LLM KNOWLEDGE IS BRITTLE: TRUTHFULNESS REPRESENTATIONS RELY ON SUPERFICIAL RESEMBLANCE

Anonymous authors

000

001

003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

033

037

040

041

043

044

045

047

051

052

Paper under double-blind review

ABSTRACT

For Large Language Models (LLMs) to be reliable, they must learn robust knowledge that can be generally applied in diverse settings-often unlike those seen during training. Yet, extensive research has shown that LLM performance can be brittle, with models exhibiting excessive sensitivity to trivial input variations. In this work, we explore whether this brittleness is a direct result of unstable internal knowledge representations. To explore this question, we build on previous work showing that LLM representations encode statement truthfulnessi.e., true, factual statements can be easily separated from false, inaccurate ones. Specifically, we test the robustness of learned knowledge by evaluating representation separability on samples that have undergone superficial transformations to drive them out-of-distribution (OOD), such as typos or reformulations. By applying semantically-preserving perturbations, we study how separability degrades as statements become more OOD, across four LLM families, five evaluation datasets, and three knowledge probing methods. Our results reveal that internal representations of statement truthfulness collapse as the samples' presentations become less similar to those seen during pre-training. While LLMs can often distinguish between true and false statements when they closely resemble the pre-training data, this ability is highly dependent on the statement's exact surface form. These findings offer a possible explanation for brittle benchmark performance: LLMs may learn shallow, non-robust knowledge representations that allow for only limited generalizability. Our work presents a fundamental challenge for the utility of truthfulness probes, and more broadly, calls for further research on improving the robustness of learned knowledge representations.

Figure 1: **LLM truth representations degrade under superficial changes.** (a) We apply semantically-preserving transformations to shift statements OOD, collapsing the representations of **true** and **false** statements. (b) We quantify robustness as the relationship between separability and OOD-ness. A hypothetical **Robust** model would have constant separability regardless of OOD-ness, while a hypothetical **Brittle** model would rapidly degrade. On **MMLU**, we observe that knowledge representations degrade with increasing perplexity.

1 Introduction

It is expected that LLMs acquire robust and general knowledge during pre-training, which is a critical factor in enabling strong and reliable downstream capabilities. Contemporary LLMs, however, appear to be strikingly brittle, with task performance and benchmark results being highly susceptible to subtle prompt changes and other irrelevant perturbations (Mizrahi et al., 2024; Sclar et al., 2024; Voronov et al., 2024). This brittleness raises a central question: do LLMs learn robust underlying knowledge *representations*, or are they fragile and tied to the exact phrasings and formulations seen during training?

One approach to testing knowledge is via a "true or false" test: correctly determining whether a statement is true requires accurate knowledge of the world. Previous work has suggested that LLM representations encode statement truthfulness, such that representations of true statements are separable from those of false (Azaria & Mitchell, 2023; Li et al., 2023; Burns et al., 2022; Marks & Tegmark, 2023; Wang et al., 2025, *inter alia*). We build on this line of work in order to explore the *generality* and *robustness* of knowledge representations when statements are reformulated or perturbed. Specifically, we explore the extent to which LLMs have a robust internal representation of truthfulness as statements take on presentations increasingly dissimilar to those seen during pre-training, i.e., that are increasingly OOD. For an LLM to have robust knowledge, its knowledge representations should generalize and be robust to superficial changes.

Our method has three components. First, we leverage average perplexity as a proxy measure for how OOD (with respect to pre-training) a given statement is. Second, we apply a range of semantically-preserving perturbations that drive samples OOD, without changing statement meanings. Finally, we test the separability of learned knowledge representations on the perturbed samples, using three different probing techniques. Our analysis of over 2,000 probes allows us to directly assess how separability degrades as a function of OOD-ness, across four model families and four datasets.

Our findings reveal that, strikingly, the robustness of LLMs' internal knowledge representations is tightly coupled to superficial resemblance to pre-training data. We find that truthfulness separability degrades as samples become increasingly OOD, across all tested truthfulness probing techniques, and regardless of model choice or dataset. Comparing different areas of knowledge, we note that some topics (e.g. marketing and sociology) appear to be less susceptible to distribution shifts than others (e.g. history), indicating they are learned more robustly. Surprisingly, topic robustness is not explained by topic representation in the pre-training data, suggesting that *scaling up pre-training corpora may be insufficient for encoding robust and general knowledge*.

In summary, our results suggest that LLMs learn shallow, non-robust knowledge representations that fail to generalize to scenarios unlike those seen during training. While previous work has highlighted limited generalization performance of probing methods (Wang et al., 2025; Azizian et al., 2025; Orgad et al., 2024; Beigi et al., 2024; Levinstein & Herrmann, 2025), our work demonstrates that this problem stems from brittle internal representations, presenting a significant challenge for probing-based approaches to improving factuality or reliability. More broadly, our work points to a deeper limitation in how LLM knowledge is encoded and applied: rather than developing stable, generalizable representations, current LLMs appear to rely on brittle surface features, undermining their reliability in common contexts.

2 RELATED WORK

LLM robustness. Though state-of-the-art LLMs continue to demonstrate increasing scores on popular benchmarks, a large body of research suggests this performance may be unusually brittle. Previous work has found that LLMs are highly sensitive to minor formatting variations (Gu et al., 2023; Sclar et al., 2024; Habba et al., 2025), semantically-equivalent paraphrases (Mizrahi et al., 2024; Sun et al., 2023) and human-validated adversarial perturbations (Wang et al., 2021). In multiple-choice question answering, LLMs are sensitive to option ordering (Pezeshkpour & Hruschka, 2023; Gupta et al., 2024; Alzahrani et al., 2024) and presentation (Alzahrani et al., 2024). In few-shot settings, example formatting and ordering can lead to performance degradations (Zhao et al., 2021; Turpin et al., 2023). While the causes of brittleness may vary by task (Chatterjee et al., 2024) and specific prompt features (Leidinger et al., 2023), these trivial variations suffice to significantly re-order benchmark model rankings (Alzahrani et al., 2024; Mizrahi et al., 2024). Exploring

robustness beyond benchmarking, recent works have also found that simple variations of political survey questions suffice to completely alter expressed opinions (Haller et al., 2024; Shu et al., 2024; Ceron et al., 2024).

One possible cause of such brittleness is that LLMs fail to generalize far beyond their training data. Razeghi et al. (2022) find that LLMs exhibit better numerical reasoning performance on prompts that are better represented during pre-training. Using prompt perplexity as a proxy measure of pre-training representation, Gonen et al. (2024) show that higher perplexity—i.e., more OOD—prompts lead to worse performance. Motivated by and building upon this line of research, in this work we attempt to distinguish between brittle *performance* and brittle *knowledge*, by evaluating the robustness of internal representations in increasingly out-of-distribution scenarios.

Probing knowledge representations. Extensive prior work has investigated the internal representations of LLMs as a way of understanding what they have learned during training. Azaria & Mitchell (2023) train multi-layer perceptron (MLP) classifiers on hidden layer activations to separate true, factual statements from false, inaccurate statements, suggesting that LLM internal representations encode a notion of statement truthfulness that can be later recovered. Others (Burns et al., 2022; Li et al., 2023; Marks & Tegmark, 2023; Wang et al., 2025) have suggested that these internal representations of true and false statements are *linearly* separable. Slobodkin et al. (2023) find that answerable and unanswerable questions are also linearly separable, while Gottesman & Geva (2024) train linear probes to predict downstream task performance about a given subject.

