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Abstract

Pretraining multimodal models on Electronic001
Health Records (EHRs) provides a means to002
learn rich representations that might transfer003
to downstream tasks with minimal supervision.004
Recent multimodal models induce soft local005
alignments between modalities (image regions006
and sentences). This is of particular interest in007
the medical domain, where alignments could008
serve to highlight regions in an image relevant009
to specific phenomena described in free-text.010
Past work has presented example “heatmaps”011
as qualitative evidence that cross-modal soft012
alignments can be interpreted in this manner.013
However, there has been little quantitative eval-014
uation of such alignments. Here we compare015
alignments from a state-of-the-art multimodal016
(image and text) model for EHR with human017
annotations that associate image regions with018
sentences. Our main finding is that the text has019
surprisingly little influence on the attention;020
alignments do not consistently reflect basic021
anatomical information. Moreover, synthetic022
modifications, such as substituting “left” for023
“right,” do not substantially influence attention.024
We find that simple techniques such as masking025
out entity names during training show promise026
in terms of their ability to improve alignments027
without additional supervision.028

1 Introduction029

There has been a flurry of recent work on model ar-030

chitectures and self-supervised training objectives031

for multimodal representation learning, both gener-032

ally (Li et al., 2019; Tan and Bansal, 2019; Huang033

et al., 2020; Su et al., 2020; Chen et al., 2020) and034

for medical data specifically (Wang et al., 2018;035

Chauhan et al., 2020; Li et al., 2020). These meth-036

ods have been shown to yield representations that037

permit efficient learning on various multimodal038

downstream tasks (e.g., classification, captioning).039

Given the inherently multimodal nature of much040

medical data — e.g., in radiology images and text041

are naturally paired — there has been particular042

Figure 1: Basic failure modes of text-image alignment. We
show smoothed attention saliency over images given texts.
Red boxes are expert-provided target regions for the accompa-
nying texts. (Note: imaging data is “mirrored”, so right and
left are effectively flipped.)

interest in designing such models for data from 043

Electronic Health Records (EHRs). However, key 044

limitations preclude practical adoption of multi- 045

modal models in this domain. One important con- 046

sideration is interpretability. Naive architectures 047

that map image-text pairs to shared representations 048

are opaque; it is not clear a priori what attributes 049

they encode, and how they model interactions be- 050

tween the modalities. Consequently, doctors have 051

no means of interrogating models, which may be 052

relying on artifacts rather than meaningful clinical 053

signal (Zech et al., 2018). 054

Recent work has proposed architectures that soft- 055

align text snippets to image regions. This may af- 056

ford one variety of interpretability by providing a 057

means for practitioners to inspect what the model 058

has “learned.” Past work has provided qualita- 059

tive evidence — illustrative multimodal “saliency” 060

maps — suggesting that models can provide plausi- 061

ble looking outputs. But such alignments also run 062

the risk of providing a false sense that the model 063

“understands” more than it actually does. 064

Figure 1 illustrates a few obvious ways that a 065

multimodal model may fail. It may simply focus 066

on the wrong part of the image (e.g., the left rather 067

than the right lung), or it might produce a high- 068

entropy attention distribution, failing to meaning- 069

fully localize. Finally, the model may be myopic in 070

its attention, missing the larger region of interest. 071
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Image Report Sentence 1 Swap Left Right Gibberish Report Sentence 2

Left linear atelectasis 

is seen.

Right linear 

atelectasis is seen.

Donkeys like to fly 

kites.

A nasogastric tube 

follows the expected 

course, although the 

tip is below the inferior 

level of the image.

Figure 2: Alignment failures often occur when the model (overly) focuses on the image, largely ignoring the text.

