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ABSTRACT

We propose a distributional framework for offline Inverse Reinforcement Learning
(IRL) that jointly models uncertainty over reward functions and full distributions
of returns. Unlike conventional IRL approaches that recover a deterministic re-
ward estimate or match only expected returns, our method captures richer structure
in expert behavior, particularly in learning the reward distribution, by minimizing
first-order stochastic dominance (FSD) violations and thus integrating distortion
risk measures (DRMs) into policy learning, enabling the recovery of both reward
distributions and distribution-aware policies. This formulation is well-suited for
behavior analysis and risk-aware imitation learning. Theoretical analysis show
that the algorithm converge with O(ε−2) iteration complexity. Empirical results
on synthetic benchmarks, real-world neurobehavioral data, and MuJoCo control
tasks demonstrate that our method recovers expressive reward representations and
achieves state-of-the-art imitation performance.

1 INTRODUCTION
Inverse Reinforcement Learning (IRL) aims to infer an expert’s underlying reward function and
policy from observed trajectories collected under unknown dynamics. IRL has been successfully
applied in diverse domains, including robotics (Vasquez et al., 2014; Wu et al., 2024a), animal be-
havior modeling (Ashwood et al., 2022; Ke et al., 2025), autonomous driving (Rosbach et al., 2019;
Wu et al., 2020), and fine-tuning of large language models (Zeng et al., 2025). A pioneering work
in this field, the Maximum Entropy IRL (MaxEntIRL) framework (Ziebart et al., 2008), formulates
reward learning as a likelihood optimization problem and interprets expert policies as Boltzmann
distributions over returns. Follow-up works have extended this framework to improve reward infer-
ence stability and generalization (Arora & Doshi, 2021; Garg et al., 2021; Zeng et al., 2022).

Despite these advances, most IRL methods assume that the expert’s reward function is determin-
istic, thereby recovering only a point estimate, i.e., r(s, a) ∈ R for every state s and action a.
This assumption, however, limits expressiveness in real-world settings where reward signals are
inherently stochastic. For instance, in robotic manipulation tasks involving deformable or fragile
objects (Yin et al., 2021), contact uncertainty introduces reward variability for identical state-action
pairs—variability that directly influences the learned policy’s robustness and safety. Similarly, in
neuroscience, dopaminergic neuron activity has been shown, as reward signals, to drive animal
behavior via RL policies (Markowitz et al., 2023b). Yet, dopamine signals exhibit significant trial-
to-trial variations, suggesting that behavior may arise from an underlying stochastic reward distri-
bution. These challenges are further amplified in offline IRL settings, where interaction with the
environment is unavailable and the algorithm must fully rely on fixed demonstrations.

These examples highlight that in many real-world scenarios, demonstrations may be generated under
stochastic reward functions, i.e., r(s, a) is a random variable. This motivates the need to go beyond
point estimates and instead recover the full distribution of rewards. Prior works such as Bayesian
IRL (BIRL) methods infer a posterior over reward parameters using Markov chain Monte Carlo
(MCMC) (Ramachandran & Amir, 2007), Maximum a posteriori (MAP) estimation (Choi & Kim,
2011), or variational inference (Chan & van der Schaar, 2021), but primarily capture uncertainty
over the parameters of a deterministic reward function. More importantly, BIRL still optimizes the
expected return, following the MaxEntIRL framework, failing to exploit the richer structure present
in the full return distribution induced by stochastic rewards. In other words, if reward learning in
IRL is based solely on maximizing expected return, then the resulting policy is influenced only by
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the mean and remains insensitive to the variance or higher-order moments of the reward. As a result,
such an approach provides insufficient signal for accurately estimating the full reward distribution.

However, it remains unclear how to effectively learn reward distributions directly from expert
demonstrations. Conventional MaxEntIRL fails to capture higher-order moments of the return, mo-
tivating the use of statistical distances between return distributions. Yet, such approaches introduce
significant challenges for policy learning, the dual problem to reward inference, because most statis-
tical distances couple the estimated return distribution with the (unknown) expert return distribution.
This coupling exacerbates compounding errors and prevents leveraging established distributional RL
techniques. Consequently, a principled framework is needed that enables reward distribution learn-
ing while simultaneously supporting return distribution estimation in the offline IRL setting.

To this end, we introduce Distributional Inverse Reinforcement Learning (DistIRL), a novel frame-
work that explicitly models both the distributional nature of reward and the return. This allows us to
capture stochasticity not only from transitions and policies but also from the reward function itself.
Specifically, for reward learning, instead of matching expected returns as in MaxEntIRL, we pro-
pose to match the full return distribution using a First-order Stochastic Dominance (FSD) criterion.
This allows us to capture not only the mean but also higher-order moments of the return distribution
and thus capturing the full landscape of reward distributions, leading to a richer and more faithful
estimate of the underlying reward structure. To the best of our knowledge, this is the first work that
learn the full distribution of the reward function in a principled manner.

It is important to note that while our framework incorporates risk-sensitive policy learning, risk
sensitivity primarily serves as a mechanism that enables robust reward distribution learning in the
offline IRL setting. The connection is explained in detail in Sec. 4.2. Our contributions in this paper
are summarized as follows:
(1) Reward Distribution Learning. We propose an intuitive framework for learning reward distri-
butions in the offline IRL setting. With FSD objective emphasizing the match of the entire distribu-
tion, we are able to learning reward distributions beyond the first moment.
(2) Distribution-aware Policy Learning. Our algorithm learns the return distribution and recov-
ers the distribution-aware policy, extending the modeling capability of IRL frameworks towards a
broader range of behavior analyses and facilitating imitation learning in risk-sensitive scenarios.
(3) Theoretical Analysis. We develop rate of convergence analysis for the proposed algorithm for
solving DistIRL, which shows that the algorithm converge with O(ε−2) iteration complexity.
(4) Empirical Validation. We demonstrate that our method recovers meaningful reward distribu-
tions on synthetic and real-world datasets, including neurobehavioral data (first-time studied for
IRL). Our algorithm also achieves state-of-the-art performance on high-dimensional robotic control
tasks in offline IRL settings.

2 RELATED WORK
Inverse Reinforcement Learning Traditional offline IRL algorithms recover a reward function by
matching expert feature expectations or maximizing an entropy-regularized likelihood. Apprentice-
ship learning (Abbeel & Ng, 2004) and MaxEntIRL (Ziebart et al., 2008; 2010) infer a deterministic
reward whose induced policy reproduces expert behavior in expectation. Subsequent deep IRL vari-
ants incorporate neural network function approximators in the online setting (Ho & Ermon, 2016;
Jeon et al., 2018; Wulfmeier et al., 2015; Ni et al., 2021; Garg et al., 2021; Zeng et al., 2022; Gleave
& Toyer, 2022; Viano et al., 2021; Bloem & Bambos, 2014; Wu et al., 2024b; Zhan et al., 2024),
where a subset of work using a variant of this framework, Maximum Casual Entropy IRL (MCE-
IRL), emphasizing the casual relationship in its nature, in which the policy further interacts with
the environment but still match only the expected return. As a result, these approaches cannot cap-
ture risk preferences or higher-order statistics of the reward distribution present in many real-world
tasks. In addition, online IRL methods require interactive access to a simulator during training,
which is unsuitable for offline settings where reproducing the environment is undesirable or infea-
sible, e.g. modeling mouse behavior in a maze. Finally, while recent work has explored risk-aware
policy learning within the IRL framework (Singh et al., 2018; Lacotte et al., 2019; Cheng et al.,
2023), these approaches still assume a deterministic reward model, failing to capture the stochastic-
ity of rewards in many real-world problems. We show a detailed comparison of IRL methods across
modeling assumptions in Appendix A.

Bayesian Imitation Learning Bayesian IRL (BIRL) methods infer a posterior distribution over
reward parameters to quantify uncertainty in reward estimation. Ramachandran and Amir (Ra-
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machandran & Amir, 2007) introduces the first Bayesian IRL, using MCMC to sample from the
reward posterior under a Boltzmann-rationality likelihood. Follow-up works use the same frame-
work to handle larger state spaces and richer reward priors (Choi & Kim, 2011; Levine et al., 2011;
Chan & van der Schaar, 2021; Li et al., 2023). Although these methods capture parameter uncer-
tainty, they still rely on expected-return assumptions and do not exploit the full return distribution.
Moreover, BIRL with a reward distribution fails to model continuous action spaces as obtaining the
likelihood is computationally intractable for passing the gradient to the reward posterior. In this
work, we propose a scalable algorithm framework for learning the full reward distributions.
Distributional Reinforcement Learning DistRL extends classical value-based methods by mod-
eling the full distribution of returns rather than only their expectation. Early work, such as Categor-
ical DQN (C51) (Bellemare et al., 2017) and Quantile Regression DQN (QR-DQN) (Dabney et al.,
2018b), demonstrates that learning a distributional critic improves stability and sample efficiency.
More recent advances include Implicit Quantile Networks (IQN) (Dabney et al., 2018a), Implicit
Q-Learning (Kostrikov et al., 2021), Multivariate Distribution RL (Wiltzer et al., 2024), and Diffu-
sion Process for RL (Hansen-Estruch et al., 2023; Li et al., 2024). Note that DistRL still inherently
maximizes the expected return. Risk-sensitive extensions (Lim & Malik, 2022; Schneider et al.,
2024) that optimize risk measures like CVaR, show that one can directly shape policies by tailoring
decisions to specific regions of the return distribution. While these methods are widely adopted in
RL, the IRL counterparts (Lee et al., 2022; Karimi & Ebadzadeh, 2025) with a distributional critic
are limited in scope. These methods use a distributional critic to model return distributions and ex-
tract expert policies, but still assume deterministic reward functions, and take on MaxEntIRL as the
blueprint, i.e., matching the mean of the return distribution.

3 PRELIMINARIES

We model the environment as a discounted Markov Decision Process (MDP) (S,A, P, r, γ), where
S denotes the state space, A the action space, P (s′|s, a) the transition kernel, and γ ∈ [0, 1) the
discount factor. The reward function is a (integrable) random variable r : (Ω,F ,P) → (R,B(R)),
so that for each state–action pair (s, a), the reward r(s, a) induces a probability distribution over
(R,B(R)). A policy π(a|s) generates a trajectory (s0, a0, s1, a1, . . .), and the associated (dis-
counted) return is the random variable Zπ =

∑∞
t=0 γ

t r(st, at).

3.1 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

Given demonstrations {(st, at)}t≥1 collected by an unknown expert policy πE , MaxEntIRL (Ziebart
et al., 2008) aims to recover the unknown policy, and the corresponding reward function r which the
policy is optimized to. Specifically, we consider the following formulation (Ho & Ermon, 2016):

max
π

min
r

Edπ [r(s, a)]− EdπE [r(s, a)] +H(π) + ψ(r), (1)

where H := Edπ[− log π(a|s)] denotes the entropy, and ψ is a general convex regularizer. This
formulation reduces to MaxEntIRL if ψ = 0. If ψ = KL(q(r)||p0(r)), it can be seen as a BIRL
framework, since the optimal policy follows a Boltzmann distribution of the action-values1.

4 DISTRIBUTIONAL INVERSE REINFORCEMENT LEARNING FRAMEWORK

In our model, we treat the reward as a distribution rather than a deterministic function. During opti-
mization, the first two terms in Eq. 1, Edπ [r(s, a)]− EdπE [r(s, a)], enforce mean dominance—that
is, the learned reward should yield a higher expected return for the expert policy than for any arbi-
trary policy. At optimality, this difference becomes zero, indicating mean matching between expert
and agent returns. However, if the reward is inherently a distribution, mean matching alone fails
to capture the relationship between the expert’s return distribution and the agent’s in its entirety.
This leads to a loss of higher-order information in the reward. To accurately model the full reward
distribution, we must impose a distributional form of dominance during optimization, ensuring that
the entire return distribution is aligned at optimality, not just the mean.

Let’s consider a notion of order in term of the entire distributions.
Definition 4.1 (First-Order Stochastic Dominance (FSD) (Hadar & Russell, 1969)). LetX and Y be
real-valued integrable random variables with cumulative distribution functions FX and FY . We say
that X first-order stochastically dominates Y , written as X ⪰FSD Y , if FX(z) ≤ FY (z), ∀ z ∈ R.

