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ABSTRACT

We propose a distributional framework for offline Inverse Reinforcement Learning
(IRL) that jointly models uncertainty over reward functions and full distributions
of returns. Unlike conventional IRL approaches that recover a deterministic re-
ward estimate or match only expected returns, our method captures richer structure
in expert behavior, particularly in learning the reward distribution, by minimizing
first-order stochastic dominance (FSD) violations and thus integrating distortion
risk measures (DRMs) into policy learning, enabling the recovery of both reward
distributions and distribution-aware policies. This formulation is well-suited for
behavior analysis and risk-aware imitation learning. Empirical results on synthetic
benchmarks, real-world neurobehavioral data, and MuJoCo control tasks demon-
strate that our method recovers expressive reward representations and achieves
state-of-the-art imitation performance.

1 INTRODUCTION
Inverse Reinforcement Learning (IRL) aims to infer an expert’s underlying reward function and
policy from observed trajectories collected under unknown dynamics. IRL has been successfully
applied in diverse domains, including robotics (Vasquez et al., 2014; Wu et al., 2024), animal be-
havior modeling (Ashwood et al., 2022; Ke et al., 2025), autonomous driving (Rosbach et al., 2019;
Wu et al., 2020), and fine-tuning of large language models (Zeng et al., 2025). A pioneering work
in this field, the Maximum Entropy IRL (MaxEntIRL) framework (Ziebart et al., 2008), formulates
reward learning as a likelihood optimization problem and interprets expert policies as Boltzmann
distributions over returns. Follow-up works have extended this framework to improve reward infer-
ence stability and generalization (Arora & Doshi, 2021; Garg et al., 2021; Zeng et al., 2022).

Despite these advances, most IRL methods assume that the expert’s reward function is determin-
istic, thereby recovering only a point estimate, i.e., r(s, a) ∈ R for every state s and action a.
This assumption, however, limits expressiveness in real-world settings where reward signals are
inherently stochastic. For instance, in robotic manipulation tasks involving deformable or fragile
objects (Yin et al., 2021), contact uncertainty introduces reward variability for identical state-action
pairs—variability that directly influences the learned policy’s robustness and safety. Similarly, in
neuroscience, dopaminergic neuron activity has been shown, as reward signals, to drive animal
behavior via RL policies (Markowitz et al., 2023b). Yet, dopamine signals exhibit significant trial-
to-trial variations, suggesting that behavior may arise from an underlying stochastic reward distri-
bution. These challenges are further amplified in offline IRL settings, where interaction with the
environment is unavailable and the algorithm must fully rely on fixed demonstrations.

These examples highlight that in many real-world scenarios, demonstrations may be generated under
stochastic reward functions, i.e., r(s, a) is a random variable. This motivates the need to go beyond
point estimates and instead recover the full distribution of rewards. Prior works such as Bayesian
IRL (BIRL) methods infer a posterior over reward parameters using Markov chain Monte Carlo
(MCMC) (Ramachandran & Amir, 2007), Maximum a posteriori (MAP) estimation (Choi & Kim,
2011), or variational inference (Chan & van der Schaar, 2021), but primarily capture uncertainty
over the parameters of a deterministic reward function. More importantly, BIRL still optimizes the
expected return, following the MaxEntIRL framework, failing to exploit the richer structure present
in the full return distribution induced by stochastic rewards. In other words, if reward learning in
IRL is based solely on maximizing expected return, then the resulting policy is influenced only by
the mean and remains insensitive to the variance or higher-order moments of the reward. As a result,
such an approach provides insufficient signal for accurately estimating the full reward distribution.
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However, it remains unclear how to effectively learn reward distributions directly from expert
demonstrations. Conventional MaxEntIRL fails to capture higher-order moments of the return, mo-
tivating the use of statistical distances between return distributions. Yet, such approaches introduce
significant challenges for policy learning, the dual problem to reward inference, because most statis-
tical distances couple the estimated return distribution with the (unknown) expert return distribution.
This coupling exacerbates compounding errors and prevents leveraging established distributional RL
techniques. Consequently, a principled framework is needed that enables reward distribution learn-
ing while simultaneously supporting return distribution estimation in the offline IRL setting.

To this end, we introduce Distributional Inverse Reinforcement Learning (DistIRL), a novel frame-
work that explicitly models both the distributional nature of reward and the return. This allows us to
capture stochasticity not only from transitions and policies but also from the reward function itself.
Specifically, for reward learning, instead of matching expected returns as in MaxEntIRL, we pro-
pose to match the full return distribution using a First-order Stochastic Dominance (FSD) criterion.
This allows us to capture not only the mean but also higher-order moments of the return distribution
and thus capturing the full landscape of reward distributions, leading to a richer and more faithful
estimate of the underlying reward structure. To the best of our knowledge, this is the first work that
learn the full distribution of the reward function in a principled manner.

It is important to note that while our framework incorporates risk-sensitive policy learning, risk
sensitivity primarily serves as a mechanism that enables robust reward distribution learning in the
offline IRL setting. The connection is explained in detail in Sec. 4.2. Our contributions in this paper
are summarized as follows:
(1) Reward Distribution Learning. We propose an intuitive framework for learning reward distri-
butions in the offline IRL setting. With FSD objective emphasizing the match of the entire distribu-
tion, we are able to learning reward distributions beyond the first moment.
(2) Distribution-aware Policy Learning. Our algorithm learns the return distribution and recov-
ers the distribution-aware policy, extending the modeling capability of IRL frameworks towards a
broader range of behavior analyses and facilitating imitation learning in risk-sensitive scenarios.
(3) Empirical Validation. We demonstrate that our method recovers meaningful reward distribu-
tions on synthetic and real-world datasets, including neurobehavioral data (first-time studied for
IRL). Our algorithm also achieves state-of-the-art performance on high-dimensional robotic control
tasks in offline IRL settings.