Using model outputs rather than internal representations, Kadavath et al. (2022) test whether models can, given a question, distinguish between correct and incorrect answers. Kadavath et al.'s token likelihood-based method, "P(True)", can separate true and false question-answer pairs for larger-scale models. In this work, we leverage output-based methods and both linear and non-linear internal probes to explore the robustness of learned knowledge representations.

Probe generalization. While Marks & Tegmark (2023) argue that LLMs encode a "geometry of truth" that is consistent across tasks, such that trained probes should generalize to novel settings, other researchers have found a more mixed picture. On the one hand, a significant body of work finds that trained probes for statement truthfulness fail to generalize across datasets and tasks (Wang et al., 2025; Azizian et al., 2025; Beigi et al., 2024; Orgad et al., 2024), and particularly across different domains (Beigi et al., 2024; CH-Wang et al., 2024). Directly relevant to our work, Levinstein & Herrmann (2025) find that Azaria & Mitchell's non-linear truthfulness probes fail to generalize to even negated variants of their training data. On the other hand, truthfulness probes may generalize to tasks requiring similar skills (Orgad et al., 2024) or reasoning strategies (Zhang et al., 2025), while Slobodkin et al. (2023) find partial generalization of answerability probes to different datasets.

Crucially, each of these works explore the generalization of the *trained probe*—i.e., a probe is trained on one dataset before being tested out-of-distribution. While this is a helpful test of the practical utility of probes, testing probe generalization tells us nothing about how generally the LLM can deploy its knowledge. In contrast, our work directly evaluates the generalizability of *internal representations* via testing how separable they remain OOD—i.e., our probes are both trained and tested in out-of-distribution settings. We interpret the poor performance of an OOD-trained probe as evidence of non-robust knowledge representations.

3 METHODS

Our goal is to quantify the robustness of knowledge representations as statements become increasingly dissimilar to those seen during pre-training. See Fig. 1 for an overview of our approach. **First**, we evaluate three truthfulness probing methods that separate true statements from false (§3.1) on four model families (§3.2) and four datasets (§3.3). **Second**, we select a diverse set of meaning-preserving transformations to push dataset samples OOD (§3.4). **Third**, we measure how OOD a transformed statement is using statement perplexity as a proxy (§3.5). **Finally**, we evaluate the degradation of truthfulness representation separability as samples become increasingly OOD (§3.6).

3.1 Probing techniques

We evaluate the separability of internal representations according to statement truthfulness using three approaches, two activation-based and one output-based. Probe performance is evaluated using Area Under the Receiver Operating Characteristic Curve (AUC). See Appendix A for full details.

Non-linear activations classifier. Following Azaria & Mitchell (2023), we train a 3-layer feed-forward neural network to classify the internal representations of statements according to whether they are true or false. Representations are the residual stream activations of the final token in the statement. Again following Azaria & Mitchell (2023), we test activations from multiple layers using six-fold cross-validation, and report performance via AUC on the best-performing layer for each combination of model and probe.

Linear activations classifier. In light of prior work suggesting that true and false statements may have linearly separable representations (Li et al., 2023; Burns et al., 2022; Marks & Tegmark, 2023), we implement a linear alternative to the non-linear activations classifier. We follow the same method as above, but replace the 3-layer feedforward neural network with a single-layer linear network, equivalent to logistic regression.

P(True). In addition to the activation-based probes, we employ one method based on the output next-token distribution. Kadavath et al. (2022) introduce P(True), where the model is prompted with a multiple-choice question as to whether the given statement is true or false. We employ standard practice for likelihood-based evaluation by extracting the probabilities of the tokens corresponding to true and to false, before normalizing to obtain a probability for the statement being true. Following Kadavath et al., we use a 6-shot approach, providing the model with six in-context examples. See Appendix A for full details and prompt examples.

3.2 Models

We probe the knowledge representations of ten decoder-only autoregressive language models across four model families: OLMo 7B Base and Instruct (Groeneveld et al., 2024), OLMo-2 Instruct (7B and 13B; OLMo et al., 2024), Llama 3.1/3.2 Instruct (1B, 3B, 8B and 70B; AI@Meta, 2024) and Gemma-3 (4B and 12B; Gemma@GDM, 2025). We make use of Hugging Face transformers (Wolf et al., 2020) for extracting activations and vLLM (Kwon et al., 2023) for efficient inference. See Appendix A for full details and model hyperparameters.

3.3 Datasets

We assess the robustness of truthfulness representations on four widely used benchmark datasets, which vary in knowledge domains, question formats, and reliance on retrieval vs. reasoning.

True-False. The dataset introduced by Azaria & Mitchell (2023) consists of simple true/false statements across six topics such as cities, animals and facts, making it the most retrieval-oriented benchmark in our suite. The questions are syntactically regular and have low variance in phrasing, which makes them particularly well-suited for testing superficial memorization and direct retrieval.

MMLU. The Massive Multitask Language Understanding benchmark (MMLU; Hendrycks et al., 2021) is a multiple-choice question-answering dataset covering a wide range of domains such as STEM, humanities, and professional knowledge. Each question has four candidate answers, and the benchmark includes fine-grained category labels that enable by-topic analysis.

OpenBookQA. OpenBookQA (Mihaylov et al., 2018) consists of questions that are less trivialike than those in the True-False dataset, often requiring longer phrases and some degree of reasoning beyond direct retrieval.

TruthfulQA. TruthfulQA (Lin et al., 2022) is arguably the most challenging and diverse benchmark in our evaluation. The questions are designed to probe models' susceptibility to common misconceptions and false beliefs, rather than simple retrieval. Each question is annotated with cate-

¹Where "true" and "false" describe the statement's truth value with respect to the world, rather than some notion of concordance with hidden beliefs.

gories (e.g., misconceptions, superstitions), making the dataset particularly useful for understanding which types of knowledge are robust.

Statement formatting. For the True-False dataset, we directly use the original statements without modification. For the multiple-choice datasets (MMLU, OpenBookQA, and TruthfulQA), we combine each question with one of its candidate answers to form a complete question—answer pair.

3.4 Transformations

We consider different types of semantically-preserving transformations to break the samples' resemblance to the pre-training data. See Fig. 1 for examples and Appendix A for further detail.

Typos and punctuation noise. We introduce character-level perturbations in the form of typos and punctuation noise using the AugLy data augmentation library (Papakipos & Bitton, 2022), evaluating multiple variants with progressively increasing intensity. Such noise-based augmentations allow us to test the extent to which probes and LLMs rely on exact lexical and orthographic cues when separating true from false statements.

Negation. We employ the negate Python library² to generate syntactic negations. These negated sentences remain syntactically well-formed and semantically interpretable, while systematically flipping the truth value of the original statement.

Yoda speak. We use the NL-Augmenter library (Dhole et al., 2023) to flip the clause structure such that it reads like "Yoda speak". This transformation typically results in sentences with a non-canonical word order as in the example: "Much to learn, you still have." Because these configurations are both syntactically valid and infrequent in ordinary English text, they are unlikely to be seen during pre-training.

Translation. We further drive samples OOD by translating them into French and Spanish using the NLLB-200 machine translation model (Costa-Jussà et al., 2022). This transformation preserves the semantic content but alters virtually all surface-level statistics of the input.

3.5 Measuring OOD-ness

Each transformation can be thought of as a different distribution shift. Thus, when plotting performance degradation under each transformation, we use OOD-ness as a common scale to evaluate robustness. Given LLM training data is typically unavailable, we are unable to *directly* evaluate whether a statement is OOD, so we instead follow previous work (Razeghi et al., 2022; Gonen et al., 2024) and use statement perplexity as a proxy. Assuming a given LLM is a reasonable model of its training data, it should assign low likelihoods to less well-represented, i.e., more OOD, samples.