1The Kullback-Leibler divergence is convex in its first argument when the second argument is fixed.
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Figure 1: Illustration of quantile func-
tions and first-order stochastic domi-
nance (FSD).

The concept of FSD is illustrated in Fig. 1. If we aim
for X ⪰FSD Y , then the shaded region indicates a vio-
lation of this condition. FSD has an equivalent definition
relating to utility functions, which further implies mean
dominance.
Proposition 4.2 (Theorem 1-2 (Hadar & Russell, 1969)).
For real-valued X and Y , the following are equivalent:

1. FX(z) ≤ FY (z) for all z ∈ R.

2. E[u(X) ] ≥ E[u(Y ) ] for every non-
decreasing utility function u : R → R.

Corollary 4.3 (Mean Dominance). If X ⪰FSD Y , it fol-
lows that E[X] ≥ E[Y ], as the identity utility u(x) = x
is non-decreasing.

We model the reward as a conditional distribution, rt ∼
q(·|st, at), and define the random return for a trajectory
(s0, a0, . . . ) sampled from policy π as Zπ =

∑∞
t=0 γ

trt. We now introduce the distributional
counterpart to Eq. 1, the objective for distributional IRL, expressed as

max
π

min
r

L(π, r) := max
π

min
r

∫ ∞

−∞
[FZE (z)− FZπ (z)]+dz +H(π) + ψ(r), (2)

where ZE denotes the return distribution of the expert policy.

4.1 LEARNING REWARD DISTRIBUTION THROUGH STOCHASTIC DOMINANCE

From Eq. 2, the objective of the reward function is

min
r

LFSD(π, r) + ψ(r) = min
r

∫ ∞

−∞
[FZE (z)− FZπ (z)]+dz + ψ(r). (3)

This objective minimizes the violation of FSD, drawing inspiration from the Kolmogorov-Smirnov
(K-S) test (Massey Jr, 1951). To model the reward distribution in a principled manner, we treat
LFSD(π, r) as an energy function that scores how compatible a proposed reward r is with the
expert demonstrations. In particular, we define a likelihood function over the expert demon-
strations D using the Energy-Based Model (EBM) formulation (LeCun et al., 2006): p(D|r) ∝
exp (−LFSD(π, r)) , so that reward functions that yield small FSD violations are exponentially more
likely under the expert data. This construction is natural here because FSD does not provide an
explicit probabilistic model, but does provide a calibrated energy landscape that reflects goodness-
of-fit. A more detailed discussion can be found in Appendix B.3.

We also introduce a prior distribution p0(r), which reflects our initial belief before observing any
data. The goal is to infer the posterior distribution p(r|D) using Bayes’ rule. As direct inference un-
der the EBM formulation is generally intractable, we adopt the variational inference framework (Blei
et al., 2017) by introducing a variational distribution qϕ(r|s, a), parameterized by ϕ, to approximate
the posterior and optimize the evidence lower bound (ELBO):

ELBO = Eqϕ(r|s,a) [log p(D|r)]−KL (qϕ(r|s, a) ∥ p0(r)) . (4)
Substituting the energy-based likelihood into the ELBO yields:

min
ϕ

Lr(ϕ) := min
ϕ

Eqϕ(r|s,a) [LFSD(π, r)] + KL (qϕ(r|s, a) ∥ p0(r)) . (5)
Notice the natural relationship between KL and ψ. Formally, we learn the reward distribution by
solving Eq. 5. To compute the gradient of the first term, we apply the Inverse Transform Sampling
technique (Devroye, 2006). We use the empirical quantile to approximate the quantile of the return.
Specifically, using the change of variable formula, and the relation between CDF and quantile, we
have ∫ ∞

−∞
[FZE (z)− FZπ (z)]+dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv. (6)

We provide a short proof of the above relation in Appendix C.1. To approximate F−1
π , we draw N

samples {zn} by Monte Carlo sampling zn =
∑∞

0 γtrt, rt ∼ qϕ(·|st, at), and form the empirical
quantile using its order statistics F−1

Zπ ≈ (z(−N), . . . , z(1)). As a result, minimizing Lr(ϕ) general-
izes the usual IRL objective of matching expected returns by aligning higher-order moments beyond
matching the mean.
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4.2 RISK-AWARE POLICY LEARNING

Once the inner minimization over r yields a fixed reward distribution, the policy, parameterized by
φ, is updated by maximizing the following objective:

max
φ

Lπ(φ) = max
φ

∫ 1

0

[F−1
Zπφ (v)− F−1

ZE (v)]+dv +H(πφ). (7)

Let’s define I(v) := 1F−1

Z
πφ (v)≥F−1

ZE (v). Fig. 1 shows that I(v) takes the value 1 in regions where
FSD is violated (shaded area), and 0 otherwise. We then rewrite the objective in Eq. 7 as∫ 1

0

(
F−1
Zπφ (v)− F−1

πE (v)
)
I(v)dv +H(πφ). (8)

Note that the indicator function I depends on the current policy, the expert policy, and the quantile
level v. Conceptually, I assigns weight only to regions of the return distribution where FSD is
violated. The policy now aims to increase these FSD violations—encouraging the agent to obtain
higher return samples in those regions. This leads to a maximization scheme that is inherently
risk-aware, as it requires reasoning over the full return distribution rather than just its expectation.

Unfortunately, directly optimizing Eq. 7 is intractable, as the indicator function I is not observable
during training. To address this, we take a broader perspective on risk-aware policy learning and pro-
pose replacing I(v) with a risk measure that retains the goal of encouraging risk-sensitive behavior
while yielding a tractable objective. Furthermore, we show that the resulting surrogate objective
provides a weaker form of optimality, but under certain conditions, it can theoretically achieve the
same optimum as Eq. 7. To present our new objective, we need a few essential concepts.
Definition 4.4 (Distortion function). A distortion function ξ is a non-decreasing function ξ :
[0, 1] → [0, 1] such that ξ(0) = 0, ξ(1) = 1.
Definition 4.5 (Distortion Risk Measure (DRM) (Dhaene et al., 2012)). For an integrable random
variable X , and a distortion function ξ, a Distortion Risk Measure Mξ is defined as

Mξ(X) =

∫ 1

0

F−1
X (v)dξ̃(v), (9)

where ξ̃ = 1− ξ(1− v) ≥ 0 is the dual distortion function.

Common examples of DRMs and distortion functions are listed in Table 1. These measures offer
various ways to quantify risk based on the return distribution. Intuitively, when ξ̃ is concave, it places
greater emphasis on lower returns, thereby encouraging risk-averse behavior. To induce risk-aware
policies using distortion ξ(v), we need to maximize the DRM defined in Eq. 9.

Table 1: Examples of distortion risk measures.

Risk Measure ξ(v) Interpretation

CVaRα min (v/α, 1) Average of worst α-fraction of outcomes
Wang’s Transform Φ(Φ−1(v) + λ) λ > 0 implies risk-aversion, λ < 0 risk-seeking

Building on the above definitions, we propose replacing I(v) with ξ̃(v) in Eq. 8, resulting in:

max
φ

∫ 1

0

(
F−1
Zπ (v)− F−1

ZE (v)
)
dξ̃(v) +H(π) = max

φ

∫ 1

0

F−1
Zπ (v)dξ̃(v) +H(π). (10)

The equality is obtained as the expert policy does not depend on φ. We denote the final objective as

max
φ

Lπ(φ) := max
φ

Mξ(Z
πφ) +H(πφ) = max

φ

∫ 1

0

F−1
Zπφ (v)dξ̃(v) +H(πφ), (11)

where Mξ is a chosen DRM with a distortion function ξ.

Relation to Eq. 7. Additionally, we know that X ⪰FSD Y ⇒ Mξ(X) ≥ Mξ(Y ) (Sereda et al.,
2010). Then naturally one wonders what’s the sufficient condition for FSD? We observe that the
converse implication requires a stronger condition.
Proposition 4.6. Mξ(X) ≥Mξ(Y ) for every distortion function ξ implies X ⪰FSD Y .

5
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The proof is straightforward by observing that Mξ(X) −Mξ(Y ) =
∫ 1

0
(F−1

X (v) − F−1
Y (v))dξ̃(v)

and the fact that ξ̃(v) ≥ 0. We present a short proof in Appendix C.1. This implies that if we
solve maxπφ

∫ 1

0

(
F−1
Zπφ (v)− F−1

E (v)
)
dξ̃(v) +H(πφ) for every distortion function, we obtain the

solution to Eq. 7. However, since optimizing over all utility conditions is intractable, our proposed
objective serves as an approximation using a specific DRM. Nonetheless, under the conditions of
the proposition, this surrogate objective can theoretically achieve the same optimality as Eq. 7.
4.3 PRACTICAL ALGORITHM

Algorithm 1: A DistIRL method with FSD objective
Input: Expert data D = {(sEt , aE

t )}, prior p0(r), risk measure ξ, step sizes ηθ, ηφ, ηϕ

Output: Reward distribution qϕ(r|s, a); policy πφ(a|s)
1 Initialize parameters of reward network ϕ, policy φ, and critic θ;
2 for k = 1 to K do
3 Sample a mini-batch {(sEt , aE

t )} from D;
4 foreach (sEt , a

E
t ) in mini-batch do

5 For each sEt , sample at ∼ πφ(·|sEt ), rt ∼ qϕ(·|sEt , at), r
E
t ∼ qϕ(·|sEt , aE

t );

6 Compute return samples Zπk , ZE ;
7 Critic update via quantile regression (Eq. 20): θk+1 ← θk − ηθ∇LQR(θk);
8 Policy update with distortion risk measure (Eq. 11): φk+1 ← φk − ηφ∇Lπ(φk);
9 Reward distribution update via FSD loss (Eq. 5): ϕk+1 ← ϕk − ηϕ∇Lr(ϕk).

To enable tractable and expressive modeling of reward uncertainty, we parameterize the reward
distribution qϕ(r|s, a), for example, using Azzalini’s skew-normal distribution (Azzalini & Valle,
1996): qϕ(r|s, a) = SN (µϕ(s, a), σ

2
ϕ(s, a);αϕ(s, a)), where the mean µϕ(s, a), standard deviation

σϕ(s, a) and the skew parameter αϕ(s, a)) are outputs of a neural network with parameters ϕ. This
choice allows for efficient sampling and computing regularization when using a standard normal
prior. During training, for each state-action pair, we sample rewards rt ∼ qϕ(·|st, at) to construct
return samples for both the expert and the current policy.

Note that the choice of prior depends heavily on the task domain and the type of variability we
expect in the reward signal. For example, skew-normal distributions can capture asymmetric reward
uncertainty in tasks with systematic biases (e.g., contact-rich manipulation), whereas heavy-tailed
priors may be more suitable when outliers or rare but significant events dominate the return structure.
In contrast, the broader statistical learning community often defaults to Gaussian priors, primarily
because of their analytical tractability, conjugacy with many likelihood models, and well-understood
concentration properties. That said, DistIRL does not rely on a fixed distributional assumption.
Any parameterized distribution pθ whose log-density or quantile function is differentiable in θ is
compatible with our framework, since the algorithm requires only gradient updates for learning.

To estimate the spectral risk measure Mξ(Z
π) for the policy, we follow an offline approach: we use

states st drawn from the expert demonstration dataset, but sample actions aπt ∼ πθ(·|st) from the
current policy, and a reward rt ∼ qϕ(·|st, at). Then we compute the return Zπ by taking the sum.
For policy update, we first learn the critic by Off-policy Evaluation (OPE) (Sutton et al., 1998) on
(st, at, rt, st+1, a

π
t+1) where we use Quantile Regression with the Quantile Huber loss LQR as in

Eq. 20. We then update the risk-aware policy by solving minπ KL
(
π(·|s)

∥∥ 1
Z exp {Mξ(Z

π(·|s))}
)
,

which corresponds to the KKT solution to Eq. 7, as originally introduced by Ziebart et al. (2008).
We summarize the full procedure in Alg. 1.