2 RELATED WORK
Inverse Reinforcement Learning Traditional offline IRL algorithms recover a reward function by
matching expert feature expectations or maximizing an entropy-regularized likelihood. Apprentice-
ship learning (Abbeel & Ng, 2004) and MaxEntIRL (Ziebart et al., 2008; 2010) infer a deterministic
reward whose induced policy reproduces expert behavior in expectation. Subsequent deep IRL vari-
ants incorporate neural network function approximators in the online setting (Ho & Ermon, 2016;
Jeon et al., 2018; Wulfmeier et al., 2015; Ni et al., 2021; Garg et al., 2021; Zeng et al., 2022), which
the policy further interacts with the environment but still match only the expected return. As a result,
these approaches cannot capture risk preferences or higher-order statistics of the reward distribution
present in many real-world tasks. In addition, online IRL methods require interactive access to a
simulator during training, which is unsuitable for offline settings where reproducing the environ-
ment is undesirable or infeasible, e.g. modeling mouse behavior in a maze. Finally, while recent
work has explored risk-aware policy learning within the IRL framework (Singh et al., 2018; Lacotte
et al., 2019; Cheng et al., 2023), these approaches still assume a deterministic reward model, failing
to capture the stochasticity of rewards in many real-world problems. We show a detailed comparison
of IRL methods across modeling assumptions in Appendix A.
Bayesian Imitation Learning Bayesian IRL (BIRL) methods infer a posterior distribution over
reward parameters to quantify uncertainty in reward estimation. Ramachandran and Amir (Ra-
machandran & Amir, 2007) introduces the first Bayesian IRL, using MCMC to sample from the
reward posterior under a Boltzmann-rationality likelihood. Follow-up works use the same frame-
work to handle larger state spaces and richer reward priors (Choi & Kim, 2011; Levine et al., 2011;
Chan & van der Schaar, 2021; Li et al., 2023). Although these methods capture parameter uncer-
tainty, they still rely on expected-return assumptions and do not exploit the full return distribution.
Moreover, BIRL with a reward distribution fails to model continuous action spaces as obtaining the
likelihood is computationally intractable for passing the gradient to the reward posterior. In this
work, we propose a scalable algorithm framework for learning the full reward distributions.
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Distributional Reinforcement Learning DistRL extends classical value-based methods by mod-
eling the full distribution of returns rather than only their expectation. Early work, such as Categor-
ical DQN (C51) (Bellemare et al., 2017) and Quantile Regression DQN (QR-DQN) (Dabney et al.,
2018b), demonstrates that learning a distributional critic improves stability and sample efficiency.
More recent advances include Implicit Quantile Networks (IQN) (Dabney et al., 2018a), Implicit
Q-Learning (Kostrikov et al., 2021), Multivariate Distribution RL (Wiltzer et al., 2024), and Diffu-
sion Process for RL (Hansen-Estruch et al., 2023; Li et al., 2024). Note that DistRL still inherently
maximizes the expected return. Risk-sensitive extensions (Lim & Malik, 2022; Schneider et al.,
2024) that optimize risk measures like CVaR, show that one can directly shape policies by tailoring
decisions to specific regions of the return distribution. While these methods are widely adopted in
RL, the IRL counterparts (Lee et al., 2022; Karimi & Ebadzadeh, 2025) with a distributional critic
are limited in scope. These methods use a distributional critic to model return distributions and ex-
tract expert policies, but still assume deterministic reward functions, and take on MaxEntIRL as the
blueprint, i.e., matching the mean of the return distribution.

3 PRELIMINARIES

We model an environment as a discounted Markov Decision Process (MDP) (S,A, P, r, γ), where S
is the state space, A the action space, P (s′|s, a) the transition kernel, r : S×A → R the reward func-
tion, and γ ∈ [0, 1) the discount factor. A policy π(a|s) induces a return Zπ =

∑∞
t=0 γ

t r(st, at).
The state-value and action-value functions under π are defined as

V π(s) = E
[
Zπ|st = s

]
, Qπ(s, a) = E

[
Zπ|st = s, at = a

]
.

They satisfy the Bellman equations
V π(s) = Ea∼π,s′∼P [r(s, a) + γV π(s′)] , Qπ(s, a) = Es′∼P

[
r(s, a) + γ Ea′∼π[Q

π(s′, a′)]
]
.

We also define the occupancy measure of π as dπ(s, a) = (1 − γ)
∑∞

t=0 γ
t Pr(st = s)π(a|s),

which satisfies
∑

s,a d
π(s, a) = 1 and characterizes the long-run state-action visitation probability.

3.1 DISTRIBUTIONAL RL AND RISK-SENSITIVE CONTROL
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Figure 1: Illustration of quantile func-
tions and first-order stochastic domi-
nance (FSD).

Rather than estimating only E[Zπ], distributional RL
models the entire return distribution that obeys the distri-
butional Bellman operator T π (Bellemare et al., 2017):

Zπ(s, a) =

∞∑
t=0

γt r(st, at),

T πZ(s, a)
D
= r(s, a) + γ Z

(
s′, π(s′)

)
,

where V :
D
= U denotes equality of probability laws, indi-

cating random variables {V,U} are distributed according
to the same law. A popular parameterization uses quan-
tile regression: one approximates Zπ(s, a) by N quan-
tiles θ(s, a) = [θ1(s, a), ..., θN (s, a)] : S × A → RN

at fractions (quantile levels) τi = i/N , for i = 1, . . . , N . In other words, the quantile distri-
bution of Zπ(s, a) is represented a uniform probability distribution supported on {θi(s, a)}Ni=1:
Zπ(s, a) = 1

N

∑N
i=0 δθi(s, a) where δθi denotes a Dirac at θi. An example of quantile functions is

illustrated in Fig. 1, with θ and τ indicated.