Perhaps even more troubling, image attention072

may appear reasonable without actually reflecting073

both modalities. For example, see Figure 2. Here074

the model ostensibly succeeds at identifying the im-075

age region relevant to the given text (left). One may076

be tempted to conclude the model has “understood”077

the text and indicated the corresponding region.078

But this may be misleading: We can see that the079

same model yields a similar attention pattern over080

the image when provided text with radically differ-081

ent semantics (e.g., when swapping “right” with082

“left” or providing a nonsensical sentence), or when083

provided a different sentence altogether.084

Recent work has sought to improve the ability085

of these models to identify fine-grained alignments086

via supervised attention (Kervadec et al., 2020;087

Sood et al., 2021), but have focused on downstream088

task performance. By contrast, our focus is on eval-089

uating and improving localization itself, ideally090

without additional supervision.091

The contributions of this work are as follows. (i)092

We critically appraise the interpretability of soft-093

alignments induced between images and texts by094

existing neural multimodal models for radiology.095

To our knowledge, this is the first such evaluation.096

We find that models that conditionally highlight097

regions relevant to a given text are often in fact098

more or less invariant to the text modality (Figure099

2). (ii) We propose methods that improve the ability100

of multimodal models for EHR to intuitively align101

image regions with texts.102

2 Preliminaries103

We aim to evaluate the localization abilities of an104

existing multimodal model for EHR, namely the105

recently proposed GLoRIA model (Huang et al.,106

2021), which is representative of state-of-the-art,107

transformer-based multimodal architectures and ac-108

companying pre-training methods. We next review109

details of this model, and then discuss the datasets110

we use to evaluate the alignments it induces.111

2.1 GLoRIA 112

GLoRIA uses Clinical BERT (Alsentzer et al., 113

2019) as its text encoder and ResNet (He et al., 114

2016) as its image encoder. Unlike prior work, 115

GLoRIA does not assume an image can be parti- 116

tioned into different objects. This is at least in part 117

because pre-trained object detectors are not read- 118

ily available for X-rays. GLoRIA instead passes 119

a CNN over the image to yield intermediate repre- 120

sentations of local regions. This is useful because 121

— as noted elsewhere (Huang et al., 2021) — a 122

finding within an X-ray described in a report will 123

usually be evident in only a small region of the cor- 124

responding image. GLoRIA exploits this intuition 125

via a local contrastive loss term in the objective. 126

We assume a dataset of instances comprising an 127

image xv and a sentence from the corresponding 128

report xt, and the model consumes this to produce 129

a set of local embeddings and a global embed- 130

ding for each modality: vl ∈ RM×D, vg ∈ RD, 131

tl ∈ RN×D, and tg ∈ RD. To construct the lo- 132

cal contrastive loss, an attention mechanism (Bah- 133

danau et al., 2014) is applied to local image embed- 134

dings, queried by the local text embeddings. This 135

induces a soft alignment between the local vectors 136

of each mode: 137

aij =
exp (tTlivlj/τ)∑M
k=1 exp (t

T
livlk/τ)

(1) 138

where ti is the ith text embedding, vj the jth image 139

embedding, and τ is a temperature hyperparameter. 140

This soft alignment suggests a natural means 141

to facilitate interpretability: One can create mul- 142

timodal saliency maps indicating the magnitude 143

of the attention assigned jointly to image regions 144

and text snippets. And indeed, in (Huang et al., 145

2021), the authors show an example where the mul- 146

timodal attention pattern jointly highlights words 147

describing a specific abnormality while plausibly 148

illuminating the region of the image in which this 149
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Context Condition (c) Template

Pos
“Normal” or “Abnormal” The {loclist} is/are {c}.
Otherwise There is {c} in the {loclist}.

Neg - There is no {c}.

Table 1: Rules for creating synthetic sentences. If there are
multiple conditions in the sentence, we concatenate synthetic
sentences for each of them. The “loclist” is created by turning
the list of anatomical locations associated with the condi-
tion/context into a natural language list (e.g., “x,” “x and y,” or
“x, y, and z”). We combine left- and right-side locations into
one item (“left lung” and “right lung” is mapped to “lungs”).

abnormality appears. One may be tempted to con-150

clude that the model has somehow “understood”151

the text semantically, and successfully linked this152

to the image modality. However, our experiments153

below caution against reading too much into these154

patterns ostensibly linking text to image regions.155

2.2 Data and Metrics156

Data Our novel evaluation of localization abili-157

ties is made possible by the MIMIC-CXR (John-158

son et al., 2019a,b) and Chest ImaGenome (Wu159

et al., 2021) datasets. MIMIC-CXR comprises160

chest X-rays and corresponding radiology reports.161

ImaGenome includes 1000 manually annotated im-162

age/report pairs,1 which include: (1) Bounding163

boxes for anatomical locations; (2) Links between164

referring sentences and image bounding boxes;165

and (3) A set of conditions and positive/negative166

context annotations2 associated with each sen-167

tence/bounding box pair.168

To facilitate controlled experiments involving169

swapping out conditions — Section 3.1, Synthetic170

w/ Swapped Conditions — we also adopt a strat-171

egy for creating synthetic sentences using the la-172

bels from ImaGenome (Wu et al., 2021), and test173

our models on these sentences as well. Specifi-174

cally, we create synthetic sentences using a set of175

rules translating the condition and positive/negative176

context annotations and the anatomical names for177

the corresponding bounding boxes into natural lan-178

guage, which we describe in Table 1.3179

Metrics We quantitatively evaluate the degree to180

which attention patterns accurately highlight the181

region to which a text snippet refers by compar-182

ing the attention averaged over an input sentence183

xj =
1
N

∑N
i=1 aij with reference annotated bound-184

ing boxes associated with the sentence.185

1These annotations were first derived automatically, and
then cleaned manually.

2Here, context refers to whether the condition is negated
in the text (negative) or not (positive).

3We present examples in the Appendix (Table 11).

Synth AUROC Avg. P IOU@5/10/30%
✗ 69.07 51.68 3.79/6.69/20.10
✔ 69.35 52.30 4.92/9.12/23.82

Table 2: Localization performance of GLoRIA.