5 THEORETICAL RESULTS

In this section, we provide theoretical analysis of the algorithm proposed above. In particular,
this analysis framework assume that we know the exact DRM for solving the policy update in
Eq. 7. First, we introduce several regularity assumptions, the necessity of which is detail in the
appendix C.2.
Assumption 5.1. There exists Rmax <∞ such that

|qϕ(s, a)| ≤ Rmax almost surely for all (s, a, ϕ). (12)
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Assumption 5.2. For every (s, a) and all ϕ1, ϕ2 ∈ Rd, the reward laws satisfy

W∞
(
qϕ1(·|s, a), qϕ2(·|s, a)

)
≤ LR ∥ϕ1 − ϕ2∥, (13)

where W∞ denotes the Wasserstein inifity distance. Equivalently, one can couple qϕ1(s, a) and
qϕ2(s, a) such that |qϕ1(s, a)− qϕ2(s, a)| ≤ LR ∥ϕ1 − ϕ2∥ almost surely.

We use the following assumption on a given DRM. In fact, all DRMs satisfy the following properties.

Assumption 5.3. For each state-action pair s ∈ S, a ∈ A, the one-step distortion risk measure
Mξ(·|s, a) is

1. monotone: X ≤ Y a.s. implies Mξ(X|s, a) ≤Mξ(Y |s, a);

2. translation-equivariant: Mξ(X + c|s, a) =Mξ(X|s, a) + c for all c ∈ R;

3. 1-Lipschitz in ∥ · ∥∞: for all bounded random variables X,Y ,∣∣Mξ(X|s, a)−Mξ(Y |s, a)
∣∣ ≤ ∥X − Y ∥∞. (14)

First we wish to show that the critic under a given DRM will converge in the average sense:

Theorem 5.4. Assume assumptions 5.1-5.3 hold. Let Ek =
∥∥Qξ

ϕk,πk
− Qξ

ϕk,π⋆
ϕk

∥∥
∞. Assume the

reward update satisfies Assumption C.9, with stepsizes ηk = η = η0K
−σ , η0 > 0, and σ ∈ (0, 1).

Then running the DistIRL algorithm K steps, we have

1

K

K∑
k=1

Ek = O(K−1) + O(K−σ). (15)

Here we assume that we can get the exact I function when solving the policy optimization problem.
Then we can also get a policy bound:

Theorem 5.5. For each k, define the learned and DRM-optimal policies induced by the current
Q-functions:

πk(·|s) ∝ exp
(
Qξ

ϕk,πk
(s, ·)

)
, π⋆

ϕk
(·|s) ∝ exp

(
Qξ

ϕk,π⋆
ϕk

(s, ·)
)
. (16)

Then running the DistIRL algorithm K steps, we have

1

K

K∑
k=1

∥∥ log πk − log π⋆
ϕk

∥∥
∞ = O(K−1) +O(K−σ). (17)

Finally, we can get a rate of convergence towards a first-order stationary point:

Theorem 5.6. Suppose Assumptions 5.1, 5.2, C.9, and C.11 hold. Let ηk = η0k
−σ with η0 > 0 and

σ ∈ (0, 1), and assume Lr is bounded below on Φ. Then there exists C > 0 such that

1

K

K−1∑
k=0

E
[
∥∇Lr(ϕk)∥2

]
= O

(
K−1

)
+O

(
K−σ

)
+O

(
K−1+σ

)
, (18)

In particular, picking σ = 1/2, we obtain a O(ϵ−2) iteration bound on the algorithm.

6 EXPERIMENT
6.1 GRIDWORLD

We begin with a 5×5 gridworld environment where the agent is trained to navigate from the starting
state (2, 0) (left-center) to rewarding goal locations. Two high-reward states are placed at (0, 4) (top-
right) and (4, 4) (bottom-right), with the top-right reward modeled as a stochastic outcome drawn
from N (1, 1). The first column of Fig. 2 illustrates the ground-truth reward mean and variance.
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Figure 3: Learned reward distribution versus recorded dopamine signals and their empirical CDFs.

True mean DistIRL mean BIRL mean

True var DistIRL var BIRL var

Figure 2: Inferring reward mean and
variance in the gridworld example with
10 demonstrations.

This setup mimics an animal exploring an arena with two
reward ports. In such compact environments, animals of-
ten display risk-averse behavior, i.e., avoiding locations
where rewards have previously failed to appear (Mobbs
et al., 2018; Daw et al., 2006). To model this, we col-
lect 10 trajectories from a risk-averse agent trained un-
der stochastic rewards. In 9 out of 10 episodes, the agent
chooses the more reliable bottom-right goal. We then ap-
ply our DistIRL method to recover the full reward distri-
bution. As shown in Fig. 2, using a symmetric Gaussian
reward estimator combined with risk-averse policy learn-
ing, our approach not only identifies both high-reward
states but also captures the variance at the top-right goal.
This highlights the model’s ability to infer higher-order moments of the reward from expert demos.

As a baseline, we evaluate Bayesian IRL (BIRL) (Chan & van der Schaar, 2021; Mandyam et al.,
2023; Bajgar et al., 2024). BIRL is a widely used framework that assumes a reward distribution
but learns it by matching only the mean, without capturing the full distributional structure. We
select BIRL because it is the method most comparable to ours in its ability to recover a reward
distribution. BIRL reasonably recovers the mean reward but produces spurious high estimates in
the lower-left corner. Furthermore, it fails to capture reward variance, emphasizing the need to en-
force distance over the full distribution. Simply specifying a reward distribution, without integrating
distribution-aware learning, fails to capture the true variance of the rewards.

6.2 MOUSE SPONTANEOUS BEHAVIOR

We apply our framework to a neuroscience dataset in which mice freely explore an arena without
explicit rewards (Markowitz et al., 2023a). Behavior was recorded using a depth camera, and the
raw trajectories were converted into sequences of discrete syllables (e.g., grooming, sniffing). We
model these trajectories with an MDP, treating each syllable as a state and the next syllable as the
action, yielding ten states and ten actions. In total, we analyzed 159 such state-action sequences.
The dataset also includes a time-aligned one-dimensional trace of dopamine fluctuations from the
dorsolateral striatum. Prior work (Markowitz et al., 2023a) showed that using dopamine as a reward
enabled a simulated RL agent to reproduce observed transitions, suggesting IRL should recover
a reward pattern resembling dopamine. Since dopamine varies even within the same state-action
pair, the prior study used only its mean for simplicity. Here, we compare rewards learned under
deterministic vs. distributional assumptions to assess how well they capture both the mean and the
full distribution of dopamine signals.

We use both Azzalini’s skew-normal distribution (denoted “S-”) and the symmetric Gaussian as
reward models for both DistIRL and BIRL. Fig. 3A) and B) show two example state-action pairs,
illustrating the true dopamine fluctuation distribution alongside the estimated reward distributions
from four methods. The assumption of a parameterized reward distribution is motivated by prior
findings in computational neuroscience: dopamine-related reward signals in rodents are well known
to exhibit asymmetric, left-skewed variability. For this reason, we chose a skew-normal family,
which captures exactly this type of asymmetric structure while remaining interpretable. For each
case, we display both the probability density function and the CDF, along with the corresponding
means. Deterministic rewards (Det) are shown as pink dashed lines in the density plots. Among all
methods, S-DistIRL most accurately recovers the shape of the dopamine distribution, which is often
right-skewed and multimodal. Its estimated mean also closely matches both the true mean and the
deterministic estimate.
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Figure 4: Left: Pearson correlation of the reward
mean and dopamine level. Right: W-1 loss be-
tween learned distribution and dopamine level.

We also quantify the similarity between esti-
mated rewards and actual dopamine distribu-
tions. In Fig. 4A), we report the correlation
between the mean of dopamine fluctuations
and the mean of the estimated reward across
all mice and trajectories. Deterministic re-
ward models yield moderate correlation, while
DistIRL improves upon this, with S-DistIRL
achieving the highest correlation overall. This
finding indicates that incorporating full reward
distributions, using suitable skewed distributional models, is essential for IRL to capture biologi-
cally meaningful reward signals. Fig. 4B) shows that, compared to BIRL, S-DistIRL also achieves
a lower Wasserstein-1 distance between the estimated reward distribution and the actual dopamine
distribution, indicating better alignment of the shape. Taken together, both qualitative examples and
quantitative metrics support that modeling skewed reward distributions significantly enhances the
ability to track dopamine fluctuations.

This is a scientifically interesting result showing that we can infer the reward structure directly from
behavior data. While it is known that dopamine neurons encode reward-related signals (Schultz
et al., 1997; Markowitz et al., 2023a), this is the first demonstration that not only is there a nontrivial
correlation between the inferred and measured mean rewards (with a correlation around 0.3), but
also that the full reward distribution recovered from behavior reasonably resembles the distribution
of dopamine fluctuations. This suggests that detailed features of neuromodulatory signals, such as
the variability in dopamine release, can be decoded from behavior alone, highlighting the potential
of inverse modeling to uncover internal motivational states and their neural substrates.
6.3 MUJOCO BENCHMARKS

Risk-sensitive D4RL. In earlier experiments, we applied DistIRL to discrete state-action MDPs and
compared it with BIRL. Here we extend the study to continuous MDPs to demonstrate DistIRL’s
scalability and generalizability. We evaluate our method on Risk-sensitive D4RL benchmarks, fol-
lowing the reward formulations introduced in recent robustness studies (Urpí et al., 2021). Specifi-
cally, the reward functions incorporate stochastic penalties triggered by safety-related conditions:
(1) Half-Cheetah: Rt(s, a) = r̄t(s, a)− 70Iν>ν̄ · B0.1, where r̄t(s, a) is the environment reward, ν
is the forward velocity, and ν̄ is a velocity threshold (ν̄ = 4 for the medium variant and ν̄ = 10 for
the easy variant). This penalty models rare but catastrophic robot failures at high speed.
(2) Walker2D/Hopper: Rt(s, a) = r̄t(s, a) − pI|θ|>θ̄ · B0.1, where r̄t(s, a) is the environment
reward, θ is the pitch angle, θ̄ is a task-dependent threshold (0.5 for Walker2D-M/E and 0.1 for
Hopper-M/E), and p is the penalty magnitude (30 for Walker2D and 50 for Hopper).

We train expert agents on these stochastic reward formulations using Risk-averse Distributional
SAC, a variant of DSAC (Duan et al., 2021) with CVaR objective, and collect 10 demonstration tra-
jectories. We then evaluate DistIRL against several state-of-the-art baselines. Results are averaged
over 5 random seeds. We use a standard normal as the prior due to its general applicability, in the
setting of not knowing the underlying true reward distribution.

Table 2 shows that our method consistently outperforms other offline IRL baselines under stochastic
reward settings. For reward parameterization, we use the Gaussian distribution (denoted as DistIRL)
and quantile function (denoted as DistIRL-qtr, short for QuanTile Reward). Notice popular online
methods such as GAIL (Ho & Ermon, 2016) are not applicable in this setting. Offline ML-IRL
(Zeng et al., 2023) is a model-based MaxEntIRL method that relies on a separately trained transition
model using additional non-expert data. Its poor performance here is expected: the transition model
was pretrained under risk-neutral rewards and does not align with the new expert data generated un-
der risk-sensitive objectives, leading to severe distribution mismatch. ValueDICE (Kostrikov et al.,
2019), a model-free offline MaxEntIRL baseline, also underperforms since it optimizes with respect
to expected risk-neutral returns, while our experts follow risk-averse behavior. Behavior Cloning
(BC) achieves moderately strong results, as it simply mimics the demonstrated actions without ex-
plicitly optimizing for either risk-neutral or risk-sensitive objectives. However, its performance is
limited as the model overfit the limited demonstration data.
To further validate the fidelity of our inferred return distributions from DistIRL and compare with
the BIRL framework that only matches the mean, we collect 200 trajectories and sample its learned
return distribution for each learned policy, plot against the expert’s return distribution in Fig. 5.
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Table 2: Performance averaged over 5 seeds on Risk-sensitive D4RL.
Environment DistIRL (ours) DistIRL-qrt (ours) Offline ML-IRL ValueDICE BC Expert

HalfCheetah 3469 ± 59 3294 ± 172 826 ± 231 1259 ± 78 2828 ± 281 3540 ± 44
Hopper 886 ± 1 747 ± 79 192 ± 56 260 ± 10 346 ± 1 892 ± 3

Walker2d 1526 ± 148 1211 ± 182 240 ± 50 798 ± 311 1321 ± 26 1478 ± 200

This shows that DistIRL’s reward and policy model better align with the expert. We also report a
Pearson correlation coefficient of 0.92 between the mean estimated by DistIRL and the mean of the
true return. This indicates strong agreement and demonstrates that our inferred reward is an accurate
proxy for the true reward model. A further examination of the return distribution and its higher-order
moments can be found in Appendix F.