To update the critic, instead of formulating the TD error, one can minimize the quantile Huber loss
(Dabney et al., 2018b) with threshold κ > 0:

ρκτ (δ) =
∣∣τ − 1{δ < 0}

∣∣ Hκ(δ),Hκ(δ) =

{
1
2 δ

2, |δ| ≤ κ,

κ |δ| − 1
2 κ

2, |δ| > κ.
(1)

In distributional RL with N quantile fractions {τi}, the loss for the critic is defined as

min
θ

LQR(θ) = min
θ

1

N

N∑
i=1

N∑
j=1

ρτi (δij) , δij = r + γ θj(s
′, a′)− θi(s, a). (2)

Once the return distribution is learned, one can optimize risk measures M , e.g. Conditional Value
at Risk (CVaR) (Rockafellar et al., 2000), by maximizing CVaR

(
Zπ

)
rather than E[Zπ], yielding

risk-sensitive policies.
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3.2 MAXIMUM ENTROPY INVERSE REINFORCEMENT LEARNING

Given demonstrations {(st, at)}t≥1 collected by an unknown expert policy πE , MaxEntIRL (Ziebart
et al., 2008) aims to recover the unknown policy, and the corresponding reward function r which the
policy is optimized to. Specifically, we consider the following formulation (Ho & Ermon, 2016):

max
π

min
r

Edπ [r(s, a)]− EdπE [r(s, a)] +H(π) + ψ(r), (3)

where H := Edπ[− log π(a|s)] denotes the entropy, and ψ is a general convex regularizer. This
formulation reduces to MaxEntIRL if ψ = 0. If ψ = KL(q(r)||p0(r)), it can be seen as a BIRL
framework, since the optimal policy follows a Boltzmann distribution of the action-values1.

4 DISTRIBUTIONAL INVERSE REINFORCEMENT LEARNING FRAMEWORK

In our model, we treat the reward as a distribution rather than a deterministic function. During opti-
mization, the first two terms in Eq. 3, Edπ [r(s, a)]− EdπE [r(s, a)], enforce mean dominance—that
is, the learned reward should yield a higher expected return for the expert policy than for any arbi-
trary policy. At optimality, this difference becomes zero, indicating mean matching between expert
and agent returns. However, if the reward is inherently a distribution, mean matching alone fails
to capture the relationship between the expert’s return distribution and the agent’s in its entirety.
This leads to a loss of higher-order information in the reward. To accurately model the full reward
distribution, we must impose a distributional form of dominance during optimization, ensuring that
the entire return distribution is aligned at optimality, not just the mean.

Let’s consider a notion of order in term of the entire distributions.
Definition 4.1 (First-Order Stochastic Dominance (FSD) (Hadar & Russell, 1969)). LetX and Y be
real-valued integrable random variables with cumulative distribution functions FX and FY . We say
that X first-order stochastically dominates Y , written as X ⪰FSD Y , if FX(z) ≤ FY (z), ∀ z ∈ R.

The concept of FSD is illustrated in Fig. 1. If we aim for X ⪰FSD Y , then the shaded region
indicates a violation of this condition. FSD has an equivalent definition relating to utility functions,
which further implies mean dominance.
Proposition 4.2 (Theorem 1-2 (Hadar & Russell, 1969)). For real-valued X and Y , the following
are equivalent:

1. FX(z) ≤ FY (z) for all z ∈ R.

2. E[u(X) ] ≥ E[u(Y ) ] for every non-decreasing utility function u : R → R.

Corollary 4.3 (Mean Dominance). If X ⪰FSD Y , it follows that E[X] ≥ E[Y ], as the identity
utility u(x) = x is non-decreasing.

We model the reward as a conditional distribution, rt ∼ q(·|st, at), and define the random return
for a trajectory (s0, a0, . . . ) sampled from policy π as Zπ =

∑∞
t=0 γ

trt. We now introduce the
distributional counterpart to Eq. 3, the objective for distributional IRL, expressed as

max
π

min
r

L(π, r) := max
π

min
r

∫ ∞

−∞
[FZπ (z)− FZE (z)]+dz +H(π) + ψ(r), (4)

where ZE denotes the return distribution of the expert policy.

4.1 LEARNING REWARD DISTRIBUTION THROUGH STOCHASTIC DOMINANCE

From Eq. 4, the objective of the reward function is

min
r

LFSD(π, r) + ψ(r) = min
r

∫ ∞

−∞
[FZπ (z)− FZE (z)]+dz + ψ(r). (5)

This objective minimizes the violation of FSD, drawing inspiration from the Kolmogorov-Smirnov
(K-S) test (Massey Jr, 1951). To model the reward distribution in a principled manner, we
adopt a Bayesian learning framework. In particular, we define a likelihood function over the ex-
pert demonstrations D using the Energy-Based Model (EBM) formulation (LeCun et al., 2006):
p(D|r) ∝ exp (−LFSD(π, r)) .We also introduce a prior distribution p0(r), which reflects our initial

1The Kullback-Leibler divergence is convex in its first argument when the second argument is fixed.
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belief before observing any data. The goal is to infer the posterior distribution p(r|D) using Bayes’
rule. As direct inference under the EBM formulation is generally intractable, we adopt the varia-
tional inference framework (Blei et al., 2017) by introducing a variational distribution qϕ(r|s, a),
parameterized by ϕ, to approximate the posterior and optimize the evidence lower bound (ELBO):

ELBO = Eqϕ(r|s,a) [log p(D|r)]−KL (qϕ(r|s, a) ∥ p0(r)) . (6)

Substituting the energy-based likelihood into the ELBO yields:
min
ϕ

Lr(ϕ) := min
ϕ

Eqϕ(r|s,a) [LFSD(π, r)] + KL (qϕ(r|s, a) ∥ p0(r)) . (7)

Notice the natural relationship between KL and ψ. Formally, we learn the reward distribution by
solving Eq. 7. To compute the gradient of the first term, we apply the Inverse Transform Sampling
technique (Devroye, 2006). We use the empirical quantile to approximate the quantile of the return.
Specifically, using the change of variable formula, and the relation between CDF and quantile, we
have ∫ ∞

−∞
[FZπ (z)− FZE (z)]+dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv. (8)

We provide a short proof of the above relation in Appendix B.1. To approximate F−1
π , we draw N

samples {zn} by Monte Carlo sampling zn =
∑∞

0 γtrt, rt ∼ qϕ(·|st, at), and form the empirical
quantile using its order statistics F−1

Zπ ≈ (z(−N), . . . , z(1)). As a result, minimizing Lr(ϕ) general-
izes the usual IRL objective of matching expected returns by aligning higher-order moments beyond
matching the mean.