Given a token sequence $\mathbf{u} = \langle u_1, \dots, u_N \rangle$, and a language model P_{θ} , the perplexity of \mathbf{u} is the exponentiated average negative log-likelihood of the sequence,

$$PPL(\mathbf{u}) = \exp \left\{ -\frac{1}{N} \sum_{i=1}^{N} \log P_{\theta}(u_i | \mathbf{u}_{< i}) \right\},$$

where $P_{\theta}(u_i|\mathbf{u}_{< i})$ is the model's estimated conditional probability of observing token u_i given preceding tokens $\mathbf{u}_{< i}$.

Validating perplexity as a proxy OOD measure. To validate that perplexity is an appropriate proxy for measuring how OOD a statement is, we make use of the OLMo model family (Groeneveld et al., 2024) and its publicly-available pre-training data, Dolma (Soldaini et al., 2024). We use the Infini-gram API (Liu et al., 2024) to access the Dolma n-gram statistics for each sample. In Appendix B, we show that OLMo statement perplexities are highly correlated with Dolma n-gram counts, suggesting perplexity can proxy how well-represented a sample is in the pre-training corpus. We additionally reevaluate our main findings using average n-gram counts rather than perplexity, finding that our conclusions remain consistent regardless of approach.

²https://pypi.org/project/negate

Figure 2: Truthfulness separability (probe AUC) against average perplexity on the True-False dataset for Llama 3.1 8B Instruct for the (a) linear, (b) non-linear, and (c) P(True) probes. Probe performance degrades as samples become more OOD across all tested probes, suggesting knowledge representations are not robust.

Figure 3: Non-linear probe performance (AUC) against average perplexity for Llama 3.1 8B Instruct on (a) MMLU, (b) OpenBookQA, and (c) TruthfulQA. Despite differences in AUC on the original dataset (green dots), truthfulness representations consistently degrade on all datasets.

3.6 PUTTING IT ALL TOGETHER: TESTING REPRESENTATION ROBUSTNESS

Given a transformed dataset, we measure the separability of true and false statements using probe AUC, and measure how OOD the transformed dataset is via average statement perplexity. Then, we measure robustness as the standardized slope (β) of a linear regression model, where the predictor is average perplexity, and the response is probe AUC. A steeper negative slope indicates rapid degradation and less robust representations, while a flatter slope indicates higher robustness.

4 Truthfulness representations rely on superficial resemblance

First, we test the robustness of knowledge representations across different probing methods, datasets, and models. Later, in §5, we explore variability in robustness in greater depth.

Knowledge representations degrade OOD. First, we test the robustness of three different probing methods, P(True), the non-linear probe, and the linear probe, as statements become increasingly OOD, as measured by perplexity. In Fig. 2, we show probe AUC as a function of average statement perplexity for Llama 3.1 8B Instruct on the True-False dataset. All three methods achieve high AUC on the original, untransformed True-False dataset (AUC \geq .96), indicating that true and false statements are initially separable. However, AUC consistently degrades as we move out of distribution, with P(True) exhibiting lower robustness ($\beta = -.64$) compared to the linear and non-linear probe ($\beta = -.43$ and $\beta = -.46$, respectively).

Representations degrade consistently across datasets. Next, we test robustness across datasets using the non-linear probe on Llama 3.1 Instruct 8B. Across TruthfulQA, OpenBookQA, MMLU,

and True-False, probe performance again begins well above chance on the original data (AUC \in [.75, .98]), though all exhibit degradation under distribution shift (Figure 3). The steepest decline occurs for MMLU ($\beta=-1.76$), followed by OpenBookQA ($\beta=-.77$), True-False ($\beta=-.43$) and finally TruthfulQA ($\beta=-.47$). For results with additional models and probes, see Appendix B.

Representations degrade consistently across model families and scales. Finally, we show that truthfulness representations degrade regardless of the LLM choice. Using the non-linear probe, Fig. 4a illustrates that most models exhibit similar rates of degradation, with Llama 3.1 Instruct 70B—the largest model—being the least robust ($\beta =$ -1.53), and Gemma-3 4B the most $(\beta = -.07)$. For additional probes and datasets, see Appendix B. In Fig. 4b, comparing different Llama 3.1 model scales, we see that the nonlinear probe exhibits much sharper degradation for 70B models. In contrast, P(True) shows a slight positive effect of scale on robustness, aligning with Kadavath et al.'s (2022) finding that larger models are better calibrated.

Figure 4: (a) Non-linear probe performance (AUC) against average perplexity for various model families. (b) Degradation slope for the non-linear and P(True) probes at increasing Llama 3.1 Instruct scales. All models suffer degraded representations under OOD shift; increasing scale may worsen representation robustness.

Summary. We find that truthfulness representations consistently degrade under superficial modifications, across probing methods, datasets, and models, indicating an over-reliance on the exact phrasings and formulations seen during training.

5 NOT ALL REPRESENTATIONS ARE EQUAL

Having explored the robustness of truthfulness representations in general, we now ask whether certain types of knowledge are learned more or less robustly.

Benchmark performance does not imply robust representations. We first ask whether correctly answering benchmark questions corresponds to more robust representations. To do so, we prepare a filtered subset of MMLU questions where the model responds correctly during benchmarking (see Appendix A), before comparing probe AUC on this subset against AUC on the full dataset. As shown in Fig. 5a, AUC scores are consistently higher for the correctly-answered subset.

Figure 5: (a) Probe performance (AUC) for Llama 3.1 8B Instruct on the correct-only MMLU subset (red) and the full dataset (blue). (b) Non-linear probe and (c) P(True) performance (AUC) against average perplexity for correct and full sets. **Knowledge representations still degrade even when the model responds correctly during benchmarking.**

379

380

381

382

384

386

387

388 389

390

391

392 393

394

395

396

397

398

399

400

401

402

403

404 405

406 407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

(b) Benchmark accuracy

(c) Avg. perplexity

Figure 6: Non-linear probe robustness by MMLU topic against original, unmodified dataset (a) probe AUC, (b) benchmark accuracy, (c) and average perplexity for Llama 3.1 8B Instruct. Certain topics are robustly separable, even with higher perplexity.

However, Fig. 5b and Fig. 5c show that for both P(True) and the non-linear probe, the degradation slopes on the full dataset and the correct subset are nearly parallel (P(True): $\beta_{\text{full}} = -.59 \text{ vs. } \beta_{\text{subset}} =$ -.67; non-linear: $\beta_{\text{full}} = -.53$ vs. $\beta_{\text{subset}} = -.67$), suggesting that knowledge representations degrade equally whether or not the model can answer the question in a benchmarking setting.

Certain topics have more robust representations. Next, we break out our analysis by statement topic, using the non-linear probe on Llama 3.1 8B Instruct, over the full set of MMLU topics (see Appendix A.5). Figure 6a shows the robustness of each MMLU topic (degradation slope) against the initial separability (AUC on the original dataset). Topics in the upper-right quadrant can be considered "well learned", achieving high AUC while degrading only minimally under OOD shifts. Example topics with robust and separable representations include sociology and marketing. By contrast, topics such as high school world history achieve high separability in-distribution, but degrade sharply under minor perturbations. Interestingly, high school world history questions also tend to have relatively long sentences, and we observe that topics with longer sentences sometimes exhibit lower robustness (Fig. S5b).

Figure 6b shows topic robustness (degradation slope) against benchmark accuracy on the original dataset. Even for topics where models achieve high benchmark scores, the robustness varies: certain high-scoring topics (e.g., sociology) display greater robustness than others (e.g., marketing).