We consider several metrics to measure the align- 186

ment between soft attention weights and bound- 187

ing boxes. First, we associate scores with each 188

pixel based on the attention weight assigned to 189

the image region to which it belongs. Specifically, 190

we use upsampling with bilinear interpolation to 191

distribute the attention at the pixel level, creating 192

scores s ∈ RP where P is the number of image 193

pixels. We use the bounding boxes to create a seg- 194

mentation label ℓ ∈ RP where ℓi = 1 if pixel i is 195

in any of the bounding boxes, and ℓi = 0 otherwise. 196

Given this pixel-level score s and the pixel-level 197

segmentation label ℓi, we can compute the AU- 198

ROC, Average Precision, and Intersection Over 199

Union (IOU) at varying pixel percentile thresholds 200

for the ranking ordered by s. 201

One thing we want to measure is the extent to 202

which a model may be ignoring the text and rely- 203

ing almost entirely on the image to determine an 204

attention pattern. To this end we introduce Ran- 205

dom Attention KL Divergence, the symmetric 206

Kullback–Leibler (KL) divergence for an instance 207

between (a) the attention distribution induced given 208

the original text, and (b) the attention over the same 209

image but paired with random text. 210

We also adopt a simple, interpretable metric to 211

capture the accuracy of similarity scores assigned 212

to pairs of images and texts. Specifically, we use 213

a simpler version of the text retrieval task from 214

(Huang et al., 2021): We report the percentage of 215

time the similarity between an image and a sen- 216

tence from the corresponding report is greater than 217

the similarity between the image and a random sen- 218

tence taken from a different report in the dataset. 219

This allows us to interpret 50% as the mean value 220

of a totally random similarity measure. 221

3 Are Alignment Weights Accurate? 222

We first use the metrics defined above to perform an 223

initial evaluation of the pretrained, publicly avail- 224

able weights for GLoRIA (Huang et al., 2021). Ta- 225

ble 2 reports the metrics used to evaluate localiza- 226

tion on the gold split of the ImaGenome dataset. 227

The AUROC scores are well over 50%, indi- 228

cating reasonable localization performance. The 229

IOU scores are relatively small, but this can be ex- 230
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Small right pleural 

effusion is stable.

Swap Left Right: Small left pleural effusion is stable.

Random Sentence: The lungs are hyperinflated but clear of 

consolidation.

Synthetic: The right costophrenic angle is abnormal. There is lung 

opacity in the right costophrenic angle. There is pleural effusion in 

the right lung and right costophrenic angle.

Synthetic w/ Swapped Conditions: There is pulmonary edema/

hazy opacity in the right costophrenic angle. There is costophrenic 

angle blunting in the right lung and right costophrenic angle.

Text PerburbationsOriginal Instance Shuffle BBoxes Random BBoxes

Figure 3: We present examples of each perturbations for a given instance.