4.2 RISK-AWARE POLICY LEARNING

Once the inner minimization over r yields a fixed reward distribution, the policy, parameterized by
φ, is updated by maximizing the following objective:

max
φ

Lπ(φ) = max
φ

∫ 1

0

[F−1
Zπφ (v)− F−1

ZE (v)]+dv +H(πφ). (9)

Let’s define I(v) := 1F−1

Z
πφ (v)≥F−1

ZE (v). Fig. 1 shows that I(v) takes the value 1 in regions where
FSD is violated (shaded area), and 0 otherwise. We then rewrite the objective in Eq. 9 as∫ 1

0

(
F−1
Zπφ (v)− F−1

πE (v)
)
I(v)dv +H(πφ). (10)

Note that the indicator function I depends on the current policy, the expert policy, and the quantile
level v. Conceptually, I assigns weight only to regions of the return distribution where FSD is
violated. The policy now aims to increase these FSD violations—encouraging the agent to obtain
higher return samples in those regions. This leads to a maximization scheme that is inherently
risk-aware, as it requires reasoning over the full return distribution rather than just its expectation.

Unfortunately, directly optimizing Eq. 9 is intractable, as the indicator function I is not observable
during training. To address this, we take a broader perspective on risk-aware policy learning and pro-
pose replacing I(v) with a risk measure that retains the goal of encouraging risk-sensitive behavior
while yielding a tractable objective. Furthermore, we show that the resulting surrogate objective
provides a weaker form of optimality, but under certain conditions, it can theoretically achieve the
same optimum as Eq. 9. To present our new objective, we need a few essential concepts.
Definition 4.4 (Distortion function). A distortion function ξ is a non-decreasing function ξ :
[0, 1] → [0, 1] such that ξ(0) = 0, ξ(1) = 1.
Definition 4.5 (Distortion Risk Measure (DRM) (Dhaene et al., 2012)). For an integrable random
variable X , and a distortion function ξ, a Distortion Risk Measure Mξ is defined as

Mξ(X) =

∫ 1

0

F−1
X (v)dξ̃(v), (11)

where ξ̃ = 1− ξ(1− v) ≥ 0 is the dual distortion function.

Common examples of DRMs and distortion functions are listed in Table 1. These measures offer
various ways to quantify risk based on the return distribution. Intuitively, when ξ̃ is concave, it places
greater emphasis on lower returns, thereby encouraging risk-averse behavior. To induce risk-aware
policies using distortion ξ(v), we need to maximize the DRM defined in Eq. 11.

Building on the above definitions, we propose replacing I(v) with ξ̃(v) in Eq. 10, resulting in:

5
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Table 1: Examples of distortion risk measures.

Risk Measure ξ(v) Interpretation

CVaRα min (v/α, 1) Average of worst α-fraction of outcomes
Wang’s Transform Φ(Φ−1(v) + λ) λ > 0 implies risk-aversion, λ < 0 risk-seeking

max
φ

∫ 1

0

(
F−1
Zπ (v)− F−1

ZE (v)
)
dξ̃(v) +H(π) = max

φ

∫ 1

0

F−1
Zπ (v)dξ̃(v) +H(π). (12)

The equality is obtained as the expert policy does not depend on φ. We denote the final objective as

max
φ

Lπ(φ) := max
φ

Mξ(Z
πφ) +H(πφ) = max

φ

∫ 1

0

F−1
Zπφ (v)dξ̃(v) +H(πφ), (13)

where Mξ is a chosen DRM with a distortion function ξ.

Relation to Eq. 9. Additionally, we know that X ⪰FSD Y ⇒ Mξ(X) ≥ Mξ(Y ) (Sereda et al.,
2010). Then naturally one wonders what’s the sufficient condition for FSD? We observe that the
converse implication requires a stronger condition.
Proposition 4.6. Mξ(X) ≥Mξ(Y ) for every distortion function ξ implies X ⪰FSD Y .

The proof is straightforward by observing that Mξ(X) −Mξ(Y ) =
∫ 1

0
(F−1

X (v) − F−1
Y (v))dξ̃(v)

and the fact that ξ̃(v) ≥ 0. We present a short proof in Appendix B. This implies that if we solve
maxπφ

∫ 1

0

(
F−1
Zπφ (v)− F−1

E (v)
)
dξ̃(v) + H(πφ) for every distortion function, we obtain the so-

lution to Eq. 9. However, since optimizing over all utility conditions is intractable, our proposed
objective serves as an approximation using a specific DRM. Nonetheless, under the conditions of
the proposition, this surrogate objective can theoretically achieve the same optimality as Eq. 9.
4.3 PRACTICAL ALGORITHM

Algorithm 1: A DistIRL method with FSD objective
Input: Expert data D = {(sEt , aE

t )}, prior p0(r), risk measure ξ, step sizes ηθ, ηφ, ηϕ

Output: Reward distribution qϕ(r|s, a); policy πφ(a|s)
1 Initialize parameters of reward network ϕ, policy φ, and critic θ;
2 for k = 1 to K do
3 Sample a mini-batch {(sEt , aE

t )} from D;
4 foreach (sEt , a

E
t ) in mini-batch do

5 For each sEt , sample at ∼ πφ(·|sEt ), rt ∼ qϕ(·|sEt , at), r
E
t ∼ qϕ(·|sEt , aE

t );

6 Compute return samples Zπk , ZE ;
7 Critic update via quantile regression (Eq. 2): θk+1 ← θk − ηθ∇LQR(θk);
8 Policy update with distortion risk measure (Eq. 13): φk+1 ← φk − ηφ∇Lπ(φk);
9 Reward distribution update via FSD loss (Eq. 7): ϕk+1 ← ϕk − ηϕ∇Lr(ϕk).

