

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTIONAL INVERSE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose a distributional framework for offline Inverse Reinforcement Learning (IRL) that jointly models uncertainty over reward functions and full distributions of returns. Unlike conventional IRL approaches that recover a deterministic reward estimate or match only expected returns, our method captures richer structure in expert behavior, particularly in learning the reward distribution, by minimizing first-order stochastic dominance (FSD) violations and thus integrating distortion risk measures (DRMs) into policy learning, enabling the recovery of both reward distributions and distribution-aware policies. This formulation is well-suited for behavior analysis and risk-aware imitation learning. [Theoretical analysis show that the algorithm converge with \$\mathcal{O}\(\varepsilon^{-2}\)\$ iteration complexity](#). Empirical results on synthetic benchmarks, real-world neurobehavioral data, and MuJoCo control tasks demonstrate that our method recovers expressive reward representations and achieves state-of-the-art imitation performance.

1 INTRODUCTION

Inverse Reinforcement Learning (IRL) aims to infer an expert’s underlying reward function and policy from observed trajectories collected under unknown dynamics. IRL has been successfully applied in diverse domains, including robotics (Vasquez et al., 2014; Wu et al., 2024a), animal behavior modeling (Ashwood et al., 2022; Ke et al., 2025), autonomous driving (Rosbach et al., 2019; Wu et al., 2020), and fine-tuning of large language models (Zeng et al., 2025). A pioneering work in this field, the Maximum Entropy IRL (MaxEntIRL) framework (Ziebart et al., 2008), formulates reward learning as a likelihood optimization problem and interprets expert policies as Boltzmann distributions over returns. Follow-up works have extended this framework to improve reward inference stability and generalization (Arora & Doshi, 2021; Garg et al., 2021; Zeng et al., 2022).

Despite these advances, most IRL methods assume that the expert’s reward function is deterministic, thereby recovering only a point estimate, i.e., $r(s, a) \in \mathbb{R}$ for every state s and action a . This assumption, however, limits expressiveness in real-world settings where reward signals are inherently stochastic. For instance, in robotic manipulation tasks involving deformable or fragile objects (Yin et al., 2021), contact uncertainty introduces reward variability for identical state-action pairs—variability that directly influences the learned policy’s robustness and safety. Similarly, in neuroscience, dopaminergic neuron activity has been shown, as reward signals, to drive animal behavior via RL policies (Markowitz et al., 2023b). Yet, dopamine signals exhibit significant trial-to-trial variations, suggesting that behavior may arise from an underlying stochastic reward distribution. These challenges are further amplified in offline IRL settings, where interaction with the environment is unavailable and the algorithm must fully rely on fixed demonstrations.

These examples highlight that in many real-world scenarios, demonstrations may be generated under stochastic reward functions, i.e., $r(s, a)$ is a random variable. This motivates the need to go beyond point estimates and instead recover the full distribution of rewards. Prior works such as Bayesian IRL (BIRL) methods infer a posterior over reward parameters using Markov chain Monte Carlo (MCMC) (Ramachandran & Amir, 2007), Maximum a posteriori (MAP) estimation (Choi & Kim, 2011), or variational inference (Chan & van der Schaar, 2021), but primarily capture uncertainty over the parameters of a deterministic reward function. More importantly, BIRL still optimizes the expected return, following the MaxEntIRL framework, failing to exploit the richer structure present in the full return distribution induced by stochastic rewards. In other words, if reward learning in IRL is based solely on maximizing expected return, then the resulting policy is influenced only by

054 the mean and remains insensitive to the variance or higher-order moments of the reward. As a result,
 055 such an approach provides insufficient signal for accurately estimating the full reward distribution.
 056

057 However, it remains unclear how to effectively learn reward distributions directly from expert
 058 demonstrations. Conventional MaxEntIRL fails to capture higher-order moments of the return, moti-
 059 vating the use of statistical distances between return distributions. Yet, such approaches introduce
 060 significant challenges for policy learning, the dual problem to reward inference, because most statis-
 061 tical distances couple the estimated return distribution with the (unknown) expert return distribution.
 062 This coupling exacerbates compounding errors and prevents leveraging established distributional RL
 063 techniques. Consequently, a principled framework is needed that enables reward distribution learning
 064 while simultaneously supporting return distribution estimation in the offline IRL setting.

065 To this end, we introduce *Distributional Inverse Reinforcement Learning* (DistIRL), a novel frame-
 066 work that explicitly models both the distributional nature of reward and the return. This allows us to
 067 capture stochasticity not only from transitions and policies but also from the reward function itself.
 068 Specifically, for reward learning, instead of matching expected returns as in MaxEntIRL, we pro-
 069 pose to match the full return distribution using a First-order Stochastic Dominance (FSD) criterion.
 070 This allows us to capture not only the mean but also higher-order moments of the return distribution
 071 and thus capturing the full landscape of reward distributions, leading to a richer and more faithful
 072 estimate of the underlying reward structure. To the best of our knowledge, *this is the first work that*
learn the full distribution of the reward function in a principled manner.

073 It is important to note that while our framework incorporates risk-sensitive policy learning, risk
 074 sensitivity primarily serves as a mechanism that enables robust reward distribution learning in the
 075 offline IRL setting. The connection is explained in detail in Sec. 4.2. Our contributions in this paper
 076 are summarized as follows:

077 (1) **Reward Distribution Learning.** We propose an intuitive framework for learning reward distri-
 078 butions in the offline IRL setting. With FSD objective emphasizing the match of the entire distribu-
 079 tion, we are able to learning reward distributions beyond the first moment.

080 (2) **Distribution-aware Policy Learning.** Our algorithm learns the return distribution and recov-
 081 ers the distribution-aware policy, extending the modeling capability of IRL frameworks towards a
 082 broader range of behavior analyses and facilitating imitation learning in risk-sensitive scenarios.

083 (3) **Theoretical Analysis.** We develop rate of convergence analysis for the proposed algorithm for
 084 solving DistIRL, which shows that the algorithm converge with $\mathcal{O}(\varepsilon^{-2})$ iteration complexity.

085 (4) **Empirical Validation.** We demonstrate that our method recovers meaningful reward distribu-
 086 tions on synthetic and real-world datasets, including neurobehavioral data (first-time studied for
 087 IRL). Our algorithm also achieves state-of-the-art performance on high-dimensional robotic control
 088 tasks in offline IRL settings.

089 2 RELATED WORK

090 **Inverse Reinforcement Learning** Traditional offline IRL algorithms recover a reward function by
 091 matching expert feature expectations or maximizing an entropy-regularized likelihood. Apprenti-
 092 ceship learning (Abbeel & Ng, 2004) and MaxEntIRL (Ziebart et al., 2008; 2010) infer a deterministic
 093 reward whose induced policy reproduces expert behavior in expectation. Subsequent deep IRL vari-
 094 ants incorporate neural network function approximators in the online setting (Ho & Ermon, 2016;
 095 Jeon et al., 2018; Wulfmeier et al., 2015; Ni et al., 2021; Garg et al., 2021; Zeng et al., 2022; Gleave
 096 & Toyer, 2022; Viano et al., 2021; Bloem & Bambos, 2014; Wu et al., 2024b; Zhan et al., 2024),
 097 where a subset of work using a variant of this framework, Maximum Casual Entropy IRL (MCE-
 098 IRL), emphasizing the causal relationship in its nature, in which the policy further interacts with
 099 the environment but still match only the expected return. As a result, these approaches cannot cap-
 100 ture risk preferences or higher-order statistics of the reward distribution present in many real-world
 101 tasks. In addition, online IRL methods require interactive access to a simulator during training,
 102 which is unsuitable for offline settings where reproducing the environment is undesirable or infea-
 103 sible, e.g. modeling mouse behavior in a maze. Finally, while recent work has explored risk-aware
 104 policy learning within the IRL framework (Singh et al., 2018; Lacotte et al., 2019; Cheng et al.,
 105 2023), these approaches still assume a deterministic reward model, failing to capture the stochastic-
 106 ity of rewards in many real-world problems. We show a detailed comparison of IRL methods across
 107 modeling assumptions in Appendix A.

108 **Bayesian Imitation Learning** Bayesian IRL (BIRL) methods infer a posterior distribution over
 109 reward parameters to quantify uncertainty in reward estimation. Ramachandran and Amir (Ra-

machandran & Amir, 2007) introduces the first Bayesian IRL, using MCMC to sample from the reward posterior under a Boltzmann-rationality likelihood. Follow-up works use the same framework to handle larger state spaces and richer reward priors (Choi & Kim, 2011; Levine et al., 2011; Chan & van der Schaar, 2021; Li et al., 2023). Although these methods capture parameter uncertainty, they still rely on expected-return assumptions and do not exploit the full return distribution. Moreover, BIRL with a reward distribution fails to model continuous action spaces as obtaining the likelihood is computationally intractable for passing the gradient to the reward posterior. In this work, we propose a scalable algorithm framework for learning the full reward distributions.

Distributional Reinforcement Learning DistRL extends classical value-based methods by modeling the full distribution of returns rather than only their expectation. Early work, such as Categorical DQN (C51) (Bellemare et al., 2017) and Quantile Regression DQN (QR-DQN) (Dabney et al., 2018b), demonstrates that learning a distributional critic improves stability and sample efficiency. More recent advances include Implicit Quantile Networks (IQN) (Dabney et al., 2018a), Implicit Q-Learning (Kostrikov et al., 2021), Multivariate Distribution RL (Wiltzer et al., 2024), and Diffusion Process for RL (Hansen-Estruch et al., 2023; Li et al., 2024). Note that DistRL still inherently maximizes the expected return. Risk-sensitive extensions (Lim & Malik, 2022; Schneider et al., 2024) that optimize risk measures like CVaR, show that one can directly shape policies by tailoring decisions to specific regions of the return distribution. While these methods are widely adopted in RL, the IRL counterparts (Lee et al., 2022; Karimi & Ebadzadeh, 2025) with a distributional critic are limited in scope. These methods use a distributional critic to model return distributions and extract expert policies, but still assume deterministic reward functions, and take on MaxEntIRL as the blueprint, i.e., matching the mean of the return distribution.

3 PRELIMINARIES

We model the environment as a discounted Markov Decision Process (MDP) $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$, where \mathcal{S} denotes the state space, \mathcal{A} the action space, $P(s'|s, a)$ the transition kernel, and $\gamma \in [0, 1]$ the discount factor. The reward function is a (integrable) random variable $r : (\Omega, \mathcal{F}, \mathbb{P}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, so that for each state-action pair (s, a) , the reward $r(s, a)$ induces a probability distribution over $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. A policy $\pi(a|s)$ generates a trajectory $(s_0, a_0, s_1, a_1, \dots)$, and the associated (discounted) return is the random variable $Z^\pi = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$.

3.1 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

Given demonstrations $\{(s_t, a_t)\}_{t \geq 1}$ collected by an unknown expert policy π^E , MaxEntIRL (Ziebart et al., 2008) aims to recover the unknown policy, and the corresponding reward function r which the policy is optimized to. Specifically, we consider the following formulation (Ho & Ermon, 2016):

$$\max_{\pi} \min_r \mathbb{E}_{d\pi}[r(s, a)] - \mathbb{E}_{d\pi^E}[r(s, a)] + \mathcal{H}(\pi) + \psi(r), \quad (1)$$

where $\mathcal{H} := \mathbb{E}_{d\pi}[-\log \pi(a|s)]$ denotes the entropy, and ψ is a general convex regularizer. This formulation reduces to MaxEntIRL if $\psi = 0$. If $\psi = \text{KL}(q(r)||p_0(r))$, it can be seen as a BIRL framework, since the optimal policy follows a Boltzmann distribution of the action-values¹.

4 DISTRIBUTIONAL INVERSE REINFORCEMENT LEARNING FRAMEWORK

In our model, we treat the reward as a *distribution* rather than a deterministic function. During optimization, the first two terms in Eq. 1, $\mathbb{E}_{d\pi}[r(s, a)] - \mathbb{E}_{d\pi^E}[r(s, a)]$, enforce *mean dominance*—that is, the learned reward should yield a higher expected return for the expert policy than for any arbitrary policy. At optimality, this difference becomes zero, indicating *mean matching* between expert and agent returns. However, if the reward is inherently a distribution, mean matching alone fails to capture the relationship between the expert’s return distribution and the agent’s in its entirety. This leads to a loss of higher-order information in the reward. To accurately model the full reward distribution, we must impose a *distributional form of dominance* during optimization, ensuring that the entire return distribution is aligned at optimality, not just the mean.

Let’s consider a notion of order in term of the entire distributions.

Definition 4.1 (First-Order Stochastic Dominance (FSD) (Hadar & Russell, 1969)). Let X and Y be real-valued integrable random variables with cumulative distribution functions F_X and F_Y . We say that X *first-order stochastically dominates* Y , written as $X \succeq_{FSD} Y$, if $F_X(z) \leq F_Y(z), \forall z \in \mathbb{R}$.

¹The Kullback-Leibler divergence is convex in its first argument when the second argument is fixed.

162 The concept of FSD is illustrated in Fig. 1. If we aim
 163 for $X \succeq_{\text{FSD}} Y$, then the shaded region indicates a
 164 violation of this condition. FSD has an equivalent definition
 165 relating to utility functions, which further implies mean
 166 dominance.

167 **Proposition 4.2** (Theorem 1-2 (Hadar & Russell, 1969)).
 168 For real-valued X and Y , the following are equivalent:

- 169 1. $F_X(z) \leq F_Y(z)$ for all $z \in \mathbb{R}$.
- 170 2. $\mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]$ for every non-decreasing utility function $u : \mathbb{R} \rightarrow \mathbb{R}$.

173 **Corollary 4.3** (Mean Dominance). If $X \succeq_{\text{FSD}} Y$, it follows that $\mathbb{E}[X] \geq \mathbb{E}[Y]$, as the identity utility $u(x) = x$ is non-decreasing.

176 We model the reward as a conditional distribution, $r_t \sim q(\cdot | s_t, a_t)$, and define the random return for a trajectory
 177 (s_0, a_0, \dots) sampled from policy π as $Z^\pi = \sum_{t=0}^{\infty} \gamma^t r_t$. We now introduce the distributional
 178 counterpart to Eq. 1, the objective for distributional IRL, expressed as

$$180 \max_{\pi} \min_r \mathcal{L}(\pi, r) := \max_{\pi} \min_r \int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz + \mathcal{H}(\pi) + \psi(r), \quad (2)$$

183 where Z^E denotes the return distribution of the expert policy.

184 4.1 LEARNING REWARD DISTRIBUTION THROUGH STOCHASTIC DOMINANCE

185 From Eq. 2, the objective of the reward function is

$$187 \min_r \mathcal{L}_{\text{FSD}}(\pi, r) + \psi(r) = \min_r \int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz + \psi(r). \quad (3)$$

189 This objective minimizes the violation of FSD, drawing inspiration from the Kolmogorov-Smirnov
 190 (K-S) test (Massey Jr, 1951). To model the reward distribution in a principled manner, we treat
 191 $\mathcal{L}_{\text{FSD}}(\pi, r)$ as an *energy function* that scores how compatible a proposed reward r is with the
 192 expert demonstrations. In particular, we define a likelihood function over the expert demon-
 193 strations \mathcal{D} using the Energy-Based Model (EBM) formulation (LeCun et al., 2006): $p(\mathcal{D}|r) \propto$
 194 $\exp(-\mathcal{L}_{\text{FSD}}(\pi, r))$, so that reward functions that yield small FSD violations are exponentially more
 195 likely under the expert data. This construction is natural here because FSD does not provide an
 196 explicit probabilistic model, but *does* provide a calibrated energy landscape that reflects goodness-
 197 of-fit. A more detailed discussion can be found in Appendix B.3.