pected because target bounding boxes tend to be231

much bigger than the actual regions of interest and232

serve more to detect errors when highlighted re-233

gions are far away from where they should be. This234

is validated by the relatively high average precision235

scores. (Arguably precision is more important than236

recall here because one would hope highlighted237

pixels are indeed relevant to the text, but would238

not necessarily expect this to be exhaustive.) How-239

ever, while seemingly promising, our results below240

suggest that the attention patterns here may be less241

multimodal than one might expect.242

Next we further probe multimodal attention dis-243

tributions, with a specific focus on evaluating the244

degree to which these patterns actually reflect the245

associated text. To this end we first propose per-246

turbing instances in ways that ought to shift the247

attention pattern, e.g., by replacing “right” with248

“left” in the text (Section 3.1). We then identify249

data subsets in Section 3.2 comprising “complex”250

instances, where we expect the image and text to251

be closely correlated at a local level.252

3.1 Perturbations253

Figure 3 shows examples of the perturbations we254

perform, which we describe in detail below.255

Swap Left Right We replace every occurrence of256

the word “right” in the text with “left” and vice257

versa (ignoring capitalization). This is intended to258

probe the degree to which the attention mechanism259

relies on these two basic location cues. Of course,260

many sentences have no mention of these words261

because conditions (or lack there of) occur on both262

sides of the chest X-ray. Therefore, it is particularly263

important to look at the metrics on the “One Lung”264

subset (see Section 3.2) in this setting.265

Shuffle BBoxes Here the sets of bounding boxes266

for different sentences in the same report are shuf-267

fled at random. One would expect that performance268

would decrease significantly, because the resultant269

bounding boxes associated with given a sentence270

are (probably) wrong. However, sentences within271

the same report might be talking about similar re- 272

gions. Therefore, for this perturbation it is im- 273

portant to look at the instances where the overlap 274

between (a) the region of interest for the sentence 275

with (b) the regions associated with other sentences 276

in the report is low. We look at results for such 277

cases explicitly using the Most Diverse Report 278

BBoxes (MDRB) subset (Section 3.2). 279

Random Sentences We replace sentences in an in- 280

stance with other sentences, randomly drawn from 281

the rest of the dataset. Here too we expect perfor- 282

mance to decrease significantly because the sam- 283

pled text will refer to an entirely different image. 284

Random BBoxes We replace the set of bounding 285

boxes for a sentence with a different set of bound- 286

ing boxes randomly selected from the rest of the 287

dataset. This differs from the Random Sentences 288

perturbation in that the bounding boxes here are not 289

only unrelated to the sentences, but also unrelated 290

to the image. Therefore, we expect that this will 291

have the poorest performance of all the settings, 292

especially under the hypothesis that the attention is 293

mostly a function of the image. 294

Synthetic w/ Swapped Conditions This is per- 295

formed on the synthetic sentences instead of the 296

original sentences. This is because swapping out 297

conditions can only be done in the case where we 298

generate the sentence programmatically. To swap 299

conditions in the sentence, we simply follow the 300

same rules for generating the synthetic sentence 301

with a different condition randomly sampled from 302

a set of other possible conditions. We define these 303

other possible conditions as any condition (exclud- 304

ing the current) that occurs in the same anatomical 305

locations anywhere else in the gold dataset.4 This 306

perturbation should measure the impact of condi- 307

tions on the model’s attention mechanism. 308

Under these perturbations, we would expect a 309

well-behaved model to shift its attention distribu- 310

4If there are no other conditions, we leave the condition as
is and the synthetic sentence is not perturbed.
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tion over the image accordingly, and as a result we311

would expect the localization scores (overlap with312

the original reference bounding boxes) to decrease.313

The Random BBoxes perturbation in particular314

targets the degree to which the attention relies315

specifically on the image modality, because here316

the “target” bounding boxes have been replaced317

with bounding boxes associated with random other318

images. By contrast, all other perturbations should319

measure the degree to which the model is sensitive320

to changes to the text (even Shuffle BBoxes, which321

is equivalent to shuffling the sentences in a report).322

If the assumption is that attention saliency maps323

reflect alignments with the input texts — as one324

might expect — then under these perturbations one325

should expect large negative differences in perfor-326

mance (∆s) relative to observed performance using327

the unperturbed data. For all but Random BBoxes,328

if the performance does not much change (∆s ≈329

0), this suggests the attention maps are more or less330

invariant to the text modality.331

3.2 Subsets332

We also consider specific data subsets to perform333

more granular evaluations, enumerated below.334

Abnormal Image/sentence pairs where there is an335

“abnormal” label associated with the sentence. This336

occurs if any conditions are mentioned in a posi-337

tive context, i.e., where the radiologist believes the338

patient has said condition. This targets “interesting”339

examples where the attention should ideally high-340

light the region relevant to the condition described.341

One Lung Image/sentence pairs where the bound-342

ing boxes corresponding to the sentence contain a343

bounding box of either the left or right lung, but344

not both. This subset allows us to evaluate how the345

model performs when the attention should only be346

on one side of the image.347

Most Diverse Report BBoxes Instances where the348

overlap in the sets of bounding boxes for sentences349

within the same report is minimal. Specifically, we350

calculate the mean intersection over union (IOU;351

Section 2.2) of the segmentation labels ℓ1, ℓ2 for352

pairs of sentences in the same report. We then take353

the 10% of instances within reports with the small-354

est mean IOU. This subset is intended to include355

examples within reports where multiple distinct356

regions of interest discussed in different sentences.357

These first two subsets are important because in358

many examples there is nothing abnormal, and the359

Subset Synth AUROC Avg. P IOU@5/10/30%

Abnormal
✗ 69.51 48.29 4.10/7.25/19.06
✔ 70.22 49.93 7.17/13.28/29.12

One Lung
✗ 65.48 38.67 4.42/8.05/20.55
✔ 66.48 41.36 7.56/12.95/27.68

MDRB
✗ 65.03 36.96 3.56/6.36/16.92
✔ 66.26 38.08 4.90/8.55/20.29

Table 3: Localization performance on different subsets.

reports contain sentences such as “No effusion is 360

present.” For these types of sentences, the bound- 361

ing boxes are commonly over both lungs because 362

the evidence for the sentence is that nothing abnor- 363

mal is in either lung. In these situations, it seems 364

as though it might be easier for the model to real- 365

ize higher scores for two reasons: 1) lungs take up 366

most of the image, so attention is likely to fall in the 367

bounding boxes, and 2) the lungs are a pretty good 368

guess for the “important” regions of any image, 369

independent of the text. The last subset is impor- 370

tant because it comprises examples which contain 371

a set of target bounding boxes and associated texts 372

which cover mostly distinct image regions. 373

3.3 Results 374

We first evaluate performance on the subsets de- 375

scribed in Section 3.2 without perturbations so that 376

we can later calculate differences in performances 377

observed on these subsets following perturbations. 378

We report results in Table 3. The model performs 379

significantly worse on both the One Lung and 380

MDRB subsets (which we view as “harder”) in 381

terms of AUROC and Average Precision, support- 382

ing the use of this disaggregated evaluation. Syn- 383

thetic sentences still yield similar (even slightly 384

improved) performance compared to the original 385

sentences, suggesting the validity of our process 386

for constructing these. 387

To measure the sensitivity of model attention to 388

changes in the text, we report differences in local- 389

ization performance in Figure 4. Specifically, this 390

is the difference in model performance (∆AUROC) 391

achieved using (a) the original (unperturbed) sen- 392

tences, and, (b) sentences perturbed as described in 393

Section 3.1 over the full dataset and the subsets.5 394

The only real decrease in performance observed 395

— even on the One Lung set — is under the Ran- 396

dom BBoxes perturbation, which entails swapping 397

out the target bounding box for an instance with 398

5We report results on the Abnormal and MDRB subsets
in the Appendix; we include One Lung results here because
these are important for interpreting the Swap Left Right per-
turbation results.
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Swapping
“left” and “right”

has no effect

Figure 4: For each perturbation, we plot the change in localiza-
tion performance (AUROC) for GLoRIA on the full reference
set (top) and the One Lung subset (bottom).

