Data-Adaptive Exposure Thresholds under Network

Interference
Vydhourie Thiyageswaran Tyler H. McCormick
Department of Statistics Department of Statistics
University of Washington University of Washington
Seattle, WA, USA Seattle, WA, USA
vrttQuw.edu tylermc@uw.edu

Jennifer Brennan
Google Research
Kirkland, WA, USA
jrbrennan@google.com

Abstract

Randomized controlled trials often suffer from interference, a violation of the Stable
Unit Treatment Value Assumption (SUTVA), where a unit’s outcome is influenced
by its neighbors’ treatment assignments. This interference biases naive estimators
of the average treatment effect (ATE). A popular method to achieve unbiasedness
pairs the Horvitz-Thompson estimator of the ATE with a known exposure mapping,
a function that identifies units in a given randomization unaffected by interference.
For example, an exposure mapping may stipulate that a unit experiences no further
interference if at least an h-fraction of its neighbors share its treatment status.
However, selecting this threshold & is challenging, requiring domain expertise;
in its absence, fixed thresholds such as h = 1 are often used. In this work, we
propose a data-adaptive method to select the h-fractional threshold that minimizes
the mean-squared-error (MSE) of the Horvitz-Thompson estimator. Our approach
estimates the bias and variance of the Horvitz-Thompson estimator paired with
candidate thresholds by leveraging a first-order approximation, specifically, linear
regression of potential outcomes on exposures. We present simulations illustrating
that our method improves upon non-adaptive threshold choices, and an adapted
Lepski’s method. We further illustrate the performance of our estimator by running
experiments with synthetic outcomes on a real village network dataset, and on a
publicly-available Amazon product similarity graph. Furthermore, we demonstrate
that our method remains robust to deviations from the linear potential outcomes
model.

1 Introduction

Estimating the Average Treatment Effect (ATE), the difference in the average outcomes of units when
all units are treated versus when none are, is challenging in the presence of network interference.
Under interference, the Stable Unit Treatment Value Assumption (SUTVA) [[Cox) 1958, [Rubin, [1978|
Manskil, [1990] is violated, as a unit’s outcome is influenced by its neighbors’ treatment assignments.
This problem is salient in randomized controlled trials, the setting we examine. For example,
estimating the adoption of a new idea through random assignment of people to advertisements is
complicated by the dissemination of information through social interactions. Consider a social media
platform seeking to estimate the efficacy of a product innovation in increasing user engagement.
Measuring outcomes for users in the control group is complicated by their interactions with treated
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users. If the innovation successfully increases engagement among treated users, their friends in the
control group may also exhibit increased engagement through their interactions on the platform.
As such discrete interactions can be modeled through network interference models, the problem of
estimating average treatment effects under network interference becomes a ubiquitous one.

A fundamental challenge arises from the lack of knowledge about the exact interference pattern.
Exposure mappings, as defined by |Aronow and Samii| [2017]], are functions that partition the space of
treatment assignments and individual-level features (e.g., social neighborhood structure) into distinct
exposure values. These mappings encapsulate the concept of “effective treatments” introduced
in [Manski, 2013|]. For example, let z € {0,1}"™ denote the treatment assignment vector, and
W € [0,1]"*™ represent the (weighted) adjacency matrix, where W;; encodes the relationship
between units ¢ and j. A simple exposure mapping takes the form f: (z, W) — Wz, assigning each
unit a weighted sum of its neighbors’ treatments. |Aronow and Samii|[2017]],[Ugander et al.| [2013]],
Sussman and Airoldi| [2017], Hardy et al.| [2019]], /Auerbach and Tabord-Meehan| [2021]] expound
upon different exposure mappings, and estimation under these settings. Following [Eckles et al., 2017}
Toulis and Kao| 2013]], we characterize exposure in terms of the fraction of treated neighbors. For
instance, a unit may be considered as experiencing no additional interference if at least an h-fraction
of its neighbors share its treatment assignment. This fractional neighborhood exposure mapping
aligns with the fractional thresholds model [Watts, [ 1999]], where treated and untreated peers exert
opposing influences on a unit’s outcome. (Centola and Macy| [2007] illustrate this with the example of
refraining from littering in a neighborhood: an individual’s decision to avoid littering depends on the
relative number of neighbors who also refrain from littering.

Under a known h-fractional neighborhood exposure mapping, the Horvitz-Thompson estimator
[Horvitz and Thompson, [1952] is a popular unbiased estimator of the average treatment effect.
Without domain knowledge of the interference structure, however, such estimators based on non-
adaptive treatment exposure conditions often suffer from high bias or variance. For instance, the
Horvitz-Thompson estimator can be paired with an extreme threshold h to achieve unbiasedness,
requiring that a unit and all its neighbors be treated (or in control). However, this can result in
high variance, since the probability of such configurations is very low, especially for high-degree
nodes. Conversely, setting a low threshold £ introduces bias into the estimator by including units with
limited treatment (resp. control) exposure in the treatment (resp. control) exposed group. We propose
a simple data-dependent approach to find an MSE-optimal threshold for the Horvitz-Thompson
estimator in the finite population setting. We compute the bias slope, an approximate rate of change
of bias, which we use to estimate the bias of our estimator. We use this information together with
variance estimates to select a threshold minimizing the Mean-Squared-Error (MSE) of the estimator.

In [Basse and Airoldil 2018} |Cai et al.,[2015]], a (known) generalized linear form of network effects
on neighborhood treatments was assumed. Related to our work, Zhu et al.[[2024] fit functionals on
the treatment assignment and exposure. In [[Chin} 2019]], the author proposes regression adjustment
estimators that predict potential outcomes under global treatment and control conditions. Unlike
traditional regression adjustments, their approach constructs adjustment variables from functions
of the treatment assignment vector, framing the learning of a more flexible exposure mapping as a
feature engineering problem. While Belloni et al. [2022] focus on estimating direct effects under
network interference, their approach to determining the exposure radius, i.e. the m;-hop influence,
shares conceptual ground with our approach of selecting optimal exposure thresholds.

In this paper, we present our framework for the Horvitz-Thompson estimator of the ATE, motivated by
its widespread adoption in practice. Nevertheless, our approach could be adapted for other estimators,
like the Hajek, Difference-in-Means, and Augmented Inverse Propensity Weighted (AIPW) estimators.
We formulate the adaptively-thresholded estimator for the Difference-in-Means estimator, which
is a special case of the Hajek estimator, in the Appendix We note however, that the Hajek
estimator is only approximately unbiased at the true threshold. This makes formal characterization of
its exact bias—variance tradeoff more challenging than for the Horvitz-Thompson estimator.

Within off-policy evaluation in reinforcement learning, [Su et al.| [2020]] address the classical problem
of adaptive bandwidth selection, well studied in non-parametric statistics [Fan and Gijbels| [1992]
Ruppert, 1997, [Kallus and Zhou, 2018, Mukherjee et al., 2015], by applying Lepski’s method
[Lepskiil {1992} [1993] [Lepski and Spokoiny, [1997, |Goldenshluger and Lepskil, 2011]. Our work
explores an extension of this framework to optimal bandwidth selection for the Horvitz-Thompson
estimator in average treatment effect estimation under network interference (see Appendix [A.3). To



our knowledge, this connection has not been explored previously. We compare our procedure to an
adaptation of Lepski’s method tailored to our problem setting. In our context, the network dependence
structure can lead to violations of the monotonicity and decay rates conditions that Lepski’s method
relies on. Our approach offers a simple and principled data-adaptive alternative designed to address
these challenges in our context. Philosophically, these ideas are similar. This perspective on threshold,
or equivalently bandwidth, selection at the estimation stage can loosely be viewed as the “dual” of
choosing cluster sizes in cluster-randomization approaches such as|Ugander et al.| [2013]], |[Eckles et al.
[2017] at the design stage.

2  Setup

2.1 Notation.

We use / to denote the threshold for “treatment exposure”, and 1—h for “control exposure”. Therefore,
for larger h, i.e. h closer to one, we have a more restrictive setting, where only the subset of treated
(resp. control) units with most of their neighbors treated (resp. control) are counted as treatment
(resp. control) exposed. For smaller h, i.e. h close to zero, we have a less restrictive setting, as a
larger subset of treated (resp. control) units satisfy the threshold condition. Throughout the paper we
use W to denote the adjacency matrix with W;; = 0,d; = > j W,; for the degree of node 7, and d

when the graph is regular. We use D to denote the diagonal matrix of degrees d;.