198 We also introduce a *prior distribution* $p_0(r)$, which reflects our initial belief before observing any
 199 data. The goal is to infer the posterior distribution $p(r|\mathcal{D})$ using Bayes’ rule. As direct inference under
 200 the EBM formulation is generally intractable, we adopt the variational inference framework (Blei
 201 et al., 2017) by introducing a *variational distribution* $q_\phi(r|s, a)$, parameterized by ϕ , to approximate
 202 the posterior and optimize the *evidence lower bound* (ELBO):

$$203 \text{ELBO} = \mathbb{E}_{q_\phi(r|s, a)} [\log p(\mathcal{D}|r)] - \text{KL}(q_\phi(r|s, a) \| p_0(r)). \quad (4)$$

204 Substituting the energy-based likelihood into the ELBO yields:

$$205 \min_{\phi} \mathcal{L}_r(\phi) := \min_{\phi} \mathbb{E}_{q_\phi(r|s, a)} [\mathcal{L}_{\text{FSD}}(\pi, r)] + \text{KL}(q_\phi(r|s, a) \| p_0(r)). \quad (5)$$

206 Notice the natural relationship between KL and ψ . Formally, we learn the reward distribution by
 207 solving Eq. 5. To compute the gradient of the first term, we apply the Inverse Transform Sampling
 208 technique (Devroye, 2006). We use the empirical quantile to approximate the quantile of the return.
 209 Specifically, using the change of variable formula, and the relation between CDF and quantile, we
 210 have

$$211 \int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz = \int_0^1 [F_{Z^\pi}^{-1}(v) - F_{Z^E}^{-1}(v)]_+ dv. \quad (6)$$

212 We provide a short proof of the above relation in Appendix C.1. To approximate F_{π}^{-1} , we draw N
 213 samples $\{z_n\}$ by Monte Carlo sampling $z_n = \sum_0^{\infty} \gamma^t r_t$, $r_t \sim q_\phi(\cdot | s_t, a_t)$, and form the empirical
 214 quantile using its order statistics $F_{Z^\pi}^{-1} \approx (z_{(-N)}, \dots, z_{(1)})$. As a result, minimizing $\mathcal{L}_r(\phi)$ general-
 215izes the usual IRL objective of matching expected returns by aligning higher-order moments beyond
 matching the mean.

Figure 1: Illustration of quantile functions and first-order stochastic dominance (FSD).

216 4.2 RISK-AWARE POLICY LEARNING
217

218 Once the inner minimization over r yields a fixed reward distribution, the policy, parameterized by
219 φ , is updated by maximizing the following objective:

$$220 \max_{\varphi} \mathcal{L}_{\pi}(\varphi) = \max_{\varphi} \int_0^1 [F_{Z^{\pi_{\varphi}}}^{-1}(v) - F_{Z^E}^{-1}(v)]_+ dv + \mathcal{H}(\pi_{\varphi}). \quad (7)$$

222 Let's define $\mathcal{I}(v) := \mathbb{1}_{F_{Z^{\pi_{\varphi}}}^{-1}(v) \geq F_{Z^E}^{-1}(v)}$. Fig. 1 shows that $\mathcal{I}(v)$ takes the value 1 in regions where
223 FSD is violated (shaded area), and 0 otherwise. We then rewrite the objective in Eq. 7 as
224

$$225 \int_0^1 (F_{Z^{\pi_{\varphi}}}^{-1}(v) - F_{\pi^E}^{-1}(v)) \mathcal{I}(v) dv + \mathcal{H}(\pi_{\varphi}). \quad (8)$$

227 Note that the indicator function \mathcal{I} depends on the current policy, the expert policy, and the quantile
228 level v . Conceptually, \mathcal{I} assigns weight only to regions of the return distribution where FSD is
229 violated. The policy now aims to increase these FSD violations—encouraging the agent to obtain
230 higher return samples in those regions. This leads to a maximization scheme that is inherently
231 risk-aware, as it requires reasoning over the full return distribution rather than just its expectation.
232

232 Unfortunately, directly optimizing Eq. 7 is intractable, as the indicator function \mathcal{I} is not observable
233 during training. To address this, we take a broader perspective on risk-aware policy learning and pro-
234 pose replacing $\mathcal{I}(v)$ with a risk measure that retains the goal of encouraging risk-sensitive behavior
235 while yielding a tractable objective. Furthermore, we show that the resulting surrogate objective
236 provides a weaker form of optimality, but under certain conditions, it can theoretically achieve the
237 same optimum as Eq. 7. To present our new objective, we need a few essential concepts.
238

238 **Definition 4.4** (Distortion function). A distortion function ξ is a non-decreasing function $\xi : [0, 1] \rightarrow [0, 1]$ such that $\xi(0) = 0, \xi(1) = 1$.
239

240 **Definition 4.5** (Distortion Risk Measure (DRM) (Dhaene et al., 2012)). For an integrable random
241 variable X , and a distortion function ξ , a Distortion Risk Measure M_{ξ} is defined as
242

$$242 M_{\xi}(X) = \int_0^1 F_X^{-1}(v) d\tilde{\xi}(v), \quad (9)$$

244 where $\tilde{\xi} = 1 - \xi(1 - v) \geq 0$ is the dual distortion function.
245

246 Common examples of DRMs and distortion functions are listed in Table 1. These measures offer
247 various ways to quantify risk based on the return distribution. Intuitively, when $\tilde{\xi}$ is concave, it places
248 greater emphasis on lower returns, thereby encouraging risk-averse behavior. To induce risk-aware
249 policies using distortion $\xi(v)$, we need to maximize the DRM defined in Eq. 9.
250

251 Table 1: Examples of distortion risk measures.
252

Risk Measure	$\xi(v)$	Interpretation
CVaR $_{\alpha}$	$\min(v/\alpha, 1)$	Average of worst α -fraction of outcomes
Wang's Transform	$\Phi(\Phi^{-1}(v) + \lambda)$	$\lambda > 0$ implies risk-aversion, $\lambda < 0$ risk-seeking

256 Building on the above definitions, we propose replacing $\mathcal{I}(v)$ with $\tilde{\xi}(v)$ in Eq. 8, resulting in:
257

$$259 \max_{\varphi} \int_0^1 (F_{Z^{\pi}}^{-1}(v) - F_{Z^E}^{-1}(v)) d\tilde{\xi}(v) + \mathcal{H}(\pi) = \max_{\varphi} \int_0^1 F_{Z^{\pi_{\varphi}}}^{-1}(v) d\tilde{\xi}(v) + \mathcal{H}(\pi_{\varphi}). \quad (10)$$

261 The equality is obtained as the expert policy does not depend on φ . We denote the final objective as
262

$$263 \max_{\varphi} \mathcal{L}_{\pi}(\varphi) := \max_{\varphi} M_{\xi}(Z^{\pi_{\varphi}}) + \mathcal{H}(\pi_{\varphi}) = \max_{\varphi} \int_0^1 F_{Z^{\pi_{\varphi}}}^{-1}(v) d\tilde{\xi}(v) + \mathcal{H}(\pi_{\varphi}), \quad (11)$$

264 where M_{ξ} is a chosen DRM with a distortion function ξ .
265

266 *Relation to Eq. 7.* Additionally, we know that $X \succeq_{\text{FSD}} Y \Rightarrow M_{\xi}(X) \geq M_{\xi}(Y)$ (Sereda et al.,
267 2010). Then naturally one wonders what's the sufficient condition for FSD? We observe that the
268 converse implication requires a stronger condition.
269

270 **Proposition 4.6.** $M_{\xi}(X) \geq M_{\xi}(Y)$ for every distortion function ξ implies $X \succeq_{\text{FSD}} Y$.
271

270 The proof is straightforward by observing that $M_\xi(X) - M_\xi(Y) = \int_0^1 (F_X^{-1}(v) - F_Y^{-1}(v)) d\tilde{\xi}(v)$
 271 and the fact that $\tilde{\xi}(v) \geq 0$. We present a short proof in Appendix C.1. This implies that if we
 272 solve $\max_{\pi_\varphi} \int_0^1 (F_{Z^{\pi_\varphi}}^{-1}(v) - F_E^{-1}(v)) d\tilde{\xi}(v) + \mathcal{H}(\pi_\varphi)$ for every distortion function, we obtain the
 273 solution to Eq. 7. However, since optimizing over all utility conditions is intractable, our proposed
 274 objective serves as an approximation using a specific DRM. Nonetheless, under the conditions of
 275 the proposition, this surrogate objective can theoretically achieve the same optimality as Eq. 7.

276 4.3 PRACTICAL ALGORITHM

277 **Algorithm 1:** A DistIRL method with FSD objective

278 **Input:** Expert data $\mathcal{D} = \{(s_t^E, a_t^E)\}$, prior $p_0(r)$, risk measure ξ , step sizes $\eta^\theta, \eta^\varphi, \eta^\phi$
 279 **Output:** Reward distribution $q_\phi(r|s, a)$; policy $\pi_\varphi(a|s)$

280 1 Initialize parameters of reward network ϕ , policy φ , and critic θ ;
 281 2 **for** $k = 1$ **to** K **do**
 282 3 Sample a mini-batch $\{(s_t^E, a_t^E)\}$ from \mathcal{D} ;
 283 4 **foreach** (s_t^E, a_t^E) **in** mini-batch **do**
 284 5 | For each s_t^E , sample $a_t \sim \pi_\varphi(\cdot|s_t^E)$, $r_t \sim q_\phi(\cdot|s_t^E, a_t)$, $r_t^E \sim q_\phi(\cdot|s_t^E, a_t^E)$;
 285 6 | Compute return samples Z^{π_k}, Z^E ;
 286 7 | Critic update via quantile regression (Eq. 20): $\theta_{k+1} \leftarrow \theta_k - \eta^\theta \nabla \mathcal{L}_{QR}(\theta_k)$;
 287 8 | Policy update with distortion risk measure (Eq. 11): $\varphi_{k+1} \leftarrow \varphi_k - \eta^\varphi \nabla \mathcal{L}_\pi(\varphi_k)$;
 288 9 | Reward distribution update via FSD loss (Eq. 5): $\phi_{k+1} \leftarrow \phi_k - \eta^\phi \nabla \mathcal{L}_r(\phi_k)$.

290
 291
 292 To enable tractable and expressive modeling of reward uncertainty, we parameterize the reward
 293 distribution $q_\phi(r|s, a)$, for example, using Azzalini’s skew-normal distribution (Azzalini & Valle,
 294 1996): $q_\phi(r|s, a) = \mathcal{SN}(\mu_\phi(s, a), \sigma_\phi^2(s, a); \alpha_\phi(s, a))$, where the mean $\mu_\phi(s, a)$, standard deviation
 295 $\sigma_\phi(s, a)$ and the skew parameter $\alpha_\phi(s, a)$ are outputs of a neural network with parameters ϕ . This
 296 choice allows for efficient sampling and computing regularization when using a standard normal
 297 prior. During training, for each state-action pair, we sample rewards $r_t \sim q_\phi(\cdot|s_t, a_t)$ to construct
 298 return samples for both the expert and the current policy.

299 Note that the choice of prior depends heavily on the task domain and the type of variability we
 300 expect in the reward signal. For example, skew-normal distributions can capture asymmetric reward
 301 uncertainty in tasks with systematic biases (e.g., contact-rich manipulation), whereas heavy-tailed
 302 priors may be more suitable when outliers or rare but significant events dominate the return structure.
 303 In contrast, the broader statistical learning community often defaults to Gaussian priors, primarily
 304 because of their analytical tractability, conjugacy with many likelihood models, and well-understood
 305 concentration properties. That said, DistIRL does not rely on a fixed distributional assumption.
 306 Any parameterized distribution p_θ whose log-density or quantile function is differentiable in θ is
 307 compatible with our framework, since the algorithm requires only gradient updates for learning.

308 To estimate the spectral risk measure $M_\xi(Z^\pi)$ for the policy, we follow an offline approach: we use
 309 states s_t drawn from the expert demonstration dataset, but sample actions $a_t^\pi \sim \pi_\theta(\cdot|s_t)$ from the
 310 current policy, and a reward $r_t \sim q_\phi(\cdot|s_t, a_t)$. Then we compute the return Z^π by taking the sum.
 311 For policy update, we first learn the critic by Off-policy Evaluation (OPE) (Sutton et al., 1998) on
 312 $(s_t, a_t, r_t, s_{t+1}, a_{t+1}^\pi)$ where we use Quantile Regression with the Quantile Huber loss \mathcal{L}_{QR} as in
 313 Eq. 20. We then update the risk-aware policy by solving $\min_\pi \text{KL}(\pi(\cdot|s) \parallel \frac{1}{Z} \exp \{M_\xi(Z^\pi(\cdot|s))\})$,
 314 which corresponds to the KKT solution to Eq. 7, as originally introduced by Ziebart et al. (2008).
 315 We summarize the full procedure in Alg. 1.

316 5 THEORETICAL RESULTS

317 In this section, we provide theoretical analysis of the algorithm proposed above. In particular,
 318 this analysis framework assume that we know the exact DRM for solving the policy update in
 319 Eq. 7. First, we introduce several regularity assumptions, the necessity of which is detail in the
 320 appendix C.2.

321 **Assumption 5.1.** *There exists $R_{\max} < \infty$ such that*

$$322 |q_\phi(s, a)| \leq R_{\max} \quad \text{almost surely for all } (s, a, \phi). \quad (12)$$

324 **Assumption 5.2.** For every (s, a) and all $\phi_1, \phi_2 \in \mathbb{R}^d$, the reward laws satisfy
 325

$$326 \quad W_\infty(q_{\phi_1}(\cdot|s, a), q_{\phi_2}(\cdot|s, a)) \leq L_R \|\phi_1 - \phi_2\|, \quad (13)$$

327 where W_∞ denotes the Wasserstein infinity distance. Equivalently, one can couple $q_{\phi_1}(s, a)$ and
 328 $q_{\phi_2}(s, a)$ such that $|q_{\phi_1}(s, a) - q_{\phi_2}(s, a)| \leq L_R \|\phi_1 - \phi_2\|$ almost surely.
 329

330 We use the following assumption on a given DRM. In fact, all DRMs satisfy the following properties.
 331

332 **Assumption 5.3.** For each state-action pair $s \in \mathcal{S}, a \in \mathcal{A}$, the one-step distortion risk measure
 333 $M_\xi(\cdot|s, a)$ is
 334

- 335 1. monotone: $X \leq Y$ a.s. implies $M_\xi(X|s, a) \leq M_\xi(Y|s, a)$;
 336
- 337 2. translation-equivariant: $M_\xi(X + c|s, a) = M_\xi(X|s, a) + c$ for all $c \in \mathbb{R}$;
 338
- 339 3. 1-Lipschitz in $\|\cdot\|_\infty$: for all bounded random variables X, Y ,

$$340 \quad |M_\xi(X|s, a) - M_\xi(Y|s, a)| \leq \|X - Y\|_\infty. \quad (14)$$

342 First we wish to show that the critic under a given DRM will converge in the average sense:
 343

344 **Theorem 5.4.** Assume assumptions 5.1-5.3 hold. Let $E_k = \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty$. Assume the
 345 reward update satisfies Assumption C.9, with stepsizes $\eta_k = \eta = \eta_0 K^{-\sigma}$, $\eta_0 > 0$, and $\sigma \in (0, 1)$.
 346 Then running the DistIRL algorithm K steps, we have

$$347 \quad \frac{1}{K} \sum_{k=1}^K E_k = \mathcal{O}(K^{-1}) + \mathcal{O}(K^{-\sigma}). \quad (15)$$

351 Here we assume that we can get the exact \mathcal{I} function when solving the policy optimization problem.
 352 Then we can also get a policy bound:
 353

354 **Theorem 5.5.** For each k , define the learned and DRM-optimal policies induced by the current
 355 Q -functions:
 356

$$355 \quad \pi_k(\cdot|s) \propto \exp(Q_{\phi_k, \pi_k}^\xi(s, \cdot)), \pi_{\phi_k}^*(\cdot|s) \propto \exp(Q_{\phi_k, \pi_{\phi_k}^*}^\xi(s, \cdot)). \quad (16)$$

357 Then running the DistIRL algorithm K steps, we have
 358

$$359 \quad \frac{1}{K} \sum_{k=1}^K \|\log \pi_k - \log \pi_{\phi_k}^*\|_\infty = \mathcal{O}(K^{-1}) + \mathcal{O}(K^{-\sigma}). \quad (17)$$

362 Finally, we can get a rate of convergence towards a first-order stationary point:
 363

364 **Theorem 5.6.** Suppose Assumptions 5.1, 5.2, C.9, and C.11 hold. Let $\eta_k = \eta_0 k^{-\sigma}$ with $\eta_0 > 0$ and
 365 $\sigma \in (0, 1)$, and assume \mathcal{L}_r is bounded below on Φ . Then there exists $C > 0$ such that

$$366 \quad \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] = \mathcal{O}(K^{-1}) + \mathcal{O}(K^{-\sigma}) + \mathcal{O}(K^{-1+\sigma}), \quad (18)$$

370 In particular, picking $\sigma = 1/2$, we obtain a $\mathcal{O}(\epsilon^{-2})$ iteration bound on the algorithm.
 371

372 6 EXPERIMENT

373 6.1 GRIDWORLD

375 We begin with a 5×5 gridworld environment where the agent is trained to navigate from the starting
 376 state $(2, 0)$ (left-center) to rewarding goal locations. Two high-reward states are placed at $(0, 4)$ (top-
 377 right) and $(4, 4)$ (bottom-right), with the top-right reward modeled as a stochastic outcome drawn
 from $\mathcal{N}(1, 1)$. The first column of Fig. 2 illustrates the ground-truth reward mean and variance.