We explore whether topics that are more in-distribution are more robust in Fig. 6c, which shows topic robustness (degradation slope) against the topic's average perplexity—again making use of perplexity as a proxy for training data coverage. Interestingly, topics that that begin more OOD (higher perplexity) might also be more robust to subsequent shifts (e.g., electrical engineering), while better-represented topics can degrade sharply (e.g., high school US history).

LLMs are more susceptible to certain transforma-Finally, we examine whether knowledge repretions. sentations are more susceptible to certain kinds of transformation. Figure 7 shows the change in AUC of each transformed dataset variant against the change in average perplexity, using the non-linear probe with Llama 3.1 8B Instruct on the True-False dataset. Results for the linear probe and P(True) are shown in Fig. S6 for comparison. For the punctuation noise, typo, and Yoda transformations, we see that change in AUC is proportional to change in perplexity: the further samples move OOD, the greater the degradation.

Figure 7: Change in non-linear probe performance (AUC) against change in average perplexity on True-False dataset. While most transformation types degrade AUC in line with increasing perplexity, translation breaks representations while remaining in-distribution.

In contrast, while translation does not measurably increase perplexity, it has a more pronounced effect on AUC. This suggests that knowledge representations may degrade rapidly even when translated samples remain relatively in-distribution.

For the non-linear probe, negation neither shifts samples OOD nor impacts AUC, suggesting representations that are robust to negation. While prior work (Levinstein & Herrmann, 2025) has highlighted limited generalization of non-linear probes to negated samples, our finding suggests this is a problem with the trained probe, rather than the underlying representations.

Summary. While truthfulness representations are generally brittle, LLMs may learn certain topics more robustly, and be more robust to certain types of shift. Lower perplexity topics are not necessarily learned more robustly.

6 DISCUSSION

We have explored whether LLMs learn robust and generalizable knowledge representations. Our results show that learned truthfulness representations degrade under superficial changes in input presentation across probing methods, model families, and datasets. Even when an LLM typically responds correctly in a standard benchmarking setup, its internal representations are no more robust. While certain subject areas appear to be learned more robustly, this does not appear to be explained by coverage in the pre-training data.

Connection to benchmark brittleness. As discussed in §2, LLM benchmark scores can be significantly influenced by trivial changes including paraphrasing and formatting changes (e.g. Gu et al., 2023; Sclar et al., 2024; Habba et al., 2025; Mizrahi et al., 2024; Sun et al., 2023). Yet, it remains unclear whether such brittleness stems from an inability to generalize and apply robustly-learned knowledge when performing a task (i.e. brittle *performance*), or a lack of robustness in the underlying knowledge representations themselves (i.e. brittle *knowledge*). While not ruling out additional factors that may cause brittle performance, our results indicate that brittle knowledge representations are likely to play a key role.

Eliciting latent knowledge. During pre-training, it is expected that LLMs jointly learn how to use language and store knowledge about the world (Allal et al., 2025). Our finding that benchmark performance need not imply robust representations is in line with previous work suggesting a disconnect between latent knowledge and performance (Li et al., 2023). Previous work has argued that subsequent post-training primarily "elicits" or "sharpens" pre-existing latent knowledge, rather than teaching fundamentally new capabilities (Zhou et al., 2023; Burns et al., 2023; Ye et al., 2025; Muennighoff et al., 2025; Yue et al., 2025). If this is the case, developing robust and generalizable knowledge representations—which our work suggests are lacking—will be of paramount importance.

Effect of pre-training coverage. Surprisingly, our experiments on MMLU topics reveal that lower-perplexity topics are not necessarily more robust. Interpreting statement perplexity as a proxy for pre-training coverage (Razeghi et al., 2022; Gonen et al., 2024), this suggests that increasing the number and variability of occurrences does little for robustness, though improved data quality (Li et al., 2025; Allal et al., 2025) is an exciting avenue for future research.

Limitations. In order to explore representation robustness in settings where statements superficially differ from those seen in training, we make use of a variety of artificial transformations. A key limitation of this approach, however, is that not all transformations are equally naturalistic. While a transformation such as punctuation noise is unlikely to occur during regular user interaction, we are principally interested in it as a tool for driving samples OOD, rather than being a realistic test of deployed behavior. A more naturalistic way of driving statements OOD would be through reformulating statements into less expected or less common linguistic forms. However, reliably generating paraphrases that preserve meaning while ensuring sufficient distributional shift is non-trivial and difficult to automate.

Conclusion. We explored the robustness of learned knowledge representations, finding that LLMs rely on superficial resemblance to their training data in order to determine statement truthfulness. In light of our results, an exciting area for future work is in methods for improving the robustness of knowledge representations. Ultimately, we see improving the generalizability and applicability of learned knowledge as a fruitful path toward more robust and reliable LLMs.

REPRODUCIBILITY STATEMENT

Our work is fully reproducible: all methods rely on published research, open-weight models (see Appendix A.4), and publicly available datasets (see Appendix A.5). Full details of the linear and non-linear probes, including representation extraction and classifier training, are provided in Appendix A.1.1 alongside code snippets in Appendix C, and details for the P(True) method are given in Appendix A.2. Data preprocessing, perturbation pipelines, and evaluation procedures are described in the main paper and appendix (see §3 and Appendix A), ensuring that all experiments can be readily replicated.

REFERENCES

- AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.
- Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. SmolLM2: When Smol Goes Big Data-Centric Training of a Small Language Model, February 2025.
- Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay, Sultan AlRashed, Shaykhah Alsubaie, Yousef Almushayqih, Faisal Mirza, Nouf Alotaibi, Nora Al-Twairesh, Areeb Alowisheq, M Saiful Bari, and Haidar Khan. When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13787–13805, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.744.
- Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it's lying. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 967–976, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https://aclanthology.org/2023.findings-emnlp.68/.
- Waiss Azizian, Michael Kirchhof, Eugene Ndiaye, Louis Bethune, Michael Klein, Pierre Ablin, and Marco Cuturi. The Geometries of Truth Are Orthogonal Across Tasks, July 2025.
- Mohammad Beigi, Ying Shen, Runing Yang, Zihao Lin, Qifan Wang, Ankith Mohan, Jianfeng He, Ming Jin, Chang-Tien Lu, and Lifu Huang. InternalInspector I^2: Robust Confidence Estimation in LLMs through Internal States. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 12847–12865, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10. 18653/v1/2024.findings-emnlp.751.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering Latent Knowledge in Language Models Without Supervision. In *The Eleventh International Conference on Learning Representations*, September 2022. URL https://openreview.net/forum?id=ETKGuby0hcs.
- Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu. Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision, December 2023.

541

542

543

544

546

547

548

549

550

551

552

553

554 555

556

558

559

561

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579580

581

582

583

584 585

586

588 589

590

592

Tanise Ceron, Neele Falk, Ana Barić, Dmitry Nikolaev, and Sebastian Padó. Beyond Prompt Brittleness: Evaluating the Reliability and Consistency of Political Worldviews in LLMs. *Transactions of the Association for Computational Linguistics*, 12:1378–1400, November 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00710.

Sky CH-Wang, Benjamin Van Durme, Jason Eisner, and Chris Kedzie. Do Androids Know They're Only Dreaming of Electric Sheep? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 4401–4420, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.260.

Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, and Tanmoy Chakraborty. POSIX: A Prompt Sensitivity Index For Large Language Models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 14550–14565, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.852.

Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling human-centered machine translation. *arXiv preprint arXiv:2207.04672*, 2022.

Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Rishabh Gupta, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, M. Yee, Jing Zhang, and Yue Zhang, Nl-augmenter: A framework for task-sensitive natural language augmentation, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Gemma@GDM. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith, and Luke Zettlemoyer. Demystifying Prompts in Language Models via Perplexity Estimation, September 2024.

Daniela Gottesman and Mor Geva. Estimating Knowledge in Large Language Models Without Generating a Single Token, October 2024.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,

Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15789–15809, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.841. URL https://aclanthology.org/2024.acl-long.841.

- Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu Nie, Hongyuan Mei, and Wenpeng Yin. Robustness of Learning from Task Instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 13935–13948, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023. findings-acl.875.
- Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing Answer Order Can Decrease MMLU Accuracy, November 2024.
- Eliya Habba, Ofir Arviv, Itay Itzhak, Yotam Perlitz, Elron Bandel, Leshem Choshen, Michal Shmueli-Scheuer, and Gabriel Stanovsky. DOVE: A Large-Scale Multi-Dimensional Predictions Dataset Towards Meaningful LLM Evaluation, June 2025.
- Patrick Haller, Jannis Vamvas, and Lena Ann Jäger. Yes, no, maybe? Revisiting language models' response stability under paraphrasing for the assessment of political leaning. In *First Conference on Language Modeling*, August 2024. URL https://openreview.net/forum?id=7xUtka9ck9#discussion.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model Serving with PagedAttention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, SOSP '23, pp. 611–626, New York, NY, USA, October 2023. Association for Computing Machinery. ISBN 979-8-4007-0229-7. doi: 10.1145/3600006.3613165.
- Alina Leidinger, Robert van Rooij, and Ekaterina Shutova. The language of prompting: What linguistic properties make a prompt successful? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 9210–9232, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023. findings-emnlp.618.
- Benjamin A. Levinstein and Daniel A. Herrmann. Still no lie detector for language models: Probing empirical and conceptual roadblocks. *Philosophical Studies*, 182(7):1539–1565, July 2025. ISSN 1573-0883. doi: 10.1007/s11098-023-02094-3.
- Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. DataComp-LM: In search of the next generation of training sets for language models, April 2025.

- Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model. *Advances in Neural Information Processing Systems*, 36:41451–41530, 2023.
 - Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3214–3252, 2022.
 - Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infinigram: Scaling unbounded n-gram language models to a trillion tokens. *arXiv* preprint arXiv:2401.17377, 2024.
 - Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language model representations of true/false datasets. In *First Conference on Language Modeling*, 2023.
 - Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2381–2391, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL https://aclanthology.org/D18-1260/.
 - Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky. State of What Art? A Call for Multi-Prompt LLM Evaluation. *Transactions of the Association for Computational Linguistics*, 12:933–949, August 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00681.
 - Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. S1: Simple test-time scaling, February 2025.
 - Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint arXiv:2501.00656*, 2024.
 - Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan Belinkov. LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations. In *The Thirteenth International Conference on Learning Representations*, October 2024. URL https://openreview.net/forum?id=KRnsX5Em3W.
 - Zoe Papakipos and Joanna Bitton. Augly: Data augmentations for robustness. *arXiv preprint arXiv:2201.06494*, 2022.
 - Pouya Pezeshkpour and Estevam Hruschka. Large Language Models Sensitivity to The Order of Options in Multiple-Choice Questions, August 2023.
 - Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of Pretraining Term Frequencies on Few-Shot Numerical Reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 840–854, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.59.
 - Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting, July 2024.
 - Bangzhao Shu, Lechen Zhang, Minje Choi, Lavinia Dunagan, Lajanugen Logeswaran, Moontae Lee, Dallas Card, and David Jurgens. You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 5263–5281, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.295.

Aaditya K Singh, Muhammed Yusuf Kocyigit, Andrew Poulton, David Esiobu, Maria Lomeli, Gergely Szilvasy, and Dieuwke Hupkes. Evaluation data contamination in Ilms: how do we measure it and (when) does it matter? *arXiv preprint arXiv:2411.03923*, 2024.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido Dagan, and Shauli Ravfogel. The Curious Case of Hallucinatory (Un)answerability: Finding Truths in the Hidden States of Over-Confident Large Language Models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 3607–3625, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023. emnlp-main.220.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh, Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.840. URL https://aclanthology.org/2024.acl-long.840/.

Jiuding Sun, Chantal Shaib, and Byron C. Wallace. Evaluating the Zero-shot Robustness of Instruction-tuned Language Models, July 2023.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always say what they think: Unfaithful explanations in chain-of-thought prompting. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 74952–74965. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/ed3fea9033a80fea1376299fa7863f4a-Paper-Conference.pdf.

Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your format: Towards consistent evaluation of in-context learning improvements. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 6287–6310, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024. findings-acl.375. URL https://aclanthology.org/2024.findings-acl.375/.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadallah, and Bo Li. Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models. In *Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, August 2021. URL https://openreview.net/forum?id=GF9cSKI3A_q.

Tianlong Wang, Xianfeng Jiao, Yinghao Zhu, Zhongzhi Chen, Yifan He, Xu Chu, Junyi Gao, Yasha Wang, and Liantao Ma. Adaptive Activation Steering: A Tuning-Free LLM Truthfulness Improvement Method for Diverse Hallucinations Categories. In *Proceedings of the ACM on Web Conference* 2025, WWW '25, pp. 2562–2578, New York, NY, USA, April 2025. Association for Computing Machinery. ISBN 979-8-4007-1274-6. doi: 10.1145/3696410.3714640.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace's Transformers: State-of-the-art Natural Language Processing, July 2020.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is More for Reasoning, February 2025.

- Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang. Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?, May 2025.
- Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning Models Know When They're Right: Probing Hidden States for Self-Verification, April 2025.
- Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate Before Use: Improving Few-shot Performance of Language Models. In *Proceedings of the 38th International Conference on Machine Learning*, pp. 12697–12706. PMLR, July 2021. URL https://proceedings.mlr.press/v139/zhao21c.html.
- Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. LIMA: Less is more for alignment. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, pp. 55006–55021, Red Hook, NY, USA, December 2023. Curran Associates Inc.

SUPPLEMENTARY MATERIALS OVERVIEW

In the following supplementary materials, we present details of additional methods used in Appendix A, including further details of probe methods, models, datasets, dataset transforms, and an ablation study using n-gram statistics rather than perplexity as an OOD metric. We provide additional supporting evidence in Appendix B, including replications of our main results with different

combinations of probing methods, models, and datasets.

A ADDITIONAL METHODS

A.1 PROBE METHODS

A.1.1 Non-linear activations classifier

For the non-linear classifier we implement the Statement Accuracy Prediction based on Language Model Activations (SAPLMA; Azaria & Mitchell, 2023): a multi-layer perceptron classifier to predict the truthfulness of a statement from a language model's hidden layer activations. The hidden state of the final token is passed as input to a 3-layer feedforward neural network (256–128–64 hidden units with ReLU activations, sigmoid output), trained for 5 epochs on a balanced dataset of true/false statements using stratified 6-fold cross-validation. Unlike Azaria & Mitchell (2023), we do not treat separate topics as folds for cross-validation, instead concatenating across topics and drawing each fold via uniform sampling. We trained the probe with the Adam optimizer using a learning rate of $1e^{-2}$, without weight decay or learning rate scheduling. Following Azaria & Mitchell (2023), we test six layers (layers 16, 20, 24, 28, -8, and -1) and report results from the best-performing layer for each model/probe combination. For the smaller Llama 3.2-1B model, we test four layers (layers 4, 8, 12, -1). Note that for each dataset, we determine the best layer according to its original (i.e., non-transformed) samples and use this layer to extract the activations of the transformed counter-parts.