To enable tractable and expressive modeling of reward uncertainty, we parameterize the reward
distribution qϕ(r|s, a), for example, using Azzalini’s skew-normal distribution (Azzalini & Valle,
1996): qϕ(r|s, a) = SN (µϕ(s, a), σ

2
ϕ(s, a);αϕ(s, a)), where the mean µϕ(s, a), standard deviation

σϕ(s, a) and the skew parameter αϕ(s, a)) are outputs of a neural network with parameters ϕ. This
choice allows for efficient sampling and computing regularization when using a standard normal
prior. During training, for each state-action pair, we sample rewards rt ∼ qϕ(·|st, at) to construct
return samples for both the expert and the current policy.

Note that the choice of prior depends heavily on the task domain and the type of variability we
expect in the reward signal. For example, skew-normal distributions can capture asymmetric reward
uncertainty in tasks with systematic biases (e.g., contact-rich manipulation), whereas heavy-tailed
priors may be more suitable when outliers or rare but significant events dominate the return structure.
In contrast, the broader statistical learning community often defaults to Gaussian priors, primarily
because of their analytical tractability, conjugacy with many likelihood models, and well-understood
concentration properties. That said, DistIRL does not rely on a fixed distributional assumption.
Any parameterized distribution pθ whose log-density or quantile function is differentiable in θ is
compatible with our framework, since the algorithm requires only gradient updates for learning.

To estimate the spectral risk measure Mξ(Z
π) for the policy, we follow an offline approach: we

use states st drawn from the expert demonstration dataset, but sample actions aπt ∼ πθ(·|st)

6
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from the current policy, and a reward rt ∼ qϕ(·|st, at). Then we compute the return Zπ

by taking the sum. For policy update, we first learn the critic by Off-policy Evaluation
(OPE) (Sutton et al., 1998) on (st, at, rt, st+1, a

π
t+1) where we use Quantile Regression with

the Quantile Huber loss LQR as in Eq. 2. We then update the risk-aware policy by solving
minπ KL

(
π(· | s)

∥∥ 1
Z exp {Mξ(Z

π(· | s))}
)
, which corresponds to the KKT solution to Eq. 9, as

originally introduced by Ziebart et al. (2008). We summarize the full procedure in Alg. 1. Notebly,
the algorithm scheme follow the Two Timescale Stochastic Approximation (TTSA) scheme used
in prior works (e.g. as in Zeng et al. (2022) and Wu et al. (2023)) to enable scalable and efficient
learning. Regrettably, a rigorous convergence analysis is beyond the scope of this paper. But due
to the contraction property of the distributional Bellman operator (Bellemare et al., 2017) with mild
regularity conditions of Eq. 7, bounding the iteration of policy optimization may be achievable.

5 EXPERIMENT
5.1 GRIDWORLD

True mean DistIRL mean BIRL mean

True var DistIRL var BIRL var

Figure 2: Inferring reward mean and
variance in the gridworld example with
10 demonstrations.

We begin with a 5 × 5 gridworld environment where
the agent is trained to navigate from the starting state
(2, 0) (left-center) to rewarding goal locations. Two high-
reward states are placed at (0, 4) (top-right) and (4, 4)
(bottom-right), with the top-right reward modeled as a
stochastic outcome drawn from N (1, 1). The first col-
umn of Fig. 2 illustrates the ground-truth reward mean
and variance.

This setup mimics an animal exploring an arena with two
reward ports. In such compact environments, animals often display risk-averse behavior, i.e., avoid-
ing locations where rewards have previously failed to appear (Mobbs et al., 2018; Daw et al., 2006).
To model this, we collect 10 trajectories from a risk-averse agent trained under stochastic rewards.
In 9 out of 10 episodes, the agent chooses the more reliable bottom-right goal. We then apply our
DistIRL method to recover the full reward distribution. As shown in Fig. 2, using a symmetric
Gaussian reward estimator combined with risk-averse policy learning, our approach not only iden-
tifies both high-reward states but also captures the variance at the top-right goal. This highlights the
model’s ability to infer higher-order moments of the reward from expert demonstrations.

As a baseline, we evaluate Bayesian IRL (BIRL) (Chan & van der Schaar, 2021; Mandyam et al.,
2023; Bajgar et al., 2024). BIRL is a widely used framework that assumes a reward distribution
but learns it by matching only the mean, without capturing the full distributional structure. We
select BIRL because it is the method most comparable to ours in its ability to recover a reward
distribution. BIRL reasonably recovers the mean reward but produces spurious high estimates in
the lower-left corner. Furthermore, it fails to capture reward variance, emphasizing the need to en-
force distance over the full distribution. Simply specifying a reward distribution, without integrating
distribution-aware learning, fails to capture the true variance of the rewards.
5.2 MOUSE SPONTANEOUS BEHAVIOR

We apply our framework to a neuroscience dataset in which mice freely explore an arena without
explicit rewards (Markowitz et al., 2023a). Behavior was recorded using a depth camera, and the
raw trajectories were converted into sequences of discrete syllables (e.g., grooming, sniffing). We
model these trajectories with an MDP, treating each syllable as a state and the next syllable as the
action, yielding ten states and ten actions. In total, we analyzed 159 such state-action sequences.
The dataset also includes a time-aligned one-dimensional trace of dopamine fluctuations from the
dorsolateral striatum. Prior work (Markowitz et al., 2023a) showed that using dopamine as a reward
enabled a simulated RL agent to reproduce observed transitions, suggesting IRL should recover
a reward pattern resembling dopamine. Since dopamine varies even within the same state-action
pair, the prior study used only its mean for simplicity. Here, we compare rewards learned under
deterministic vs. distributional assumptions to assess how well they capture both the mean and the
full distribution of dopamine signals.