one associated with some other instance (image).399

Performance decreasing here is consistent with the400

hypothesis that the attention map primarily reflects401

the image modality, but not the text. This is fur-402

ther supported by the observation that it seems the403

model pays little mind to clear positional cue words404

such as “left” and “right” when constructing the405

attention map; witness the negligible drop in per-406

formance under the Swap Left Right perturba-407

tion. Swapping in synthetic sentences with the408

wrong conditions also results in only a marginal409

performance drop, which suggests conditions do410

not much influence the attention. Finally, swapping411

in other sentences (even from a different report)412

yields almost no performance difference.413

4 Can We Improve Alignments?414

The above results indicate that alignments between415

modalities are sub-optimal, e.g., image attention416

is less sensitive to the text modality than would417

be expected. Here we propose simple methods to418

try and improve image/text alignment performance,419

and specifically increase the model’s sensitivity to420

changes in the text. We introduce (Section 4.1) and421

then evaluate (Section 4.2) our model variants.422

4.1 Models423

All models build on the GLoRIA architecture. In424

the results, GLoRIA refers to weights fit using the425

CheXpert dataset, released by (Huang et al., 2021).426

We do not have access to the reports associated427

with this dataset so we do not use it for training428

or evaluation, but we do make comparisons to the429

original (released) GLoRIA model trained on it.430

We also retrain our own GLoRIA model on the431

MIMIC-CXR/ImaGenome dataset; we call this Re-432

trained. While the two datasets are similar in size433

and content, CheXpert has many more positive434

cases of conditions than MIMIC-CXR/ImaGenome435

(8.86% of CheXpert images are labeled as having 436

“No Findings”; in the ImaGenome dataset, reports 437

associated with 21.80% of train images do not con- 438

tain a sentence labeled “abnormal”). Given this dif- 439

ference in the number of positive cases, we train a 440

Retrained w/ Abnormal model variant on the sub- 441

set of MIMIC-CXR/ImaGenome sentence/image 442

pairs featuring an “abnormal” sentence. 443

Finally, we train a model in which we adopt 444

a focused masking strategy intended to improve 445

localization. Specifically, we use a clinical entity 446

linker from SciSpaCy (Neumann et al., 2019) 447

to find and remove entities in the text, replacing 448

them with [MASK] tokens. We refer to this as the 449

Retrained w/ Masking model. 450

Motivating this approach is the hypothesis dis- 451

cussed above, i.e., that attention patterns learned 452

under existing regimes may largely function as an 453

unconditioned attention map highlighting gener- 454

ally salient image regions, rather than accurately 455

aligning image regions to specific accompanying 456

texts. We mask biomedical entities specifically to 457

try and prevent the model from using “shortcuts” 458

where knowing the condition allows the model to 459

leave incorporation of text information until com- 460

puting a final (aggregated) similarity score. For 461

example, if pneumonia is present anywhere in an 462

image the model can discriminate between paired 463

and unpaired texts based on whether “pneumonia” 464

appears at all. If instead the text reads “[MASK] 465

in the right lung”, the model would be forced to 466

specifically attend to the right lung to identify any 467

abnormality to predict whether the text is correct. 468

Finally, we train Retrained w/ Rand Sents in 469

the same style as the Retrained model except that 470

all sentences are replaced with random sentences. 471

This effectively deprives the model of any meaning- 472

ful training signal, which otherwise comes entirely 473

through the pairing of images and texts. Comput- 474

ing the metrics on this variant therefore provides a 475

baseline from which to view the other models. For 476

all models, we use early stopping with a patience 477

of 10 epochs.6 We will make code to reproduce all 478

results available upon publication. 479

4.2 Results and Discussion 480

We observe in Figure 4 that Retrained w/ Abnor- 481

mal performs better than Retrained in terms of 482

overall localization scores, indicating that there is 483

6For all models we report results on the last epoch before
the early stopping condition is reached.
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Figure 5: For each perturbation, we plot the change in localization performance (as measured by AUROC), for each of the
models we retrain from scratch on the respective subsets.

Model Synth AUROC Avg. P

Retrained ✗ 58.44 43.31
✔ 58.14 43.18

w/ Abnormal ✗ 61.18 45.78
✔ 59.05 44.84

w/ Masking ✗ 64.71 51.40
✔ 63.69 51.63

w/ Randsent ✗ 38.88 30.55
✔ 36.09 29.15

Table 4: Localization performance for each retrained model.
GLoRIA 7.99
Retrained 4.98
Retrained w/ Abnormal 6.74
Retrained w/ Masking 10.63
Retrained w/ Rand Sents 0.01

Table 5: Average Random Attention KL Divergences (Sec-
tion 2.2). (See Appendix Table 8 for results on subsets.)