Figure 3: Learned reward distribution versus recorded dopamine signals and their empirical CDFs.

This setup mimics an animal exploring an arena with two reward ports. In such compact environments, animals often display risk-averse behavior, i.e., avoiding locations where rewards have previously failed to appear (Mobbs et al., 2018; Daw et al., 2006). To model this, we collect 10 trajectories from a risk-averse agent trained under stochastic rewards. In 9 out of 10 episodes, the agent chooses the more reliable bottom-right goal. We then apply our DistIRL method to recover the full reward distribution. As shown in Fig. 2, using a symmetric Gaussian reward estimator combined with risk-averse policy learning, our approach not only identifies both high-reward states but also captures the variance at the top-right goal. This highlights the model’s ability to infer higher-order moments of the reward from expert demos.

As a baseline, we evaluate Bayesian IRL (BIRL) (Chan & van der Schaar, 2021; Mandyam et al., 2023; Bajgar et al., 2024). BIRL is a widely used framework that assumes a reward distribution but learns it by matching only the mean, without capturing the full distributional structure. We select BIRL because it is the method most comparable to ours in its ability to recover a reward distribution. BIRL reasonably recovers the mean reward but produces spurious high estimates in the lower-left corner. Furthermore, it fails to capture reward variance, emphasizing the need to enforce distance over the full distribution. Simply specifying a reward distribution, without integrating distribution-aware learning, fails to capture the true variance of the rewards.

6.2 MOUSE SPONTANEOUS BEHAVIOR

We apply our framework to a neuroscience dataset in which mice freely explore an arena without explicit rewards (Markowitz et al., 2023a). Behavior was recorded using a depth camera, and the raw trajectories were converted into sequences of discrete syllables (e.g., grooming, sniffing). We model these trajectories with an MDP, treating each syllable as a state and the next syllable as the action, yielding ten states and ten actions. In total, we analyzed 159 such state-action sequences. The dataset also includes a time-aligned one-dimensional trace of dopamine fluctuations from the dorsolateral striatum. Prior work (Markowitz et al., 2023a) showed that using dopamine as a reward enabled a simulated RL agent to reproduce observed transitions, suggesting IRL should recover a reward pattern resembling dopamine. Since dopamine varies even within the same state-action pair, the prior study used only its mean for simplicity. Here, we compare rewards learned under deterministic vs. distributional assumptions to assess how well they capture both the mean and the full distribution of dopamine signals.

We use both Azzalini’s skew-normal distribution (denoted “S-”) and the symmetric Gaussian as reward models for both DistIRL and BIRL. Fig. 3A) and B) show two example state-action pairs, illustrating the true dopamine fluctuation distribution alongside the estimated reward distributions from four methods. The assumption of a parameterized reward distribution is motivated by prior findings in computational neuroscience: dopamine-related reward signals in rodents are well known to exhibit asymmetric, left-skewed variability. For this reason, we chose a skew-normal family, which captures exactly this type of asymmetric structure while remaining interpretable. For each case, we display both the probability density function and the CDF, along with the corresponding means. Deterministic rewards (Det) are shown as pink dashed lines in the density plots. Among all methods, S-DistIRL most accurately recovers the shape of the dopamine distribution, which is often right-skewed and multimodal. Its estimated mean also closely matches both the true mean and the deterministic estimate.

Figure 2: Inferring reward mean and variance in the gridworld example with 10 demonstrations.

We also quantify the similarity between estimated rewards and actual dopamine distributions. In Fig. 4A), we report the correlation between the mean of dopamine fluctuations and the mean of the estimated reward across all mice and trajectories. Deterministic reward models yield moderate correlation, while DistIRL improves upon this, with S-DistIRL achieving the highest correlation overall. This finding indicates that incorporating full reward distributions, using suitable skewed distributional models, is essential for IRL to capture biologically meaningful reward signals. Fig. 4B) shows that, compared to BIRL, S-DistIRL also achieves a lower Wasserstein-1 distance between the estimated reward distribution and the actual dopamine distribution, indicating better alignment of the shape. Taken together, both qualitative examples and quantitative metrics support that modeling skewed reward distributions significantly enhances the ability to track dopamine fluctuations.

This is a scientifically interesting result showing that we can infer the reward structure directly from behavior data. While it is known that dopamine neurons encode reward-related signals (Schultz et al., 1997; Markowitz et al., 2023a), this is the first demonstration that not only is there a nontrivial correlation between the inferred and measured mean rewards (with a correlation around 0.3), but also that the full reward distribution recovered from behavior reasonably resembles the distribution of dopamine fluctuations. This suggests that detailed features of neuromodulatory signals, such as the variability in dopamine release, can be decoded from behavior alone, highlighting the potential of inverse modeling to uncover internal motivational states and their neural substrates.

6.3 MUJoCo BENCHMARKS

Risk-sensitive D4RL. In earlier experiments, we applied DistIRL to discrete state-action MDPs and compared it with BIRL. Here we extend the study to continuous MDPs to demonstrate DistIRL’s scalability and generalizability. We evaluate our method on Risk-sensitive D4RL benchmarks, following the reward formulations introduced in recent robustness studies (Urpí et al., 2021). Specifically, the reward functions incorporate stochastic penalties triggered by safety-related conditions: (1) **Half-Cheetah:** $R_t(s, a) = \bar{r}_t(s, a) - 70\mathbb{I}_{\nu > \bar{\nu}} \cdot \mathcal{B}_{0.1}$, where $\bar{r}_t(s, a)$ is the environment reward, ν is the forward velocity, and $\bar{\nu}$ is a velocity threshold ($\bar{\nu} = 4$ for the medium variant and $\bar{\nu} = 10$ for the easy variant). This penalty models rare but catastrophic robot failures at high speed. (2) **Walker2D/Hopper:** $R_t(s, a) = \bar{r}_t(s, a) - p\mathbb{I}_{|\theta| > \bar{\theta}} \cdot \mathcal{B}_{0.1}$, where $\bar{r}_t(s, a)$ is the environment reward, θ is the pitch angle, $\bar{\theta}$ is a task-dependent threshold (0.5 for Walker2D-M/E and 0.1 for Hopper-M/E), and p is the penalty magnitude (30 for Walker2D and 50 for Hopper).

We train expert agents on these stochastic reward formulations using Risk-averse Distributional SAC, a variant of DSAC (Duan et al., 2021) with CVaR objective, and collect 10 demonstration trajectories. We then evaluate DistIRL against several state-of-the-art baselines. Results are averaged over 5 random seeds. We use a standard normal as the prior due to its general applicability, in the setting of not knowing the underlying true reward distribution.

Table 2 shows that our method consistently outperforms other **offline IRL** baselines under stochastic reward settings. For reward parameterization, we use the Gaussian distribution (denoted as **DistIRL**) and quantile function (denoted as **DistIRL-qtr**, short for QuanTile Reward). Notice popular online methods such as GAIL (Ho & Ermon, 2016) are not applicable in this setting. **Offline ML-IRL** (Zeng et al., 2023) is a model-based MaxEntIRL method that relies on a separately trained transition model using additional non-expert data. Its poor performance here is expected: the transition model was pretrained under risk-neutral rewards and does not align with the new expert data generated under risk-sensitive objectives, leading to severe distribution mismatch. **ValueDICE** (Kostrikov et al., 2019), a model-free offline MaxEntIRL baseline, also underperforms since it optimizes with respect to expected risk-neutral returns, while our experts follow risk-averse behavior. **Behavior Cloning (BC)** achieves moderately strong results, as it simply mimics the demonstrated actions without explicitly optimizing for either risk-neutral or risk-sensitive objectives. However, its performance is limited as the model overfit the limited demonstration data.

To further validate the fidelity of our inferred return distributions from DistIRL and compare with the BIRL framework that only matches the mean, we collect 200 trajectories and sample its learned return distribution for each learned policy, plot against the expert’s return distribution in Fig. 5.

Figure 4: Left: Pearson correlation of the reward mean and dopamine level. Right: W-1 loss between learned distribution and dopamine level.

This finding indicates that incorporating full reward distributions, using suitable skewed distributional models, is essential for IRL to capture biologically meaningful reward signals. Fig. 4B) shows that, compared to BIRL, S-DistIRL also achieves a lower Wasserstein-1 distance between the estimated reward distribution and the actual dopamine distribution, indicating better alignment of the shape. Taken together, both qualitative examples and quantitative metrics support that modeling skewed reward distributions significantly enhances the ability to track dopamine fluctuations.

This is a scientifically interesting result showing that we can infer the reward structure directly from behavior data. While it is known that dopamine neurons encode reward-related signals (Schultz et al., 1997; Markowitz et al., 2023a), this is the first demonstration that not only is there a nontrivial correlation between the inferred and measured mean rewards (with a correlation around 0.3), but also that the full reward distribution recovered from behavior reasonably resembles the distribution of dopamine fluctuations. This suggests that detailed features of neuromodulatory signals, such as the variability in dopamine release, can be decoded from behavior alone, highlighting the potential of inverse modeling to uncover internal motivational states and their neural substrates.

6.3 MUJoCo BENCHMARKS

Risk-sensitive D4RL. In earlier experiments, we applied DistIRL to discrete state-action MDPs and compared it with BIRL. Here we extend the study to continuous MDPs to demonstrate DistIRL’s scalability and generalizability. We evaluate our method on Risk-sensitive D4RL benchmarks, following the reward formulations introduced in recent robustness studies (Urpí et al., 2021). Specifically, the reward functions incorporate stochastic penalties triggered by safety-related conditions: (1) **Half-Cheetah:** $R_t(s, a) = \bar{r}_t(s, a) - 70\mathbb{I}_{\nu > \bar{\nu}} \cdot \mathcal{B}_{0.1}$, where $\bar{r}_t(s, a)$ is the environment reward, ν is the forward velocity, and $\bar{\nu}$ is a velocity threshold ($\bar{\nu} = 4$ for the medium variant and $\bar{\nu} = 10$ for the easy variant). This penalty models rare but catastrophic robot failures at high speed. (2) **Walker2D/Hopper:** $R_t(s, a) = \bar{r}_t(s, a) - p\mathbb{I}_{|\theta| > \bar{\theta}} \cdot \mathcal{B}_{0.1}$, where $\bar{r}_t(s, a)$ is the environment reward, θ is the pitch angle, $\bar{\theta}$ is a task-dependent threshold (0.5 for Walker2D-M/E and 0.1 for Hopper-M/E), and p is the penalty magnitude (30 for Walker2D and 50 for Hopper).

We train expert agents on these stochastic reward formulations using Risk-averse Distributional SAC, a variant of DSAC (Duan et al., 2021) with CVaR objective, and collect 10 demonstration trajectories. We then evaluate DistIRL against several state-of-the-art baselines. Results are averaged over 5 random seeds. We use a standard normal as the prior due to its general applicability, in the setting of not knowing the underlying true reward distribution.

Table 2 shows that our method consistently outperforms other **offline IRL** baselines under stochastic reward settings. For reward parameterization, we use the Gaussian distribution (denoted as **DistIRL**) and quantile function (denoted as **DistIRL-qtr**, short for QuanTile Reward). Notice popular online methods such as GAIL (Ho & Ermon, 2016) are not applicable in this setting. **Offline ML-IRL** (Zeng et al., 2023) is a model-based MaxEntIRL method that relies on a separately trained transition model using additional non-expert data. Its poor performance here is expected: the transition model was pretrained under risk-neutral rewards and does not align with the new expert data generated under risk-sensitive objectives, leading to severe distribution mismatch. **ValueDICE** (Kostrikov et al., 2019), a model-free offline MaxEntIRL baseline, also underperforms since it optimizes with respect to expected risk-neutral returns, while our experts follow risk-averse behavior. **Behavior Cloning (BC)** achieves moderately strong results, as it simply mimics the demonstrated actions without explicitly optimizing for either risk-neutral or risk-sensitive objectives. However, its performance is limited as the model overfit the limited demonstration data.

To further validate the fidelity of our inferred return distributions from DistIRL and compare with the BIRL framework that only matches the mean, we collect 200 trajectories and sample its learned return distribution for each learned policy, plot against the expert’s return distribution in Fig. 5.

486
487 Table 2: Performance averaged over 5 seeds on Risk-sensitive D4RL.
488
489

Environment	DistIRL (ours)	DistIRL-qrt (ours)	Offline ML-IRL	ValueDICE	BC	Expert
HalfCheetah	3469 ± 59	3294 ± 172	826 ± 231	1259 ± 78	2828 ± 281	3540 ± 44
Hopper	886 ± 1	747 ± 79	192 ± 56	260 ± 10	346 ± 1	892 ± 3
Walker2d	1526 ± 148	1211 ± 182	240 ± 50	798 ± 311	1321 ± 26	1478 ± 200

491 This shows that DistIRL’s reward and policy model better align with the expert. We also report a
492 Pearson correlation coefficient of 0.92 between the mean estimated by DistIRL and the mean of the
493 true return. This indicates strong agreement and demonstrates that our inferred reward is an accurate
494 proxy for the true reward model. A further examination of the return distribution and its higher-order
495 moments can be found in Appendix F.

496 Additionally, the competitive results of quantile-based reward
497 parameterization open the opportunity to use a broad range of para-
498 metric families, including diffusion models, and we leave this direction
499 as a future extension of this work.

500 **Risk-neutral D4RL.** We also test our algorithm in conventional
501 deterministic reward settings using D4RL’s medium-expert trajec-
502 tories (Fu et al., 2020). Table 3 shows our method achieves com-
503 petitive or superior performance even without tailoring to deter-
504 ministic assumptions, underscoring the generality of DistIRL. We want
505 to emphasize that Offline ML-IRL requires additional data².

506 **Ablation studies.** We evaluate the contribution of different design choices by ablating our model
507 under the HalfCheetah setting with right-skewed normal ($\mathcal{SN}_\eta, \eta > 0$) stochastic rewards and risk-
508 averse expert policy, indicating the expert prefers conservative actions that yield more consistent
509 rewards. Variants include: **Dis/Det**: Distributional or Deterministic rewards; **QR/TD**: Quantile Re-
510 gression or TD-based critic; **FSD/Mean**: FSD loss or Mean matching. As shown in Table 4, which
511 scales the performance between worst and best, using distributional rewards with FSD loss signifi-
512 cantly outperforms mean-matching alternatives. Additionally, deterministic TD-learning with mean-
513 matching (**Det-TD-Mean**) underperforms in learning risk-averse policies due to a lack of distribu-
514 tional supervision. This confirms the effectiveness of FSD-based reward learning and risk-sensitive
515 policy optimization. Note that the BIRL framework aligns with our **Dis-TD-Mean** configuration;
516 RIZE (Karimi & Ebadzadeh, 2025) aligns with **Det-Qt-Mean**, which performs the worst; **Det-TD-
517 Mean** aligns with ValueDice but with an explicit reward estimation. Thus, in this ablation study, we
518 treat them as a specific setting within DistIRL when benchmarking against other approaches.