2500 3000 3500 4000
Return

0.0
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CD
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Expert
DistIRL
BIRL

Figure 5: Return distributions
comparison in HalfCheetah.

Additionally, the competitive results of quantile-based reward pa-
rameterization open the opportunity to use a broad range of para-
metric families, including diffusion models, and we leave this driec-
tion as a future extension of this work.

Risk-neutral D4RL. We also test our algorithm in conventional
deterministic reward settings using D4RL’s medium-expert tra-
jectories (Fu et al., 2020). Table 3 shows our method achieves com-
petitive or superior performance even without tailoring to determin-
istic assumptions, underscoring the generality of DistIRL. We want
to emphasize that Offline ML-IRL requires additional data2.

Ablation studies. We evaluate the contribution of different design choices by ablating our model
under the HalfCheetah setting with right-skewed normal (SN η, η > 0) stochastic rewards and risk-
averse expert policy, indicating the expert prefers conservative actions that yield more consistent
rewards. Variants include: Dis/Det: Distributional or Deterministic rewards; QR/TD: Quantile Re-
gression or TD-based critic; FSD/Mean: FSD loss or Mean matching. As shown in Table 4, which
scales the performance between worst and best, using distributional rewards with FSD loss signifi-
cantly outperforms mean-matching alternatives. Additionally, deterministic TD-learning with mean-
matching (Det-TD-Mean) underperforms in learning risk-averse policies due to a lack of distribu-
tional supervision. This confirms the effectiveness of FSD-based reward learning and risk-sensitive
policy optimization. Note that the BIRL framework aligns with our Dis-TD-Mean configuration;
RIZE (Karimi & Ebadzadeh, 2025) aligns with Det-Qt-Mean, which performs the worst; Det-TD-
Mean aligns with ValueDice but with an explicit reward estimation. Thus, in this ablation study, we
treat them as a specific setting within DistIRL when benchmarking against other approaches.

Additionally, we conduct ablation studies on the choice of DRM in Appendix E.1, showing that
DistIRL is not sensitive to specific DRM as long as we don’t deviate too far from the underlying
risk preference of the expert data. We also conduct experiments on the number of trajectories for
the risk-sensitive D4RL dataset in Appendix E.2, which show that DistIRL is sufficiently robust in
a low-data regime, indicating that our approach is indeed computationally attractive.

Table 3: Performance on deterministic reward settings (D4RL).
Environment DistIRL (Ours) Offline ML-IRL ValueDICE BC Expert

HalfCheetah 7779 ± 228 11231 ± 585 4935 ± 2836 623 ± 56 12175 ± 91
Hopper 3411 ± 42 3347 ± 238 3073 ± 539 3236 ± 46 3512 ± 22

Walker2d 4570 ± 305 4201 ± 638 3191 ± 1888 2822 ± 979 5384 ± 52

Table 4: Ablation study on model setting. Performance scaled for clarity.
DistIRL (Ours) Dis-Qt-Mean Det-Qt-Mean Dis-TD-FSD Dis-TD-Mean Det-TD-Mean

1.0 ± 0.02 0.22 ± 0.02 0.00 ± 0.01 0.67 ± 0.31 0.33 ± 0.01 0.22 ± 0.00

7 CONCLUSION

We introduce a distributional framework for inverse reinforcement learning that jointly models re-
ward uncertainty and return distributions. Our method enables risk-aware policy learning and accu-
rate inference of high-order structure in demonstrations. We validate the framework on stochastic
control tasks, deterministic settings, and real neural datasets, demonstrating state-of-the-art perfor-
mance and strong generalization across domains.

2For HalfCheetah, with the same amount of data as Offline ML-IRL, DistIRL can reach 11239± 539.
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ETHICS STATEMENT

IRL enables powerful tools for understanding behavior, with positive applications in neuroscience,
animal modeling, and AI alignment. However, it also raises ethical concerns. IRL could be misused
in military settings to model or mimic adversarial behavior, or in surveillance contexts to infer
personal goals without consent, posing risks to privacy and autonomy. These concerns highlight the
need for careful oversight and responsible deployment.

REPRODUCIBILITY STATEMENT

We list parameter choice in Table. 6. The implementation will be made publicly available following
the paper decision.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Zoe Ashwood, Aditi Jha, and Jonathan W Pillow. Dynamic inverse reinforcement learning for
characterizing animal behavior. Advances in neural information processing systems, 35:29663–
29676, 2022.

Adelchi Azzalini and A Dalla Valle. The multivariate skew-normal distribution. Biometrika, 83(4):
715–726, 1996.

Ondrej Bajgar, Alessandro Abate, Konstantinos Gatsis, and Michael A Osborne. Walking the values
in bayesian inverse reinforcement learning. arXiv preprint arXiv:2407.10971, 2024.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse re-
inforcement learning. In 53rd IEEE conference on decision and control, pp. 4911–4916. IEEE,
2014.

Alex J Chan and Mihaela van der Schaar. Scalable bayesian inverse reinforcement learning. arXiv
preprint arXiv:2102.06483, 2021.

Ziteng Cheng, Anthony Coache, and Sebastian Jaimungal. Eliciting risk aversion with inverse rein-
forcement learning via interactive questioning. arXiv preprint arXiv:2308.08427, 2023.

Jaedeug Choi and Kee-Eung Kim. Map inference for bayesian inverse reinforcement learning. Ad-
vances in neural information processing systems, 24, 2011.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018b.

Nathaniel D Daw, John P O’Doherty, Peter Dayan, Ben Seymour, and Raymond J Dolan. Cortical
substrates for exploratory decisions in humans. Nature, 441(7095):876–879, 2006.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Luc Devroye. Nonuniform random variate generation. Handbooks in operations research and
management science, 13:83–121, 2006.

Jan Dhaene, Alexander Kukush, Daniël Linders, and Qihe Tang. Remarks on quantiles and distortion
risk measures. European Actuarial Journal, 2:319–328, 2012.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
transactions on neural networks and learning systems, 33(11):6584–6598, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Adam Gleave and Sam Toyer. A primer on maximum causal entropy inverse reinforcement learning.
arXiv preprint arXiv:2203.11409, 2022.

Allan Gut and Allan Gut. Probability: a graduate course, volume 200. Springer, 2006.

Josef Hadar and William R Russell. Rules for ordering uncertain prospects. The American economic
review, 59(1):25–34, 1969.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Christopher Heil. Introduction to real analysis, volume 280. Springer, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Wonseok Jeon, Seokin Seo, and Kee-Eung Kim. A bayesian approach to generative adversarial
imitation learning. Advances in neural information processing systems, 31, 2018.

Adib Karimi and Mohammad Mehdi Ebadzadeh. Rize: Regularized imitation learning via distribu-
tional reinforcement learning. arXiv preprint arXiv:2502.20089, 2025.

Jingyang Ke, Feiyang Wu, Jiyi Wang, Jeffrey Markowitz, and Anqi Wu. Inverse reinforcement learn-
ing with switching rewards and history dependency for characterizing animal behaviors. arXiv
preprint arXiv:2501.12633, 2025.

Miloš Kopa and Martin Šmíd. Contractivity of bellman operator in risk averse dynamic program-
ming with infinite horizon. Operations Research Letters, 51(2):133–136, 2023.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. arXiv preprint arXiv:1912.05032, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, and Marco Pavone. Risk-sensitive
generative adversarial imitation learning. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2154–2163. PMLR, 2019.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. Predicting structured data, 2006.

Keuntaek Lee, David Isele, Evangelos A Theodorou, and Sangjae Bae. Risk-sensitive mpcs with
deep distributional inverse rl for autonomous driving. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7635–7642. IEEE, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. Advances in neural information processing systems, 24, 2011.

Mengdi Li, Xufeng Zhao, Jae Hee Lee, Cornelius Weber, and Stefan Wermter. Internally rewarded
reinforcement learning. In International Conference on Machine Learning, pp. 20556–20574.
PMLR, 2023.

Yangming Li, Chieh-Hsin Lai, Carola-Bibiane Schönlieb, Yuki Mitsufuji, and Stefano Ermon. Bell-
man diffusion: Generative modeling as learning a linear operator in the distribution space. arXiv
preprint arXiv:2410.01796, 2024.

Shiau Hong Lim and Ilyas Malik. Distributional reinforcement learning for risk-sensitive policies.
Advances in Neural Information Processing Systems, 35:30977–30989, 2022.

Aishwarya Mandyam, Didong Li, Diana Cai, Andrew Jones, and Barbara E Engelhardt. Kernel
density bayesian inverse reinforcement learning. arXiv preprint arXiv:2303.06827, 2023.

Jeffrey E Markowitz, Winthrop F Gillis, Maya Jay, Jeffrey Wood, Ryley W Harris, Robert
Cieszkowski, Rebecca Scott, David Brann, Dorothy Koveal, Tomasz Kula, Caleb Weinreb, Mo-
hammed Abdal Monium Osman, Sandra Romero Pinto, Naoshige Uchida, Scott W Linderman,
Bernardo L Sabatini, and Sandeep Robert Datta. Spontaneous behaviour is structured by rein-
forcement without explicit reward. Nature, 614(7946):108–117, January 2023a.

Jeffrey E Markowitz, Winthrop F Gillis, Maya Jay, Jeffrey Wood, Ryley W Harris, Robert
Cieszkowski, Rebecca Scott, David Brann, Dorothy Koveal, Tomasz Kula, et al. Spontaneous
behaviour is structured by reinforcement without explicit reward. Nature, 614(7946):108–117,
2023b.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

Dean Mobbs, Pete C Trimmer, Daniel T Blumstein, and Peter Dayan. Foraging for foundations
in decision neuroscience: insights from ethology. Nature Reviews Neuroscience, 19(6):419–427,
2018.

Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejus Gupta, Lisa Lee, and Ben Eysenbach. f-irl: Inverse
reinforcement learning via state marginal matching. In Conference on Robot Learning, pp. 529–
551. PMLR, 2021.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, vol-
ume 7, pp. 2586–2591, 2007.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal
of risk, 2:21–42, 2000.

Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu, and Stefan Roth. Driving with
style: Inverse reinforcement learning in general-purpose planning for automated driving. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2658–2665.
IEEE, 2019.
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A RELATED WORK COMPARISON

Table 5: Comparison of IRL methods under various settings

Reference Model
reward dist.?

Infer
risk aware

policy?

Recover
reward dist.?

Learn
return dist.?

(Wulfmeier et al., 2015; Ziebart et al., 2008)
(Garg et al., 2021; Ni et al., 2021)
(Zeng et al., 2022; 2023; Wei et al., 2023)

✗ ✗ ✗ ✗

(Ramachandran & Amir, 2007; Choi & Kim, 2011)
(Chan & van der Schaar, 2021; Lee et al., 2022) ✓ ✗ ✗ ✗

(Karimi & Ebadzadeh, 2025) ✗ ✗ ✗ ✓

(Singh et al., 2018; Lacotte et al., 2019)
(Cheng et al., 2023) ✗ ✓ ✗ ✗

This work ✓ ✓ ✓ ✓

In Table A, we compare DistIRL with existing IRL methods along four key dimensions. The first
column, Model reward distribution, asks whether a method explicitly represents the reward as a
random variable rather than as a fixed deterministic function. For example, Bayesian IRL methods
place a prior over reward parameters, thereby modeling uncertainty, but they do not recover the
actual shape of the underlying distribution. This is distinct from Recover reward distribution, which
requires learning the full distribution of rewards themselves, including higher-order statistics such
as variance and skewness, rather than just a posterior over parameters.

The third column, Infer risk-aware policy, evaluates whether a method incorporates risk measures
into policy inference. Methods in this category optimize beyond expected return, often capturing
aversion or preference to variability in outcomes. The final column, Learn return distribution, in-
dicates whether a method leverages distributional reinforcement learning (DistRL) techniques to
estimate the full distribution of returns, rather than only their expectation. Unlike reward distribu-
tions, which describe stochasticity at the immediate reward level, return distributions capture the
cumulative effect of randomness from rewards, transitions, and policies over trajectories.