a benefit to having a higher concentration of abnor-484

mal examples, even if it means using less data. This485

may be due to the contrastive objective: Consider,486

e.g., the case where all instances are not abnormal.487

The reports may not feature any signal available488

with which to pair images to specific texts, provid-489

ing little to learn from. Though 78.20% of training490

reports have some sentence indicating an abnormal-491

ity, only 42.33% of all training sentences indicate492

an abnormality. Therefore, most of the image-text493

pairs in a batch have sentences with no abnormality,494

which may impact learning and localization.495

It is also clear that Retrained w/ Masking per-496

forms the best out of the retrained models, sug-497

gesting the potential of masking to aid with local-498

ization. The pre-trained GloRIA mostly performs499

better than our retrained variant; we attribute this500

to differences in the training datasets given that we501

use the same code and architecture as (Huang et al.,502

2021) for training.7 Therefore, differences between503

7In fact, some of this difference in performance may be
explained by the higher percentage of abnormalities in the

the retrained models offer evidence for the utility 504

of both limiting to abnormal examples and using 505

masking, although further exploration is warranted. 506

We next perform the perturbations introduced 507

above to the proposed variants to assess sensitivity 508

to input texts. We report results in Figure 5. Re- 509

trained w/ Abnormal is on average more sensitive 510

to perturbations than Retrained, and Retrained 511

w/ Masking outperforms all models (including the 512

original GLoRIA8) in terms of being affected by 513

the perturbations. Of particular note are results un- 514

der the Swap Left Right perturbation on the One 515

Lung subset, which is the subset that should show 516

the most change under this perturbation. 517

In addition to being most sensitive to the pertur- 518

bations considered, Retrained w/ Masking has the 519

highest Random Attention KL Divergence (Table 520

5); defined in Section 2.2. This table also indicates 521

that while the perturbations do not impact the lo- 522

calization scores much, cross-modal attention does 523

still change for the vanilla models as a function 524

of the text, much more than the model trained on 525

random sentences. In other words, while the stan- 526

dard GLoRIA model is less sensitive to specific 527

perturbations to the text, the attention distributions 528

are not entirely invariant to the text like the model 529

trained on random image and sentence pairs is.9 530

Table 6 reports the accuracy of each model in 531

terms of identifying the correct sentence from two 532

candidates for a given image. Perhaps surpris- 533

ingly, these results indicate that performing compar- 534

atively well at identifying the correct sentence does 535

CheXpert dataset as discussed in Section 4.1.
8We note that the ∆AUROCs for GLoRIA are comparable

to our variant Retrained except that GLoRIA experiences a
larger drop under the Random BBoxes perturbation.

9The latter model is extreme because the only signal to
learn from in pre-training is the pairing of images and texts.
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All Abnormal
Model local global local global
GLoRIA 54.9 71.0 41.3 77.3
Retrained 72.5 82.8 69.7 86.5
Retrained w/ Abnormal 68.7 76.4 79.3 85.4
Retrained w/ Masking 66.6 83.3 64.0 86.5
Retrained w/ Rand Sents 51.4 51.3 44.8 60.6

Table 6: Average accuracies with respect to discriminating
between the sentence actually associated with an image and a
sentence randomly sampled from the dataset. (See Appendix
Table 9 for results on subsets.) Global and local refer to using
only global or local embeddings for computing similarity.

GLoRIA Retrained w/ Abnormal w/ Masked

S
w

a
p

L
e
ft

 R
ig

h
t

O
r
ig
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a
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Figure 6: Model attention for the sentence: “Previously noted
left upper lobe nodular opacity is not distinctly visualized on
the current exam.” (top), and perturbed version (bottom).