519 Additionally, we conduct ablation studies on the choice of DRM in Appendix E.1, showing that
520 DistIRL is not sensitive to specific DRM as long as we don’t deviate too far from the underlying
521 risk preference of the expert data. We also conduct experiments on the number of trajectories for
522 the risk-sensitive D4RL dataset in Appendix E.2, which show that DistIRL is sufficiently robust in
523 a low-data regime, indicating that our approach is indeed computationally attractive.

524 Table 3: Performance on deterministic reward settings (D4RL).
525

Environment	DistIRL (Ours)	Offline ML-IRL	ValueDICE	BC	Expert
HalfCheetah	7779 ± 228	11231 ± 585	4935 ± 2836	623 ± 56	12175 ± 91
Hopper	3411 ± 42	3347 ± 238	3073 ± 539	3236 ± 46	3512 ± 22
Walker2d	4570 ± 305	4201 ± 638	3191 ± 1888	2822 ± 979	5384 ± 52

529 Table 4: Ablation study on model setting. Performance scaled for clarity.
530

DistIRL (Ours)	Dis-Qt-Mean	Det-Qt-Mean	Dis-TD-FSD	Dis-TD-Mean	Det-TD-Mean
1.0 ± 0.02	0.22 ± 0.02	0.00 ± 0.01	0.67 ± 0.31	0.33 ± 0.01	0.22 ± 0.00

533 7 CONCLUSION

534 We introduce a distributional framework for inverse reinforcement learning that jointly models re-
535 ward uncertainty and return distributions. Our method enables risk-aware policy learning and accu-
536 rate inference of high-order structure in demonstrations. We validate the framework on stochastic
537 control tasks, deterministic settings, and real neural datasets, demonstrating state-of-the-art per-
538 formance and strong generalization across domains.

539 ²For HalfCheetah, with the same amount of data as Offline ML-IRL, DistIRL can reach 11239 ± 539 .

500 Figure 5: Return distributions
501 comparison in HalfCheetah.
502

540 ETHICS STATEMENT
541

542 IRL enables powerful tools for understanding behavior, with positive applications in neuroscience,
543 animal modeling, and AI alignment. However, it also raises ethical concerns. IRL could be misused
544 in military settings to model or mimic adversarial behavior, or in surveillance contexts to infer
545 personal goals without consent, posing risks to privacy and autonomy. These concerns highlight the
546 need for careful oversight and responsible deployment.

548 REPRODUCIBILITY STATEMENT
549

550 We list parameter choice in Table. 6. The implementation will be made publicly available following
551 the paper decision.
552

553 REFERENCES
554

555 Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
556 *Proceedings of the twenty-first international conference on Machine learning*, pp. 1, 2004.

558 Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
559 ods and progress. *Artificial Intelligence*, 297:103500, 2021.

560 Zoe Ashwood, Aditi Jha, and Jonathan W Pillow. Dynamic inverse reinforcement learning for
561 characterizing animal behavior. *Advances in neural information processing systems*, 35:29663–
562 29676, 2022.

564 Adelchi Azzalini and A Dalla Valle. The multivariate skew-normal distribution. *Biometrika*, 83(4):
565 715–726, 1996.

566 Ondrej Bajgar, Alessandro Abate, Konstantinos Gatsis, and Michael A Osborne. Walking the values
567 in bayesian inverse reinforcement learning. *arXiv preprint arXiv:2407.10971*, 2024.

569 Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
570 learning. In *International conference on machine learning*, pp. 449–458. PMLR, 2017.

572 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
573 cians. *Journal of the American Statistical Association*, 112(518):859–877, 2017.

574 Michael Bloem and Nicholas Bamboz. Infinite time horizon maximum causal entropy inverse re-
575 inforcement learning. In *53rd IEEE conference on decision and control*, pp. 4911–4916. IEEE,
576 2014.

578 Alex J Chan and Mihaela van der Schaar. Scalable bayesian inverse reinforcement learning. *arXiv*
579 *preprint arXiv:2102.06483*, 2021.

580 Ziteng Cheng, Anthony Coache, and Sebastian Jaimungal. Eliciting risk aversion with inverse rein-
581 force learning via interactive questioning. *arXiv preprint arXiv:2308.08427*, 2023.

583 Jaedeug Choi and Kee-Eung Kim. Map inference for bayesian inverse reinforcement learning. *Ad-
584 vances in neural information processing systems*, 24, 2011.

586 Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
587 distributional reinforcement learning. In *International conference on machine learning*, pp. 1096–
588 1105. PMLR, 2018a.

589 Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
590 learning with quantile regression. In *Proceedings of the AAAI conference on artificial intelligence*,
591 volume 32, 2018b.

593 Nathaniel D Daw, John P O’Doherty, Peter Dayan, Ben Seymour, and Raymond J Dolan. Cortical
substrates for exploratory decisions in humans. *Nature*, 441(7095):876–879, 2006.

594 Luc Devroye. Nonuniform random variate generation. *Handbooks in operations research and*
 595 *management science*, 13:83–121, 2006.

596

597 Jan Dhaene, Alexander Kukush, Daniël Linders, and Qihe Tang. Remarks on quantiles and distortion
 598 risk measures. *European Actuarial Journal*, 2:319–328, 2012.

599

600 Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
 601 soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. *IEEE*
 602 *transactions on neural networks and learning systems*, 33(11):6584–6598, 2021.

603

604 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 605 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

606

607 Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
 608 Inverse soft-q learning for imitation. *Advances in Neural Information Processing Systems*, 34:
 4028–4039, 2021.

609

610 Adam Gleave and Sam Toyer. A primer on maximum causal entropy inverse reinforcement learning.
 611 *arXiv preprint arXiv:2203.11409*, 2022.

612

613 Allan Gut and Allan Gut. *Probability: a graduate course*, volume 200. Springer, 2006.

614

615 Josef Hadar and William R Russell. Rules for ordering uncertain prospects. *The American economic*
 616 *review*, 59(1):25–34, 1969.

617

618 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 619 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
 620 *arXiv:2304.10573*, 2023.

621

622 Christopher Heil. *Introduction to real analysis*, volume 280. Springer, 2019.

623

624 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural*
 625 *information processing systems*, 29, 2016.

626

627 Wonseok Jeon, Seokin Seo, and Kee-Eung Kim. A bayesian approach to generative adversarial
 628 imitation learning. *Advances in neural information processing systems*, 31, 2018.

629

630 Adib Karimi and Mohammad Mehdi Ebadzadeh. Rize: Regularized imitation learning via distribu-
 631 tional reinforcement learning. *arXiv preprint arXiv:2502.20089*, 2025.

632

633 Jingyang Ke, Feiyang Wu, Jiyi Wang, Jeffrey Markowitz, and Anqi Wu. Inverse reinforcement learn-
 634 ing with switching rewards and history dependency for characterizing animal behaviors. *arXiv*
 635 *preprint arXiv:2501.12633*, 2025.

636

637 Miloš Kopa and Martin Šmíd. Contractivity of bellman operator in risk averse dynamic program-
 638 ming with infinite horizon. *Operations Research Letters*, 51(2):133–136, 2023.

639

640 Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
 641 matching. *arXiv preprint arXiv:1912.05032*, 2019.

642

643 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 644 learning. *arXiv preprint arXiv:2110.06169*, 2021.

645

646 Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, and Marco Pavone. Risk-sensitive
 647 generative adversarial imitation learning. In *The 22nd International Conference on Artificial*
 648 *Intelligence and Statistics*, pp. 2154–2163. PMLR, 2019.

649

650 Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A tutorial on
 651 energy-based learning. *Predicting structured data*, 2006.

652

653 Keuntaek Lee, David Isele, Evangelos A Theodorou, and Sangjae Bae. Risk-sensitive mpes with
 654 deep distributional inverse rl for autonomous driving. In *2022 IEEE/RSJ International Conference*
 655 *on Intelligent Robots and Systems (IROS)*, pp. 7635–7642. IEEE, 2022.

648 Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
 649 gaussian processes. *Advances in neural information processing systems*, 24, 2011.
 650

651 Mengdi Li, Xufeng Zhao, Jae Hee Lee, Cornelius Weber, and Stefan Wermter. Internally rewarded
 652 reinforcement learning. In *International Conference on Machine Learning*, pp. 20556–20574.
 653 PMLR, 2023.

654 Yangming Li, Chieh-Hsin Lai, Carola-Bibiane Schönlieb, Yuki Mitsufuji, and Stefano Ermon. Bell-
 655 man diffusion: Generative modeling as learning a linear operator in the distribution space. *arXiv*
 656 preprint *arXiv:2410.01796*, 2024.
 657

658 Shiau Hong Lim and Ilyas Malik. Distributional reinforcement learning for risk-sensitive policies.
 659 *Advances in Neural Information Processing Systems*, 35:30977–30989, 2022.

660 Aishwarya Mandyam, Didong Li, Diana Cai, Andrew Jones, and Barbara E Engelhardt. Kernel
 661 density bayesian inverse reinforcement learning. *arXiv preprint arXiv:2303.06827*, 2023.
 662

663 Jeffrey E Markowitz, Winthrop F Gillis, Maya Jay, Jeffrey Wood, Ryley W Harris, Robert
 664 Cieszkowski, Rebecca Scott, David Brann, Dorothy Koveal, Tomasz Kula, Caleb Weinreb, Mo-
 665 hammed Abdal Monium Osman, Sandra Romero Pinto, Naoshige Uchida, Scott W Linderman,
 666 Bernardo L Sabatini, and Sandeep Robert Datta. Spontaneous behaviour is structured by rein-
 667 forcement without explicit reward. *Nature*, 614(7946):108–117, January 2023a.

668 Jeffrey E Markowitz, Winthrop F Gillis, Maya Jay, Jeffrey Wood, Ryley W Harris, Robert
 669 Cieszkowski, Rebecca Scott, David Brann, Dorothy Koveal, Tomasz Kula, et al. Spontaneous
 670 behaviour is structured by reinforcement without explicit reward. *Nature*, 614(7946):108–117,
 671 2023b.

672 Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. *Journal of the American
 673 statistical Association*, 46(253):68–78, 1951.
 674

675 Dean Mobbs, Pete C Trimmer, Daniel T Blumstein, and Peter Dayan. Foraging for foundations
 676 in decision neuroscience: insights from ethology. *Nature Reviews Neuroscience*, 19(6):419–427,
 677 2018.

678 Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejas Gupta, Lisa Lee, and Ben Eysenbach. f-irl: Inverse
 679 reinforcement learning via state marginal matching. In *Conference on Robot Learning*, pp. 529–
 680 551. PMLR, 2021.
 681

682 Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In *IJCAI*, vol-
 683 ume 7, pp. 2586–2591, 2007.

684 R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. *Journal
 685 of risk*, 2:21–42, 2000.
 686

687 Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu, and Stefan Roth. Driving with
 688 style: Inverse reinforcement learning in general-purpose planning for automated driving. In *2019
 689 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 2658–2665.
 690 IEEE, 2019.

691 Andrzej Ruszczyński. Risk-averse dynamic programming for markov decision processes. *Mathe-
 692 matical programming*, 125(2):235–261, 2010.
 693

694 Lukas Schneider, Jonas Frey, Takahiro Miki, and Marco Hutter. Learning risk-aware quadrupedal
 695 locomotion using distributional reinforcement learning. In *2024 IEEE International Conference
 696 on Robotics and Automation (ICRA)*, pp. 11451–11458. IEEE, 2024.

697 Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
 698 *Science*, 275(5306):1593–1599, 1997.
 699

700 Ekaterina N Sereda, Efim M Bronshtein, Svetozar T Rachev, Frank J Fabozzi, Wei Sun, and
 701 Stoyan V Stoyanov. Distortion risk measures in portfolio optimization. *Handbook of portfolio
 construction*, pp. 649–673, 2010.

702 Sumeet Singh, Jonathan Lacotte, Anirudha Majumdar, and Marco Pavone. Risk-sensitive inverse
 703 reinforcement learning via semi-and non-parametric methods. *The International Journal of*
 704 *Robotics Research*, 37(13-14):1713–1740, 2018.

705 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 706 press Cambridge, 1998.

708 Núria Armengol Urpí, Sebastian Curi, and Andreas Krause. Risk-averse offline reinforcement learning.
 709 *arXiv preprint arXiv:2102.05371*, 2021.

710 Dizan Vasquez, Billy Okal, and Kai O Arras. Inverse reinforcement learning algorithms and features
 711 for robot navigation in crowds: an experimental comparison. In *2014 IEEE/RSJ International*
 712 *Conference on Intelligent Robots and Systems*, pp. 1341–1346. IEEE, 2014.

713 Luca Viano, Yu-Ting Huang, Parameswaran Kamalaruban, Adrian Weller, and Volkan Cevher. Ro-
 714 bust inverse reinforcement learning under transition dynamics mismatch. *Advances in Neural*
 715 *Information Processing Systems*, 34:25917–25931, 2021.

716 Ran Wei, Siliang Zeng, Chenliang Li, Alfredo Garcia, Anthony D McDonald, and Mingyi Hong. A
 717 bayesian approach to robust inverse reinforcement learning. In *Conference on Robot Learning*,
 718 pp. 2304–2322. PMLR, 2023.

720 Harley Wiltzer, Jesse Farebrother, Arthur Gretton, and Mark Rowland. Foundations of multivariate
 721 distributional reinforcement learning. *Advances in Neural Information Processing Systems*, 37:
 722 101297–101336, 2024.

724 Feiyang Wu, Zhaoyuan Gu, Hanran Wu, Anqi Wu, and Ye Zhao. Infer and adapt: Bipedal loco-
 725 motion reward learning from demonstrations via inverse reinforcement learning. In *2024 IEEE*
 726 *International Conference on Robotics and Automation (ICRA)*, pp. 16243–16250. IEEE, 2024a.

727 Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, and Wen Sun. Diffusing states and
 728 matching scores: A new framework for imitation learning. *arXiv preprint arXiv:2410.13855*,
 729 2024b.

730 Zheng Wu, Liting Sun, Wei Zhan, Chenyu Yang, and Masayoshi Tomizuka. Efficient sampling-
 731 based maximum entropy inverse reinforcement learning with application to autonomous driving.
 732 *IEEE Robotics and Automation Letters*, 5(4):5355–5362, 2020.

733 Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
 734 ment learning. *arXiv preprint arXiv:1507.04888*, 2015.

736 Hang Yin, Anastasia Varava, and Danica Kragic. Modeling, learning, perception, and control meth-
 737 ods for deformable object manipulation. *Science Robotics*, 6(54):eabd8803, 2021.

738 Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Maximum-likelihood inverse re-
 739 inforcement learning with finite-time guarantees. *Advances in Neural Information Processing*
 740 *Systems*, 35:10122–10135, 2022.

741 Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. When demonstrations meet genera-
 742 tive world models: A maximum likelihood framework for offline inverse reinforcement learning.
 743 *Advances in Neural Information Processing Systems*, 36:65531–65565, 2023.

745 Siliang Zeng, Yao Liu, Huzeifa Rangwala, George Karypis, Mingyi Hong, and Rasool Fakoor.
 746 From demonstrations to rewards: Alignment without explicit human preferences. *arXiv preprint*
 747 *arXiv:2503.13538*, 2025.

748 Simon Sinong Zhan, Qingyuan Wu, Philip Wang, Yixuan Wang, Ruochen Jiao, Chao Huang, and
 749 Qi Zhu. Model-based reward shaping for adversarial inverse reinforcement learning in stochastic
 750 environments. *arXiv preprint arXiv:2410.03847*, 2024.

751 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
 752 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

753 Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
 754 maximum causal entropy. In *International conference on machine learning*. Carnegie Mellon
 755 University, 2010.

A RELATED WORK COMPARISON

Table 5: Comparison of IRL methods under various settings

Reference	Model reward dist.?	Infer risk aware policy?	Recover reward dist.?	Learn return dist.?
(Wulfmeier et al., 2015; Ziebart et al., 2008)	✗	✗	✗	✗
(Garg et al., 2021; Ni et al., 2021)				
(Zeng et al., 2022; 2023; Wei et al., 2023)				
(Ramachandran & Amir, 2007; Choi & Kim, 2011)	✓	✗	✗	✗
(Chan & van der Schaar, 2021; Lee et al., 2022)				
(Karimi & Ebadzadeh, 2025)	✗	✗	✗	✓
(Singh et al., 2018; Lacotte et al., 2019)				
(Cheng et al., 2023)	✗	✓	✗	✗
This work	✓	✓	✓	✓

In Table A, we compare DistIRL with existing IRL methods along four key dimensions. The first column, *Model reward distribution*, asks whether a method explicitly represents the reward as a random variable rather than as a fixed deterministic function. For example, Bayesian IRL methods place a prior over reward parameters, thereby modeling uncertainty, but they do not recover the actual shape of the underlying distribution. This is distinct from *Recover reward distribution*, which requires learning the full distribution of rewards themselves, including higher-order statistics such as variance and skewness, rather than just a posterior over parameters.