As shown in the table, most prior IRL methods either assume deterministic rewards or restrict them-
selves to expectation-based inference. In contrast, DistIRL is the first framework that simultaneously
models stochastic rewards, learns full reward distributions, integrates distributional return estima-
tion, and supports risk-aware policy learning, thereby unifying these capabilities in a principled
way.

B EXTENDED PRELIMINARIES

The state-value and action-value functions under π are defined as

V π(s) = E
[
Zπ|st = s

]
, Qπ(s, a) = E

[
Zπ|st = s, at = a

]
.

They satisfy the Bellman equations

V π(s) = Ea∼π,s′∼P [r(s, a) + γV π(s′)] , Qπ(s, a) = Es′∼P

[
r(s, a) + γ Ea′∼π[Q

π(s′, a′)]
]
.

We also define the occupancy measure of π as dπ(s, a) = (1 − γ)
∑∞

t=0 γ
t Pr(st = s)π(a|s),

which satisfies
∑

s,a d
π(s, a) = 1 and characterizes the long-run state-action visitation probability.

B.1 DISTRIBUTIONAL RL AND RISK-SENSITIVE CONTROL

Rather than estimating only E[Zπ], distributional RL models the entire return distribution that obeys
the distributional Bellman operator T π (Bellemare et al., 2017):

Zπ(s, a) =

∞∑
t=0

γt r(st, at),
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T πZ(s, a)
D
= r(s, a) + γ Z

(
s′, π(s′)

)
,

where V :
D
= U denotes equality of probability laws, indicating random variables {V,U} are dis-

tributed according to the same law. A popular parameterization uses quantile regression: one approx-
imates Zπ(s, a) by N quantiles θ(s, a) = [θ1(s, a), ..., θN (s, a)] : S ×A → RN at fractions (quan-
tile levels) τi = i/N , for i = 1, . . . , N . In other words, the quantile distribution of Zπ(s, a) is repre-
sented a uniform probability distribution supported on {θi(s, a)}Ni=1: Zπ(s, a) = 1

N

∑N
i=0 δθi(s, a)

where δθi denotes a Dirac at θi. An example of quantile functions is illustrated in Fig. 1, with θ and
τ indicated.

To update the critic, instead of formulating the TD error, one can minimize the quantile Huber loss
(Dabney et al., 2018b) with threshold κ > 0:

ρκτ (δ) =
∣∣τ − 1{δ < 0}

∣∣ Hκ(δ),Hκ(δ) =

{
1
2 δ

2, |δ| ≤ κ,

κ |δ| − 1
2 κ

2, |δ| > κ.
(19)

In distributional RL with N quantile fractions {τi}, the loss for the critic is defined as

min
θ

LQR(θ) = min
θ

1

N

N∑
i=1

N∑
j=1

ρτi (δij) , δij = r + γ θj(s
′, a′)− θi(s, a). (20)

Once the return distribution is learned, one can optimize risk measures M , e.g. Conditional Value
at Risk (CVaR) (Rockafellar et al., 2000), by maximizing CVaR

(
Zπ

)
rather than E[Zπ], yielding

risk-sensitive policies.

Deterministic reward as a special case. If q(· | s, a) is a point mass at some value r(s, a) for
every (s, a), then we recover the usual deterministic reward setting. Thus, our framework strictly
generalizes standard IRL.

Why distributions matter. If the reward is inherently stochastic (for example, due to noisy human
judgments), matching only the mean reward or mean return is not enough to capture the full behavior.
Two policies can have the same expected return but very different risk profiles. This motivates
working with the full return distribution Zπ , not just its expectation.

B.2 FIRST-ORDER STOCHASTIC DOMINANCE (FSD)

We now recall first-order stochastic dominance, which provides a way to compare entire distribu-
tions, not just means or variances.

Definition B.1 (First-order stochastic dominance). Let X and Y be real-valued integrable random
variables with cumulative distribution functions FX and FY . We say thatX first-order stochastically
dominates Y , written X ⪰FSD Y , if

FX(z) ≤ FY (z) for all z ∈ R.

Intuitively, X ⪰FSD Y means that X tends to take larger values than Y : for every threshold z, the
probability that X falls below z is no larger than the probability that Y does. Graphically, the CDF
of X lies everywhere below the CDF of Y .

Connection to utilities and mean dominance. A classical result states that X ⪰FSD Y if and
only if

E[u(X)] ≥ E[u(Y )]

for every non-decreasing utility function u. In particular, taking u(x) = x, we get

E[X] ≥ E[Y ],

so FSD implies mean dominance. However, the converse is false: matching or exceeding the mean
does not guarantee FSD.
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FSD in our context. In our framework, we would like the return distribution of the expert policy,
ZE , to dominate that of any learned policy Zπ , or vice versa depending on the formulation. This is a
strong requirement and is typically hard to enforce directly during learning. Our approach therefore
designs an objective that penalizes violations of FSD and then turns this objective into an energy
function for learning the reward distribution.

B.3 THE FSD VIOLATION OBJECTIVE AS AN ENERGY FUNCTION

Recall the FSD-based objective in the main text:

LFSD(π, r) =

∫ ∞

−∞

[
FZE (z)− FZπ (z)

]
+
dz, (21)

where [x]+ = max{x, 0} denotes the positive part. This quantity measures, in an integrated way,
how much FZE lies above FZπ . If ZE ⪰FSD Zπ , then FZE (z) ≤ FZπ (z) for all z, so the integrand
is always zero, and hence LFSD(π, r) = 0. If FSD is violated, then LFSD(π, r) becomes positive.

Energy-based interpretation. We treat LFSD(π, r) as an energy that scores how well a reward
function r explains the expert demonstrations under policy π. Lower LFSD means fewer FSD vio-
lations and thus better agreement with the expert. This motivates defining an energy-based model
(EBM)

p(D | r) ∝ exp
(
−LFSD(π, r)

)
, (22)

where D denotes the expert data and the proportionality hides a (typically intractable) normalizing
constant. In words: reward functions that produce small FSD violations are exponentially more
likely under the expert data.

This construction gives us a likelihood model for the reward r given the data D, which we will
combine with a prior over r and then approximate via variational inference.

B.4 VARIATIONAL INFERENCE AND ELBO DERIVATION

We now derive the variational objective used to learn the reward distribution. We start from Bayes’
rule:

p(r | D) =
p(D | r) p0(r)

p(D)
,

where p0(r) is a prior over reward functions and

p(D) =

∫
p(D | r) p0(r) dr

is the evidence (marginal likelihood), which is typically intractable to compute or differentiate.

We introduce a variational family qϕ(r | s, a), parameterized by ϕ, to approximate the true posterior
p(r | D). To measure how close qϕ is to the true posterior, consider the KL divergence

KL
(
qϕ(r | s, a) ∥ p(r | D)

)
= Eqϕ

[
log

qϕ(r | s, a)
p(r | D)

]
. (23)

Plugging in Bayes’ rule for p(r | D) gives

KL
(
qϕ(r | s, a) ∥ p(r | D)

)
= Eqϕ

[
log

qϕ(r | s, a)
p(D | r) p0(r)/p(D)

]
(24)

= Eqϕ

[
log qϕ(r | s, a)− log p(D | r)− log p0(r) + log p(D)

]
. (25)

We can separate out the term that does not depend on r:

KL
(
qϕ(r | s, a) ∥ p(r | D)

)
= Eqϕ

[
log qϕ(r | s, a)− log p(D | r)− log p0(r)

]
+ log p(D).

(26)

Rearranging terms yields

log p(D) = Eqϕ

[
log p(D | r) + log p0(r)− log qϕ(r | s, a)

]
+ KL

(
qϕ(r | s, a) ∥ p(r | D)

)
.
(27)
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Since KL is non-negative, we obtain the evidence lower bound (ELBO):
log p(D) ≥ Eqϕ

[
log p(D | r) + log p0(r)− log qϕ(r | s, a)

]
=: ELBO(ϕ). (28)

Equivalently,
ELBO(ϕ) = Eqϕ(r|s,a)

[
log p(D | r)

]
−KL

(
qϕ(r | s, a) ∥ p0(r)

)
, (29)

which matches the expression in the main text.

From ELBO to our reward objective. Maximizing the ELBO is equivalent to minimizing its
negative. Using the EBM likelihood from Eq. equation 22,

log p(D | r) = −LFSD(π, r) + const,
where the constant does not depend on r and thus can be dropped for optimization. Substituting into
Eq. equation 29 and ignoring constants, we obtain the objective

min
ϕ

Lr(ϕ) := min
ϕ

Eqϕ(r|s,a)
[
LFSD(π, r)

]
+KL

(
qϕ(r | s, a) ∥ p0(r)

)
, (30)

which is precisely Eq. (X) in the main text (Eq. 5 there). In other words, we learn the reward
distribution by balancing two terms: (i) the expected FSD violation under qϕ, and (ii) a regularization
term that keeps qϕ close to the prior p0.

B.5 QUANTILES AND THE FSD LOSS

We now explain in more detail why the FSD loss in Eq. equation 21 can be expressed in terms of
quantile functions, which leads to a practical way to estimate it via sampling.

Quantile function. For a random variable X with CDF FX , its (generalized) quantile function
F−1
X : [0, 1] → R is defined by

F−1
X (v) = inf{x ∈ R | FX(x) ≥ v}, v ∈ (0, 1).

Intuitively, F−1
X (v) is the value such that a fraction v of the mass of X lies at or below it.

Key identity. We use the following identity (proved in Appendix C.1 of the main text):∫ ∞

−∞
[FZE (z)− FZπ (z)]+ dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv. (31)

This shows that integrating the positive difference of the CDFs is equivalent to integrating the posi-
tive difference of the quantiles, but with the roles of expert and policy swapped inside the bracket.

Sketch of proof idea. The proof relies on two facts: (i) an integral representation of the difference
between two distributions in terms of their quantiles, and (ii) a change of variables between z and
v through the CDF/quantile mapping. One can start from the left-hand side, partition the real line
into regions where FZE (z) ≥ FZπ (z) and where the opposite holds, and then perform a change of
variables z = F−1

Zπ (v) (and similarly for the expert), carefully tracking the positive part. We refer
the reader to the detailed derivation in Appendix C.1.

Monte Carlo approximation. The identity equation 31 is particularly useful because we can ap-
proximate quantiles from samples. For example, to approximate F−1

Zπ , we draw N return samples

zn =

∞∑
t=0

γtr
(n)
t , r

(n)
t ∼ qϕ(· | s(n)t , a

(n)
t ),

and sort them to obtain order statistics
z(1) ≤ z(2) ≤ · · · ≤ z(N).

A simple empirical approximation of the quantile function is then

F−1
Zπ

(
k

N

)
≈ z(k).

In practice, we use such empirical quantiles (for both the expert and the learned policy) to estimate
the integral on the right-hand side of Eq. equation 31 via a Riemann sum.
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B.6 DISTORTION RISK MEASURES AND THEIR RELATION TO FSD

Finally, we explain how distortion risk measures (DRMs) provide a scalar, risk-sensitive summary
of a return distribution and how they relate to FSD.
Definition B.2 (Distortion function). A distortion function is a non-decreasing function ξ : [0, 1] →
[0, 1] such that ξ(0) = 0 and ξ(1) = 1. Its dual distortion is defined as

ξ̃(v) := 1− ξ(1− v), v ∈ [0, 1].

Definition B.3 (Distortion risk measure). For an integrable random variable X and a distortion
function ξ, the associated distortion risk measure Mξ is defined by

Mξ(X) =

∫ 1

0

F−1
X (v) dξ̃(v),

where F−1
X is the quantile function of X .

Intuition. The DRM Mξ(X) aggregates all quantiles of X into a single scalar value, with weights
determined by dξ̃(v). Different choices of ξ emphasize different parts of the distribution: for exam-
ple, a concave ξ̃ assigns more weight to lower quantiles, which corresponds to risk-averse behavior.

Connection to FSD. It is known that if X ⪰FSD Y , then

Mξ(X) ≥ Mξ(Y ) for every distortion function ξ.

Furthermore, the converse holds if we require the inequality to hold for all distortion functions: if
Mξ(X) ≥ Mξ(Y ) for every distortion function ξ, then X ⪰FSD Y . This shows that DRMs are
tightly linked to FSD: they preserve the FSD ordering if we consider all possible distortions.