not necessarily correlate with localization ability.536

For example, the Retrained model performs best537

here, though we saw above that its localization is538

somewhat invariant to the perturbations considered.539

Note that Retrained w/ Abnormal was trained on540

a small subset for this task, comprising only ab-541

normal examples; this may explain its middling542

accuracy on the full set (it does well on the Ab-543

normal set). Retrained w/ Masking was similarly544

trained on a distribution that differs from the test set545

here (it is used to seeing MASK tokens). The orig-546

inal GLoRIA weights perform somewhat poorly547

here, perhaps owing to a domain shift.548

We conclude with a qualitative impression of549

localization performance. Figure 6 shows model550

attention distributions for a cherry-picked instance551

and the accompanying Swap Left Right perturba-552

tion. In this example (selected as an illustrative553

case where the masking variant improves model554

behavior), GLoRIA yields a high-entropy map,555

while Retrained delineates roughly the correct re-556

gion. The perturbation does not affect either of557

these models’ attention distributions much at all.558

The Retrained w/ Abnormal model is also almost559

focused in the right area, but it shifts attention more560

to the right lung following the perturbation. Finally,561

the Masked w/ Abnormal variant identifies the562

correct area in the original instance, and switches563

as expected to the right lung after the perturbation.564

Summary of Key Findings Training with ran-565

domly paired images and sentences yields models 566

that produce attention maps that are completely in- 567

dependent of the text (Tables 5 and 6). This results 568

in high-entropy distributions because there is noth- 569

ing for the model to learn.10 Existing multimodal 570

pretraining schemes beget models that accurately 571

select the text that matches a given image (Table 6), 572

and yield attention distributions that at least some- 573

what depend on the text (Table 5). But perturbing 574

texts does not cause the changes in attention pat- 575

terns one would intuitively expect, and do not much 576

affect localization performance (Figure 5). 577

Some simple changes to the pre-training process 578

may mitigate this behavior. In particular, masking 579

tokens during training seems to result in models 580

that produce attention patterns which more intu- 581

itively depend on input texts (Figure 5 and Table 582

5), although this may slightly harm performance 583

on the pre-training task itself (Table 6). 584

5 Related Work 585

Work on multi-modal representation learning for 586

medical data has proposed soft aligning modali- 587

ties, but has focussed quantitative evaluation on 588

the resultant performance that learned representa- 589

tions afford on downstream tasks (Ji et al., 2021; 590

Liao et al., 2021; Huang et al., 2021). Model inter- 591

pretability is often suggested using only qualitative 592

examples; our work aims to close this gap. 593

A line of work in NLP evaluates the interpretabil- 594

ity of neural attention mechanisms (Jain and Wal- 595

lace, 2019; Wiegreffe and Pinter, 2019; Serrano 596

and Smith, 2019). Elsewhere, work at the intersec- 597

tion of computer vision and radiology has critically 598

evaluated use of saliency maps over images (Arun 599

et al., 2021; Rajpurkar et al., 2018). 600

6 Conclusions 601

We evaluated an existing state-of-the-art unsuper- 602

vised multimodal representation learning model for 603

EHRs in terms of inducing fine-grained alignments 604

between image regions and text. We found that 605

the resultant heatmaps are often invariant to per- 606

turbations to the text that ought to change them 607

substantially, which seems problematic. We pro- 608

posed two methods that somewhat improved this 609

model behavior: training with abnormal examples 610

and training with masking. We hope that this effort 611

motivates more work addressing the interpreteabil- 612

ity of multimodal encoders for healthcare. 613

10See Appendix Table 10
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A Appendix746

A.1 GLoRIA Deltas on other Subsets747

In Figure 7 we report results analogous to those in748

4, but on the other subsets introduced.749

A.2 Localization performance for each750

retrained model on subsets.751

Table 7 reports additional results to those in Table 4,752

describing localization performance on each subset753

individually.754

A.3 Random Attention KL Divergences for755

subsets756

In Table 8, we extend Table 5 to show the mean757

Random Attention KL Divergence for each sub-758

set.759

A.4 Candidate Selection Accuracy for other760

subsets761

In 9, we extend Table 6 to the remaining subsets.762

A.5 Entropy763

In Table 10 we present results for the entropy at-764

tention mechanisms for each model for the entire765

dataset as well as the subsets.766

A.6 ∆ Average Precision767

In Figures 8 and 9, we plot the analogous plots768

to Figures 4, 7, and 5 for the changes in Average769

Precision as opposed to AUROC. Average Preci-770

sion seems to tell a similar story to AUROC in771

terms of which models have greater changes for772

each perturbation. The only major difference is that773

for Average Precision, all models show a positive774

change for the Random BBoxes perturbation in the775

MDRB subset. This is likely because picking a ran-776

dom bounding box from the whole dataset when777

in this subset means that the random bounding box778

will likely be bigger than the original because the779

bounding boxes in this subset tend to be small. Hav-780

ing a larger bounding box as a label would therefore781

likely improve precision in general. This makes782

it harder to interpret this particular perturbation in783

this subset.784

A.7 Synthetic Examples785

In Table 11, we present examples of synthetic ex-786

amples formed via the rules in Table 1.787

A.8 Correlations 788

In Table 12 we present the pairwise pearson corre- 789

lation over instances for a few different values for 790

each model’s outputs on the full gold split. 791

Most of the localization metrics here seem to be 792

somewhat correlated, although not as much as one 793

might expect. IOU seems to be generally more cor- 794

related with AUROC than with Average Precision. 795

Of particular note is the correlation between At- 796

tention Entropy and the global and local similari- 797

ties: Attention Entropy is usually slightly positively 798

correlated with Global Similarity and slightly neg- 799

atively correlated with Local Similarity. Though 800

it is still unclear why this is, it may have to do 801

with a model’s ability to localize seeing as this is 802

more pronounced in models that perform better 803

localization. 804

Finally, it is interesting that Retrained w/ Ab- 805

normal model has a somewhat negative correlation 806

between Attention Entropy and all of the localiza- 807

tion metrics, potentially indicating a connection 808

between examples of abnormalities and Attention 809

Entropy, but more work should be done to probe 810

this further. 811

A.9 Precision and IOU at different Thresholds 812

Finally, we present Precision (Table 13) and IOU 813

(Table 14) at different thresholds to get a better 814

sense for the differences in the attention between 815

each model. (Some IOU scores for GLoRIA are 816

repeated here to allow for an easier comparison.) It 817

is also clear that the Masking Model performs the 818

best when only taking the top 5 or 10 percent, but 819

GLoRIA starts producing similar or better scores 820

at less strict thresholds. The precision scores above 821

70% here for Retrained w/ Masking, which far 822

exceed any other model’s scores at any threshold, 823

give the sense that this model is quite effective at 824

localization, but the dropoff when looking at the 825

subsets do indicate the need for future work in this 826

area. 827
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Figure 7: Same as Figure 4 for the last two subsets.

