.Module):
```

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

```
1296         return self.net(x).squeeze(-1)
1297
1298
1299 D.2 LINEAR PROBE
1300
1301 class LogisticRegressionClassifier(nn.Module):
1302
1303     def __init__(self, input_dim: int = 4096):
1304         super().__init__()
1305         self.linear = nn.Linear(input_dim, 1)
1306         self.sigmoid = nn.Sigmoid()
1307
1308         self.net = nn.Sequential([
1309             self.linear,
1310             self.sigmoid
1311         ])
1312
1313     def forward(self, x: torch.Tensor) -> torch.Tensor:
1314         return self.net(x).squeeze(-1)
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
```

1350
 1351 Table S6: Per-topic statistics: slope, AUC, accuracy, perplexity, n-gram count, and sentence length
 1352 for MMLU topics (Llama-3.1-8B-Instruct, non-linear probe).

Topic	Slope	AUC	Eval. acc	Perp.	n-gram c.	sent. len
abstract algebra	-0.44	0.61	0.34	8.93	5.09	27.6
anatomy	-1.01	0.84	0.68	10.10	7.59	20.0
astronomy	-0.65	0.70	0.76	10.85	5.76	25.6
business ethics	-0.65	0.83	0.68	17.09	6.15	29.8
clinical knowledge	-0.93	0.85	0.79	11.53	7.46	19.0
college biology	-1.12	0.80	0.82	9.98	6.99	30.6
college chemistry	-0.52	0.60	0.47	8.56	7.54	28.1
college computer science	-0.74	0.63	0.58	8.10	7.81	56.8
college mathematics	-0.19	0.52	0.33	6.53	6.80	38.4
college medicine	-1.01	0.75	0.69	10.34	7.33	54.2
college physics	-1.25	0.72	0.43	6.61	7.56	41.6
computer security	-0.41	0.78	0.77	20.03	4.55	28.3
conceptual physics	-0.29	0.71	0.60	16.65	4.14	18.7
econometrics	-0.36	0.54	0.51	9.59	7.16	42.2
electrical engineering	-0.20	0.64	0.66	19.29	4.27	18.6
elementary mathematics	-0.69	0.70	0.49	9.28	6.89	26.8
formal logic	-0.58	0.60	0.48	12.27	3.44	45.0
global facts	-0.51	0.69	0.42	10.09	12.74	23.5
high school biology	-1.16	0.80	0.82	9.35	7.20	33.0
high school chemistry	-0.82	0.70	0.64	8.26	6.99	30.3
high school computer science	-1.21	0.75	0.74	8.33	7.30	47.3
high school european history	-2.03	0.83	0.76	8.26	6.62	247.2
high school geography	-0.48	0.80	0.79	15.18	6.23	19.7
high school government and politics	-0.92	0.82	0.88	11.40	7.78	26.1
high school macroeconomics	-0.52	0.74	0.68	14.52	6.39	25.0
high school mathematics	-0.38	0.59	0.42	6.72	7.24	30.6
high school microeconomics	-0.77	0.74	0.79	12.22	6.52	26.6
high school physics	-0.61	0.59	0.45	6.10	6.95	46.6
high school psychology	-0.91	0.86	0.86	12.62	6.55	29.0
high school statistics	-1.32	0.69	0.54	6.68	8.33	56.8
high school us history	-1.80	0.81	0.84	6.34	7.84	215.0
high school world history	-2.04	0.83	0.86	8.50	7.12	238.4
human aging	-0.31	0.76	0.70	18.83	4.95	19.3
human sexuality	-0.66	0.78	0.79	14.54	6.10	22.8
international law	-0.59	0.68	0.81	12.01	6.03	28.2
jurisprudence	-0.59	0.77	0.78	14.53	5.49	26.5
logical fallacies	-0.60	0.72	0.80	14.70	5.69	26.1
machine learning	-0.87	0.71	0.46	12.66	6.38	34.4
management	-0.36	0.77	0.82	17.38	4.45	16.9
marketing	-0.79	0.91	0.90	15.44	6.17	27.3
medical genetics	-1.03	0.84	0.78	11.58	7.30	18.6
miscellaneous	-0.85	0.87	0.84	13.33	6.07	19.8
moral disputes	-0.44	0.74	0.74	21.04	5.23	25.6
moral scenarios	-1.29	0.72	0.57	13.27	11.79	62.7
nutrition	-0.92	0.80	0.76	11.25	7.86	23.1
philosophy	-0.49	0.79	0.72	18.83	4.20	21.6
prehistory	-0.83	0.79	0.75	14.04	6.58	22.3
professional accounting	-0.78	0.65	0.56	9.48	8.69	48.0
professional law	-1.42	0.68	0.50	6.13	8.82	157.0
professional medicine	-2.25	0.77	0.79	4.99	10.15	110.8
professional psychology	-0.69	0.73	0.72	13.22	6.34	32.9
public relations	-0.49	0.74	0.67	15.96	5.89	26.9
security studies	-0.53	0.73	0.76	13.69	7.10	41.0
sociology	-0.57	0.80	0.86	16.03	6.47	22.2

1404	Topic	Slope	AUC	Eval. acc	Perp.	n-gram c.	sent. len
1405							
1406	us foreign policy	-0.61	0.85	0.87	14.11	5.78	21.8
1407	virology	-0.05	0.59	0.51	15.16	6.19	21.9
1408	world religions	-0.70	0.87	0.84	15.80	4.86	15.1

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457