In our method, we exploit this relationship by replacing the intractable indicator-based weighting of
quantiles (from Eq. equation 8 in the main text) with a tractable distortion-based weighting. This
yields a risk-aware policy objective of the form

max
φ

Mξ(Z
πφ) +H(πφ),

which can be optimized with standard policy gradient techniques while still encoding a meaningful
notion of distributional dominance relative to the expert.

Approximation viewpoint. OptimizingMξ(Z
πφ) for a single distortion function ξ does not guar-

antee FSD dominance by itself; it corresponds to a weaker condition. However, as discussed in the
main text, if one could optimize this objective for all distortion functions simultaneously, then under
mild assumptions the resulting policy would satisfy the original FSD-based objective. Our practi-
cal objective can therefore be viewed as an approximation that focuses on a particular, user-chosen
notion of risk.

C PROOFS

C.1 PROOFS FOR SECTIONS 4

We first wish to show that∫ ∞

−∞
[FZE (z)− FZπ (z)]+dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv. (32)

Proposition C.1. Let Zπ and ZE be two real-valued integrable random variables with cumulative
distribution functions FZπ and FZE , and corresponding quantile functions F−1

Zπ and F−1
ZE . Then we

have ∫ ∞

−∞
[FZE (z)− FZπ (z)]+ dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv,

where [x]+ := max(x, 0).
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Proof. Note that∫ ∞

−∞
[FZE (z)− FZπ (z)]+ dz =

∫ ∞

−∞

∫ 1

0

1FZE (z)≥v≥FZπ (z)dvdz

=

∫ 1

0

∫ ∞

−∞
1FZE (z)≥v≥FZπ (z)dvdz

=

∫ 1

0

∫ ∞

−∞
1F−1

Zπ (v)≥z≥F−1

ZE (v)dvdz

=

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv

The interchange of integrals are permitted by the Theorem of Fubini-Tonelli as everything is positive
(Heil, 2019). Note that the definition of the quantile function (Gut & Gut, 2006) is:

F−1(v) := inf
z∈R

{F (z) ≥ v}.

Proposition 4.6. Mξ(X) ≥Mξ(Y ) for every distortion function ξ implies X ⪰FSD Y .

Proof. Define the difference in quantile functions:
h(v) := F−1

X (v)− F−1
Y (v).

Suppose for contradiction that the set
A := {v ∈ [0, 1]|h(v) < 0}

has positive Borel measure, i.e., µ(A) > 0. Let’s define a distortion function ξ̃A whose derivative
is:

ξ̃′A(v) =

{
1

µ(A) if v ∈ A,

0 otherwise.

Then ξ̃A is a valid distortion function and satisfies
∫ 1

0
dξ̃A(v) = 1. Note that

MξA(X)−MξA(Y ) =

∫ 1

0

h(v) dξ̃A(v) =

∫
A

h(v) · 1

µ(A)
dv < 0.

This contradicts the assumption that Mξ̃(X) ≥ Mξ̃(Y ) for all distortion functions ξ̃. Therefore,
the set where F−1

X (v) < F−1
Y (v) must have measure zero. Thus we have

F−1
X (v) ≥ F−1

Y (v) for v ∈ [0, 1] almost everywhere (a.e.)
which implies

FX(z) ≤ FY (z) for all z ∈ R,
since
FX(z) = PX (X < z) = µ

(
{v ∈ [0, 1]|F−1

X (v) ≤ z}
)

≤ µ
(
{v ∈ [0, 1] ∩Ac|F−1

X (v) ≤ z}
)
+ µ

(
{v ∈ [0, 1] ∩A|F−1

X (v) ≤ z}
)

= µ
(
{v ∈ [0, 1] ∩Ac|F−1

X (v) ≤ z}
)

≤ µ
(
{v ∈ [0, 1] ∩Ac|F−1

Y (v) ≤ z}
)

≤ µ
(
{v ∈ [0, 1]|F−1

Y (v) ≤ z}
)

= FY (z)

The second inequality is due to the fact that for any z,
{v ∈ [0, 1] ∩Ac|F−1

X (v) ≤ z} ⊆ {v ∈ [0, 1] ∩Ac|F−1
Y (v) ≤ z}

Hence,
X ⪰FSD Y.
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C.2 CONVERGENCE ANALYSIS

This appendix provides complete derivations and proofs for the convergence results summarized in
Section 5. We work in the discounted MDP setting with finite action space A and (possibly infinite)
state space S. All function norms are ∥ · ∥∞ unless otherwise specified.

We first recall the risk–sensitive Bellman operator. For a fixed policy π, reward parameter ϕ, and
bounded Q : S ×A → R, we write

(T π
ξ,ϕQ)(s, a) := Eξ

[
qϕ(s, a)

]
+ γ Eξ, s′∼P (·|s,a)

[
Q(s′, a′)

]
,

a′ ∼ π(·|s′).
(33)

Here the notation Eξ[·] denotes the one-step evaluation combining the conditional expectation over
the transition kernel and the dynamic distortion risk measure Mξ (i.e. a nested, time-consistent
dynamic risk mapping). Under this formulation, T π

ξ,ϕ is precisely the DRM Bellman operator: it
preserves the Markov structure and is a γ-contraction under mild axioms on Mξ (Ruszczyński,
2010), guaranteeing a unique fixed point Qξ

ϕ,π for each (ϕ, π).

C.2.1 ASSUMPTIONS

We collect the standing assumptions used in the analysis.

Assumption 5.1. There exists Rmax <∞ such that

|qϕ(s, a)| ≤ Rmax almost surely for all (s, a, ϕ). (12)

This is standard in discounted RL and is enforced in our implementation by clipping the reward
range (via a scaled tanh nonlinearity). It ensures that all risk-sensitive value functions are uniformly
bounded.

Assumption 5.2. For every (s, a) and all ϕ1, ϕ2 ∈ Rd, the reward laws satisfy

W∞
(
qϕ1(·|s, a), qϕ2(·|s, a)

)
≤ LR ∥ϕ1 − ϕ2∥, (13)

where W∞ denotes the Wasserstein inifity distance. Equivalently, one can couple qϕ1
(s, a) and

qϕ2
(s, a) such that |qϕ1

(s, a)− qϕ2
(s, a)| ≤ LR ∥ϕ1 − ϕ2∥ almost surely.

This assumption is mild for smooth neural parameterizations of qϕ(r|s, a) (e.g., skew-normal with
smooth outputs for location, scale, and skew). It states that small changes in the reward parameters
ϕ cannot drastically change the reward distribution, which is necessary for the critic and policy to
track the moving reward model.

Assumption 5.3. For each state-action pair s ∈ S, a ∈ A, the one-step distortion risk measure
Mξ(·|s, a) is

1. monotone: X ≤ Y a.s. implies Mξ(X|s, a) ≤Mξ(Y |s, a);

2. translation-equivariant: Mξ(X + c|s, a) =Mξ(X|s, a) + c for all c ∈ R;

3. 1-Lipschitz in ∥ · ∥∞: for all bounded random variables X,Y ,∣∣Mξ(X|s, a)−Mξ(Y |s, a)
∣∣ ≤ ∥X − Y ∥∞. (14)

For normalized distortion risk measures Mξ (including CVaR, Wang-type, and more general spec-
tral DRMs), these properties are standard and follow from their integral representation in terms of
quantile functions.

C.2.2 CONTRACTION OF THE NESTED DRM BELLMAN OPERATOR

We now verify that T π
ξ,ϕ is a γ-contraction in the sup norm. This is the risk-sensitive analogue of the

standard Bellman contraction and is a special instance of the general results on nested risk mappings
in Ruszczyński (2010); Kopa & Šmíd (2023).
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Lemma C.2 (Contraction of T π
ξ,ϕ). Under Assumptions 5.1 and 5.3, for any fixed (ϕ, π) and any

bounded U, V : S ×A → R, ∥∥T π
ξ,ϕU − T π

ξ,ϕV
∥∥
∞ ≤ γ ∥U − V ∥∞. (34)

Proof. For any (s, a), the immediate reward terms cancel, and we have∣∣(T π
ξ,ϕU)(s, a)− (T π

ξ,ϕV )(s, a)
∣∣

= γ
∣∣Eξ, s′∼P (·|s,a)[U(s′, A′)− V (s′, A′)]

∣∣
≤ γ Es′∼P (·|s,a)

[ ∣∣Mξ(U(s′, A′)− V (s′, A′)|s′)
∣∣ ]

≤ γ Es′∼P (·|s,a)
[
∥U − V ∥∞

]
= γ ∥U − V ∥∞,

(35)

where we used Assumption 5.3 (1-Lipschitzness) in the third line. Taking the supremum over (s, a)
yields 34.

By the Banach fixed-point theorem, we immediately obtain:
Corollary C.3 (Existence and uniqueness of the risk-sensitive critic). Under Assumptions 5.1
and 5.3, for each fixed (ϕ, π) there exists a unique Qξ

ϕ,π solving

Qξ
ϕ,π = T π

ξ,ϕQ
ξ
ϕ,π. (36)

Moreover, the critic is uniformly bounded.
Lemma C.4. Under Assumption 5.1, let BQ := Rmax/(1− γ). Then for all (ϕ, π),∥∥Qξ

ϕ,π

∥∥
∞ ≤ BQ. (37)

Proof. By unfolding the fixed point 36 along trajectories and using |qϕ(s, a)| ≤ Rmax, we get for
all (s, a) ∣∣Qξ

ϕ,π(s, a)
∣∣ ≤

∞∑
t=0

γtRmax =
Rmax

1− γ
= BQ. (38)

Taking the supremum over (s, a) yields 37.

C.2.3 SOFTMAX LIPSCHITZ PROPERTIES

We next relate Q-function errors to policy errors via the softmax parameterization.
Lemma C.5. Let Q,Q′ : A → R be two vectors of Q-values, and define

π(a) =
eQ(a)∑
b e

Q(b)
, π′(a) =

eQ
′(a)∑

b e
Q′(b)

. (39)

Then
∥ log π − log π′∥∞ ≤ 2 ∥Q−Q′∥∞. (40)

Proof. For any action a,
log π(a) = Q(a)− log

∑
b

eQ(b),

log π′(a) = Q′(a)− log
∑
b

eQ
′(b).

(41)

Subtracting,

log π(a)− log π′(a) =
(
Q(a)−Q′(a)

)
−

(
log

∑
b

eQ(b) − log
∑
b

eQ
′(b)

)
. (42)

The log-sum-exp function is 1-Lipschitz in ∥ · ∥∞, i.e.∣∣∣ log∑
b

eQ(b) − log
∑
b

eQ
′(b)

∣∣∣ ≤ ∥Q−Q′∥∞. (43)

Combining 42 and 43 gives
| log π(a)− log π′(a)| ≤ |Q(a)−Q′(a)|+ ∥Q−Q′∥∞ ≤ 2 ∥Q−Q′∥∞. (44)

Taking the supremum over a yields 40.
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C.2.4 LIPSCHITZ SENSITIVITY

We now show that the DRM Q-function depends smoothly on the reward parameters ϕ, both for
optimal control and for fixed-policy evaluation.
Lemma C.6. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Then for all (s, a) and all ϕ1, ϕ2,∣∣qϕ1(s, a)− qϕ2(s, a)

∣∣ ≤ LR ∥ϕ1 − ϕ2∥. (45)

Let Mξ denote the nested distortion risk functional, and assume it is 1-Lipschitz in ∥ · ∥∞ as in
Assumption 5.3. Define the optimal risk-sensitive Q-function for parameter ϕ by

Qξ
ϕ,∗(s, a) := sup

π
Mξ

( ∞∑
t=0

γtrϕ(st, at)
∣∣∣ s0 = s, a0 = a, π

)
, (46)

where {(st, at)}t≥0 is the trajectory under policy π starting from (s0, a0) = (s, a). Then there
exists

Lq :=
LR

1− γ
(47)

such that for all ϕ1, ϕ2, ∥∥Qξ
ϕ1,∗ −Qξ

ϕ2,∗
∥∥
∞ ≤ Lq ∥ϕ1 − ϕ2∥. (48)

Proof. The bound on the reward smoothness is immediately due to assumption 5.2. Fix ϕ1, ϕ2 and
(s, a). For any policy π, let {(st, at)}t≥0 be the trajectory under π with (s0, a0) = (s, a), and define

Gπ
ϕi

:=

∞∑
t=0

γtqϕi(st, at), i ∈ {1, 2}. (49)

By definition 46,
Qξ

ϕi,∗(s, a) = sup
π
Mξ

(
Gπ

ϕi

∣∣ s, a, π), i ∈ {1, 2}. (50)

Using the inequality ∣∣ sup
π
fπ − sup

π
gπ

∣∣ ≤ sup
π

|fπ − gπ|, (51)

we obtain ∣∣Qξ
ϕ1,∗(s, a)−Qξ

ϕ2,∗(s, a)
∣∣ = ∣∣∣ sup

π
Mξ(G

π
ϕ1
|s, a, π)− sup

π
Mξ(G

π
ϕ2
|s, a, π)

∣∣∣
≤ sup

π

∣∣Mξ(G
π
ϕ1
|s, a, π)−Mξ(G

π
ϕ2
|s, a, π)

∣∣. (52)

For each fixed π, the 1-Lipschitz property of Mξ in ∥ · ∥∞ (Assumption 5.3) gives∣∣Mξ(G
π
ϕ1
|s, a, π)−Mξ(G

π
ϕ2
|s, a, π)

∣∣ ≤ ∥∥Gπ
ϕ1

−Gπ
ϕ2

∥∥
∞

= sup
ω

∣∣∣∣∣
∞∑
t=0

γt
(
qϕ1(st(ω), at(ω))− qϕ2(st(ω), at(ω))

)∣∣∣∣∣
≤

∞∑
t=0

γt sup
(s′,a′)

∣∣qϕ1(s
′, a′)− qϕ2(s

′, a′)
∣∣

≤
∞∑
t=0

γt LR∥ϕ1 − ϕ2∥

=
LR

1− γ
∥ϕ1 − ϕ2∥.