We use both Azzalini’s skew-normal distribution (denoted “S-”) and the symmetric Gaussian as
reward models for both DistIRL and BIRL. Fig. 3A) and B) show two example state-action pairs,
illustrating the true dopamine fluctuation distribution alongside the estimated reward distributions
from four methods. For each case, we display both the probability density function and the CDF,
along with the corresponding means. Deterministic rewards (Det) are shown as pink dashed lines
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Figure 3: Learned reward distribution versus recorded dopamine signals and their empirical CDFs.
in the density plots. Among all methods, S-DistIRL most accurately recovers the shape of the
dopamine distribution, which is often right-skewed and multimodal. Its estimated mean also closely
matches both the true mean and the deterministic estimate.

S-D
istI

RL

DistI
RL

S-BIRL
BIRL

Det

C
or

re
la

tio
n

W
as

se
rs

te
in

-1

S-D
istI

RL

DistI
RL

S-BIRL
BIRL

A) B)

Figure 4: Left: Pearson correlation of the reward
mean and dopamine level. Right: W-1 loss be-
tween learned distribution and dopamine level.

We also quantify the similarity between esti-
mated rewards and actual dopamine distribu-
tions. In Fig. 4A), we report the correlation
between the mean of dopamine fluctuations
and the mean of the estimated reward across
all mice and trajectories. Deterministic re-
ward models yield moderate correlation, while
DistIRL improves upon this, with S-DistIRL
achieving the highest correlation overall. This
finding indicates that incorporating full reward
distributions, using suitable skewed distributional models, is essential for IRL to capture biologi-
cally meaningful reward signals. Fig. 4B) shows that, compared to BIRL, S-DistIRL also achieves
a lower Wasserstein-1 distance between the estimated reward distribution and the actual dopamine
distribution, indicating better alignment of the shape. Taken together, both qualitative examples and
quantitative metrics support that modeling skewed reward distributions significantly enhances the
ability to track dopamine fluctuations.

This is a scientifically interesting result showing that we can infer the reward structure directly from
behavior data. While it is known that dopamine neurons encode reward-related signals (Schultz
et al., 1997; Markowitz et al., 2023a), this is the first demonstration that not only is there a nontrivial
correlation between the inferred and measured mean rewards (with a correlation around 0.3), but
also that the full reward distribution recovered from behavior reasonably resembles the distribution
of dopamine fluctuations. This suggests that detailed features of neuromodulatory signals, such as
the variability in dopamine release, can be decoded from behavior alone, highlighting the potential
of inverse modeling to uncover internal motivational states and their neural substrates.
5.3 MUJOCO BENCHMARKS

Risk-sensitive D4RL. In earlier experiments, we applied DistIRL to discrete state-action MDPs and
compared it with BIRL. Here we extend the study to continuous MDPs to demonstrate DistIRL’s
scalability and generalizability. We evaluate our method on Risk-sensitive D4RL benchmarks, fol-
lowing the reward formulations introduced in recent robustness studies (Urpí et al., 2021). Specifi-
cally, the reward functions incorporate stochastic penalties triggered by safety-related conditions:
(1) Half-Cheetah: Rt(s, a) = r̄t(s, a)− 70Iν>ν̄ · B0.1, where r̄t(s, a) is the environment reward, ν
is the forward velocity, and ν̄ is a velocity threshold (ν̄ = 4 for the medium variant and ν̄ = 10 for
the easy variant). This penalty models rare but catastrophic robot failures at high speed.
(2) Walker2D/Hopper: Rt(s, a) = r̄t(s, a) − pI|θ|>θ̄ · B0.1, where r̄t(s, a) is the environment
reward, θ is the pitch angle, θ̄ is a task-dependent threshold (0.5 for Walker2D-M/E and 0.1 for
Hopper-M/E), and p is the penalty magnitude (30 for Walker2D and 50 for Hopper).

We train expert agents on these stochastic reward formulations using Risk-averse Distributional
SAC, a variant of DSAC (Duan et al., 2021) with CVaR objective, and collect 10 demonstration tra-
jectories. We then evaluate DistIRL against several state-of-the-art baselines. Results are averaged
over 5 random seeds. We use a standard normal as the prior due to its general applicability, in the
setting of not knowing the underlying true reward distribution.

Table 2 shows that our method consistently outperforms other offline IRL baselines under stochastic
reward settings. Notice popular online methods such as GAIL (Ho & Ermon, 2016) are not applica-
ble in this setting. Offline ML-IRL (Zeng et al., 2023) is a model-based MaxEntIRL method that
relies on a separately trained transition model using additional non-expert data. Its poor performance
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here is expected: the transition model was pretrained under risk-neutral rewards and does not align
with the new expert data generated under risk-sensitive objectives, leading to severe distribution
mismatch. ValueDICE (Kostrikov et al., 2019), a model-free offline MaxEntIRL baseline, also un-
derperforms since it optimizes with respect to expected risk-neutral returns, while our experts follow
risk-averse behavior. Behavior Cloning (BC) achieves moderately strong results, as it simply mim-
ics the demonstrated actions without explicitly optimizing for either risk-neutral or risk-sensitive
objectives. However, its performance is limited as the model overfit the limited demonstration data.