2.2 Problem Setup

We study the finite population setting. Additionally, we consider a fractional neighborhood exposure
mapping. That is, for any treatment assignment vector z € {0, 1}", the effective influence of the
graph’s treatment assignment on the outcome of node 7 is equivalent to the influence of fractional
treatment assignments in the neighborhood of node ¢. This reduces our potential outcomes model to
the following form:

Yi(2) = vi(zi, i) = oy + (25, €4) + €, (D

where z; € {0, 1} is the treatment assignment of unit 4, e; € [0, 1] is the fraction of treated neighbors
of unit ¢ (excluding ¢ itself), and the ¢; are uniformly-bounded and non-random. Throughout the
paper, we focus on t(z;, e;) = g(z;) + f(e;), but our framework generalizes. For instance, we will
consider the linear potential-outcome model in some examples:

Yi(2) = i +Y(2i,€) + € = i + Bizi + viei + €. 2)

We are interested in estimating the average treatment effect (ATE),
n n

1 1< 1 1
T = %Zyi(l,l) - EZ%(O,O) = EZ(aHrﬁﬁr%Jrei—ai —€) = EZ(BHr%),
i=1 i=1

i=1 i=1

though we could, more generally, take any difference between exposure categories.

Let Y; denote the observed outcome for unit 4, ¢ € [n]. We consider the Horvitz-Thompson estimator
[Horvitz and Thompsonl, [1952]] for a given exposure threshold h:
I - 1{z=1¢6>h 1~ 1{z=0,e<1—h
I TP e LT

T W Pm=Llezht ' n&Plu=06<1-h}

i=1

Our goal then is to select the threshold A in the Horvitz-Thompson estimator above that minimizes
the MSE. More formally, given a candidate set of thresholds H, we select

h* := argmin MSE(#;,) = argmin Bias®(7,) + Var(#,). ®)
heH heH

Stronger interference, i.e. when (-, e;) is more sensitive to changes in exposure e;, induces greater
bias through edges that connect units with differing treatment assignments. To mitigate this bias, one
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Figure 1: Left: bias, variance, and RMSE of AdaThresh across different thresholds for the 1000-node
2nd-power cycle graph (see Appendix [A.6) with unit-level Bernoulli randomization, and linear model
outcome Y; = 10 + 10z; + ve; + €, for fixed ¢; generated from N(0,1). Right: toy illustration
of linear fits used to approximate exposure bias caused by including more data across different
thresholds. The “jittered” datapoints signify the amount of variance reduction across thresholds.
Rectangular blocks depict the data regions under the MSE-optimal thresholds.

might pick a higher exposure threshold h. However, increasing h reduces the exposure probabilities
P{z; = 1,e; > h} and P{z; = 0,e; < 1 — h}, thereby increasing variance. To illustrate this
bias—variance trade-off, we display the biases and variances under the linear model Y; = a + B8z; +
ve; + €; evaluated across varying thresholds in the Horvitz-Thompson estimator (E[) above, in the left
panel of Figure This trade-off is illustrated for various ratios of /3. The right panel of Figure
illustrates the different fitted linear models for various « /(3 ratios, whose slopes we call the bias slope.
We then use these bias slopes to compute the bias estimates for {73, }, (@), as described in detail in
the next section. Combining these bias estimates with the corresponding variance estimates allows
us to select the MSE-optimal threshold, shown by the shaded regions in the right panel of Figure|T]
(matching the left panel).

We adopt the MSE as our objective as we are interested in precisely and accurately estimating the
ATE, trading off bias against variance in the estimator. See Deng et al.|[2024] Section 2.2] for more
discussions on this. We note that, while the overall trend of bias decreasing and variance increasing
with h holds, neither quantity is necessarily monotonic due to the dependence between units and,
consequently, their exposures. To further illustrate this, in Appendix[A.6] we draw upon toy examples
of circulant graphs from [Ugander et al.|[2013]].

3 Estimating bias and variance

With the goal of obtaining an MSE-optimal threshold in mind, we find the bias slope 4,,, which
captures how the bias changes with the threshold h. More concretely, the bias slope quantifies the
average change in bias as / is varied from 0 to 1, estimated by the slope of a linear fit. Generally, this
linear regression coefficient 4,, is simply a first-order approximation of how (-, e;) changes with
e;, estimating the average change in the mean outcome per unit change in exposure. In our context,
this also reflects the average change in bias as we move away from the boundary exposures, i.e.,
from O for control or 1 for treated, since in our setting bias arises when exposures deviate from these
extremes. This interpretation motivates the use of the weights e; — 0 = e; and 1 — e; in Equation 6}
corresponding to deviations from the control and treated boundaries, respectively.



Building on this interpretation, we propose the following Horvitz-Thompson-style estimator for the
bias, which integrates the bias slope over the empirical exposure distribution to yield an average
(absolute) bias estimate at a given threshold:

- I (1—e)ml{zi=1,e; > h} 1 =efnl{z;=0,e; <1—h}
b(7h) = — - 6
(7h) Z P{z; =1,e; > h} n ZZ P{z; =0,e; <1—h} ~’ ©

i=1 =1
where 4,,, the bias slope, is the linear regression coefficient of the outcome on the exposure variable.
If the potential outcomes depend strongly and positively on the treatment exposures, 4,, will be larger.
Consequently, our estimator will capture a more pronounced increase in bias caused by including
more data when using a smaller threshold h. We use a Horvitz-Thompson-style bias estimator to
account for the exposure distribution, which may pose challenges for Lepski’s method (see description

in Appendix [12).

To estimate the variance associated with a threshold h, we use the variance estimator discussed in
Aronow and Samiil [2017]], available in Appendix[A.T]

Together, they inform the choice of threshold, and our adaptive estimator, AdaThresh. We describe
our procedure in Algorithm T]

Algorithm 1 AdaThresh

Require: Graph adjacency matrix W, outcome vector Y, treatment vector z
1: Compute exposure: e < D~ Wz

Fit linear model: Y = 8z + ye + ¢

Let 4 be the estimated coefficient for e

for each threshold h € H do
Estimate bias: Bias(h) using 4,Y, z, W, and h > See Eq. (6)
Estimate variance: \//Er(h) using Y, z, W, and h > See Appendix
Compute @(h) — ]§i§s2(h) + \//5‘(11)

end for o

h < arg minpecy MSE(h)

return 7;, > See (@)

A I A AN A

Ju—

The bias slope from the linear fit captures the average change in bias as h is varied from O to 1. We
do not assume an underlying linear model Y = o + Bz + ~ye, for which the sum of linear regression
coefficients B + 4 would be the optimal estimate of the ATE. Rather, we use a linear regression only
to obtain the bias slope, a first-order approximation of how (-, e;) changes with e;. This idea is
similar in spirit to the work of |Baird et al.|[2018]], where the authors leverage the slope of spillovers
with respect to treatment saturation levels as an approximation, without assuming linearity in the true
data-generating process.

As we first estimate the bias slope to inform our overall estimator of the ATE, sample-splitting is one
potential strategy for consistent estimation. However, since the units of interest are dependent (as
modeled by the network interference), one would have to prove performance guarantees by leveraging
results such as |Hart and Vieu|[[1990]. In our setting, however, it is not necessary that we split the data
as we leverage the simplicity of the model class [Van Der Vaart et al.,|1996]]. In Appendix we
discuss this using Donsker results [Van Der Vaart et al.,|1996] to demonstrate that our approach does
not lead to overfitting.

4 Theoretical Results

Denote by H the (finite) set of exposure thresholds. For example, in cycle graphs (see Appendix
for details), H = {% : u € {0,1,...,d}} where d is the degree of the graph. We assume the
ollowing:

Assumption 4.1 (Unconfoundedness, Positivity).

1. (Unconfoundedness) For all ¢ € [n],
{vi(zi,e) : 2 €{0,1},6 € [0,1]} UL (i, €:)



2. (Positivity) For all i € [n], h € [0,1],

P{ZZ:LGZZh}>O and P{ZZ:O,ezglfh}>0

The first part of Assumption[4.]states that the individual and neighborhood treatment assignments are
independent of the potential outcomes. This follows from the unit-level and cluster-level Bernoulli
randomization designs we consider in this paper. The second part of the assumption is also a
fundamental one in the causal inference literature [Rosenbaum and Rubin, |{1983| [Petersen et al.|
2012], ensuring that we have sufficient data to estimate the ATE. It also relates to statistical leverage
[Mahoney et al.,|201 1, [Martinsson and Tropp},[2020, Young, [2019, Pilanci and Wainwright, 2015]]. The
idea, informally, is that under positivity, statistical leverage across the input data is more homogeneous.
As a result of this, there are no observations that have too much control over the linear regression.