A.2 LINEAR ACTIVATIONS CLASSIFIER

Our approach to the linear activations classifier is identical to the non-linear classifier, but the MLP is replaced with a single-layer linear network. We follow the same cross-validation, layer selection, and optimization procedure as with the non-linear classifier.

A.3 P(TRUE)

We deploy P(True) (Kadavath et al., 2022) as a test of output-based probing. We prompt the model using a template $T(\cdot)$ that wraps a statement in prompt Fig. S1a which asks the model whether the statement is correct or incorrect in a multiple-choice setup.

Given a statement \mathbf{u} , we extract the probability mass the model assigns to the letter A, corresponding to correct, $p_A = P(A|T(\mathbf{u}))$ and to letter B, corresponding to incorrect, $p_B = P(B|T(\mathbf{u}))$, and then compute the final score as the normalized probability $\widetilde{p}_A = \frac{p_A}{p_A + p_B}$. Following Kadavath et al. (2022), we use a 6-shot approach, providing the model with six in-context examples.

As shown in Fig. S1a, we use a different prompt for statement-based datasets (e.g., True-False) than for question-answer datasets (e.g., MMLU).

A.4 MODEL DETAILS

See Table S1 for all models evaluated and corresponding Hugging Face links. We use vLLM (Kwon et al., 2023) for extracting statement perplexity and P(True) token probabilities. Internal representations were extracted using Hugging Face transformers (Wolf et al., 2020). For the comparison against benchmark performance in §5, we use the LM Evaluation Harness (Gao et al., 2024) with default settings unchanged. Llama 3.1 70B Instruct was tested at 16-bit precision. Our experiments were conducted on a private compute cluster using NVIDIA Tesla V100 GPUs.

```
Statement: <statement>
Is the above statement
(A) correct
(B) incorrect
The statement is (
```

```
Question: <question>
Response: <response>
Is the above response
(A) correct
(B) incorrect
The response is (
```

(a) Statement prompt

(b) QA prompt

Fig. S1: Prompt templates used for P(True). Statements (True-False dataset) were wrapped in template (a), the QA pairs (remaining datasets) were wrapped in template (b).

Model	Hugging Face ID
Gemma 3 4B Instruct	google/gemma-3-4b-it
Gemma 3 12B Instruct	google/gemma-3-12b-it
Llama 3.1 8B Instruct	meta-llama/Llama-3.1-8B-Instruct
Llama 3.1 70B Instruct	meta-llama/Llama-3.1-70B-Instruct
Llama 3.2 1B Instruct	meta-llama/Llama-3.2-1B-Instruct
Llama 3.2 3B Instruct	meta-llama/Llama-3.2-3B-Instruct
OLMo 7B Base	allenai/OLMo-7B-hf
OLMo 7B Instruct	allenai/OLMo-7B-Instruct-hf
OLMo 2 7B Instruct	allenai/OLMo-2-1124-7B-Instruct
OLMo 2 13B Instruct	allenai/OLMo-2-1124-13B-Instruct

Table S1: List of models evaluated.

A.5 DATASET DETAILS

Note that for the MMLU results reported in §4, we use a representative subset of 11 topics for computational efficiency as well as to ensure comparable sample sizes with respect to the other tested datasets. The subset consists of: anatomy, business ethics, clinical knowledge, global facts, high-school European history, high-school geography, high-school government and politics, high-school US history, high-school world-history, pre-history, and public relations. For the by-topic analyses based solely on Llama 3.1 8B and the non-linear probe presented in §5, we use the full set of topics.

A.6 TRANSFORM DETAILS

For the typo transform, we use AugLy (Papakipos & Bitton, 2022) to intern between 1 and 5 character substitutions, deletions, or insertions at random positions.

For the punctuation noise transform, this we insert spurious punctuation symbols every 25, 20, 15, 10, or 5 characters, respectively.

A.7 MEASURING OOD WITH N-GRAM STATISTICS

As we discuss in §3.5, our main results rely on statement perplexity as a proxy measure for how OOD a given statement is, following prior work (Razeghi et al., 2022; Gonen et al., 2024). To validate this approach, we also directly inspect the pre-training data of an open weights language model, OLMo 2 (Groeneveld et al., 2024). We use the infini-gram API (Liu et al., 2024)³ to extract to obtain the n-gram counts, specifically, 6-gram counts, of all samples, using DOLMA (Soldaini et al., 2024) and OLMo-2 13B (OLMo et al., 2024) as the reference dataset.

Using these n-gram counts, we test an alternative measure of OOD-ness based on the frequency of n-gram occurrences. *Log-average n-gram count* is an extension of metrics such as token and n-gram match, both commonly employed in to measure contamination (Singh et al., 2024; Brown et al.,

³https://infini-gram.readthedocs.io/en/latest/api.html

2020). Log-average n-gram count quantifies the *density* with which n-grams from the pre-training corpus appear in the evaluation sequence. Concretely, for each n-gram in the evaluation sequence, we count the number of times that n-gram appears in the pre-training corpus, average these counts over all n-grams in the sequence, and then take the logarithm of this average.

Formally, for a sequence s with m n-grams g_1, g_2, \ldots, g_m , and where $c(g_i)$ is the count of g_i in the pre-training corpus, the score is defined as:

$$\label{eq:log-avg-ngram-count} \text{log-avg-ngram-count}(s) = \log \left(\frac{1}{m} \sum_{i=1}^m c(g_i) \right).$$

This metric captures not only whether n-grams appear in the pre-training corpus, but also *how fre-quently* they appear. We hypothesize that this degree of representation—i.e., how densely a sequence is represented in the pre-training data—is relevant for this work.

In Appendix B we demonstrate that statement perplexity is highly correlated with log average ngram counts, supporting its use as a proxy for OOD-ness.

A.8 MMLU BENCHMARKING

For the exploration of the connection benchmarking performance and robustness in §5, we follow the standard MMLU benchmarking setup, running a likelihood-based evaluation using Language Model Evaluation Harness (Gao et al., 2024) to extract predicted multiple-choice responses for each question. Then, we use these predictions to prepare a filtered subset of questions where the model responds correctly.

B Additional results

B.1 Perplexity is a good proxy for OOD-ness

As laid out in §3.5, estimating log-average n-gram counts requires direct access to pre-training data. For our fleet of models, this is only feasible for models of the OLMo family. In order to test the degree to which perplexity and log-average n-gram counts are interchangeable as measures of out-of-distribution, we first assess the correlation between the log-average n-gram count measure, measured with respect to DOLMA (Soldaini et al., 2024) as the reference dataset, and the average statement perplexity, based on OLMo 7B Instruct, for each transform of the True-False dataset.

Fig. S2a illustrates that there is a strong negative correlation between log-average n-gram count and average statement perplexity ($\rho[\mathrm{df}=10]=-.69, p<.05$), suggesting that statements with dense representations in the pre-training data tend to exhibit low average perplexity.

While this result is a good indicator that the model-based measure and the direct, n-gram based appear to capture the same aspect of out-of-distribution measures, we explore whether the estimated degree of degradation using log-average n-gram count approximates the values obtained in the above experiments using statement perplexity. Figs. S2b and S2c show that truthfulness representations degrade consistently, both for P(True) ($\beta = .36$) and the non-linear probe ($\beta = .91$).

In comparison to the analogous analysis using average statement perplexity as the OOD measure, the absolute standardized slopes are higher here ($\beta=-.64$ for P(True) and $\beta=-.46$ for the nonlinear probe), suggesting that the degradation pattern is more pronounced when using log-average n-gram counts.