Table 2: Performance averaged over 5 seeds on Risk-sensitive D4RL.
Environment IPMD (ours) Offline ML-IRL ValueDICE BC Expert

HalfCheetah 3469 ± 59 826 ± 231 1259 ± 78 2828 ± 281 3540 ± 44
Hopper 886 ± 1 192 ± 56 260 ± 10 346 ± 1 892 ± 3

Walker2d 1526 ± 148 240 ± 50 798 ± 311 1321 ± 26 1478 ± 200

2500 3000 3500 4000
Return

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Expert
DistIRL
BIRL

Figure 5: Return distributions
comparison in HalfCheetah.

To further validate the fidelity of our inferred return distributions
from DistIRL and compare with the BIRL framework that only
matches the mean, we collect 200 trajectories and sample its learned
return distribution for each learned policy, plot against the expert’s
return distribution in Fig. 5. This shows that DistIRL’s reward and
policy model better align with the expert. We also report a Pearson
correlation coefficient of 0.92 between the mean estimated by Dis-
tIRL and the mean of the true return. This indicates strong agree-
ment and demonstrates that our inferred reward is an accurate proxy
for the true reward model.

Risk-neutral D4RL. We also test our algorithm in conventional deterministic reward settings using
D4RL’s medium-expert trajectories (Fu et al., 2020). Table 3 shows our method achieves com-
petitive or superior performance even without tailoring to deterministic assumptions, underscoring
the generality of DistIRL. We want to emphasize that Offline ML-IRL requires additional data2.

Ablation studies. We evaluate the contribution of different design choices by ablating our model
under the HalfCheetah setting with right-skewed normal (SNα, α > 0) stochastic rewards and
risk-averse expert policy, indicating the expert prefers conservative actions that yield more consis-
tent rewards. Variants include: Dis/Det: Distributional or Deterministic rewards; QR/TD: Quantile
Regression or TD-based critic; FSD/Mean: FSD loss or Mean matching. As shown in Table 4,
which scales the performance between worst and best, using distributional rewards with FSD loss
significantly outperforms mean-matching alternatives. Additionally, deterministic TD-learning with
mean-matching (Det-TD-Mean) underperforms in learning risk-averse policies due to a lack of
distributional supervision. This confirms the effectiveness of FSD-based reward learning and risk-
sensitive policy optimization. Note that the BIRL framework aligns with our Dis-TD-Mean config-
uration; RIZE Karimi & Ebadzadeh (2025) aligns with Det-Qt-Mean, which performs the worst;
Det-TD-Mean aligns with ValueDice but with an explicit reward estimation. Thus, in this ablation
study, we treat them as a specific setting within our framework when benchmarking against other
IRL approaches.

Table 3: Performance on deterministic reward settings (D4RL).
Environment DistIRL (Ours) Offline ML-IRL ValueDICE BC Expert

HalfCheetah 7779 ± 228 11231 ± 585 4935 ± 2836 623 ± 56 12175 ± 91
Hopper 3411 ± 42 3347 ± 238 3073 ± 539 3236 ± 46 3512 ± 22

Walker2d 4570 ± 305 4201 ± 638 3191 ± 1888 2822 ± 979 5384 ± 52

Table 4: Ablation study on model setting. Performance scaled for clarity.
DistIRL (Ours) Dis-Qt-Mean Det-Qt-Mean Dis-TD-FSD Dis-TD-Mean Det-TD-Mean

1.0 ± 0.02 0.22 ± 0.02 0.00 ± 0.01 0.67 ± 0.31 0.33 ± 0.01 0.22 ± 0.00

6 CONCLUSION

We introduce a distributional framework for inverse reinforcement learning that jointly models re-
ward uncertainty and return distributions. Our method enables risk-aware policy learning and accu-
rate inference of high-order structure in demonstrations. We validate the framework on stochastic
control tasks, deterministic settings, and real neural datasets, demonstrating state-of-the-art perfor-
mance and strong generalization across domains.

2For HalfCheetah, with the same amount of data as Offline ML-IRL, DistIRL can reach 11239± 539.
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ETHICS STATEMENT

IRL enables powerful tools for understanding behavior, with positive applications in neuroscience,
animal modeling, and AI alignment. However, it also raises ethical concerns. IRL could be misused
in military settings to model or mimic adversarial behavior, or in surveillance contexts to infer
personal goals without consent, posing risks to privacy and autonomy. These concerns highlight the
need for careful oversight and responsible deployment.

REPRODUCIBILITY STATEMENT

We list parameter choice in Table. 6. The implementation will be made publicly available following
the paper decision.
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A RELATED WORK COMPARISON

Table 5: Comparison of IRL methods under various settings

Reference Model
reward dist.?

Infer
risk aware

policy?

Recover
reward dist.?

Learn
return dist.?

(Wulfmeier et al., 2015; Ziebart et al., 2008)
(Garg et al., 2021; Ni et al., 2021)
(Zeng et al., 2022; 2023; Wei et al., 2023)

✗ ✗ ✗ ✗

(Ramachandran & Amir, 2007; Choi & Kim, 2011)
(Chan & van der Schaar, 2021; Lee et al., 2022) ✓ ✗ ✗ ✗

(Karimi & Ebadzadeh, 2025) ✗ ✗ ✗ ✓

(Singh et al., 2018; Lacotte et al., 2019)
(Cheng et al., 2023) ✗ ✓ ✗ ✗

This work ✓ ✓ ✓ ✓

In Table A, we compare DistIRL with existing IRL methods along four key dimensions. The first
column, Model reward distribution, asks whether a method explicitly represents the reward as a
random variable rather than as a fixed deterministic function. For example, Bayesian IRL methods
place a prior over reward parameters, thereby modeling uncertainty, but they do not recover the
actual shape of the underlying distribution. This is distinct from Recover reward distribution, which
requires learning the full distribution of rewards themselves, including higher-order statistics such
as variance and skewness, rather than just a posterior over parameters.