Assumption 4.2 (Bounded variation treatment-exposure function). Let the potential outcome function
be y; = a; +¥(zi,e;) + € asin . The function (z;, ;) has bounded variation.

Assumption 4.3 (Bounded First-Order Interactions). For unit-level randomization, we assume that
all nodes have bounded degree. Specifically, there exists a finite constant d,,x < oo such that, for
every unit ¢ € [n], the degree d; satisfies

d1’, S dmax-

For cluster-level randomization, we assume that all clusters have bounded degrees of cross-cluster
interactions. Let s; denote the number of cross-cluster connections involving the cluster to which
unit ¢ belongs. Then, there exists a finite constant sy, < 0o such that, for every cluster i € C, the
cross-cluster degree s; satisfies

Si S Smax-

These restrictions are consistent with the observation that networks in practice tend to be sparse and
clustered [Barabasi, 2013} |Chandrasekhar, 2016, (Chandrasekhar et al.| [2020]. If this assumption
is violated, exposure positivity may fail, and Proposition [A.5| will no longer hold. However, as
discussed in Remark@]below, this assumption can be weakened under certain conditions. Some
examples of graph classes that fall under the categorization of Assumption 4.3|are expander graphs,
and growth-restricted graphs [Alonl 1986, |Arora et al., 2009, Gkantsidis et al., 2003} Kuhn et al., 2005}
Krauthgamer and Lee, 2003} [Kowalski, [2019]. This is related to requiring the graph interference
structure to have small k,,-conductance (i.e. the k,,-partition generalization of the Cheeger constant)
for k,, growing with n. In the causal inference literature, the growth-restricted graph setting was
studied in [Ugander et al., 2013].

Remark 4.4. Assumption [4.3]is also employed by [Aronow and Samii| [2017]]. As we further discuss
in Appendix it can be relaxed by “binning” the exposures and verifying whether the “affinity
set” conditions of (Chandrasekhar et al.|[2023] are satisfied. Specifically, in more general weighted
settings, one can partition exposures into bins indexed by b = 1,2, ..., K, each associated with
an effective exposure level €;. In this framework, node degrees need not be bounded, provided the
affinity set conditions are met. These conditions subsume the approximate neighborhood interference
(ANI) condition of [Leung| [2022] when the maximum clique size in the network remains bounded.
For cases with growing clique size, we refer the reader to [Leung| [2022] for further discussion of the
ANI framework.

In the following theorem, we characterize the probability of choosing the correct threshold under the
best average linear fit, for which the exposure slope is v*. The correct threshold ~2* under the best
average linear fit is the threshold minimizing the sum of the true variance and the true squared-bias
under Y; = a + Bz + ~v*e;. We write M (h), M, (h) to denote the MSE under the true average best
fit line and the MSE estimated by our methods, respectively, at threshold A and finite-population size
n.

Theorem 4.5. Suppose Assumptions andH.3| hold. Further assume unit-level Bernoulli
randomization with treatment assignment probability p. Let A,, := minpep |M(h) — M} (h*)],
and let U,, € R satisfy maxy, |b},(74)| < Uy, which exists by Assumptions and{.2| Denote by

hy, the optimal threshold under the true average best-fit line, and by h., the threshold chosen by our




method. Finally, let H be the set of exposures. Then,

P{hy # hi} <Y P{M(h) = M (R)| > A, /2}

heH

Annp(1 —p) AZnp(1 — p)
< 3|H - t+1 (16U, Pcdmar
- | ‘ Hmax { b ( SCdmax + ’ P (16Un)26dmax - 7

( Cn(5p — “e=) ) }
Gexp | — > )
VAnz /(5 = ) Mo

4

4
for some constants ¢,C. Here, A, , < 16[|0]|7 {c1 + @}%for some constant ¢, and U is the
Fourier transform of the summands of the variance components, and M, » = 4||9| 1, (log n)*.

If, instead, the design is cluster-level Bernoulli randomization with probability p, denote by Smax the
maximum cross-cluster degree, i.e., the largest number of distinct clusters to which any given cluster
is connected. Then, we can replace dy,,x by Smax in the bounds above.

In Theorem [4.5] we assume without loss of generality that the MSE gap is lower-bounded by a
constant, i.e. A, > A, as otherwise all candidate thresholds are optimal. The proof to the theorem is
in Appendix In this proof, we make use of the results from [Ziemann et al,[2024] Theorem
3.1], and [Shen et al.| 2020, Theorem 2.1].

Our results tell us that generally, for fixed n, and under a unit-level Bernoulli randomization, our
approach yields a higher probability of choosing the optimal threshold when the maximum degree
is smaller. Under a Bernoulli cluster-level randomization, our approach yields a higher probability
of choosing the optimal threshold when the maximum cross-cluster degree is smaller. Therefore,
for a well-clusterable graph, our approach would yield a higher probability of choosing the optimal
threshold under cluster-level randomization, as the clustering would give us a reduction in the cross-
cluster degree. Not surprisingly, when n is larger, and the degree ranges are kept fixed, the probability
of choosing the optimal threshold is higher. Additionally, as the variance of the variance estimator is
larger, the probability of picking the right threshold is smaller. The error scales with the size of the
bias, appearing in the second term in the bound. Finally, considering symmetric h for treated and
control units, our approach yields a higher probability of choosing the optimal threshold when the
treatment assignment probability p = 0.5. This can be seen from the p(1 — p) term in the bound
which is maximized at p = 0.5.

This gives us the following corollary. Denote the true MSE by M *, and the corresponding bias and

optimal threshold by b;* and h}*, respectively.

3

Corollary 4.6. Under the conditions of Theorem[4.3] further assume that ¢(z;, e;) = g(z;) + f(e:),
and that sup,. |f(e;) —v*e;| < 0. Let U} € R be such that maxy, |b:*(7,)| < U, which exists by

Assumptions and Note that U is bounded from below. Let & := 1662 + 86U . Then,
P{hn # by} < 3 P{[ M (h) — M (h)| > An/2}

heH
<3|Hmax{exp (—

o - (2810000~ (i -p) ),

Cdmax

(An/8 — 6)np(1 — p) N 1))

cdmax

( Cn (G — e —9) ) }
6exp| — = = )
VAnz (5 = s =) My

4
for some constants ¢, C. Here, A, , < 16[|0]|7 {c1 + @}%for some constant ¢, and U is the
Fourier transform of the summands of the variance components, and M,, 5 = 4|9/, (logn)*.
If, instead, the design is cluster-level Bernoulli randomization with probability p, denote by Smax the

maximum cross-cluster degree, i.e., the largest number of distinct clusters to which any given cluster
is connected. Then, we can replace dy,,x by Smax in the bounds above.
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Figure 2: Left: A graph of size n = 200 generated from the Stochastic Block Model (SBM). Node
colors reflect ground-truth cluster membership, corresponding to the underlying block membership.
Right: Village network dataset, with node colors reflecting ¢ = 1-net clustering (see [Ugander et al.,
2013]] for details on e-net clustering).

Corollary 4.6 tells us that if the maximum linear approximation error between the best average linear
fit and the true exposure function f(-) is small enough relative to the minimum MSE gap A,,, our

estimator will be optimal with high probability for large n. Indeed, when the n(A,, — §) terms are

large, the exp (—n(A,, — 0)) terms are small. If f(x) = ~z for all z € [0, 1] indeed, then with
necessarily we have that with high probability for large n, our estimator is optimal.