The third column, *Infer risk-aware policy*, evaluates whether a method incorporates risk measures into policy inference. Methods in this category optimize beyond expected return, often capturing aversion or preference to variability in outcomes. The final column, *Learn return distribution*, indicates whether a method leverages distributional reinforcement learning (DistRL) techniques to estimate the full distribution of returns, rather than only their expectation. Unlike reward distributions, which describe stochasticity at the immediate reward level, return distributions capture the cumulative effect of randomness from rewards, transitions, and policies over trajectories.

As shown in the table, most prior IRL methods either assume deterministic rewards or restrict themselves to expectation-based inference. In contrast, DistIRL is the first framework that simultaneously models stochastic rewards, learns full reward distributions, integrates distributional return estimation, and supports risk-aware policy learning, thereby unifying these capabilities in a principled way.

B EXTENDED PRELIMINARIES

The state-value and action-value functions under π are defined as

$$V^\pi(s) = \mathbb{E}[Z^\pi | s_t = s], \quad Q^\pi(s, a) = \mathbb{E}[Z^\pi | s_t = s, a_t = a].$$

They satisfy the Bellman equations

$$V^\pi(s) = \mathbb{E}_{a \sim \pi, s' \sim P}[r(s, a) + \gamma V^\pi(s')], \quad Q^\pi(s, a) = \mathbb{E}_{s' \sim P}[r(s, a) + \gamma \mathbb{E}_{a' \sim \pi}[Q^\pi(s', a')]].$$

We also define the *occupancy measure* of π as $d^\pi(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr(s_t = s | \pi(a | s))$, which satisfies $\sum_{s, a} d^\pi(s, a) = 1$ and characterizes the long-run state-action visitation probability.

B.1 DISTRIBUTIONAL RL AND RISK-SENSITIVE CONTROL

Rather than estimating only $\mathbb{E}[Z^\pi]$, distributional RL models the entire return distribution that obeys the *distributional Bellman operator* \mathcal{T}^π (Bellemare et al., 2017):

$$Z^\pi(s, a) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t),$$

$$\mathcal{T}^\pi Z(s, a) \stackrel{D}{=} r(s, a) + \gamma Z(s', \pi(s')),$$

where $V \stackrel{D}{=} U$ denotes equality of probability laws, indicating random variables $\{V, U\}$ are distributed according to the same law. A popular parameterization uses quantile regression: one approximates $Z^\pi(s, a)$ by N quantiles $\theta(s, a) = [\theta_1(s, a), \dots, \theta_N(s, a)] : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^N$ at fractions (quantile levels) $\tau_i = i/N$, for $i = 1, \dots, N$. In other words, the quantile distribution of $Z^\pi(s, a)$ is represented a uniform probability distribution supported on $\{\theta_i(s, a)\}_{i=1}^N$: $Z^\pi(s, a) = \frac{1}{N} \sum_{i=0}^N \delta_{\theta_i}(s, a)$ where δ_{θ_i} denotes a Dirac at θ_i . An example of quantile functions is illustrated in Fig. 1, with θ and τ indicated.

To update the critic, instead of formulating the TD error, one can minimize the quantile Huber loss (Dabney et al., 2018b) with threshold $\kappa > 0$:

$$\rho_\tau^\kappa(\delta) = |\tau - \mathbf{1}\{\delta < 0\}| H_\kappa(\delta), H_\kappa(\delta) = \begin{cases} \frac{1}{2} \delta^2, & |\delta| \leq \kappa, \\ \kappa |\delta| - \frac{1}{2} \kappa^2, & |\delta| > \kappa. \end{cases} \quad (19)$$

In distributional RL with N quantile fractions $\{\tau_i\}$, the loss for the critic is defined as

$$\min_{\theta} \mathcal{L}_{\text{QR}}(\theta) = \min_{\theta} \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^N \rho_{\tau_i}(\delta_{ij}), \delta_{ij} = r + \gamma \theta_j(s', a') - \theta_i(s, a). \quad (20)$$

Once the return distribution is learned, one can optimize risk measures M , e.g. Conditional Value at Risk (CVaR) (Rockafellar et al., 2000), by maximizing $\text{CVaR}(Z^\pi)$ rather than $\mathbb{E}[Z^\pi]$, yielding risk-sensitive policies.

Deterministic reward as a special case. If $q(\cdot | s, a)$ is a point mass at some value $r(s, a)$ for every (s, a) , then we recover the usual deterministic reward setting. Thus, our framework strictly generalizes standard IRL.

Why distributions matter. If the reward is inherently stochastic (for example, due to noisy human judgments), matching only the *mean* reward or mean return is not enough to capture the full behavior. Two policies can have the same expected return but very different risk profiles. This motivates working with the full return distribution Z^π , not just its expectation.

B.2 FIRST-ORDER STOCHASTIC DOMINANCE (FSD)

We now recall first-order stochastic dominance, which provides a way to compare entire distributions, not just means or variances.

Definition B.1 (First-order stochastic dominance). Let X and Y be real-valued integrable random variables with cumulative distribution functions F_X and F_Y . We say that X *first-order stochastically dominates* Y , written $X \succeq_{\text{FSD}} Y$, if

$$F_X(z) \leq F_Y(z) \quad \text{for all } z \in \mathbb{R}.$$

Intuitively, $X \succeq_{\text{FSD}} Y$ means that X tends to take larger values than Y : for every threshold z , the probability that X falls below z is no larger than the probability that Y does. Graphically, the CDF of X lies everywhere *below* the CDF of Y .

Connection to utilities and mean dominance. A classical result states that $X \succeq_{\text{FSD}} Y$ if and only if

$$\mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)]$$

for every non-decreasing utility function u . In particular, taking $u(x) = x$, we get

$$\mathbb{E}[X] \geq \mathbb{E}[Y],$$

so FSD implies mean dominance. However, the converse is false: matching or exceeding the mean does *not* guarantee FSD.

864 **FSD in our context.** In our framework, we would like the return distribution of the expert policy,
 865 Z^E , to dominate that of any learned policy Z^π , or vice versa depending on the formulation. This is a
 866 strong requirement and is typically hard to enforce directly during learning. Our approach therefore
 867 designs an objective that *penalizes violations of FSD* and then turns this objective into an energy
 868 function for learning the reward distribution.

870 B.3 THE FSD VIOLATION OBJECTIVE AS AN ENERGY FUNCTION

871 Recall the FSD-based objective in the main text:

$$873 \quad \mathcal{L}_{\text{FSD}}(\pi, r) = \int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz, \quad (21)$$

874 where $[x]_+ = \max\{x, 0\}$ denotes the positive part. This quantity measures, in an integrated way,
 875 how much F_{Z^E} lies *above* F_{Z^π} . If $Z^E \succeq_{\text{FSD}} Z^\pi$, then $F_{Z^E}(z) \leq F_{Z^\pi}(z)$ for all z , so the integrand
 876 is always zero, and hence $\mathcal{L}_{\text{FSD}}(\pi, r) = 0$. If FSD is violated, then $\mathcal{L}_{\text{FSD}}(\pi, r)$ becomes positive.

877 **Energy-based interpretation.** We treat $\mathcal{L}_{\text{FSD}}(\pi, r)$ as an *energy* that scores how well a reward
 878 function r explains the expert demonstrations under policy π . Lower \mathcal{L}_{FSD} means fewer FSD violations
 879 and thus better agreement with the expert. This motivates defining an energy-based model
 880 (EBM)

$$881 \quad p(\mathcal{D} | r) \propto \exp(-\mathcal{L}_{\text{FSD}}(\pi, r)), \quad (22)$$

882 where \mathcal{D} denotes the expert data and the proportionality hides a (typically intractable) normalizing
 883 constant. In words: reward functions that produce small FSD violations are exponentially more
 884 likely under the expert data.

885 This construction gives us a *likelihood* model for the reward r given the data \mathcal{D} , which we will
 886 combine with a prior over r and then approximate via variational inference.

887 B.4 VARIATIONAL INFERENCE AND ELBO DERIVATION

888 We now derive the variational objective used to learn the reward distribution. We start from Bayes'
 889 rule:

$$890 \quad p(r | \mathcal{D}) = \frac{p(\mathcal{D} | r) p_0(r)}{p(\mathcal{D})},$$

891 where $p_0(r)$ is a prior over reward functions and

$$892 \quad p(\mathcal{D}) = \int p(\mathcal{D} | r) p_0(r) dr$$

893 is the evidence (marginal likelihood), which is typically intractable to compute or differentiate.

894 We introduce a variational family $q_\phi(r | s, a)$, parameterized by ϕ , to approximate the true posterior
 895 $p(r | \mathcal{D})$. To measure how close q_ϕ is to the true posterior, consider the KL divergence

$$896 \quad \text{KL}(q_\phi(r | s, a) \| p(r | \mathcal{D})) = \mathbb{E}_{q_\phi} \left[\log \frac{q_\phi(r | s, a)}{p(r | \mathcal{D})} \right]. \quad (23)$$

897 Plugging in Bayes' rule for $p(r | \mathcal{D})$ gives

$$898 \quad \text{KL}(q_\phi(r | s, a) \| p(r | \mathcal{D})) = \mathbb{E}_{q_\phi} \left[\log \frac{q_\phi(r | s, a)}{p(\mathcal{D} | r) p_0(r) / p(\mathcal{D})} \right] \quad (24)$$

$$899 \quad = \mathbb{E}_{q_\phi} \left[\log q_\phi(r | s, a) - \log p(\mathcal{D} | r) - \log p_0(r) + \log p(\mathcal{D}) \right]. \quad (25)$$

900 We can separate out the term that does not depend on r :

$$901 \quad \text{KL}(q_\phi(r | s, a) \| p(r | \mathcal{D})) = \mathbb{E}_{q_\phi} [\log q_\phi(r | s, a) - \log p(\mathcal{D} | r) - \log p_0(r)] + \log p(\mathcal{D}). \quad (26)$$

902 Rearranging terms yields

$$903 \quad \log p(\mathcal{D}) = \mathbb{E}_{q_\phi} [\log p(\mathcal{D} | r) + \log p_0(r) - \log q_\phi(r | s, a)] + \text{KL}(q_\phi(r | s, a) \| p(r | \mathcal{D})). \quad (27)$$

918 Since KL is non-negative, we obtain the *evidence lower bound* (ELBO):
 919

$$920 \log p(\mathcal{D}) \geq \mathbb{E}_{q_\phi} [\log p(\mathcal{D} \mid r) + \log p_0(r) - \log q_\phi(r \mid s, a)] =: \text{ELBO}(\phi). \quad (28)$$

921 Equivalently,

$$922 \text{ELBO}(\phi) = \mathbb{E}_{q_\phi(r \mid s, a)} [\log p(\mathcal{D} \mid r)] - \text{KL}(q_\phi(r \mid s, a) \parallel p_0(r)), \quad (29)$$

923 which matches the expression in the main text.

925 **From ELBO to our reward objective.** Maximizing the ELBO is equivalent to minimizing its
 926 negative. Using the EBM likelihood from Eq. equation 22,

$$927 \log p(\mathcal{D} \mid r) = -\mathcal{L}_{\text{FSD}}(\pi, r) + \text{const},$$

929 where the constant does not depend on r and thus can be dropped for optimization. Substituting into
 930 Eq. equation 29 and ignoring constants, we obtain the objective

$$931 \min_{\phi} \mathcal{L}_r(\phi) := \min_{\phi} \mathbb{E}_{q_\phi(r \mid s, a)} [\mathcal{L}_{\text{FSD}}(\pi, r)] + \text{KL}(q_\phi(r \mid s, a) \parallel p_0(r)), \quad (30)$$

933 which is precisely Eq. (X) in the main text (Eq. 5 there). In other words, we learn the reward
 934 distribution by balancing two terms: (i) the expected FSD violation under q_ϕ , and (ii) a regularization
 935 term that keeps q_ϕ close to the prior p_0 .

936 B.5 QUANTILES AND THE FSD LOSS

938 We now explain in more detail why the FSD loss in Eq. equation 21 can be expressed in terms of
 939 quantile functions, which leads to a practical way to estimate it via sampling.

941 **Quantile function.** For a random variable X with CDF F_X , its (generalized) quantile function
 942 $F_X^{-1} : [0, 1] \rightarrow \mathbb{R}$ is defined by

$$943 F_X^{-1}(v) = \inf\{x \in \mathbb{R} \mid F_X(x) \geq v\}, \quad v \in (0, 1).$$

945 Intuitively, $F_X^{-1}(v)$ is the value such that a fraction v of the mass of X lies at or below it.

946 **Key identity.** We use the following identity (proved in Appendix C.1 of the main text):

$$948 \int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz = \int_0^1 [F_{Z^\pi}^{-1}(v) - F_{Z^E}^{-1}(v)]_+ dv. \quad (31)$$

950 This shows that integrating the positive difference of the CDFs is equivalent to integrating the positive
 951 difference of the *quantiles*, but with the roles of expert and policy swapped inside the bracket.

953 **Sketch of proof idea.** The proof relies on two facts: (i) an integral representation of the difference
 954 between two distributions in terms of their quantiles, and (ii) a change of variables between z and
 955 v through the CDF/quantile mapping. One can start from the left-hand side, partition the real line
 956 into regions where $F_{Z^E}(z) \geq F_{Z^\pi}(z)$ and where the opposite holds, and then perform a change of
 957 variables $z = F_{Z^\pi}^{-1}(v)$ (and similarly for the expert), carefully tracking the positive part. We refer
 958 the reader to the detailed derivation in Appendix C.1.

959 **Monte Carlo approximation.** The identity equation 31 is particularly useful because we can ap-
 960 proximate quantiles from samples. For example, to approximate $F_{Z^\pi}^{-1}$, we draw N return samples

$$962 z_n = \sum_{t=0}^{\infty} \gamma^t r_t^{(n)}, \quad r_t^{(n)} \sim q_\phi(\cdot \mid s_t^{(n)}, a_t^{(n)}),$$

964 and sort them to obtain order statistics

$$966 z_{(1)} \leq z_{(2)} \leq \dots \leq z_{(N)}.$$

967 A simple empirical approximation of the quantile function is then

$$969 F_{Z^\pi}^{-1}\left(\frac{k}{N}\right) \approx z_{(k)}.$$

971 In practice, we use such empirical quantiles (for both the expert and the learned policy) to estimate
 972 the integral on the right-hand side of Eq. equation 31 via a Riemann sum.