The third column, Infer risk-aware policy, evaluates whether a method incorporates risk measures
into policy inference. Methods in this category optimize beyond expected return, often capturing
aversion or preference to variability in outcomes. The final column, Learn return distribution, in-
dicates whether a method leverages distributional reinforcement learning (DistRL) techniques to
estimate the full distribution of returns, rather than only their expectation. Unlike reward distribu-
tions, which describe stochasticity at the immediate reward level, return distributions capture the
cumulative effect of randomness from rewards, transitions, and policies over trajectories.

As shown in the table, most prior IRL methods either assume deterministic rewards or restrict them-
selves to expectation-based inference. In contrast, DistIRL is the first framework that simultaneously
models stochastic rewards, learns full reward distributions, integrates distributional return estima-
tion, and supports risk-aware policy learning, thereby unifying these capabilities in a principled
way.

B PROOFS

We first wish to show that∫ ∞

−∞
[FZπ (z)− FZE (z)]+dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv. (14)

Proposition B.1. Let Zπ and ZE be two real-valued integrable random variables with cumulative
distribution functions FZπ and FZE , and corresponding quantile functions F−1

Zπ and F−1
ZE . Then we

have ∫ ∞

−∞
[FZπ (z)− FZE (z)]+ dz =

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv,

where [x]+ := max(x, 0).
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Proof. Note that∫ ∞

−∞
[FZπ (z)− FZE (z)]+ dz =

∫ ∞

−∞

∫ 1

0

1FZπ (z)≥v,v≥FZE (z)dvdz

=

∫ 1

0

∫ ∞

−∞
1FZπ (z)≥v,v≥FZE (z)dvdz

=

∫ 1

0

∫ ∞

−∞
1F−1

Zπ (v)≥z,z≥F−1

ZE (v)dvdz

=

∫ 1

0

[
F−1
Zπ (v)− F−1

ZE (v)
]
+
dv

The interchange of integrals are permitted by the Theorem of Fubini-Tonelli as everything is positive
(Heil, 2019). Note that the definition of the quantile function (Gut & Gut, 2006) is:

F−1(v) := inf
z∈R

{F (z) ≥ v}.

Proposition 4.6. Mξ(X) ≥Mξ(Y ) for every distortion function ξ implies X ⪰FSD Y .

Proof. Define the difference in quantile functions:

h(v) := F−1
X (v)− F−1

Y (v).

Suppose for contradiction that the set

A := {v ∈ [0, 1] | h(v) < 0}

has positive Borel measure, i.e., µ(A) > 0. Let’s define a distortion function ξ̃A whose derivative
is:

ξ̃′A(v) =

{
1

µ(A) if v ∈ A,

0 otherwise.

Then ξ̃A is a valid distortion function and satisfies
∫ 1

0
dξ̃A(v) = 1. Note that

MξA(X)−MξA(Y ) =

∫ 1

0

h(v) dξ̃A(v) =

∫
A

h(v) · 1

µ(A)
dv < 0.

This contradicts the assumption that Mξ̃(X) ≥ Mξ̃(Y ) for all distortion functions ξ̃. Therefore,
the set where F−1

X (v) < F−1
Y (v) must have measure zero. Thus we have

F−1
X (v) ≥ F−1

Y (v) for v ∈ [0, 1] almost everywhere (a.e.)

which implies
FX(z) ≤ FY (z) for all z ∈ R,

since

FX(z) = PX (X < z) = µ
(
{v ∈ [0, 1]|F−1

X (v) ≤ z}
)

≤ µ
(
{v ∈ [0, 1] ∩Ac|F−1

X (v) ≤ z}
)
+ µ

(
{v ∈ [0, 1] ∩A|F−1

X (v) ≤ z}
)

= µ
(
{v ∈ [0, 1] ∩Ac|F−1

X (v) ≤ z}
)

≤ µ
(
{v ∈ [0, 1] ∩Ac|F−1

Y (v) ≤ z}
)

≤ µ
(
{v ∈ [0, 1]|F−1

Y (v) ≤ z}
)

= FY (z)

The second inequality is due to the fact that for any z,

{v ∈ [0, 1] ∩Ac|F−1
X (v) ≤ z} ⊆ {v ∈ [0, 1] ∩Ac|F−1

Y (v) ≤ z}
Hence,

X ⪰FSD Y.
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C MODEL ARCHITECTURE AND HYPER-PARAMETERS

Throughout this paper, we use the following model architecture for all the experiments.

Table 6: Model Parameters for DistIRL

Parameter Value
Training Parameters
Learning Rate 3× 10−4

Batch Size 512
Total Iterations 5,000
Entropy Coefficient 0.1
Risk Measure CVaR
Risk Parameter 0.05
Reward Regularization 0.01
Network Architecture
Policy Network [256, 128]
Distribution Type Skew Gaussian
Reward Range [-5.0, 5.0]
Number of Quantiles 200
Reward Hidden Features 128

For gridworld, we specify the reward range as [0, 2]. For MuJoCo tasks, [−10, 10]. This is achieved
by applying a (scaled) tanh function.

D ADDITIONAL RESULTS ON DOPAMINE LEVEL
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Figure 6: Reward recovery for state 1 action 7
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Figure 7: Reward recovery for state 3 action 6
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Figure 8: Reward recovery for state 4 action 8
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Figure 9: Reward recovery for state 5 action 7

E LLM USAGE AND REPRODUCIBILITY

We use LLM to aid or polish writings only. Research ideation, retrieval and discovery (e.g., finding
related work) are conducted by ourselves.
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Figure 10: Reward recovery for state 5 action 9
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Figure 11: Reward recovery for state 7 action 8
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Figure 12: Reward recovery for state 9 action 7
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