5 Experiments

We now compare the performance of our approach with that of non-adaptive Horvitz-Thompson
estimators HT'(1) and HT'(0), with h = 1, and h = 0, respectively. Additionally, since our objective
is essentially an MSE-optimal bandwidth selection problem for the indicator kernel (see Appendices
[13), we also compare our estimator to a variant where the threshold is selected via Lepski’s
method [Goldenshluger and Lepski, 2011} Su et al.||2020]. We note that Lepski’s method relies on the
monotonicity of the bias and the variance to work well. In our setting, due to the implicit dependency
structure from the graph appearing in the exposures e;, the monotonicity assumption may be violated.
We write out these three estimators we compare against in Appendix [A.2]

In Figure [3) we display simulation results with outcomes generated from the linear model with
W(zie;) = g(zi) + fle), o =10, g(2;) = Bz; = 10z;, f(e;) = ve;, with fixed ¢; generated from
N (0, 1), for a 200-node graph, generated from an SBM with 40 underlying clusters (see Figure (left
panel)). We focus on varying the ratio /3 as we consider a fixed graph. We see that our adaptive
thresholding estimator, AdaThresh, generally performs better than existing estimators, interpolating
between the fixed 0/1-threshold Horvitz-Thompson estimators, and out-performing the Lepski-based
Horvitz-Thompson estimators when the threshold v/ is high. We also display simulation results for
1000-node 2nd-power cycle graphs in Figure[7]

Furthermore, cluster-randomized designs better control interference, reducing bias over wider ranges
of spillover ratios. In such settings, the variance tends to dominate the bias. Since optimizing for
bias leads to HT'(1), and optimizing for variance leads to HT'(0), we observe better intermediate
thresholds for longer ranges of spillover ratios under cluster-randomized designs compared to unit-
level designs. These patterns become even more pronounced in the cycle graphs presented in Figure[7}
where the node degree is held constant. From the design perspective (see, for instance, [Viviano et al.|
2023|)), if spillover ratios are larger, then one might analogously perform more cluster-randomized
designs to contain more of the interference and reduce bias.

5.1 Real Data

We evaluate the performance of our estimator on village (No.6) network data from [Banerjee et al.,
2013|]. Here, n = 110, with nodes representing villagers and edges indicating that the adjacent
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Figure 3: RMSE (normalized by the ATE) of different Horvitz-Thompson estimators for the SBM
graph in Figure 2] (left panel). Left: unit-level Ber(0.5) randomization. Right: cluster-level Ber(0.5)

randomization with ground truth clusters. The error bars are the empirical 95% confidence intervals
around the mean.
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Figure 4: RMSE (normalized by the ATE) of different Horvitz-Thompson estimators for the village
network in Figure [2] (right panel). Left: unit-level Ber(0.5) randomization. Right: cluster-level
Ber(0.5) randomization with e(= 1)-net clustering. The error bars are the empirical 95% confidence
intervals around the mean.

villagers have visited each other’s homes. We ran experiments with synthetic potential outcomes,
averaging over 1000 trials, under unit-level and cluster-level Bernoulli randomizations, where clus-
ters were formed using an (= 1)-net clustering (see [Ugander et al., 2013] for details on e-net
clustering). We generate simulated data using the linear model with ¥ (z;,e;) = g(z;) + f(e;),
a; = 10,9(z;) = Bz = 10z, f(e;) = ve;, with fixed ¢; generated from A/ (0, 1). To compute the
exposure probabilities, we used 2 x 10* Monte-Carlo trials. We focus on varying the ratio /3 as
we consider a fixed graph. Figure ] demonstrates that our method generally interpolates between
HT(1) and HT(0), achieving intermediate performance on smaller graphs (i.e., smaller n). While it
does not consistently outperform the HT(0) baseline across all settings, the results suggest that our
approach remains competitive across a large range of regimes and offers a reasonable bias—variance
trade-off. We hypothesize that the observed imprecision and inaccuracy of our estimator stems from
inaccuracies in estimating smaller exposure probabilities, particularly for higher-degree nodes. For
larger n and smaller dy,,x, performance improves further, supporting our theoretical findings, as

demonstrated in Appendix [A77)on the Amazon (DVD) products similarity network [Leskovec et al.
2007] (see Figure[6)), and on various circulant graphs.

6 Discussion

In this paper, we focused on the additive model for ¢/, but note that our framework is applicable
more broadly. We investigated AdaThresh, an adaptive Horvitz-Thompson estimator for symmetric
thresholds / and 1 — h for treatment and control, respectively. Our framework applies more generally
with estimator thresholds h; and 1 — hg, respectively with hy # hg. Additionally, in Appendix
[A77:3] we demonstrate the performance of this approach using the Difference-in-Means estimator
incorporating exposure thresholds. We leave it to future work to extend our results to more general
exposure estimation procedures. In 2019], the author proposes learning the feature variables
that are most predictive of the potential outcomes. One could extend our work by first learning the
feature variables, as proposed by [2019], followed by then learning the appropriate optimal
threshold associated with these features, using our approach.



In Appendix we illustrate the robustness of our estimator to deviations from linearity in the
potential outcomes model. We note that our framework would apply in broader settings, including
a direct extension to friends-of-friends (or further connections) or to neighborhoods that are either
observed or learned through a clustering algorithm. An additional interesting future direction could
be to extend our work to the framework presented in |Chandrasekhar et al.| [2023]], allowing for a
complete graph underlying the interference structure.

Furthermore, to improve upon robustness to non-linear settings, we propose an extension using local
regression to estimate the rate of change of bias within the [0, 1 — h], [k, 1] windows. As long as there
is sufficient concentration of exposures in these windows, robustness is never worse. In Appendix
we display our simulation results in this setting using local linear regression to estimate the
rate of change of bias within the [0, 1 — &, [k, 1] windows. One could also use other local regression
approaches, such as kernel regression, etc., while maintaining sufficiently small model complexity to
avoid needing to sample-split.

This paper prioritizes minimizing the mean squared error (MSE) to effectively balance the
bias—variance trade-off in a Horvitz-Thompson-type estimator, rather than focusing on inference.
However, we acknowledge the significance of characterizing inferential tools, such as confidence
intervals, in specific contexts. Notably, [[Aronow and Samiil [2017]] and [Athey et al.| 2018]] offer
valuable insights into inferential methods for estimating average treatment effects under network
interference.
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A Appendix / supplemental material

Notation

In this supplement, we write b* (71 ), 75 (h), v*(71), (71 ) to represent the true bias, estimated bias, true variance,
and estimated variance, respectively, at threshold h. We also write dmax to represent the upper-bound (Assumption
[4.3)) on the degrees of the nodes in the network.

A.1 Variance estimator

‘We use the variance estimator, for the Horvitz-Thompson estimator, proposed by [Aronow and Samii, 2017, Eqn.
79].
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Here, nf, 7Y are deﬁned with respect to the threshold h. That is, 7111 =P{z =1,e; > h}, 7} =P{z =
Oelgl—h} 71' =P{z =1, eZthy—Oe] <1-h}, 71' V=P{z =1,ei > h,z; = 1,e; > h},
T = P{zzfoelgl—hzjflej>h}7r P{zzfoelgl—h,zj:O,ejgl—h}.

A.2 Horvitz-Thompson estimators with existing approaches

We write the vanilla Horvitz-Thompson estimator (at threshold one) [8} the Horvitz-Thompson estimator at
threshold zero[9] and the Horvitz-Thompson estimator with the threshold selected via Lepski’s method [T2] below.

A.2.1 Vanilla Horvitz-Thompson estimator (at threshold one)

. 1{z =1, ezfl} 1{z; =0,e; =0}
HT = ZP{ZZ—l ezzl} ZP{ZZ—O eZ—O}Y ®)

A.2.2 Horvitz-Thompson estimator at threshold zero

. 1z =1} 1} 1{z =0} 0}
Ty = Z Ploi= 1} n Z Ploi =0} ©)

A.2.3 Lepski’s method
As described in [Lepski and Spokoiny [1997]], we first take

I(h) = [%HT}L — ZS/DIR,(%HT}L),%HT,L + ZS/DEI(%HT,L)]. (10)
Then, take
hiepsi := min{h € H : NpremasnI(B') # 0}, (1
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and

. 1= 1{zi =1,€ > hiepi} 1{zi =0,e; < 1 — hrepski
Trepsitm = — { Lot} -—72 L o}y, (12)

i—1 ]:[D{Zl =1l,e > hLepskl} P{Z’L =0,e; <1~ hLepskl}

Lepski’s method requires monotonicity and decay rate conditions to be satisfied. Our setting may lead to
violations of these conditions.

A.3 An equivalent formulation of the Horvitz-Thompson estimator with the exposure
threshold

We can rewrite the display ind]in the following form:

1~ 1|zi—e| <1—h} _
- — }/i7 1
D Fm el <1 A (13)

where Z; = 2z; — 1, so that 2; € {—1, 1}. It is then clear that the threshold h controls how much dissimilarity

between the treatment status of units and their neighbors, we allow in our estimation. This allows us to reframe
the problem as an optimal bandwidth selection one.