(53)
The bound does not depend on π, so combining it with Eq. 52 we obtain∣∣Qξ

ϕ1,∗(s, a)−Qξ
ϕ2,∗(s, a)

∣∣ ≤ LR

1− γ
∥ϕ1 − ϕ2∥. (54)

Taking the supremum over (s, a) yields the desired result.
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Lemma C.7 (Lipschitz continuity ofQξ
ϕ,π in ϕ for fixed policy). Suppose Assumptions 5.1, 5.2, and

5.3 hold, and fix any stationary policy π. Define the risk–sensitive evaluation Q-function as

Qξ
ϕ,π(s, a) :=Mξ

( ∞∑
t=0

γtqϕ(st, at)
∣∣∣ s0 = s, a0 = a, π

)
, (55)

where {(st, at)}t≥0 is the trajectory under π starting from (s0, a0) = (s, a). Then for all ϕ1, ϕ2,∥∥Qξ
ϕ1,π

−Qξ
ϕ2,π

∥∥
∞ ≤ Lq ∥ϕ1 − ϕ2∥, Lq :=

LR

1− γ
. (56)

Proof. Fix π and (s0, a0) = (s, a), and let {(st, at)}t≥0 be the trajectory under π. For i ∈ {1, 2},
define Gπ

ϕi
as in 49. Then by 55,

Qξ
ϕi,π

(s, a) =Mξ(G
π
ϕi
|s, a, π), i ∈ {1, 2}. (57)

Thus ∣∣Qξ
ϕ1,π

(s, a)−Qξ
ϕ2,π

(s, a)
∣∣ = ∣∣Mξ(G

π
ϕ1
|s, a, π)−Mξ(G

π
ϕ2
|s, a, π)

∣∣
≤

∥∥Gπ
ϕ1

−Gπ
ϕ2

∥∥
∞

≤ LR

1− γ
∥ϕ1 − ϕ2∥,

(58)

where the last inequality is identical to the bound in 53. Taking the supremum over (s, a) gives
56.

C.2.5 ONE-STEP CRITIC RECURSION

We now derive a simple one-step recursion for the critic’s tracking error as the reward parameters
ϕk and policies πk evolve across iterations.

For each iteration k, define
Ek :=

∥∥Qξ
ϕk,πk

−Qξ
ϕk,π⋆

ϕk

∥∥
∞, (59)

where π⋆
ϕk

is an optimal DRM policy for reward parameter ϕk, i.e.

π⋆
ϕk

∝ softmaxπQ
ξ
ϕk,π

. (60)

Lemma C.8. Suppose Assumptions 5.1, 5.2, and 5.3 hold, and let Lq be as in Lemma C.7. Then for
all k ≥ 1,

Ek ≤ γ Ek−1 + 2Lq ∥ϕk − ϕk−1∥. (61)

Proof. Add and subtract Qξ
ϕk−1,πk

and Qξ
ϕk−1,π⋆

ϕk−1

inside the norm:∥∥Qξ
ϕk,πk

−Qξ
ϕk,π⋆

ϕk

∥∥
∞

=
∥∥Qξ

ϕk,πk
−Qξ

ϕk,π⋆
ϕk

+Qξ
ϕk−1,πk

−Qξ
ϕk−1,πk

+Qξ
ϕk−1,π⋆

ϕk−1

−Qξ
ϕk−1,π⋆

ϕk−1

∥∥
∞

≤
∥∥Qξ

ϕk−1,π⋆
ϕk−1

−Qξ
ϕk,π⋆

ϕk

∥∥
∞ +

∥∥Qξ
ϕk,πk

−Qξ
ϕk−1,πk

∥∥
∞ +

∥∥Qξ
ϕk−1,πk

−Qξ
ϕk−1,π⋆

ϕk−1

∥∥
∞.

(62)

By Lemma C.6 (with π⋆
ϕk−1

and π⋆
ϕk

both optimal) and Lemma C.7 (with π = πk), we have∥∥Qξ
ϕk−1,π⋆

ϕk−1

−Qξ
ϕk,π⋆

ϕk

∥∥
∞ ≤ Lq ∥ϕk − ϕk−1∥,∥∥Qξ

ϕk,πk
−Qξ

ϕk−1,πk

∥∥
∞ ≤ Lq ∥ϕk − ϕk−1∥.

(63)

Therefore,∥∥Qξ
ϕk,πk

−Qξ
ϕk,π⋆

ϕk

∥∥
∞ ≤ 2Lq ∥ϕk − ϕk−1∥ +

∥∥Qξ
ϕk−1,πk

−Qξ
ϕk−1,π⋆

ϕk−1

∥∥
∞. (64)
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Next observe that for fixed ϕk−1, π⋆
ϕk−1

is optimal, so

Qξ
ϕk−1,πk

≤ Qξ
ϕk−1,π⋆

ϕk−1

pointwise. (65)

Moreover, by monotonicity of the Bellman operator and Lemma C.2,

0 ≤ Qξ
ϕk−1,π⋆

ϕk−1

−Qξ
ϕk−1,πk

≤ T πk

ξ,ϕk−1

(
Qξ

ϕk−1,π⋆
ϕk−1

−Qξ
ϕk−1,πk

)
, (66)

so taking norms and using 34 gives∥∥Qξ
ϕk−1,π⋆

ϕk−1

−Qξ
ϕk−1,πk

∥∥
∞ ≤ γ

∥∥Qξ
ϕk−1,π⋆

ϕk−1

−Qξ
ϕk−1,πk−1

∥∥
∞ = γ Ek−1. (67)

So that we get

Ek =
∥∥Qξ

ϕk,πk
−Qξ

ϕk,π⋆
ϕk

∥∥
∞ ≤ γ Ek−1 + 2Lq ∥ϕk − ϕk−1∥, (68)

as claimed.

C.2.6 SMOOTH REWARD UPDATES AND AVERAGED CRITIC TRACKING

We now relate the parameter drift ∥ϕk − ϕk−1∥ to the reward update objective Lr(ϕ) used in Eq. 5.

Assumption C.9 (Smoothness and bounded gradients of the reward objective). Let Lr(ϕ) denote
the reward-distribution objective in Eq. 5. Assume:

1. Lr is differentiable and its gradient is L∇–Lipschitz:∥∥∇Lr(ϕ1)−∇Lr(ϕ2)
∥∥ ≤ L∇ ∥ϕ1 − ϕ2∥ for all ϕ1, ϕ2. (69)

2. The iterates {ϕk} are projected onto a compact set Φ ⊂ Rd, so that

Gmax := sup
ϕ∈Φ

∥∥∇Lr(ϕ)
∥∥ < ∞. (70)

The reward update step is

ϕk = ΠΦ

(
ϕk−1 − ηk−1 ∇Lr(ϕk−1)

)
, (71)

where ΠΦ is the Euclidean projection onto Φ and {ηk} is a deterministic stepsize schedule.

Lemma C.10. Under Assumption C.9,

∥ϕk − ϕk−1∥ ≤ ηk−1Gmax. (72)

Proof. By non-expansiveness of the projection,

∥ϕk − ϕk−1∥ =
∥∥ΠΦ(ϕk−1 − ηk−1∇Lr(ϕk−1))−ΠΦ(ϕk−1)

∥∥
≤ ηk−1

∥∥∇Lr(ϕk−1)
∥∥ ≤ ηk−1Gmax,

(73)

which is 72.

Now we are ready to get the main recursion formula.

Theorem 5.4. Assume assumptions 5.1-5.3 hold. Let Ek =
∥∥Qξ

ϕk,πk
− Qξ

ϕk,π⋆
ϕk

∥∥
∞. Assume the

reward update satisfies Assumption C.9, with stepsizes ηk = η = η0K
−σ , η0 > 0, and σ ∈ (0, 1).

Then running the DistIRL algorithm K steps, we have

1

K

K∑
k=1

Ek = O(K−1) + O(K−σ). (15)
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Proof. By Lemmas C.8 and C.10,

Ek ≤ γEk−1 + 2LqGmaxηk−1. (74)

Taking the sum, we have

K∑
k=1

Ek ≤
K∑

k=1

γEk−1 + 2LqGmax

K∑
k=1

ηk−1. (75)

Rearrange and average over K gives

1− γ

K

K∑
k=1

Ek ≤ γ

K
(E0 − EK) + 2LqGmaxηK

−σ. (76)

Divide both side by 1− γ we have

1

K

K∑
k=1

Ek ≤ γ

(1− γ)K
C0 +

1

1− γ
2LqGmaxηK

−σ. (77)

For which we obtain the claim.

C.2.7 POLICY CONVERGENCE IN LOG-PROBABILITY

Finally, we transfer the critic tracking guarantees to the induced policies.

Theorem 5.5. For each k, define the learned and DRM-optimal policies induced by the current
Q-functions:

πk(·|s) ∝ exp
(
Qξ

ϕk,πk
(s, ·)

)
, π⋆

ϕk
(·|s) ∝ exp

(
Qξ

ϕk,π⋆
ϕk

(s, ·)
)
. (16)

Then running the DistIRL algorithm K steps, we have

1

K

K∑
k=1

∥∥ log πk − log π⋆
ϕk

∥∥
∞ = O(K−1) +O(K−σ). (17)

Proof. Fix k and s. Let

x(·) = Qξ
ϕk,πk

(s, ·), y(·) = Qξ
ϕk,π⋆

ϕk

(s, ·). (78)

By Lemma C.5, ∥∥ log π+
k (·|s)− log π⋆+

ϕk
(·|s)

∥∥
∞ ≤ 2∥x− y∥∞. (79)

Taking the supremum over s yields∥∥ log π+
k − log π⋆+

ϕk

∥∥
∞ ≤ 2

∥∥Qξ
ϕk,πk

−Qξ
ϕk,π⋆

ϕk

∥∥
∞ = 2Ek. (80)

Averaging over k = 1, . . . ,K and substituting the bound from Theorem 5.4 gives Eq. 17.

C.2.8 FIRST–ORDER CONVERGENCE OF THE REWARD UPDATE

We now show that, under mild additional conditions, the reward update drives the gradient of the
reward objective to zero in an averaged sense, so that the iterates approach a stationary point of the
inner minimization problem over ϕ. This is the best we can hope as we do not assume the function
approximator of the reward is convex.

Recall that the reward objective Lr(ϕ) and its update rule were introduced in Assumption C.9. The
update at iteration k is

ϕk+1 = ΠΦ

(
ϕk − ηkgk

)
, (81)

where gk is the stochastic gradient computed using the current critic Qξ
ϕk,πk

and policy πk.
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Assumption C.11 (Gradient estimator and critic bias). Let Fk denote the filtration generated by all
randomness up to iteration k. Assume that the stochastic gradient gk satisfies, for some constants
Cg, Gg > 0, ∥∥E[gk|Fk]−∇Lr(ϕk)

∥∥ ≤ Cg Ek, (82)

E
[
∥gk∥2

]
≤ G2

g, (83)

where
Ek :=

∥∥Qξ
ϕk,πk

−Qξ
ϕk,π⋆

ϕk

∥∥
∞ (84)

is the critic tracking error defined above.