972 B.6 DISTORTION RISK MEASURES AND THEIR RELATION TO FSD
973974 Finally, we explain how distortion risk measures (DRMs) provide a scalar, risk-sensitive summary
975 of a return distribution and how they relate to FSD.976 **Definition B.2** (Distortion function). A distortion function is a non-decreasing function $\xi : [0, 1] \rightarrow$
977 $[0, 1]$ such that $\xi(0) = 0$ and $\xi(1) = 1$. Its *dual distortion* is defined as

978
$$\tilde{\xi}(v) := 1 - \xi(1 - v), \quad v \in [0, 1].$$

979

980 **Definition B.3** (Distortion risk measure). For an integrable random variable X and a distortion
981 function ξ , the associated distortion risk measure M_ξ is defined by

982
$$M_\xi(X) = \int_0^1 F_X^{-1}(v) d\tilde{\xi}(v),$$

983
984

985 where F_X^{-1} is the quantile function of X .
986987 **Intuition.** The DRM $M_\xi(X)$ aggregates all quantiles of X into a single scalar value, with weights
988 determined by $d\tilde{\xi}(v)$. Different choices of ξ emphasize different parts of the distribution: for exam-
989 ple, a concave $\tilde{\xi}$ assigns more weight to *lower* quantiles, which corresponds to risk-averse behavior.
990991 **Connection to FSD.** It is known that if $X \succeq_{\text{FSD}} Y$, then
992

993
$$M_\xi(X) \geq M_\xi(Y) \quad \text{for every distortion function } \xi.$$

994

995 Furthermore, the converse holds if we require the inequality to hold for *all* distortion functions: if
996 $M_\xi(X) \geq M_\xi(Y)$ for every distortion function ξ , then $X \succeq_{\text{FSD}} Y$. This shows that DRMs are
997 tightly linked to FSD: they preserve the FSD ordering if we consider all possible distortions.
998999 In our method, we exploit this relationship by replacing the intractable indicator-based weighting of
1000 quantiles (from Eq. equation 8 in the main text) with a tractable distortion-based weighting. This
1000 yields a risk-aware policy objective of the form

1001
$$\max_\varphi M_\xi(Z^{\pi_\varphi}) + \mathcal{H}(\pi_\varphi),$$

1002

1003 which can be optimized with standard policy gradient techniques while still encoding a meaningful
1004 notion of distributional dominance relative to the expert.
10051006 **Approximation viewpoint.** Optimizing $M_\xi(Z^{\pi_\varphi})$ for a *single* distortion function ξ does not guar-
1007 antee FSD dominance by itself; it corresponds to a weaker condition. However, as discussed in the
1008 main text, if one could optimize this objective for *all* distortion functions simultaneously, then under
1009 mild assumptions the resulting policy would satisfy the original FSD-based objective. Our practi-
1010 cal objective can therefore be viewed as an approximation that focuses on a particular, user-chosen
1011 notion of risk.
10121013 C PROOFS
10141015 C.1 PROOFS FOR SECTIONS 4
1016

1017 We first wish to show that

1018
$$\int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz = \int_0^1 [F_{Z^\pi}^{-1}(v) - F_{Z^E}^{-1}(v)]_+ dv. \quad (32)$$

1019

1020 **Proposition C.1.** Let Z^π and Z^E be two real-valued integrable random variables with cumulative
1021 distribution functions F_{Z^π} and F_{Z^E} , and corresponding quantile functions $F_{Z^\pi}^{-1}$ and $F_{Z^E}^{-1}$. Then we
1022 have
1023

1024
$$\int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz = \int_0^1 [F_{Z^\pi}^{-1}(v) - F_{Z^E}^{-1}(v)]_+ dv,$$

1025

1025 where $[x]_+ := \max(x, 0)$.

1026 *Proof.* Note that

$$\begin{aligned}
 \int_{-\infty}^{\infty} [F_{Z^E}(z) - F_{Z^\pi}(z)]_+ dz &= \int_{-\infty}^{\infty} \int_0^1 \mathbb{1}_{F_{Z^E}(z) \geq v \geq F_{Z^\pi}(z)} dv dz \\
 &= \int_0^1 \int_{-\infty}^{\infty} \mathbb{1}_{F_{Z^E}(z) \geq v \geq F_{Z^\pi}(z)} dv dz \\
 &= \int_0^1 \int_{-\infty}^{\infty} \mathbb{1}_{F_{Z^\pi}^{-1}(v) \geq z \geq F_{Z^E}^{-1}(v)} dv dz \\
 &= \int_0^1 [F_{Z^\pi}^{-1}(v) - F_{Z^E}^{-1}(v)]_+ dv
 \end{aligned}$$

1027 The interchange of integrals are permitted by the Theorem of Fubini-Tonelli as everything is positive
 1028 (Heil, 2019). Note that the definition of the quantile function (Gut & Gut, 2006) is:

$$F^{-1}(v) := \inf_{z \in \mathbb{R}} \{F(z) \geq v\}.$$

□

1039 **Proposition 4.6.** $M_\xi(X) \geq M_\xi(Y)$ for every distortion function ξ implies $X \succeq_{FSD} Y$.

1040 *Proof.* Define the difference in quantile functions:

$$h(v) := F_X^{-1}(v) - F_Y^{-1}(v).$$

1041 Suppose for contradiction that the set

$$A := \{v \in [0, 1] | h(v) < 0\}$$

1042 has positive Borel measure, i.e., $\mu(A) > 0$. Let's define a distortion function $\tilde{\xi}_A$ whose derivative
 1043 is:

$$\tilde{\xi}'_A(v) = \begin{cases} \frac{1}{\mu(A)} & \text{if } v \in A, \\ 0 & \text{otherwise.} \end{cases}$$

1044 Then $\tilde{\xi}_A$ is a valid distortion function and satisfies $\int_0^1 d\tilde{\xi}_A(v) = 1$. Note that

$$\mathcal{M}_{\xi_A}(X) - \mathcal{M}_{\xi_A}(Y) = \int_0^1 h(v) d\tilde{\xi}_A(v) = \int_A h(v) \cdot \frac{1}{\mu(A)} dv < 0.$$

1045 This contradicts the assumption that $\mathcal{M}_{\tilde{\xi}}(X) \geq \mathcal{M}_{\tilde{\xi}}(Y)$ for all distortion functions $\tilde{\xi}$. Therefore,
 1046 the set where $F_X^{-1}(v) < F_Y^{-1}(v)$ must have measure zero. Thus we have

$$F_X^{-1}(v) \geq F_Y^{-1}(v) \quad \text{for } v \in [0, 1] \text{ almost everywhere (a.e.)}$$

1047 which implies

$$F_X(z) \leq F_Y(z) \quad \text{for all } z \in \mathbb{R},$$

1048 since

$$\begin{aligned}
 F_X(z) &= P_X(X < z) = \mu(\{v \in [0, 1] | F_X^{-1}(v) \leq z\}) \\
 &\leq \mu(\{v \in [0, 1] \cap A^c | F_X^{-1}(v) \leq z\}) + \mu(\{v \in [0, 1] \cap A | F_X^{-1}(v) \leq z\}) \\
 &= \mu(\{v \in [0, 1] \cap A^c | F_X^{-1}(v) \leq z\}) \\
 &\leq \mu(\{v \in [0, 1] \cap A^c | F_Y^{-1}(v) \leq z\}) \\
 &\leq \mu(\{v \in [0, 1] | F_Y^{-1}(v) \leq z\}) \\
 &= F_Y(z)
 \end{aligned}$$

1049 The second inequality is due to the fact that for any z ,

$$\{v \in [0, 1] \cap A^c | F_X^{-1}(v) \leq z\} \subseteq \{v \in [0, 1] \cap A^c | F_Y^{-1}(v) \leq z\}$$

1050 Hence,

$$X \succeq_{FSD} Y.$$

□

1080
1081

C.2 CONVERGENCE ANALYSIS

1082
1083
1084

This appendix provides complete derivations and proofs for the convergence results summarized in Section 5. We work in the discounted MDP setting with finite action space \mathcal{A} and (possibly infinite) state space \mathcal{S} . All function norms are $\|\cdot\|_\infty$ unless otherwise specified.

1085
1086
1087

We first recall the risk-sensitive Bellman operator. For a fixed policy π , reward parameter ϕ , and bounded $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, we write

1088
1089
1090

$$(\mathcal{T}_{\xi, \phi}^\pi Q)(s, a) := \mathbb{E}_\xi [q_\phi(s, a)] + \gamma \mathbb{E}_{\xi, s' \sim P(\cdot|s, a)} [Q(s', a')], \quad (33)$$

$a' \sim \pi(\cdot|s')$.

1091

Here the notation $\mathbb{E}_\xi[\cdot]$ denotes the one-step evaluation combining the conditional expectation over the transition kernel and the dynamic distortion risk measure M_ξ (i.e. a nested, time-consistent dynamic risk mapping). Under this formulation, $\mathcal{T}_{\xi, \phi}^\pi$ is precisely the DRM Bellman operator: it preserves the Markov structure and is a γ -contraction under mild axioms on M_ξ (Ruszczyński, 2010), guaranteeing a unique fixed point $Q_{\phi, \pi}^\xi$ for each (ϕ, π) .

1092

C.2.1 ASSUMPTIONS

1093
1094
1095

We collect the standing assumptions used in the analysis.

1100

Assumption 5.1. *There exists $R_{\max} < \infty$ such that*

1101
1102

$$|q_\phi(s, a)| \leq R_{\max} \quad \text{almost surely for all } (s, a, \phi). \quad (12)$$

1103
1104
1105

This is standard in discounted RL and is enforced in our implementation by clipping the reward range (via a scaled tanh nonlinearity). It ensures that all risk-sensitive value functions are uniformly bounded.

1106
1107

Assumption 5.2. *For every (s, a) and all $\phi_1, \phi_2 \in \mathbb{R}^d$, the reward laws satisfy*

1108
1109

$$W_\infty(q_{\phi_1}(\cdot|s, a), q_{\phi_2}(\cdot|s, a)) \leq L_R \|\phi_1 - \phi_2\|, \quad (13)$$

1110
1111

where W_∞ denotes the Wasserstein infinity distance. Equivalently, one can couple $q_{\phi_1}(s, a)$ and $q_{\phi_2}(s, a)$ such that $|q_{\phi_1}(s, a) - q_{\phi_2}(s, a)| \leq L_R \|\phi_1 - \phi_2\|$ almost surely.

1112

1113
1114
1115
1116
1117
1118

This assumption is mild for smooth neural parameterizations of $q_\phi(r|s, a)$ (e.g., skew-normal with smooth outputs for location, scale, and skew). It states that small changes in the reward parameters ϕ cannot drastically change the reward distribution, which is necessary for the critic and policy to track the moving reward model.

Assumption 5.3. *For each state-action pair $s \in \mathcal{S}, a \in \mathcal{A}$, the one-step distortion risk measure $M_\xi(\cdot|s, a)$ is*

1119
1120
1121
1122
1123

1. monotone: $X \leq Y$ a.s. implies $M_\xi(X|s, a) \leq M_\xi(Y|s, a)$;
2. translation-equivariant: $M_\xi(X + c|s, a) = M_\xi(X|s, a) + c$ for all $c \in \mathbb{R}$;
3. 1-Lipschitz in $\|\cdot\|_\infty$: for all bounded random variables X, Y ,

1124
1125

$$|M_\xi(X|s, a) - M_\xi(Y|s, a)| \leq \|X - Y\|_\infty. \quad (14)$$

1126
1127
1128
1129

For normalized distortion risk measures M_ξ (including CVaR, Wang-type, and more general spectral DRMs), these properties are standard and follow from their integral representation in terms of quantile functions.

1130
1131

C.2.2 CONTRACTION OF THE NESTED DRM BELLMAN OPERATOR

1132
1133

We now verify that $\mathcal{T}_{\xi, \phi}^\pi$ is a γ -contraction in the sup norm. This is the risk-sensitive analogue of the standard Bellman contraction and is a special instance of the general results on nested risk mappings in Ruszczyński (2010); Kopa & Šmíd (2023).

1134 **Lemma C.2** (Contraction of $\mathcal{T}_{\xi, \phi}^\pi$). *Under Assumptions 5.1 and 5.3, for any fixed (ϕ, π) and any*
 1135 *bounded $U, V : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$,*

$$1136 \quad \|\mathcal{T}_{\xi, \phi}^\pi U - \mathcal{T}_{\xi, \phi}^\pi V\|_\infty \leq \gamma \|U - V\|_\infty. \quad (34)$$

1138 *Proof.* For any (s, a) , the immediate reward terms cancel, and we have

$$\begin{aligned} 1140 \quad & |(\mathcal{T}_{\xi, \phi}^\pi U)(s, a) - (\mathcal{T}_{\xi, \phi}^\pi V)(s, a)| \\ 1141 \quad & = \gamma |\mathbb{E}_{\xi, s' \sim P(\cdot|s, a)} [U(s', A') - V(s', A')]| \\ 1142 \quad & \leq \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} [|M_\xi(U(s', A') - V(s', A'))|] \\ 1143 \quad & \leq \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} [\|U - V\|_\infty] = \gamma \|U - V\|_\infty, \end{aligned} \quad (35)$$

1145 where we used Assumption 5.3 (1-Lipschitzness) in the third line. Taking the supremum over (s, a)
 1146 yields 34. \square

1147 By the Banach fixed-point theorem, we immediately obtain:

1148 *Corollary C.3* (Existence and uniqueness of the risk-sensitive critic). Under Assumptions 5.1
 1149 and 5.3, for each fixed (ϕ, π) there exists a unique $Q_{\phi, \pi}^\xi$ solving

$$1151 \quad Q_{\phi, \pi}^\xi = \mathcal{T}_{\xi, \phi}^\pi Q_{\phi, \pi}^\xi. \quad (36)$$

1153 Moreover, the critic is uniformly bounded.

1154 **Lemma C.4.** *Under Assumption 5.1, let $B_Q := R_{\max}/(1 - \gamma)$. Then for all (ϕ, π) ,*

$$1155 \quad \|Q_{\phi, \pi}^\xi\|_\infty \leq B_Q. \quad (37)$$

1157 *Proof.* By unfolding the fixed point 36 along trajectories and using $|q_\phi(s, a)| \leq R_{\max}$, we get for
 1158 all (s, a)

$$1159 \quad |Q_{\phi, \pi}^\xi(s, a)| \leq \sum_{t=0}^{\infty} \gamma^t R_{\max} = \frac{R_{\max}}{1 - \gamma} = B_Q. \quad (38)$$

1162 Taking the supremum over (s, a) yields 37. \square

1164 C.2.3 SOFTMAX LIPSCHITZ PROPERTIES

1165 We next relate Q -function errors to policy errors via the softmax parameterization.

1166 **Lemma C.5.** *Let $Q, Q' : \mathcal{A} \rightarrow \mathbb{R}$ be two vectors of Q -values, and define*

$$1167 \quad \pi(a) = \frac{e^{Q(a)}}{\sum_b e^{Q(b)}}, \quad \pi'(a) = \frac{e^{Q'(a)}}{\sum_b e^{Q'(b)}}. \quad (39)$$

1168 *Then*

$$1169 \quad \|\log \pi - \log \pi'\|_\infty \leq 2 \|Q - Q'\|_\infty. \quad (40)$$

1173 *Proof.* For any action a ,

$$\begin{aligned} 1174 \quad \log \pi(a) &= Q(a) - \log \sum_b e^{Q(b)}, \\ 1175 \quad \log \pi'(a) &= Q'(a) - \log \sum_b e^{Q'(b)}. \end{aligned} \quad (41)$$

1178 Subtracting,

$$1179 \quad \log \pi(a) - \log \pi'(a) = (Q(a) - Q'(a)) - \left(\log \sum_b e^{Q(b)} - \log \sum_b e^{Q'(b)} \right). \quad (42)$$

1182 The log-sum-exp function is 1-Lipschitz in $\|\cdot\|_\infty$, i.e.

$$1183 \quad \left| \log \sum_b e^{Q(b)} - \log \sum_b e^{Q'(b)} \right| \leq \|Q - Q'\|_\infty. \quad (43)$$

1185 Combining 42 and 43 gives

$$1186 \quad |\log \pi(a) - \log \pi'(a)| \leq |Q(a) - Q'(a)| + \|Q - Q'\|_\infty \leq 2 \|Q - Q'\|_\infty. \quad (44)$$

1187 Taking the supremum over a yields 40. \square

1188 C.2.4 LIPSCHITZ SENSITIVITY
11891190 We now show that the DRM Q -function depends smoothly on the reward parameters ϕ , both for
1191 optimal control and for fixed-policy evaluation.1192 **Lemma C.6.** *Suppose Assumptions 5.1, 5.2, and 5.3 hold. Then for all (s, a) and all ϕ_1, ϕ_2 ,*

1193
$$|q_{\phi_1}(s, a) - q_{\phi_2}(s, a)| \leq L_R \|\phi_1 - \phi_2\|. \quad (45)$$

1194

1195 Let M_ξ denote the nested distortion risk functional, and assume it is 1-Lipschitz in $\|\cdot\|_\infty$ as in
1196 Assumption 5.3. Define the optimal risk-sensitive Q -function for parameter ϕ by