A.4 Bias and Variance estimation errors

In this subsection, we write down the estimation errors of the bias and the variance terms in the MSE estimation.

For the bias terms, we have,

. An(l—e)l{z =16, >h} 1 1{x; > h} .
b(#n) — b*( ( 1 e
(7n) Z P(z; = 1,e; > h) n;z;(.|xi3xieXiﬂ$iZh|7( x))
")/7L611{Zz—0 €; Sl—h} _l n l{ngl_h} . v
( Z P(z; = 0,e; <1—h) n;x;( |xi:xiEXiﬂxiglfhn"(xl))’

where 7 is the slope of the best average linear fit, and where x; ranges over the set X; of possible fractions of
degree i.

By an abuse of notation, we use y;(h™) to represent the average (across possible exposure fractions for node 7)
potential outcome for unit ¢ with exposures that are at least h, while we use y;(h ™) to represent the average
(across possible exposure fractions for node ) potential outcome for unit ¢ with exposures that are at most 1 — h.

In the variance terms,

N anzn: yi(h+)zj(h+) ( 7?1} _ 1)

= DD DI e

; 10
i=1 JE[nlim; =0

Therefore, from the above and Section[A-T] we have that
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A.5 Proofs to Theorem[d.5|and Corollary 4.6

A.5.1 Proof to Theorem 4.5
Proof to Theorem[#.3] We first consider the variance terms. Define o = E[0]. We have that,
P(|o —v"| > Ap/4) =P(|0 — 04+ 0 —v"| > An/4)
Y P(j6 -0 > An/d — cdian/n)

Ap _ cdiay
(®) Cn (T - T)

< 6exp | —
VAna+ (3 - ) a1,

4
where A, , < 16[3]|7, {c1 + @}2, for some constant ¢; and  is the Fourier transform of the variance

summands, and M,, » = 4/|9||, (logn)?.

The equality (a) is obtained as a result of Assumptlon - Indeed, we know that o — v™ is non-zero only
when there exists 4, j such that 7;; (h™, h™) = 0, i.e. the joint exposure assignment probability of e; > h, and
e; < 1 — h. Since the contribution of these to v — v™ are bounded above by cd? s /n for some constant ¢, we
get (a). The inequality (b) is obtained from a direct application of [Shen et al., 2020, Theorem 2.1], as it easy
to see that our exposure dependencies satisfy a-mixing conditions and that together with Assumption 2] the

variance summands satisfy the Fourier transform conditions of [Shen et al., 2020, Theorem 2.1].
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Next, we consider the bias terms, for any constant .J,

. " Apnp(l —p)
P((5n —7)? > An/J) < exp | — == 20
((7 ’Yn) = / ) = &xp ( chmax + 1 ’

for some constant c. We use the results from [Ziemann et al., 2024, Theorem 3.1]. Below, we verify that the
conditions are met in our setting. We begin with the condition that for every v € R such that v = 1/(E[e2])/2,
there exists h € R™ such that, E[(ve;)*] < h*v®E[e?]. This is trivially satisfied in our setting since our
exposures is bounded. Next, we consider the first part of [Ziemann et al.| 2024} Condition (3.3)]. This is also
trivially satisfied in our setting since our block sizes (= d=,,,.) are bounded by Assumption The second part
of [Ziemann et al., 2024} Condition (3.3)] is also satisfied since our de-meaned noise-class interaction variables
(as defined in [Ziemann et al.,[2024] Eq.(2.5)]) are sub-gaussian by assumption of independence between the
potential outcomes’ residuals and the treatment design. Next, [Ziemann et al.,|2024, Condition (3.4)] is also
trivially satisfied since we take our blocks to be of size dZ,,, almost, with the possible exception of the final
remaining block, uniformly. Finally, it is easy to see that [Ziemann et al.|[2024] Condition (3.5)] is also satisfied
since the exposure variables are independent outside of the radius d,,, since exposure variables e; and e; for
any 4, j € [n] are only dependent when nodes ¢ and j share a neighbor. We quickly note that the monotone
partitioning (as described in [Ziemann et al., 2024, Theorem 3.1] is not necessary in our setting, as the “blocking”
procedure introduced by [Yu, |1994] holds more generally.

For convenience, in the following we write b*,b to mean b*(7),b(7), and similarly v*,% to mean
v*(7r), 0(7n). H is the set of exposures. Therefore, putting these together by a union bound,

P{hn # hi} <> P{|Mn(h) — M;;(h)| > An/2}
h

< [H[P{|* + 6 — b —v*| > A, /2}

< |H|(P{[D* — b*%| > An/4} + P{|o — v*| > An/4})

< H|(P{(b—b")* > An/8} +P{(b—b")* > A7 /(16U,)*}
+P{|0 —v*| > An/4})

STH|(P{(An = 12)* > An/8} + P{(An — 72)* > A7/ (16U,)*}
+P{|o —v"| > An/4})

S3|H\max{exp<—w+l>,

8Cdmax
Annp(1 —p)
SXP ( T (16U 2 cdmas | 1)’
ANy cdy ax
Gexp(f Cn(4 "2) )}
ETNY =

The proof for the cluster-level Bernoulli randomization follows immediately.

A.5.2  Proof to Corollary 4.6

Proof of Corollary[:6] Suppose sup,, |f(e;) — | < 4. Let § := 1662 + 85U;* . We begin by considering
the difference between the MSE under the true best average linear fit and the true MSE:

|M;; (h) — My (B)| = [b7* (h) — b*”(h>|

z h))(b;,(h) — by (h))]

(b7(R) = by" () (b7, (h) — b3 (h)) + 2b" ()|
< ((B3(h) = b3 (h))* + 2[by, (h) — by, ()|Us:

< (40)% 42U (46) = 6.
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Figure 5: Circulant graphs with unit-level randomization and cluster-level randomization. Blue and
red nodes represent treated and control units, respectively. Left: (1st-power) cycle graph with Ber(0.5)
unit randomization. Center: 3rd-power cycle graph with Bernoulli(0.5) unit randomization. Right:
2nd-power cycle graph with Bernoulli(0.5) cluster randomization, with clusters of size 5 (=2k + 1).

This gives us,
P{hn # b3}
< > P{IMa(h) - My (h)| > An/2}
heH
= > P{Mu(h) — Myy(h) + M (h) — My (h)]| > Ay /2}
< D P{IMa(h) = My ()| + [ My (h) — M (h)| > An/2}
heH

< 37 PN () — M(R)] > Anf2 — 8}
heH

where the second inequality is obtained by applying a triangle inequality.

Finally, applying Theorem [£.3] gives us the result. O

A.6 Toy examples: Tradeoffs in Circulant graphs

We consider unit-level and cluster-level Bernoulli(p) randomizations in the kth-power cycle graphs, see Figure
[B] We say a graph is a kth-power cycle graph if there exists an edge between each node and 2k of its nearest
neighbors [[Ugander et al.,2013].

Proposition A.1 (Absolute bias in k-th power cycle graphs under unit-randomization). When p = 1/2 and the
potential outcome model is simply linear, i.e. Y; = o+ Bzi + e, the absolute bias of the Horvitz-Thompson
estimator for a given threshold h = 1/2k forl = 0,2, ..., 2k, in the kth-power cycle graph, under unit-level
28 (r/k—1)(2F)
D)
Proposition A.2 (Variance in k-th power cycle graphs under unit-randomization). Denote the degree of the
nodes by d(= 2k). When p = 1/2 and the potential outcome model is simply linear, i.e. Y; = o + Bz; + ve;,
the variance of the Horvitz-Thompson estimator for a given threshold h, in the k-th power cycle graph, under
unit-level randomization is proportional to

randomization, is equal to y X [ —1].

o (,Z;dh [(a + B+ 7dh)* + (a + B+ 7d(1 — h))* — 2yh(1 — h)d} > :

Therefore, the optimal threshold h* here depends on v, 3, n, p, d, the graph structure, and the number of other
candidate thresholds.

From this toy example, it is not difficult to see that for unit-level Bernoulli randomization for more general
graphs, the squared-bias would be ©(72h?), and the variance would be ©(p~** 2 /n). Therefore, minimizing
the MSE corresponds to balancing these quantities.