B.2 Degradation slopes across datasets, models and probes

In the following, we report the magnitudes of degradation slopes across datasets and models in Fig. S3 and in tabular format in Table S2, Table S3, and Table S4. Finally, we show the degradation slopes as scatter plots for a subset of models and for all three probing methods in Fig. S4.

Model name	Slope magnitude (β)						
	True-False	TruthfulQA	OpenBookQA	MMLU			
GEMMA-3-12B-Instruct	-0.17 ± 0.07	-0.44 ± 0.14	-0.17 ± 0.21	0.08 ± 0.68			
GEMMA-3-4B-Instruct	-0.07 ± 0.07	-0.10 ± 0.19	-0.05 ± 0.08	0.29 ± 0.29			
Llama-3.1-70B-Instruct	-1.53 ± 0.34	-2.22 ± 0.92	-1.77 ± 0.75	-5.30 ± 1.54			
Llama-3.1-8B-Instruct	-0.43 ± 0.07	-0.46 ± 0.16	-0.77 ± 0.23	-1.76 ± 0.56			
Llama-3.2-1B-Instruct	-0.71 ± 0.06	-0.78 ± 0.13	-0.44 ± 0.05	-0.47 ± 0.06			
Llama-3.2-3B-Instruct	-0.45 ± 0.08	-0.75 ± 0.17	-0.73 ± 0.15	-1.30 ± 0.28			
OLMo-2-13B-Instruct	-0.62 ± 0.20	-0.63 ± 0.29	-0.50 ± 0.30	-1.20 ± 0.85			
OLMo-2-7B-Instruct	-0.68 ± 0.15	-0.54 ± 0.17	-0.66 ± 0.23	-1.66 ± 0.49			
OLMo-7B-Base	-1.45 ± 0.18	-0.45 ± 0.13	-0.47 ± 0.15	-0.40 ± 0.17			
OLMo-7B-Instruct	-1.37 ± 0.17	-0.38 ± 0.09	-0.50 ± 0.19	-0.49 ± 0.24			

Table S2: Magnitudes of regression line slopes for non-linear probe.

Madalmama	Slope magnitude (β)						
Model name	True-False	TruthfulQA	OpenBookQA	MMLU			
GEMMA-3-12B-Instruct	-0.11 ± 0.08	0.00 ± 0.00	-0.00 ± 0.00	0.00 ± 0.00			
GEMMA-3-4B-Instruct	0.00 ± 0.00	0.00 ± 0.00	-0.00 ± 0.00	-0.00 ± 0.00			
Llama-3.1-70B-Instruct	-0.98 ± 0.26	-2.14 ± 0.95	-1.42 ± 0.46	-3.35 ± 1.17			
Llama-3.1-8B-Instruct	-0.46 ± 0.08	-0.42 ± 0.15	-0.87 ± 0.25	-1.89 ± 0.51			
Llama-3.2-1B-Instruct	-0.47 ± 0.05	-0.78 ± 0.14	-0.40 ± 0.03	-0.46 ± 0.06			
Llama-3.2-3B-Instruct	-0.49 ± 0.07	-0.64 ± 0.15	-0.77 ± 0.13	-1.13 ± 0.21			
OLMo-2-13B-Instruct	-0.69 ± 0.15	-0.52 ± 0.28	-0.56 ± 0.32	-1.20 ± 0.70			
OLMo-2-7B-Instruct	-0.69 ± 0.11	-0.47 ± 0.18	-0.68 ± 0.20	-1.39 ± 0.27			
OLMo-7B-Base	-0.79 ± 0.14	-0.36 ± 0.11	-0.49 ± 0.18	-0.23 ± 0.16			
OLMo-7B-Instruct	-0.84 ± 0.14	-0.30 ± 0.08	-0.49 ± 0.20	-0.66 ± 0.34			

Table S3: Magnitudes of regression line slopes for linear probe.

Model name	Slope magnitude (β)						
	True-False	TruthfulQA	OpenBookQA	MMLU			
GEMMA-3-12B-Instruct	-0.19 ± 0.08	-0.41 ± 0.28	-0.20 ± 0.12	0.04 ± 0.27			
GEMMA-3-4B-Instruct	-0.08 ± 0.06	0.22 ± 0.36	0.04 ± 0.11	0.45 ± 0.32			
Llama-3.1-70B-Instruct	-0.37 ± 0.05	-1.36 ± 0.15	-0.73 ± 0.15	-0.92 ± 0.35			
Llama-3.1-8B-Instruct	-0.64 ± 0.09	-1.25 ± 0.51	-0.78 ± 0.23	-1.95 ± 0.61			
Llama-3.2-1B-Instruct	-0.12 ± 0.01	-0.17 ± 0.15	-0.23 ± 0.02	-0.13 ± 0.04			
Llama-3.2-3B-Instruct	-0.71 ± 0.10	-1.29 ± 0.42	-0.79 ± 0.13	-1.76 ± 0.30			
OLMo-2-13B-Instruct	-0.70 ± 0.13	-0.58 ± 0.32	-0.43 ± 0.34	-1.08 ± 0.72			
OLMo-2-7B-Instruct	-0.70 ± 0.11	-1.20 ± 0.27	-0.76 ± 0.31	-1.46 ± 0.41			
OLMo-7B-Base	-0.07 ± 0.01	0.13 ± 0.13	-0.10 ± 0.05	-0.14 ± 0.05			
OLMo-7B-Instruct	-0.54 ± 0.13	-0.11 ± 0.10	-0.19 ± 0.08	-0.53 ± 0.21			

Table S4: Magnitudes of regression line slopess for P(True).

Fig. S2: Comparison of two OOD metrics. We find a strong correlation between the model-free log average n-gram count, based on DOLMA and OLMo-7B Instruct average statement-perplexity (a). Furthermore, representations of truthfulness within the True-False dataset for OLMo-7B Instruct degrade consistently as samples become more OOD (low log-average n-gram count) under various transformations.

B.3 EFFECT OF MODEL SCALE

In the analysis of the effect of model scale in §4 we have excluded the smallest Llama model, Llama 3.2 1B Instruct, because the original AUC on the untransformed data is substantially lower (AUC=0.59) compared to its larger counterparts (.94 for 3B, .96 for 8B and .98 for 70B, respectively). Because it starts from a lower AUC, its degradation slope would necessarily be less negative, giving a false impression of robustness. Thus, it is impossible to compare the robustness of this smaller model against the larger models, so it is excluded from our analysis.

B.4 CERTAIN TOPICS HAVE MORE ROBUST REPRESENTATIONS

In this appendix, we provide extended topic-level analyses complementing the main results in §5. Specifically, we include figures illustrating relationships between benchmark accuracy, statement length, and robustness, as well as the full set of topic-wise statistics for the non-linear probe on Llama 3.1 8B.

Figure S5 are included to further contextualize the by-topic results from §5. Fig. S5a illustrates the relationship between LM Evaluation Harness accuracy and the non-linear probe AUC, showing that overall, high benchmark scores are associated with high separability of true from false statements. In Fig. S5b, we show that while there is no clear association between average (by-topic) statement lengths and degradation slopes, we note that topics with particularly large average statement length exhibit higher absolute degradation rates (i.e., lower robustness).

In Table S5, we report the full by-topic results for the non-linear probe based on Llama 3.1 8B, presented in Fig. 6, including degradation slopes and probe AUC as well as additional metrics such as benchmark accuracy, average perplexity, log-average n-gram count as well as average sentence length.