1197
$$Q_{\phi,*}^\xi(s, a) := \sup_{\pi} M_\xi\left(\sum_{t=0}^{\infty} \gamma^t r_\phi(s_t, a_t) \mid s_0 = s, a_0 = a, \pi\right), \quad (46)$$

1198

1200 where $\{(s_t, a_t)\}_{t \geq 0}$ is the trajectory under policy π starting from $(s_0, a_0) = (s, a)$. Then there
1201 exists

1202
$$L_q := \frac{L_R}{1 - \gamma} \quad (47)$$

1203

1204 such that for all ϕ_1, ϕ_2 ,

1205
$$\|Q_{\phi_1,*}^\xi - Q_{\phi_2,*}^\xi\|_\infty \leq L_q \|\phi_1 - \phi_2\|. \quad (48)$$

1206

1207 *Proof.* The bound on the reward smoothness is immediately due to assumption 5.2. Fix ϕ_1, ϕ_2 and
1208 (s, a) . For any policy π , let $\{(s_t, a_t)\}_{t \geq 0}$ be the trajectory under π with $(s_0, a_0) = (s, a)$, and define

1209
$$G_{\phi_i}^\pi := \sum_{t=0}^{\infty} \gamma^t q_{\phi_i}(s_t, a_t), \quad i \in \{1, 2\}. \quad (49)$$

1210

1211 By definition 46,

1212
$$Q_{\phi_i,*}^\xi(s, a) = \sup_{\pi} M_\xi(G_{\phi_i}^\pi \mid s, a, \pi), \quad i \in \{1, 2\}. \quad (50)$$

1213

1214 Using the inequality

1215
$$|\sup_{\pi} f_{\pi} - \sup_{\pi} g_{\pi}| \leq \sup_{\pi} |f_{\pi} - g_{\pi}|, \quad (51)$$

1216

1217 we obtain

1218
$$\begin{aligned} |Q_{\phi_1,*}^\xi(s, a) - Q_{\phi_2,*}^\xi(s, a)| &= \left| \sup_{\pi} M_\xi(G_{\phi_1}^\pi \mid s, a, \pi) - \sup_{\pi} M_\xi(G_{\phi_2}^\pi \mid s, a, \pi) \right| \\ &\leq \sup_{\pi} |M_\xi(G_{\phi_1}^\pi \mid s, a, \pi) - M_\xi(G_{\phi_2}^\pi \mid s, a, \pi)|. \end{aligned} \quad (52)$$

1219

1220 For each fixed π , the 1-Lipschitz property of M_ξ in $\|\cdot\|_\infty$ (Assumption 5.3) gives

1221
$$\begin{aligned} |M_\xi(G_{\phi_1}^\pi \mid s, a, \pi) - M_\xi(G_{\phi_2}^\pi \mid s, a, \pi)| &\leq \|G_{\phi_1}^\pi - G_{\phi_2}^\pi\|_\infty \\ &= \sup_{\omega} \left| \sum_{t=0}^{\infty} \gamma^t (q_{\phi_1}(s_t(\omega), a_t(\omega)) - q_{\phi_2}(s_t(\omega), a_t(\omega))) \right| \\ &\leq \sum_{t=0}^{\infty} \gamma^t \sup_{(s', a')} |q_{\phi_1}(s', a') - q_{\phi_2}(s', a')| \\ &\leq \sum_{t=0}^{\infty} \gamma^t L_R \|\phi_1 - \phi_2\| \\ &= \frac{L_R}{1 - \gamma} \|\phi_1 - \phi_2\|. \end{aligned} \quad (53)$$

1222

1223 The bound does not depend on π , so combining it with Eq. 52 we obtain

1224
$$|Q_{\phi_1,*}^\xi(s, a) - Q_{\phi_2,*}^\xi(s, a)| \leq \frac{L_R}{1 - \gamma} \|\phi_1 - \phi_2\|. \quad (54)$$

1225

1226 Taking the supremum over (s, a) yields the desired result. \square
1227

1242 **Lemma C.7** (Lipschitz continuity of $Q_{\phi, \pi}^\xi$ in ϕ for fixed policy). *Suppose Assumptions 5.1, 5.2, and*
 1243 *5.3 hold, and fix any stationary policy π . Define the risk-sensitive evaluation Q-function as*
 1244

$$1245 \quad Q_{\phi, \pi}^\xi(s, a) := M_\xi \left(\sum_{t=0}^{\infty} \gamma^t q_\phi(s_t, a_t) \mid s_0 = s, a_0 = a, \pi \right), \quad (55)$$

1246 where $\{(s_t, a_t)\}_{t \geq 0}$ is the trajectory under π starting from $(s_0, a_0) = (s, a)$. Then for all ϕ_1, ϕ_2 ,

$$1247 \quad \|Q_{\phi_1, \pi}^\xi - Q_{\phi_2, \pi}^\xi\|_\infty \leq L_q \|\phi_1 - \phi_2\|, \quad L_q := \frac{L_R}{1 - \gamma}. \quad (56)$$

1248 *Proof.* Fix π and $(s_0, a_0) = (s, a)$, and let $\{(s_t, a_t)\}_{t \geq 0}$ be the trajectory under π . For $i \in \{1, 2\}$,
 1249 define $G_{\phi_i}^\pi$ as in 49. Then by 55,

$$1250 \quad Q_{\phi_i, \pi}^\xi(s, a) = M_\xi(G_{\phi_i}^\pi | s, a, \pi), \quad i \in \{1, 2\}. \quad (57)$$

1251 Thus

$$1252 \quad \begin{aligned} |Q_{\phi_1, \pi}^\xi(s, a) - Q_{\phi_2, \pi}^\xi(s, a)| &= |M_\xi(G_{\phi_1}^\pi | s, a, \pi) - M_\xi(G_{\phi_2}^\pi | s, a, \pi)| \\ 1253 &\leq \|G_{\phi_1}^\pi - G_{\phi_2}^\pi\|_\infty \\ 1254 &\leq \frac{L_R}{1 - \gamma} \|\phi_1 - \phi_2\|, \end{aligned} \quad (58)$$

1255 where the last inequality is identical to the bound in 53. Taking the supremum over (s, a) gives
 1256 \square

1257 C.2.5 ONE-STEP CRITIC RECURSION

1258 We now derive a simple one-step recursion for the critic's tracking error as the reward parameters
 1259 ϕ_k and policies π_k evolve across iterations.

1260 For each iteration k , define

$$1261 \quad E_k := \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty, \quad (59)$$

1262 where $\pi_{\phi_k}^*$ is an optimal DRM policy for reward parameter ϕ_k , i.e.

$$1263 \quad \pi_{\phi_k}^* \propto \text{softmax}_\pi Q_{\phi_k, \pi}^\xi. \quad (60)$$

1264 **Lemma C.8.** *Suppose Assumptions 5.1, 5.2, and 5.3 hold, and let L_q be as in Lemma C.7. Then for*
 1265 *all $k \geq 1$,*

$$1266 \quad E_k \leq \gamma E_{k-1} + 2L_q \|\phi_k - \phi_{k-1}\|. \quad (61)$$

1267 *Proof.* Add and subtract $Q_{\phi_{k-1}, \pi_k}^\xi$ and $Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi$ inside the norm:

$$1268 \quad \begin{aligned} &\|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty \\ 1269 &= \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi + Q_{\phi_{k-1}, \pi_k}^\xi - Q_{\phi_{k-1}, \pi_k}^\xi + Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi\|_\infty \\ 1270 &\leq \|Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty + \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_{k-1}, \pi_k}^\xi\|_\infty + \|Q_{\phi_{k-1}, \pi_k}^\xi - Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi\|_\infty. \end{aligned} \quad (62)$$

1271 By Lemma C.6 (with $\pi_{\phi_{k-1}}^*$ and $\pi_{\phi_k}^*$ both optimal) and Lemma C.7 (with $\pi = \pi_k$), we have

$$1272 \quad \begin{aligned} &\|Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty \leq L_q \|\phi_k - \phi_{k-1}\|, \\ 1273 &\|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_{k-1}, \pi_k}^\xi\|_\infty \leq L_q \|\phi_k - \phi_{k-1}\|. \end{aligned} \quad (63)$$

1274 Therefore,

$$1275 \quad \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty \leq 2L_q \|\phi_k - \phi_{k-1}\| + \|Q_{\phi_{k-1}, \pi_k}^\xi - Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi\|_\infty. \quad (64)$$

1296 Next observe that for fixed ϕ_{k-1} , $\pi_{\phi_{k-1}}^*$ is optimal, so
 1297

$$1298 \quad Q_{\phi_{k-1}, \pi_k}^\xi \leq Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi \quad \text{pointwise.} \quad (65)$$

1300 Moreover, by monotonicity of the Bellman operator and Lemma C.2,
 1301

$$1302 \quad 0 \leq Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_{k-1}, \pi_k}^\xi \leq \mathcal{T}_{\xi, \phi_{k-1}}^{\pi_k} (Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_{k-1}, \pi_k}^\xi), \quad (66)$$

1304 so taking norms and using 34 gives
 1305

$$1306 \quad \|Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_{k-1}, \pi_k}^\xi\|_\infty \leq \gamma \|Q_{\phi_{k-1}, \pi_{\phi_{k-1}}^*}^\xi - Q_{\phi_{k-1}, \pi_{k-1}}^\xi\|_\infty = \gamma E_{k-1}. \quad (67)$$

1308 So that we get
 1309

$$1310 \quad E_k = \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_{k-1}, \pi_{\phi_k}^*}^\xi\|_\infty \leq \gamma E_{k-1} + 2L_q \|\phi_k - \phi_{k-1}\|, \quad (68)$$

1311 as claimed. \square
 1312

1313 C.2.6 SMOOTH REWARD UPDATES AND AVERAGED CRITIC TRACKING

1315 We now relate the parameter drift $\|\phi_k - \phi_{k-1}\|$ to the reward update objective $\mathcal{L}_r(\phi)$ used in Eq. 5.

1316 **Assumption C.9** (Smoothness and bounded gradients of the reward objective). *Let $\mathcal{L}_r(\phi)$ denote
 1317 the reward-distribution objective in Eq. 5. Assume:*

1319 1. *\mathcal{L}_r is differentiable and its gradient is L_∇ -Lipschitz:*

$$1321 \quad \|\nabla \mathcal{L}_r(\phi_1) - \nabla \mathcal{L}_r(\phi_2)\| \leq L_\nabla \|\phi_1 - \phi_2\| \quad \text{for all } \phi_1, \phi_2. \quad (69)$$

1323 2. *The iterates $\{\phi_k\}$ are projected onto a compact set $\Phi \subset \mathbb{R}^d$, so that*

$$1325 \quad G_{\max} := \sup_{\phi \in \Phi} \|\nabla \mathcal{L}_r(\phi)\| < \infty. \quad (70)$$

1327 The reward update step is
 1328

$$1329 \quad \phi_k = \Pi_\Phi(\phi_{k-1} - \eta_{k-1} \nabla \mathcal{L}_r(\phi_{k-1})), \quad (71)$$

1331 where Π_Φ is the Euclidean projection onto Φ and $\{\eta_k\}$ is a deterministic stepsize schedule.

1332 **Lemma C.10.** *Under Assumption C.9,*

$$1334 \quad \|\phi_k - \phi_{k-1}\| \leq \eta_{k-1} G_{\max}. \quad (72)$$

1336 *Proof.* By non-expansiveness of the projection,

$$1338 \quad \|\phi_k - \phi_{k-1}\| = \|\Pi_\Phi(\phi_{k-1} - \eta_{k-1} \nabla \mathcal{L}_r(\phi_{k-1})) - \Pi_\Phi(\phi_{k-1})\| \\ 1339 \leq \eta_{k-1} \|\nabla \mathcal{L}_r(\phi_{k-1})\| \leq \eta_{k-1} G_{\max}, \quad (73)$$

1340 which is 72. \square
 1341

1343 Now we are ready to get the main recursion formula.

1344 **Theorem 5.4.** *Assume assumptions 5.1-5.3 hold. Let $E_k = \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty$. Assume the
 1345 reward update satisfies Assumption C.9, with stepsizes $\eta_k = \eta = \eta_0 K^{-\sigma}$, $\eta_0 > 0$, and $\sigma \in (0, 1)$.
 1346 Then running the DistIRL algorithm K steps, we have*

$$1348 \quad \frac{1}{K} \sum_{k=1}^K E_k = \mathcal{O}(K^{-1}) + \mathcal{O}(K^{-\sigma}). \quad (15)$$

1350 *Proof.* By Lemmas C.8 and C.10,

$$1352 \quad E_k \leq \gamma E_{k-1} + 2L_q G_{\max} \eta_{k-1}. \quad (74)$$

1353 Taking the sum, we have

$$1355 \quad \sum_{k=1}^K E_k \leq \sum_{k=1}^K \gamma E_{k-1} + 2L_q G_{\max} \sum_{k=1}^K \eta_{k-1}. \quad (75)$$

1358 Rearrange and average over K gives

$$1360 \quad \frac{1-\gamma}{K} \sum_{k=1}^K E_k \leq \frac{\gamma}{K} (E_0 - E_K) + 2L_q G_{\max} \eta K^{-\sigma}. \quad (76)$$

1363 Divide both side by $1 - \gamma$ we have

$$1365 \quad \frac{1}{K} \sum_{k=1}^K E_k \leq \frac{\gamma}{(1-\gamma)K} C_0 + \frac{1}{1-\gamma} 2L_q G_{\max} \eta K^{-\sigma}. \quad (77)$$

1368 For which we obtain the claim. \square

1370 C.2.7 POLICY CONVERGENCE IN LOG-PROBABILITY

1372 Finally, we transfer the critic tracking guarantees to the induced policies.

1373 **Theorem 5.5.** *For each k , define the learned and DRM-optimal policies induced by the current*

1374 *Q -functions:*

$$1375 \quad \pi_k(\cdot|s) \propto \exp(Q_{\phi_k, \pi_k}^\xi(s, \cdot)), \pi_{\phi_k}^*(\cdot|s) \propto \exp(Q_{\phi_k, \pi_{\phi_k}^*}^\xi(s, \cdot)). \quad (16)$$

1377 Then running the *DistIRL* algorithm K steps, we have

$$1379 \quad \frac{1}{K} \sum_{k=1}^K \|\log \pi_k - \log \pi_{\phi_k}^*\|_\infty = \mathcal{O}(K^{-1}) + \mathcal{O}(K^{-\sigma}). \quad (17)$$

1382 *Proof.* Fix k and s . Let

$$1384 \quad x(\cdot) = Q_{\phi_k, \pi_k}^\xi(s, \cdot), \quad y(\cdot) = Q_{\phi_k, \pi_{\phi_k}^*}^\xi(s, \cdot). \quad (78)$$

1386 By Lemma C.5,

$$1387 \quad \|\log \pi_k^+(\cdot|s) - \log \pi_{\phi_k}^{*+}(\cdot|s)\|_\infty \leq 2\|x - y\|_\infty. \quad (79)$$

1388 Taking the supremum over s yields

$$1390 \quad \|\log \pi_k^+ - \log \pi_{\phi_k}^{*+}\|_\infty \leq 2\|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty = 2E_k. \quad (80)$$

1392 Averaging over $k = 1, \dots, K$ and substituting the bound from Theorem 5.4 gives Eq. 17. \square

1394 C.2.8 FIRST-ORDER CONVERGENCE OF THE REWARD UPDATE

1396 We now show that, under mild additional conditions, the reward update drives the gradient of the

1397 reward objective to zero in an averaged sense, so that the iterates approach a stationary point of the

1398 inner minimization problem over ϕ . This is the best we can hope as we do not assume the function

1399 approximator of the reward is convex.

1400 Recall that the reward objective $\mathcal{L}_r(\phi)$ and its update rule were introduced in Assumption C.9. The

1401 update at iteration k is

$$1402 \quad \phi_{k+1} = \Pi_\Phi(\phi_k - \eta_k g_k), \quad (81)$$

1403 where g_k is the stochastic gradient computed using the current critic Q_{ϕ_k, π_k}^ξ and policy π_k .