For kth-power cycle graphs, we also consider cluster-randomized design with cluster size 2k + 1. In [[Ugander
et al.,|2013|], the authors show that this clustering size minimizes variance under full neighborhood exposure.
We state the approximate absolute bias and variance for this setting in the following propositions. Here, define
the threshold h = L with 1 = 0,1, ..., d.
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Proposition A.3 (Absolute bias in k-th power cycle graph under cluster-randomization). When p = 1/2, and the
potential outcome model is simply linear, i.e. Y; = o+ [Bz; + ~ye;, the bias of the Horvitz-Thompson estimator
for a given threshold h in the k-th power cycle graph under cluster randomization, with cluster-sizes 2k + 1, is
approximately 2y(h — 1) for h > 1/2.

Proposition A.4 (Variance in the k-th power cycle graph under cluster-randomization). When p = 1/2 and
the potential outcome model is simply linear, i.e. Y; = o + Bz; + ~yes, the variance of the Horvitz-Thompson
estimator for a given threshold h, in the k-th power cycle graph under cluster-level randomization, with
cluster-sizes 2k + 1, is proportional to

BZhZ
np2h

nipz(?’ﬂ 1—2dR)[(B +vh)* + (v(1 = h))*] = ©(=—; ).

Under cluster randomization with cluster sizes 2k + 1 for the k-th power cycle graphs, the variance grows
linearly in the degrees of the graph. Therefore, informally, compared to the unit-randomized design setting,
higher node degrees lead to stronger bias than variance for a fixed exposure function (-, €;).

A.6.1 Proofs to Propositions[A.1}[A.2} [A.3 [A 4]

Proof to Proposition[A.]] When p = 1/2 and the potential outcome model is simply linear, i.e. Y; = o+ 8z +
~e;, the absolute bias of the Horvitz-Thompson estimator for a given threshold h = 1/2k for I = 0, 2, ..., 2k, in
the kth-power cycle graph under unit-randomization is equal to

1 Z H{z; > h} E1{z = 1,e; = i }yi(z:)

IP{ZZ' =1,¢; > h} X ‘121 cxs € Xs Ny > hl

1 1{z; <1-h}
- — E[1{z; = 0,e; = x; }]yi(x;
P{zi:O,eigl—h}zze:X\{xi:mieXiﬂxigl—hH [{Z O,e x}]y(x)

- (B+)
_ 1 H{x; > h} e — e Vg (s
- Zf—iz (2rk)p2r I;X Haixie Xana; <1-— h}|E[1{2l =1,ei = zi}lyi(z:)
1 Hz; <1-h} R S I
TS @ 2 [ m e Konm 2 1R = e = adlue)
- (B+)
1

szk(%)<§:<?>5+<?j07k—1h>—(ﬁ+w
= Z2k1 (2k) (Z <2Tk> (T/k - 1)7) -7

where X = {0,1/2k,2/2k, ..., 1}. O

Proof to Proposition[A.2] When p = 1/2 and the potential outcome model is simply linear, i.e. Y; = o+ 8z +
~es, it is not difficult to see that the variance of the Horvitz-Thompson estimator for a given threshold h = /2K,
in the k-th power cycle graph under unit-level randomization is proportional to

%i <2lk> 1{1/2k > h}

=0

) 1
B N O

2k
+ 2(8 + 1/ (2k))(v(1 = 1/2k))(2k + 1 — 2k (M 1{1/2k > h}pQ’)

+ (a1 = 1/20)" (= (2’“>1{1l/2k2h}p” )

Considering the dominating terms gives us the result. O

Proof to Proposition[A.3] When p = 1/2 and the potential outcome model is simply linear, i.e. Y; = o+ 8z +
~ve;, the absolute bias of the Horvitz-Thompson estimator for a given threshold h = [/2k forl = k, k+1, ..., 2k,
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in the kth-power cycle graph under cluster-randomization is equal to is equal to

P{Zi:LeiZh}TeX ':mieXiﬂxizm

- — E[1{z; = 0,e; = z; }]y:(x:
]P’{zi:O,eiSlfh}xze:X|xi:m¢€X¢ﬁxi§17h| [{Z € x}}y(m)

—(B+7)
(/@R + 1) +2k/(2k+1) - p)(B+) +20/Ck+ 1) 38 Hr >d—1}(B+v - (2l —d)/d)
B p/(2k +1) +p2-2k/(2k +1) +2p/(2k + 1) S5 1{r>d—1}

—(B+7)
=0(2v(h—2))
where X = {0,1/2k,2/2k,...,1}. When [ < k, the bias scales is the same as when [ = k. O

Proof to Pmposition When p = 1/2 and the potential outcome model is simply linear, i.e. Y; = o+ Sz; +
~ves, it is not difficult to see that the variance of the Horvitz-Thompson estimator for a given threshold h = [/2k,
in the k-th power cycle graph under cluster-randomization, with cluster-size 2k + 1, is proportional to

d n 2
POETOED: (ff) Z(W)[@M 1= 20) (% — 1)+ (2 + D - 1)

u=0 i=1
2 1 )
+ZI{U/d>h} Z B+ 1 =205 = 1)+ l+ 1D = 1)
u=0 i=1
2 d—u
—Zl{U/d>h}( >( + - u/d)(y- ).
n d
Considering the dominating terms gives us the result. 0

A.7 Simulations

A.7.1 Experimental details and results on the Amazon product similarity graph data

We also evaluate the performance of our estimator on the Amazon (DVD) products similarity network [Leskovec
et al.| 2007]]. We ran experiments with synthetic potential outcomes, averaging over 1000 trials, under unit-level
randomization and spectral cluster-level randomizations. We generate simulated data using the linear model
with (2, €;) = g(z:) + f(e:), i = 10, g(2:) = Bz = 10z, f(ei) = 7ei, and ¢; is generated from A(0, 1)
under a unit-level Bernoulli(0.5) randomization design. We focus on varying the ratio /8 as we consider a
fixed graph. Figure[6]shows that we consistently perform better than existing fixed estimators.

The simulations were run on a CPU. Our experiments focus on a subset of (the first) 1000 nodes of the 19828-
node DVD graph. In particular, we considered the 17924-node subgraph by removing all isolated nodes. To
compute the exposure probabilities, we used 10° simulations. We then selected the first 1000 nodes of the 19828
to analyze. 200 replicates were run, generating random treatment assignments and the corresponding outcomes.
For each of the replicates, 1000 separate simulation runs were generated to compute the oracle MSEs. In total,
this took approximately 2 hours. The graph data is available at: https://snap.stanford.edu/data/amazon-meta.html

B AdaThresh
Oracle

I HT1

H HTO

RMSE/ATE

e
-

<
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0.1
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Y
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Figure 6: RMSE (normalized by the ATE) across different thresholds on the Amazon product network
data. The error bars are two times the standard deviation.
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Figure 7: RMSE (normalized by the ATE) of different Horvitz-Thompson estimators. Left: 2nd-
power cycle graph under unit-level Ber(0.5) randomization. Right: 2nd-power cycle graph under
cluster-level Ber(0.5) randomization with cluster sizes 5 (=2k + 1). The error bars are two times the
standard deviation.

A.7.2 Experimental details on simulated graphs

All synthetic graph simulations were run on a machine of Intel® Xeon® processors with 48 CPU cores, and
50GB of RAM. We simulated 1000 replicates, generating random treatment assignments and the corresponding
outcomes, with each oracle MSE computed using 1000 separate simulation runs. The exposure probabilities
under each threshold were computed as proposed in [Aronow and Samiil 2017] using 20000 simulation iterations.
In total, this took approximately 30 minutes on average (across the different potential outcomes, and graph
settings). The code is available at: https://github.com/Vydhourie/AdaThresh.git

In the following, we focus on key experimental results on circulant graphs (see Section[A.6] for discussions on
circulant graphs).

A.7.3 More Simulations for Horvitz-Thompson estimator with adaptive exposure thresholds

In Figure[7] we simulate outcomes from the linear model with ¢(z;, e;) = g(z:) + f(e:), ai = 10, g(z:) =
Bz; = 10z;, f(e;) = ~yes, and fixed €; generated from N (0, 1) for a 1000-node 2nd-power cycle graph.

A.7.4 Simulations for non-linear potential outcomes models

We investigate the robustness of our estimator to potential outcomes models that are non-linear in the exposure.
In particular, we consider simulations from the sigmoid, and sine exposure functions. In Figure[8] we display
the performance of our estimator under a sigmoid (left) and sine (right) interference function, respectively.
Our adaptive threshold Horvitz-Thompson estimator (AdaThresh) generally improves upon other existing
Horvitz-Thompson estimators.