Intuitively, equation 82 states that the gradient bias vanishes as soon as the critic tracks the
DRM–optimal Q well (i.e., Ek is small), which is consistent with the inequality in equation 17:
a small critic gap implies a small occupancy–measure mismatch, hence a small gradient bias. The
second–moment bound equation 83 is standard in nonconvex stochastic optimization.
Theorem 5.6. Suppose Assumptions 5.1, 5.2, C.9, and C.11 hold. Let ηk = η0k

−σ with η0 > 0 and
σ ∈ (0, 1), and assume Lr is bounded below on Φ. Then there exists C > 0 such that

1

K

K−1∑
k=0

E
[
∥∇Lr(ϕk)∥2

]
= O

(
K−1

)
+O

(
K−σ

)
+O

(
K−1+σ

)
, (18)

Proof. We begin from the smoothness inequality with ϕ′ = ϕk+1, ϕ = ϕk:

Lr(ϕk+1) ≤ Lr(ϕk) +
〈
∇Lr(ϕk), ϕk+1 − ϕk

〉
+
L∇

2
∥ϕk+1 − ϕk∥2. (85)

By the non-expansiveness of the projection ΠΦ and the update rule,

∥ϕk+1 − ϕk∥ =
∥∥ΠΦ(ϕk − ηkgk)−ΠΦ(ϕk)

∥∥
≤ ηk∥gk∥. (86)

Moreover, 〈
∇Lr(ϕk), ϕk+1 − ϕk

〉
=

〈
∇Lr(ϕk),ΠΦ(ϕk − ηkgk)− ϕk

〉
≤

〈
∇Lr(ϕk),−ηkgk

〉
(87)

= −ηk
〈
∇Lr(ϕk), gk

〉
. (88)

Substituting the above into Eq. 85 yields

Lr(ϕk+1) ≤ Lr(ϕk)− ηk
〈
∇Lr(ϕk), gk

〉
+
L∇

2
η2k∥gk∥2. (89)

We expand the inner product using〈
∇Lr(ϕk), gk

〉
=

1

2

(
∥∇Lr(ϕk)∥2 + ∥gk∥2 − ∥gk −∇Lr(ϕk)∥2

)
,

which gives

−ηk
〈
∇Lr(ϕk), gk

〉
= −ηk

2
∥∇Lr(ϕk)∥2 −

ηk
2
∥gk∥2 +

ηk
2
∥gk −∇Lr(ϕk)∥2. (90)

Substituting Eq. 90 into Eq. 89 we obtain

Lr(ϕk+1) ≤ Lr(ϕk)−
ηk
2
∥∇Lr(ϕk)∥2 −

ηk
2
∥gk∥2 +

ηk
2
∥gk −∇Lr(ϕk)∥2 +

L∇

2
η2k∥gk∥2

≤ Lr(ϕk)−
ηk
2
∥∇Lr(ϕk)∥2 +

ηk
2
∥gk −∇Lr(ϕk)∥2 +

L∇

2
η2k∥gk∥2 (91)

where we discarded the negative term −ηk

2 ∥gk∥2. Next we bound the bias term. Condition on ϕk
and use ∥gk −∇Lr(ϕk)∥ ≤ CgEk:

E
[
∥gk −∇Lr(ϕk)∥2

]
= E

[
E
[
∥gk −∇Lr(ϕk)∥2|ϕk

]]
≤ E

[
C2

gE
2
k

]
≤ C2

g E[E2
k] ≤ CC2

g E[Ek], (92)
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where we used Ek ≥ 0 and Ek ≤ ∥Q∥∞ so that E2
k ≤ CEk. Similarly,

E
[
∥gk∥2

]
≤ G2

max. (93)
Taking expectations of Eq. 91 and applying Eq. 92-93 gives

E[Lr(ϕk+1)] ≤ E[Lr(ϕk)]−
ηk
2
E
[
∥∇Lr(ϕk)∥2

]
+
ηk
2
C2

g E[Ek] +
L∇

2
η2kG

2
max. (94)

Rearrange Eq. 94 as
ηk
2
E
[
∥∇Lr(ϕk)∥2

]
≤ E[Lr(ϕk)]− E[Lr(ϕk+1)] +

ηk
2
CC2

g E[Ek] +
L∇

2
η2kG

2
max. (95)

Multiply both sides by 2/ηk:

E
[
∥∇Lr(ϕk)∥2

]
≤ 2

ηk

(
E[Lr(ϕk)]− E[Lr(ϕk+1)]

)
+ C2

g E[Ek] + L∇ηkG
2
max. (96)

Now sum Eq. 96 over k = 0, . . . ,K − 1:
K−1∑
k=0

E
[
∥∇Lr(ϕk)∥2

]
≤ 2

K−1∑
k=0

E[Lr(ϕk)]− E[Lr(ϕk+1)]

ηk
+ C2

g

K−1∑
k=0

E[Ek] + L∇G
2
max

K−1∑
k=0

ηk.

(97)
Using the boundedness equation and the fact that ηk is constant, we bound the first sum as

K−1∑
k=0

E[Lr(ϕk)]− E[Lr(ϕk+1)]

ηk
=

K−1∑
k=0

(
E[Lr(ϕk)]− E[Lr(ϕk+1)]

) 1

ηk

=
Kσ

η

K−1∑
k=0

(
E[Lr(ϕk)]− E[Lr(ϕk+1)]

)
=
Kσ

η

(
E[Lr(ϕ0)]− E[Lr(ϕK)]

)
≤ Lmax − Lmin

η
Kσ. (98)

Next, apply the averaged tracking bound on the action-value function:
K−1∑
k=0

E[Ek] = K · 1

K

K−1∑
k=0

E[Ek]

= O
(
1
)
+O(K1−σ) (99)

Finally, since ηk = ηK−σ with 0 < σ < 1,
K−1∑
k=0

ηk = η

K∑
k=1

K−σ = O
(
K1−σ

)
. (100)

Divide both sides by K:

1

K

K−1∑
k=0

E
[
∥∇Lr(ϕk)∥2

]
≤ 2(Lmax − Lmin)

η
K1−σ (101)

+
γ

(1− γ)
C0C

2
g +

C2
g

1− γ
2LqGmaxηK

1−σ (102)

+ L∇G
2
max ηK

1−σ. (103)
So that we have

1

K

K−1∑
k=0

E
[
∥∇Lr(ϕk)∥2

]
= O(K−σ) +O(K−1+σ) +O(K−1), (104)

Since 0 < σ < 1, all three terms vanish as K → ∞, so the averaged squared gradient converges to
zero.
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D MODEL ARCHITECTURE AND HYPER-PARAMETERS

Throughout this paper, we use the following model architecture for all the experiments.

Table 6: Model Parameters for DistIRL

Parameter Value
Training Parameters
Learning Rate 3× 10−4

Batch Size 512
Total Iterations 5,000
Entropy Coefficient 0.1
Risk Measure CVaR
Risk Parameter 0.05
Reward Regularization 0.01
Network Architecture
Policy Network [256, 128]
Distribution Type Skew Gaussian
Reward Range [-5.0, 5.0]
Number of Quantiles 200
Reward Hidden Features 128

For gridworld, we specify the reward range as [0, 2]. For MuJoCo tasks, [−10, 10]. This is achieved
by applying a (scaled) tanh function.

E ADDITIONAL ABLATION STUDIES

E.1 ABLATION ON CHOICES OF DRM AND ITS PARAMETER

In this section, we present additional ablation studies. First, we evaluate the performance of DistIRL
on the risk-averse D4RL dataset with different choices of DRM in the HalfCheetah instance. Note
that for CVaR and VaR, the smaller distortion parameter η is, the more risk-averse the policy will
be. But for Wang’s risk measure, which has parameter η ranging from −1 to 1, the policy exihibit
from risk-seeking to risk-aversion, with η = 0 having the risk-neutral behavior. The choice of risk
parameter effect the shape ξ̃′, which affect the solution quality of the policy optimization problem
in Eq. 7.

Table. 7 demonstrates the effects of different choices of risk measure and its risk parameter. Note that
since the data is generated by a risk-averse policy, a risk-averse DRM produces the best result, while
risk-neutral policies are substantially worse, and risk-seeking policies fail to capture the expert’s
behavior.

Table 7: Performance on distributional reward settings (D4RL).
DRM η = 0.05 η = 0.5 η = 0.9 η = −0.5 η = −0.9

CVaR 3539.74 ± 44.26 3384.27 ± 151.06 2851.13 ± 689.67 - -
VaR 3539.12 ± 76.77 3423.43 ± 113.72 3081.96 ± 522.94 - -

Wang 2670.42 ± 730.93 2849.94 ± 1220.71 3439.46 ± 314.48 1755.25 ± 13.42 444.62 ± 1.90

E.2 ABLATION ON NUMBER OF TRAJECTORIES

Table 8: Performance averaged over 5 seeds for varying dataset sizes (10, 5, 3, 1 trajectories).
Environment 10 5 3 1

HalfCheetah 3539.74 ± 44.26 3440.67 ± 58.48 3501.53 ± 91.82 3238.49 ± 339.72
Hopper 886.44 ± 0.79 888.71 ± 20.16 893.15 ± 14.13 748.93 ± 112.53

Walker2d 1526.46 ± 148.24 1291.44 ± 759.45 1143.62 ± 231.05 1151.86 ± 180.98

In addition to the main comparison, we conduct an ablation study on the number of expert tra-
jectories used to train our DistIRL algorithm. For each environment, we construct datasets with
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Figure 6: Caption

{10, 5, 3, 1} expert trajectories, and train our method on each of these datasets independently. The
evaluation protocol is kept identical to the main experiments. We report the average return over 5
random seeds, with the standard deviation across seeds.

Table 8 summarizes the results. Overall, the performance degrades as the number of trajectories
decreases, which is expected given the reduced coverage of the expert behavior. Nevertheless, our
IRL algorithm remains reasonably robust in the low-data regime. With as few as 3 to 5 trajectories, it
still achieves returns close to those obtained with 10 trajectories on most tasks. Even in the extreme
case of a single trajectory, the learned policies retain non-trivial performance, indicating that the
method can extract useful structure from highly limited expert demonstrations.

F ADDITIONAL RESULTS ON MATCHING RETURN DISTRIBUTION

Figure 6 presents a comparison of distributional fidelity between DistIRL and BIRL using three
metrics: (a) relative errors of higher-order moments, (b) summarized moment errors up to kurtosis,
and (c) estimated–versus–expert quantile alignment. In (a), DistIRL maintains consistently low
relative error across all moment orders, demonstrating its ability to capture not only the mean and
variance but also the skewness and tail behavior of the expert return distribution. In contrast, BIRL’s
error grows rapidly with increasing moment order, indicating limited capacity to recover higher-
order structure. Panel (b) further highlights this gap, showing that DistIRL achieves uniformly
low errors on the first four moments, whereas BIRL exhibits substantial discrepancies, particularly
in variance and higher moments. Panel (c) compares estimated and expert quantiles, where the
dashed diagonal represents perfect alignment. DistIRL closely follows this ideal mapping across
the entire range, while BIRL deviates significantly, especially in the upper tail. Overall, this figure
illustrates that DistIRL reconstructs the full return distribution with higher accuracy than BIRL,
which is necessary for risk-sensitive learning and downstream decision-making under uncertainty.

G ADDITIONAL RESULTS ON DOPAMINE LEVEL
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Figure 7: Reward recovery for state 1 action 7
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Figure 8: Reward recovery for state 3 action 6
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Figure 9: Reward recovery for state 4 action 8

H LLM USAGE AND REPRODUCIBILITY

We use LLM to aid or polish writings only. Research ideation, retrieval and discovery (e.g., finding
related work) are conducted by ourselves.
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Figure 10: Reward recovery for state 5 action 7
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Figure 11: Reward recovery for state 5 action 9
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Figure 12: Reward recovery for state 7 action 8
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Figure 13: Reward recovery for state 9 action 7
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