B.5 Type of transformation

Figure S6 shows the change in AUC of each transformed True-False dataset variant against the change in average perplexity for all three probes. We note similar trends for all three probing methods, except in the case of negation. For both the linear and non-linear probes, negation leaves average perplexity unchanged and has no effect on AUC, indicating that truthfulness representations remain stable under syntactic negation. By contrast, P(True), depicted in Fig. S6c, exhibits a noticeable drop in AUC despite no corresponding change in perplexity, suggesting that while negated statements are not driven out-of-distribution, the output-based method is nonetheless sensitive to the transformation and yields lower separability.

Fig. S3: Magnitudes (mean \pm standard error) of degradation slopes for all probing methods and model combinations across the four different datasets.

Fig. S4: (a) linear probe, (b) non-linear probe, and (c) P(true) performance (AUC) against average perplexity for various model families on True-False dataset.

Fig. S5: (a) Benchmark accuracy vs. non-linear probe AUC and (b) mean sentence length vs. degradation rate of non-linear probe based on Llama 3.1 8B Instruct. Topics with high benchmarks tend to exhibit high true-false separability.

Fig. S6: Change in (a) linear probe, (b) non-linear probe, and (c) P(true) performance (AUC) against change in average perplexity on True-False dataset.

```
1188
          REPRODUCIBILITY
1189
1190
      Below we provide code samples for the non-linear and linear probe methods to aid reproducibility.
1191
      For P(True), see Kadavath et al. (2022).
1192
1193
      C.1 Non-Linear Probe
1194
1195
      class MLPClassifier(nn.Module):
1196
           def __init__(
1197
               self,
1198
               input_dim: int = 4096,
1199
               hidden_dims: list = [256, 128, 64],
1200
           ):
1201
               super().__init__()
1202
1203
               layers = []
1204
               in_dim = input_dim
1205
               for h_dim in hidden_dims:
1206
                    layers.append(nn.Linear(in_dim, h_dim))
1207
                    layers.append(nn.ReLU())
                    in_dim = h_dim
1208
1209
               layers.append(nn.Linear(in_dim, 1))
1210
1211
               layers.append(nn.Sigmoid())
1212
1213
               self.net = nn.Sequential(*layers)
1214
1215
           def forward(self, x: torch.Tensor) -> torch.Tensor:
1216
               return self.net(x).squeeze(-1)
1217
1218
1219
      C.2 LINEAR PROBE
1220
      class LogisticRegressionClassifier(nn.Module):
1221
1222
           def __init__(self, input_dim: int = 4096):
1223
               super().__init__()
1224
               self.linear = nn.Linear(input_dim, 1)
1225
               self.sigmoid = nn.Sigmoid()
1226
1227
               self.net = nn.Sequential([
1228
                    self.linear,
1229
                    self.sigmoid
1230
               ])
1231
           def forward(self, x: torch.Tensor) -> torch.Tensor:
1232
               return self.net(x).squeeze(-1)
1233
1234
1235
1236
1237
1238
1239
1240
```

Table S5: Per-topic statistics: slope, AUC, accuracy, perplexity, n-gram count, and sentence length for MMLU topics (Llama-3.1-8B-Instruct, non-linear probe).

Торіс	Slope	AUC	Eval. acc	Perp.	n-gram c.	sent. len
abstract algebra	-0.44	0.61	0.34	8.93	5.09	27.6
anatomy	-1.01	0.84	0.68	10.10	7.59	20.0
astronomy	-0.65	0.70	0.76	10.85	5.76	25.6
business ethics	-0.65	0.83	0.68	17.09	6.15	29.8
clinical knowledge	-0.93	0.85	0.79	11.53	7.46	19.0
college biology	-1.12	0.80	0.82	9.98	6.99	30.6
college chemistry	-0.52	0.60	0.47	8.56	7.54	28.1
college computer science	-0.74	0.63	0.58	8.10	7.81	56.8
college mathematics	-0.19	0.52	0.33	6.53	6.80	38.4
college medicine	-1.01	0.75	0.69	10.34	7.33	54.2
college physics	-1.25	0.72	0.43	6.61	7.56	41.6
computer security	-0.41	0.78	0.77	20.03	4.55	28.3
conceptual physics	-0.29	0.71	0.60	16.65	4.14	18.7
econometrics	-0.36	0.54	0.51	9.59	7.16	42.2
electrical engineering	-0.20	0.64	0.66	19.29	4.27	18.6
elementary mathematics	-0.69	0.70	0.49	9.28	6.89	26.8
formal logic	-0.58	0.60	0.48	12.27	3.44	45.0
global facts	-0.51	0.69	0.42	10.09	12.74	23.5
high school biology	-1.16	0.80	0.82	9.35	7.20	33.0
high school chemistry	-0.82	0.70	0.64	8.26	6.99	30.3
high school computer science	-1.21	0.75	0.74	8.33	7.30	47.3
high school european history	-2.03	0.83	0.76	8.26	6.62	247.2
high school geography	-0.48	0.80	0.79	15.18	6.23	19.7
high school government and politics	-0.92	0.82	0.88	11.40	7.78	26.1
high school macroeconomics	-0.52	0.74	0.68	14.52	6.39	25.0
high school mathematics	-0.38	0.59	0.42	6.72	7.24	30.6
high school microeconomics	-0.77	0.74	0.79	12.22	6.52	26.6
high school physics	-0.61	0.59	0.45	6.10	6.95	46.6
high school psychology	-0.91	0.86	0.86	12.62	6.55	29.0
high school statistics	-1.32	0.69	0.54	6.68	8.33	56.8
high school us history	-1.80	0.81	0.84	6.34	7.84	215.0
high school world history	-2.04	0.83	0.86	8.50	7.12	238.4
human aging	-0.31	0.76	0.70	18.83	4.95	19.3
human sexuality	-0.66	0.78	0.79	14.54	6.10	22.8
international law	-0.59	0.68	0.81	12.01	6.03	28.2
jurisprudence	-0.59	0.77	0.78	14.53	5.49	26.5
logical fallacies	-0.60	0.72	0.80	14.70	5.69	26.1
machine learning	-0.87	0.71	0.46	12.66	6.38	34.4
management	-0.36	0.77	0.82	17.38	4.45	16.9
marketing	-0.79	0.91	0.90	15.44	6.17	27.3
medical genetics	-1.03	0.84	0.78	11.58	7.30	18.6
miscellaneous	-0.85	0.87	0.84	13.33	6.07	19.8
moral disputes	-0.44	0.74	0.74	21.04	5.23	25.6
moral scenarios	-1.29	0.72	0.57	13.27	11.79	62.7
nutrition	-0.92	0.80	0.76	11.25	7.86	23.1
philosophy	-0.49	0.79	0.72	18.83	4.20	21.6
prehistory	-0.83	0.79	0.75	14.04	6.58	22.3
professional accounting	-0.78	0.65	0.56	9.48	8.69	48.0
professional law	-1.42	0.68	0.50	6.13	8.82	157.0
professional medicine	-2.25	0.77	0.79	4.99	10.15	110.8
	-0.69	0.73	0.72	13.22	6.34	32.9
professional psychology	-0.09	0.75				
professional psychology public relations	-0.09	0.74	0.67	15.96	5.89	26.9
				15.96 13.69	5.89 7.10	26.9 41.0

Topic	Slope	AUC	Eval. acc	Perp.	n-gram c.	sent. len
us foreign policy	-0.61	0.85	0.87	14.11	5.78	21.8
virology	-0.05	0.59	0.51	15.16	6.19	21.9
world religions	-0.70	0.87	0.84	15.80	4.86	15.1
world religions		0.07	0.01	15.00		10.1