A.7.5 Simulations for Difference-in-Means estimator with adaptive exposure thresholds
‘We consider our approach using the Difference-in-Means estimator incorporating exposure thresholds:
YioaHz=Le>h}Y: 300, 1{z =0,e <1-h}Y;

Z?:l l{Zi = 1761' 2 h} Z?:l l{Zi = 0,€i § 1-— h} ’

(14)

TpiM;,, =

‘We use the following bias estimator:

s s~ (T—e)Anl{zi=1,e; > h} <~ eifnl{zi =0,e; <1—h}
bEn) =2 S {zi=1,e >h} + ; S 1{zi=0,e; <1—h}’

where 4 is the linear regression coefficient for the exposure variable.

=1

We use the following variance estimator, decomposing it into its treatment and control parts:

o(7) =

nil(UT'F'UC)

where

n

n 2
1 1
or = ;Z (Yil{zi =1,e;,>h}— n—ZYil{zi =1, > h})
1 =1 1 =1
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Figure 8: RMSE (normalized by the ATE) induced by the different Horvitz-Thompson estimators.
We take ¥ (z;, ;) = g(z;) + f(e;). Left: 2nd-power cycle graph under unit-level Ber(p), p = 0.5,
randomization under sigmoid f(e;) = /(1 + exp (—10(e; — p))). Right: 2nd-power cycle graph
under unit-level Ber(p), p = 0.5, randomization with f(e;) = (1 —sin(rw-e;))) being a sine function.
We focus on varying the ratio v/ as we consider a fixed graph, with n = 1000. The error bars are
two times the standard deviation.

where ny := Y ., 1{z; = 1,e; > h},and

n

2
X 1 1 <
Uc:Z(Yil{zi:O,eiSl—h}—nOZYil{zi:O,eigl—h}>

i=1 i=1
where ng := Y ., 1{z; = 0,e; <1 —h}.

We compare the performance of our adaptive estimator to the vanilla difference-in-means estimator, the difference-
in-means analogue of the vanilla Horvitz-Thompson estimator, and the difference-in-means estimator with a
threshold plugin via Lepski’s method. We write these out below:

e vanilla difference-in-means estimator
Yoy Yz =11y 370 1{z = 0}Y;

TbiMy = = n (15)
0 i Hezi =1} ey Hzi =0}
¢ difference-in-means estimator at threshold h = 1
Y Ha =l =Y X m =0 =0},
Toim, = 25 - === (16)
S Ha=1e =1} Y1 1{zi=0,e; =0}
¢ difference-in-means estimator at threshold iLLepski where
hiepsi := min{h € H : Nprepsnl (k') # 0}, (17)
with
I(h) = [%D[Mh — QS/DE/(’fbth), 7A'D1Mh + QS/DE/(’?'DIM;L)L (18)
and

n n

P Z 1{zi = 1,€ > hiepsi} v Z 1{zi = 0,e; <1 — hiepsi}
epskiDIM — n ~ [ n ~ k3
o 2o Hzi = 1,6 > hiepa} o 2o Hzi =0,ei <1 — hiepai}
(19)

In Figures[@]and[T0] we display the performance of our adaptive threshold (AdaThresh) Difference-in-Means
estimators in comparison to other estimators. AdaThresh improves upon fixed threshold Difference-in-Means
estimators.

A.7.6 Simulations using local linear regression

We extend our global linear regression approach to a local linear regression one to estimate the rate of change of
the bias. We write the new bias estimators for the Horvitz-Thompson and Difference-in-Means estimators. We
illustrate the performance of the local linear regression in the settings above, as well as settings that significantly
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Figure 9: RMSE (normalized by the ATE) under the linear model with ¢ (z;,e;) = g(z;) + f(e;),
a; = 10, g(z;) = Bz = 10z;, f(e;) = 7e;, and fixed ¢; generated from A (0, 1), induced by the
different Difference-in-Means estimators. We focus on varying the ratio v/ as we consider a fixed
graph. Left: Cycle graph under unit-level Ber(0.5) randomization. Center: 2nd-power cycle graph
under unit-level Ber(0.5) randomization. Right: 2nd-power cycle graph under cluster-level Ber(0.5)
randomization with cluster sizes 5 (=2k + 1). The error bars are two times the standard deviation.
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Figure 10: RMSE (normalized by the ATE) induced by the different Difference-in-Means estimators.
We take ¥(z;, ;) = g(z;) + f(e;). Left: 2nd-power cycle graph under unit-level Ber(p), p = 0.5,
randomization under sigmoid f(e;) = v/(1 + exp (—e;)). Right: 2nd-power cycle graph under
unit-level Ber(p), p = 0.5, randomization with f(e;) = (1 — sin(7 - €;))) being a sine function. We
focus on varying the ratio -/ as we consider a fixed graph, with n = 1000. The error bars are two
times the standard deviation.
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Figure 11: RMSE (normalized by the ATE) under the linear model with 1(z;, €;) = g(z;) + f(e;),
a; = 10, g(z;) = Bz = 10z;, f(e;) = 7e;, and fixed ¢; generated from A (0, 1), induced by the
different (local) Horvitz-Thompson estimators. We focus on varying the ratio v//3 as we consider
a fixed graph, with n = 1000. Left: Cycle graph under unit-level Ber(0.5) randomization. Center:
2nd-power cycle graph under unit-level Ber(0.5) randomization. Right: 2nd-power cycle graph under
cluster-level Ber(0.5) randomization with cluster sizes 5 (=2k + 1). The error bars are two times the
standard deviation.

deviates from linearity. We note that local and global linear regression involve distinct bias-variance trade-offs,
which we do not pursue here as they fall outside the scope of the paper.

We write the bias estimator for the Horvitz-Thompson estimator as:

n ~(h) n 2 (1—h)
aL 1 1—e)yn '1{zi=1,e; > h 1 €iYn 1{z;, =0,e; <1—h
i = L 30 A= et 20}, 15~ el Py )

P{z = 1,e; > h} n P{z =0,e;<1—h}

=1 i=1

where ’yr(f”) and &Sih) are the local linear regression coefficients for the exposure variable in the intervals [, 1],

and [0, 1 — h], respectively.
Similarly, write the bias estimator for the Difference-in-Means estimator as:

S A ~ (1 — ei)’yy(lh)l{zi = 1731' 2 h} =~ ei’%(ll_h)l{zi = 0,61' S 1-— h}
b =
() =2 S zm=Le=ht Z: Yz =0e;<1—h}

i=1

where ’yfbh) and f?ﬁl_h) are the local linear regression coefficients for the exposure variable in the intervals [h, 1],

and [0, 1 — h], respectively.
Figures [T} [T3] [[2] and[T4] display how local linear regression bias estimates perform.

A.8 Discussion on relaxing the bounded degree assumption

In more general settings, we can relax Assumption 3] by partitioning the exposures into exposure bins E,
b=1,2,..., K, each associated with an “effective exposure” ;. That is, [0,1] = E1 U E; U ... U Ek, with
E;NE; =0,foralli # j € [K]. In particular, in the weighted graph setting, we can take the effective exposure
of unit ¢, & = &, if and only if ¢ € Ej, and such that exposure positivity, for all ¢ € [n], » € {0,1}, and
s €[0,1],P(z; =7, = s) > 0, is satisfied. For instance, for uniformly sized bins with associated effective
exposures €, that well approximate e;, |Fy| = 1/K. Let B, (%) denote the ball of radius r around unit ¢, such
that it decomposes, |B1(i)| = | B (i)| + |B1" (i)| for all i € [n]. Bf (i) is the ball of radius 1 around unit 4
with strong connections 75, and | B{" (i) be the ball of radius 1 around unit 4 with weak connections 53 such

n;
5

such that the exposure bins well approximate the true exposures. Additionally, for all ¢ € [n], we require that
|Bf (i)] = O(1). With an abuse of notation, write e; () to mean the exposure of unit i as a function of the
treated units in the subset N' C Bj (7). Then, we require also that e;(B7 (i)) = Q(e;(B1(i))). Additionally,
B{ (i) must satisfy the three conditions around “affinity sets” in [Chandrasekhar et al., 2023|] generalizing
[Aronow and Samiil 2017], with an additional condition that the sum of the affinity set covariances is 2(n), in
the bias terms as well as the variance terms in the MSE. This gives us uniform control on the estimated MSE