1404
 1405 **Assumption C.11** (Gradient estimator and critic bias). *Let \mathcal{F}_k denote the filtration generated by all
 1406 randomness up to iteration k . Assume that the stochastic gradient g_k satisfies, for some constants
 1407 $C_g, G_g > 0$,*

$$\|\mathbb{E}[g_k | \mathcal{F}_k] - \nabla \mathcal{L}_r(\phi_k)\| \leq C_g E_k, \quad (82)$$

$$\mathbb{E}[\|g_k\|^2] \leq G_g^2, \quad (83)$$

1410 *where*

$$E_k := \|Q_{\phi_k, \pi_k}^\xi - Q_{\phi_k, \pi_{\phi_k}^*}^\xi\|_\infty \quad (84)$$

1411 *is the critic tracking error defined above.*

1412 Intuitively, equation 82 states that the gradient bias vanishes as soon as the critic tracks the
 1413 DRM-optimal Q well (i.e., E_k is small), which is consistent with the inequality in equation 17:
 1414 a small critic gap implies a small occupancy-measure mismatch, hence a small gradient bias. The
 1415 second-moment bound equation 83 is standard in nonconvex stochastic optimization.

1416 **Theorem 5.6.** *Suppose Assumptions 5.1, 5.2, C.9, and C.11 hold. Let $\eta_k = \eta_0 k^{-\sigma}$ with $\eta_0 > 0$ and
 1417 $\sigma \in (0, 1)$, and assume \mathcal{L}_r is bounded below on Φ . Then there exists $C > 0$ such that*

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] = \mathcal{O}(K^{-1}) + \mathcal{O}(K^{-\sigma}) + \mathcal{O}(K^{-1+\sigma}), \quad (18)$$

1418 *Proof.* We begin from the smoothness inequality with $\phi' = \phi_{k+1}$, $\phi = \phi_k$:

$$\mathcal{L}_r(\phi_{k+1}) \leq \mathcal{L}_r(\phi_k) + \langle \nabla \mathcal{L}_r(\phi_k), \phi_{k+1} - \phi_k \rangle + \frac{L_\nabla}{2} \|\phi_{k+1} - \phi_k\|^2. \quad (85)$$

1419 By the non-expansiveness of the projection Π_Φ and the update rule,

$$\begin{aligned} \|\phi_{k+1} - \phi_k\| &= \|\Pi_\Phi(\phi_k - \eta_k g_k) - \Pi_\Phi(\phi_k)\| \\ &\leq \eta_k \|g_k\|. \end{aligned} \quad (86)$$

1420 Moreover,

$$\begin{aligned} \langle \nabla \mathcal{L}_r(\phi_k), \phi_{k+1} - \phi_k \rangle &= \langle \nabla \mathcal{L}_r(\phi_k), \Pi_\Phi(\phi_k - \eta_k g_k) - \phi_k \rangle \\ &\leq \langle \nabla \mathcal{L}_r(\phi_k), -\eta_k g_k \rangle \end{aligned} \quad (87)$$

$$= -\eta_k \langle \nabla \mathcal{L}_r(\phi_k), g_k \rangle. \quad (88)$$

1421 Substituting the above into Eq. 85 yields

$$\mathcal{L}_r(\phi_{k+1}) \leq \mathcal{L}_r(\phi_k) - \eta_k \langle \nabla \mathcal{L}_r(\phi_k), g_k \rangle + \frac{L_\nabla}{2} \eta_k^2 \|g_k\|^2. \quad (89)$$

1422 We expand the inner product using

$$\langle \nabla \mathcal{L}_r(\phi_k), g_k \rangle = \frac{1}{2} \left(\|\nabla \mathcal{L}_r(\phi_k)\|^2 + \|g_k\|^2 - \|g_k - \nabla \mathcal{L}_r(\phi_k)\|^2 \right),$$

1423 which gives

$$-\eta_k \langle \nabla \mathcal{L}_r(\phi_k), g_k \rangle = -\frac{\eta_k}{2} \|\nabla \mathcal{L}_r(\phi_k)\|^2 - \frac{\eta_k}{2} \|g_k\|^2 + \frac{\eta_k}{2} \|g_k - \nabla \mathcal{L}_r(\phi_k)\|^2. \quad (90)$$

1424 Substituting Eq. 90 into Eq. 89 we obtain

$$\begin{aligned} \mathcal{L}_r(\phi_{k+1}) &\leq \mathcal{L}_r(\phi_k) - \frac{\eta_k}{2} \|\nabla \mathcal{L}_r(\phi_k)\|^2 - \frac{\eta_k}{2} \|g_k\|^2 + \frac{\eta_k}{2} \|g_k - \nabla \mathcal{L}_r(\phi_k)\|^2 + \frac{L_\nabla}{2} \eta_k^2 \|g_k\|^2 \\ &\leq \mathcal{L}_r(\phi_k) - \frac{\eta_k}{2} \|\nabla \mathcal{L}_r(\phi_k)\|^2 + \frac{\eta_k}{2} \|g_k - \nabla \mathcal{L}_r(\phi_k)\|^2 + \frac{L_\nabla}{2} \eta_k^2 \|g_k\|^2 \end{aligned} \quad (91)$$

1425 where we discarded the negative term $-\frac{\eta_k}{2} \|g_k\|^2$. Next we bound the bias term. Condition on ϕ_k
 1426 and use $\|g_k - \nabla \mathcal{L}_r(\phi_k)\| \leq C_g E_k$:

$$\begin{aligned} \mathbb{E}[\|g_k - \nabla \mathcal{L}_r(\phi_k)\|^2] &= \mathbb{E}[\mathbb{E}[\|g_k - \nabla \mathcal{L}_r(\phi_k)\|^2 | \phi_k]] \\ &\leq \mathbb{E}[C_g^2 E_k^2] \\ &\leq C_g^2 \mathbb{E}[E_k^2] \leq C C_g^2 \mathbb{E}[E_k], \end{aligned} \quad (92)$$

1458 where we used $E_k \geq 0$ and $E_k \leq \|Q\|_\infty$ so that $E_k^2 \leq CE_k$. Similarly,

$$1459 \quad \mathbb{E}[\|g_k\|^2] \leq G_{\max}^2. \quad (93)$$

1460 Taking expectations of Eq. 91 and applying Eq. 92-93 gives

$$1461 \quad \mathbb{E}[\mathcal{L}_r(\phi_{k+1})] \leq \mathbb{E}[\mathcal{L}_r(\phi_k)] - \frac{\eta_k}{2} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] + \frac{\eta_k}{2} C_g^2 \mathbb{E}[E_k] + \frac{L_\nabla}{2} \eta_k^2 G_{\max}^2. \quad (94)$$

1462 Rearrange Eq. 94 as

$$1463 \quad \frac{\eta_k}{2} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] \leq \mathbb{E}[\mathcal{L}_r(\phi_k)] - \mathbb{E}[\mathcal{L}_r(\phi_{k+1})] + \frac{\eta_k}{2} C_g^2 \mathbb{E}[E_k] + \frac{L_\nabla}{2} \eta_k^2 G_{\max}^2. \quad (95)$$

1464 Multiply both sides by $2/\eta_k$:

$$1465 \quad \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] \leq \frac{2}{\eta_k} (\mathbb{E}[\mathcal{L}_r(\phi_k)] - \mathbb{E}[\mathcal{L}_r(\phi_{k+1})]) + C_g^2 \mathbb{E}[E_k] + L_\nabla \eta_k G_{\max}^2. \quad (96)$$

1466 Now sum Eq. 96 over $k = 0, \dots, K-1$:

$$1467 \quad \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] \leq 2 \sum_{k=0}^{K-1} \frac{\mathbb{E}[\mathcal{L}_r(\phi_k)] - \mathbb{E}[\mathcal{L}_r(\phi_{k+1})]}{\eta_k} + C_g^2 \sum_{k=0}^{K-1} \mathbb{E}[E_k] + L_\nabla G_{\max}^2 \sum_{k=0}^{K-1} \eta_k. \quad (97)$$

1468 Using the boundedness equation and the fact that η_k is constant, we bound the first sum as

$$1469 \quad \sum_{k=0}^{K-1} \frac{\mathbb{E}[\mathcal{L}_r(\phi_k)] - \mathbb{E}[\mathcal{L}_r(\phi_{k+1})]}{\eta_k} = \sum_{k=0}^{K-1} (\mathbb{E}[\mathcal{L}_r(\phi_k)] - \mathbb{E}[\mathcal{L}_r(\phi_{k+1})]) \frac{1}{\eta_k} \\ 1470 \quad = \frac{K^\sigma}{\eta} \sum_{k=0}^{K-1} (\mathbb{E}[\mathcal{L}_r(\phi_k)] - \mathbb{E}[\mathcal{L}_r(\phi_{k+1})]) \\ 1471 \quad = \frac{K^\sigma}{\eta} (\mathbb{E}[\mathcal{L}_r(\phi_0)] - \mathbb{E}[\mathcal{L}_r(\phi_K)]) \\ 1472 \quad \leq \frac{\mathcal{L}_{\max} - \mathcal{L}_{\min}}{\eta} K^\sigma. \quad (98)$$

1473 Next, apply the averaged tracking bound on the action-value function:

$$1474 \quad \sum_{k=0}^{K-1} \mathbb{E}[E_k] = K \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[E_k] \\ 1475 \quad = \mathcal{O}(1) + \mathcal{O}(K^{1-\sigma}) \quad (99)$$

1476 Finally, since $\eta_k = \eta K^{-\sigma}$ with $0 < \sigma < 1$,

$$1477 \quad \sum_{k=0}^{K-1} \eta_k = \eta \sum_{k=1}^K K^{-\sigma} = \mathcal{O}(K^{1-\sigma}). \quad (100)$$

1478 Divide both sides by K :

$$1479 \quad \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] \leq \frac{2(\mathcal{L}_{\max} - \mathcal{L}_{\min})}{\eta} K^{1-\sigma} \quad (101)$$

$$1480 \quad + \frac{\gamma}{(1-\gamma)} C_0 C_g^2 + \frac{C_g^2}{1-\gamma} 2L_q G_{\max} \eta K^{1-\sigma} \quad (102)$$

$$1481 \quad + L_\nabla G_{\max}^2 \eta K^{1-\sigma}. \quad (103)$$

1482 So that we have

$$1483 \quad \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla \mathcal{L}_r(\phi_k)\|^2] = \mathcal{O}(K^{-\sigma}) + \mathcal{O}(K^{-1+\sigma}) + \mathcal{O}(K^{-1}), \quad (104)$$

1484 Since $0 < \sigma < 1$, all three terms vanish as $K \rightarrow \infty$, so the averaged squared gradient converges to zero. \square

1512 **D MODEL ARCHITECTURE AND HYPER-PARAMETERS**
15131514 Throughout this paper, we use the following model architecture for all the experiments.
15151516 Table 6: Model Parameters for DistIRL
1517

Parameter	Value
Training Parameters	
Learning Rate	3×10^{-4}
Batch Size	512
Total Iterations	5,000
Entropy Coefficient	0.1
Risk Measure	CVaR
Risk Parameter	0.05
Reward Regularization	0.01
Network Architecture	
Policy Network	[256, 128]
Distribution Type	Skew Gaussian
Reward Range	[-5.0, 5.0]
Number of Quantiles	200
Reward Hidden Features	128

1532 For gridworld, we specify the reward range as [0, 2]. For MuJoCo tasks, [-10, 10]. This is achieved
1533 by applying a (scaled) tanh function.
15341535 **E ADDITIONAL ABLATION STUDIES**
15361537 **E.1 ABLATION ON CHOICES OF DRM AND ITS PARAMETER**
15381539 In this section, we present additional ablation studies. First, we evaluate the performance of DistIRL
1540 on the risk-averse D4RL dataset with different choices of DRM in the HalfCheetah instance. Note
1541 that for CVaR and VaR, the smaller distortion parameter η is, the more risk-averse the policy will
1542 be. But for Wang’s risk measure, which has parameter η ranging from -1 to 1, the policy exhibit
1543 from risk-seeking to risk-aversion, with $\eta = 0$ having the risk-neutral behavior. The choice of risk
1544 parameter effect the shape $\tilde{\xi}'$, which affect the solution quality of the policy optimization problem
1545 in Eq. 7.
15461547 Table. 7 demonstrates the effects of different choices of risk measure and its risk parameter. Note that
1548 since the data is generated by a risk-averse policy, a risk-averse DRM produces the best result, while
1549 risk-neutral policies are substantially worse, and risk-seeking policies fail to capture the expert’s
1550 behavior.
15511552 Table 7: Performance on distributional reward settings (D4RL).
1553

DRM	$\eta = 0.05$	$\eta = 0.5$	$\eta = 0.9$	$\eta = -0.5$	$\eta = -0.9$
CVaR	3539.74 \pm 44.26	3384.27 \pm 151.06	2851.13 \pm 689.67	-	-
VaR	3539.12 \pm 76.77	3423.43 \pm 113.72	3081.96 \pm 522.94	-	-
Wang	2670.42 \pm 730.93	2849.94 \pm 1220.71	3439.46 \pm 314.48	1755.25 \pm 13.42	444.62 \pm 1.90

1554 **E.2 ABLATION ON NUMBER OF TRAJECTORIES**
15551556 Table 8: Performance averaged over 5 seeds for varying dataset sizes (10, 5, 3, 1 trajectories).
1557

Environment	10	5	3	1
HalfCheetah	3539.74 \pm 44.26	3440.67 \pm 58.48	3501.53 \pm 91.82	3238.49 \pm 339.72
Hopper	886.44 \pm 0.79	888.71 \pm 20.16	893.15 \pm 14.13	748.93 \pm 112.53
Walker2d	1526.46 \pm 148.24	1291.44 \pm 759.45	1143.62 \pm 231.05	1151.86 \pm 180.98

1558 In addition to the main comparison, we conduct an ablation study on the number of expert
1559 trajectories used to train our DistIRL algorithm. For each environment, we construct datasets with
1560

Figure 6: Caption

{10, 5, 3, 1} expert trajectories, and train our method on each of these datasets independently. The evaluation protocol is kept identical to the main experiments. We report the average return over 5 random seeds, with the standard deviation across seeds.

Table 8 summarizes the results. Overall, the performance degrades as the number of trajectories decreases, which is expected given the reduced coverage of the expert behavior. Nevertheless, our IRL algorithm remains reasonably robust in the low-data regime. With as few as 3 to 5 trajectories, it still achieves returns close to those obtained with 10 trajectories on most tasks. Even in the extreme case of a single trajectory, the learned policies retain non-trivial performance, indicating that the method can extract useful structure from highly limited expert demonstrations.

F ADDITIONAL RESULTS ON MATCHING RETURN DISTRIBUTION

Figure 6 presents a comparison of distributional fidelity between DistIRL and BIRL using three metrics: (a) relative errors of higher-order moments, (b) summarized moment errors up to kurtosis, and (c) estimated-versus-expert quantile alignment. In (a), DistIRL maintains consistently low relative error across all moment orders, demonstrating its ability to capture not only the mean and variance but also the skewness and tail behavior of the expert return distribution. In contrast, BIRL's error grows rapidly with increasing moment order, indicating limited capacity to recover higher-order structure. Panel (b) further highlights this gap, showing that DistIRL achieves uniformly low errors on the first four moments, whereas BIRL exhibits substantial discrepancies, particularly in variance and higher moments. Panel (c) compares estimated and expert quantiles, where the dashed diagonal represents perfect alignment. DistIRL closely follows this ideal mapping across the entire range, while BIRL deviates significantly, especially in the upper tail. Overall, this figure illustrates that DistIRL reconstructs the full return distribution with higher accuracy than BIRL, which is necessary for risk-sensitive learning and downstream decision-making under uncertainty.

G ADDITIONAL RESULTS ON DOPAMINE LEVEL

Figure 7: Reward recovery for state 1 action 7

Figure 8: Reward recovery for state 3 action 6

Figure 9: Reward recovery for state 4 action 8

H LLM USAGE AND REPRODUCIBILITY

We use LLM to aid or polish writings only. Research ideation, retrieval and discovery (e.g., finding related work) are conducted by ourselves.

Figure 10: Reward recovery for state 5 action 7

Figure 11: Reward recovery for state 5 action 9

Figure 12: Reward recovery for state 7 action 8

Figure 13: Reward recovery for state 9 action 7