that sup, — 00. We choose our partition Bi, ... B, for some K, as a function of §;’, and B{/V (), 1 € [n],
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Figure 12: RMSE (normalized by the ATE) under the linear model with 1(z;, ;) = g(z;) + f(es),
a; = 10, g(z;) = Bz = 10z;, f(e;) = 7e;, and fixed ¢; generated from A (0, 1), induced by the
different (local) Difference-in-Means estimators. We focus on varying the ratio v/ as we consider
a fixed graph, with n = 1000. Left: Cycle graph under unit-level Ber(0.5) randomization. Center:
2nd-power cycle graph under unit-level Ber(0.5) randomization. Right: 2nd-power cycle graph under
cluster-level Ber(0.5) randomization with cluster sizes 5 (=2k + 1). The error bars are two times the
standard deviation.
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Figure 13: RMSE (normalized by the ATE) under the linear model with 9 (z;, e;) = g(2;) + f(es),
a; =10, g(2;) = Bz; = 10z, and fixed ¢; generated from A(0, 1), induced by the different (local)
Horvitz-Thompson estimators. Left: 2nd-power cycle graph under unit-level Ber(0.5) randomization
under sigmoid f(e;) = /(1 + exp (—e;))). Right: 2nd-power cycle graph under unit-level Ber(0.5)
randomization with f(e;) = (1 — sin(x - ¢;))) being a sine function. We focus on varying the
ratio /3 as we consider a fixed graph, with n = 1000. The error bars are two times the standard
deviation.
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Figure 14: RMSE (normalized by the ATE) induced by the different (local) Difference-in-Means
estimators. We take 1(z;, ;) = g(z;) + f(e;). Left: 2nd-power cycle graph under unit-level Ber(0.5)
randomization under sigmoid f(e;) = v/(1 + exp (—e;))). Right: 2nd-power cycle graph under
unit-level Ber(0.5) randomization with f(e;) = (1 — sin(r - ¢;)) being a sine function. We focus
on varying the ratio /3 as we consider a fixed graph, with n = 1000. The error bars are two times
the standard deviation.

of the estimator with respect to the true MSE of the estimator and 3, b = 1,. .., K, and all the results follow
through. These conditions subsume the approximate neighborhood interference (ANI) condition in
analogously to a-mixing conditions in spatial settings, such as in [Jenish and Pruchal [2009]], when the
maximum clique size in the network does not grow. Indeed, when the maximum clique size in the network does
not grow, we can embed the 1)-dependent network in [Leung}, 2022 in a lattice structure of a random field in a
fixed-dimensional Euclidean space with a-mixing just as in [Jenish and Pruchal [2009].

A.9 Discussion on ‘“double-dipping”

Since our approach involves “double-dipping” into the data, we need to make sure that there is no overfitting

that occurs. The authors of [Chernozhukov et al.l [2018]}, [Belloni et al.,[2013]}, and [Kennedy}[2022] describe

this in more detail. While sample-splitting would simply take care of this in the case of independent data, it
does not apply to our setting where the data are dependent, as modeled by the network. One could potentially
leverage results under the dependent-data setting, such as[Hart and Vieu|[1990], but this is outside the scope
of our paper. We propose to use our approach on the whole sample data and argue this via empirical process
theory arguments. In particular, we can think of our threshold & as a nuisance parameter, and we show that our
estimator for h has a simple enough associated MSE function class. We note that it is sufficient to show that we
are not overfitting by showing that the rate of convergence of the estimated MSE under h converges to the true
MSE under the optimal threshold, under the best possible linear fit, h* at least at a O(n’l/ 2)—rate.

Proposition A.5. Suppose that Assumptions|2) and[@3)are satisfied. The corresponding bias terms in the
estimated and true MSE, M,b“ and MTbL, under “double prediction”, satisfy

Bl sup Vi (N () = M) = ML) = ME(RY)) | =0,
5/2<|h —hn|<§

asé — 0.

Suppose that Assumptions 2} A2} and 3] are satisfied. We aim to show that the corresponding biases in the

MSE terms under “ double prediction” satisfy

|, VA (0 - k) 80 - 20) | 0
§/2<|h* —hy|<6

as 6 — 0, where x; ranges over the set X; of possible fractions of degree .
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Proof to Proposition[A.3] We begin by considering the empirical process in question. We write out

( nyhlfell{zz—lel>h} Z’yhlell{zl—lez>h}>

P{z; =1,e; > h} P{z; =1,e; > h}

_’_Zl{zl—l ez>h}Y2( 1y

T

1{zi =1,e; > h}1{z; = 1,e; > h}Y;Y]
Py Maslazhi =L (e -1y
i=1 j=1 3 ]
J#i
“1{z;=0,e; <1—-h}Y? 1
+Z n2m0 : (ﬁ_l)
i=1 @
1{z =0,e; <1—h}1{z; = 0,e; <1 — h}Y;Y;  my
+ ZZ n277670 ’ (ﬂ,oz;.o -1
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2 <& 1 1
_ﬁz > (1{21_1el>h}1{zj—06]§1—h}YY)Wﬁo—ﬁ)
=1 je[n]im}9>0 J ij

2 & lzizl,eiZth 1{z; = 0,e; <1 —h}Y}
+ 2y % ({ } i j )

27ri1 27r
=1 je[n)m} =0

The absolute Horvitz-Thompson bias estimate at threshold & (and at 1 — h) is

An (1 ell{zl—lez>h} 7n621{2i206i<1—h}
Z P(z; =1,e; > h) Z P(z; =0,e; <1—h) (20

Then, for every h, using the identity 2° — y* = (x + y)(z — y), and defining U,, € R such that U,, > M2 (h)
for all h (note that there exists such a U, < oo by Assumptions 2} [4.2), we have

B () — M2 (n) < 20 () = b°(50)) + () — b (30))

where, from Section@ the difference between the bias estimate and the true bias induced by the best average
linear fit is

8( )*b Zvn1*611{21—161>h}7lzz I 1{:Ez>h} (17131)

P(z; =1,e; > h) n < icxs € XsNay >h|

vnell{zz =0,e; <1—h} 1 1{z; <1-—h} '
Z P(z; =0,e; <1—h) nzz \mi:xieXiﬁxigl—hﬂn(xz)

where ~,, is the slope of the best average linear fit, and where x; ranges over the set X; of possible fractions of
degree 1.

We now proceed to consider each of the terms in IS(%h) —b* (71, above. Each of the parentheses satisfies Donsker
conditions. Indeed, under Assumptions 2} -2} and they are sample-mean terms with uniformly bounded

coefficients, and 4,, converges to 7;; at a rate of O(n~'/?), which we compose with 3b* (h) (see Section 3.4.3.2.
in [Van Der Vaart et al.| 1996]). Thus, the terms in M&(h) — ME(h) have bounded entropy integral. Under our
bounded-variation potential-outcome model (Assumption IEI), we have that log N[ (e, 0% Ly(P) < K (%) s

which gives us j(d, eh Ly(P)) < 5'/2 [[Van Der Vaart et al.,|1996] (see also Example 19.11 in [Van der Vaart,
2000]).

Therefore, putting these together, we have the following maximal inequality for the bias terms

E
5/2<|h* —hn|<8

oV () < M) - G0 - M) o

M) (22)
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with J(8, 0%, Lo (P)) < 6%/2,
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We have proven our theoretical results in Sectiond] and demonstrated our experimental
results in Section

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations and the scope of claims being made in Remark[4.4] Section[5] and
in Section

Guidelines:

¢ The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ’Limitations” section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

¢ While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer:[Yes]

Justification: We have provided the full set of assumptions and proofs for the theoretical results in
Section[4] [A23] and
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary information to reproduce main experimental results of the paper
in Sections[5} [A.2.3] and[A77] including data generation, methods used for estimation, parameters for
Monte Carlo simulations, etc.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: To preserve anonymity at the submission stage, we submit anonymized data and code in
the supplementary zip folder. We intend to add a non-anonymous URL in the paper past the review
stage.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/|
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

» The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification:We include these details in Sections[3] and [A.7]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars in all the relevant sections, i.e. Sections[3} and[A7]
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer ”Yes” if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer:[Yes]

Justification: We provide necessary information on computer resources to reproduce the experiments

in[A7
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: Yes, we broadly describe the impacts of our research in Section|[T]
Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: We do not release any data or models that have high risk of misuse.
Guidelines:

¢ The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We have cited all original prior work, and data used, to the best of our knowledge.
Guidelines:

¢ The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: We are not releasing new assets as of now.
Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: does not involve crowdsourcing nor research with human subjects
Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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