Model Synth Abnormal One Lung MDRB
AUROC Avg. P AUROC Avg. P AUROC Avg. P

Retrained ✗ 57.68 39.40 55.84 30.88 58.60 32.91
✔ 57.18 39.08 56.52 31.17 57.87 32.29

w/ Abnormal ✗ 62.24 43.63 60.52 36.71 59.08 33.56
✔ 58.20 41.80 55.98 34.39 57.44 32.74

w/ Masking ✗ 65.70 49.78 62.07 40.41 64.73 39.95
✔ 64.37 49.62 61.51 41.44 63.56 39.76

w/ Randsent ✗ 41.10 28.16 41.15 22.45 41.47 21.60
✔ 39.84 27.73 36.81 20.76 39.73 20.77

Table 7: Localization performance for each retrained model on the subsets.

Model Abnormal One Lung MDRB
GLoRIA 7.71 8.09 8.68
Retrained 5.31 4.63 5.28
Retrained w/ Abnormal 6.89 6.01 6.46
Retrained w/ Masking 10.54 9.94 11.27
Retrained w/ Rand Sents 0.01 0.01 0.01

Table 8: Average Random Attention KL Divergences on the subsets

Model One Lung MDRB
local global local global

GLoRIA 40.4 74.4 53.6 76.6
Retrained 74.4 88.1 74.6 86.5
Retrained w/ Abnormal 83.2 84.9 70.2 76.2
Retrained w/ Masking 61.4 86.7 67.5 84.5
Retrained w/ Rand Sents 44.6 59.6 50.8 48.4

Table 9: Candidate Selection Accuracy for other subsets.

Model All Abnormal One Lung MDRB
GLoRIA 5.828 5.841 5.833 5.822
Retrained 5.825 5.833 5.841 5.827
Retrained w/ Abnormal 5.839 5.840 5.849 5.845
Retrained w/ Masking 5.791 5.809 5.815 5.793
Retrained w/ Rand Sents 5.889 5.889 5.889 5.889

Table 10: Attention Entropy
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Figure 8: ∆ Average Precision for GLoRIA
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Figure 9: ∆ Average Precision for retrained models.

Original Sentence Condition Context Location Synthetic Sentence
Bulging mediastinum projecting
over the left main bronchus and
aortopulmonic window could be
due to fat deposition exagger-
ated by low lung volumes.

low lung vol-
umes

✔ left lung, right lung There is low lung volumes in the
lungs.

In the upper lobes, there is the
suggestion of emphysema.

abnormal ✔ left mid lung zone, left upper
lung zone, left lung, right mid
lung zone, right upper lung zone

The left lung, upper lung zones,
and mid lung zones are
abnormal. There is
copd/emphysema in the lungs,
upper lung zones, and mid lung
zones.

copd/emphysema ✔ left mid lung zone, left upper
lung zone, left lung, right mid
lung zone, right upper lung zone

Small left pleural effusion with
atelectasis.

atelectasis ✔ left costophrenic angle There is atelectasis in the left
costophrenic angle.

No focal consolidation
concerning for pneumonia.

pneumonia ✗ left lung, right lung There is no pneumonia. There
is no consolidation.consolidation ✗ right lung

Mild bibasilar atelectasis.
abnormal ✔ left lower lung zone, left lung,

right lung, right lower lung zone
The lungs and lower lung zones
are abnormal. There is
atelectasis in the lungs and
lower lung zones. There is lung
opacity in the lungs and lower
lung zones.

atelectasis ✔ left lower lung zone, left lung,
right lung, right lower lung zone

lung opacity ✔ left lower lung zone, left lung,
right lung, right lower lung zone

Table 11: Examples of Synthetic Sentences.
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Local Similarity Global Similarity Attn Entropy AUROC Avg Precision P@10% IOU@10%
GLoRIA

Global Similarity 0.059
Attn Entropy -0.275 0.220

AUROC 0.053 0.040 0.089
Avg Precision 0.116 0.004 -0.006 0.592

P@10% 0.154 -0.028 -0.041 0.593 0.970
IOU@10% -0.168 -0.012 -0.238 0.152 0.177 0.168
Is Abnormal -0.307 -0.007 0.158 0.033 -0.092 -0.100 0.059

Retrained
Global Similarity 0.410

Attn Entropy -0.023 0.189
AUROC 0.384 0.106 -0.117

Avg Precision -0.050 -0.028 -0.076 0.203
P@10% -0.027 -0.013 -0.067 0.163 0.927

IOU@10% 0.431 0.232 0.000 0.588 -0.012 -0.090
Is Abnormal -0.119 0.163 0.099 -0.080 -0.131 -0.116 0.083

Retrained w/ Abnormal
Global Similarity 0.488

Attn Entropy -0.212 0.086
AUROC 0.309 0.204 -0.298

Avg Precision 0.135 0.169 -0.203 0.499
P@10% 0.206 0.219 -0.206 0.562 0.821

IOU@10% 0.378 0.296 -0.259 0.557 0.282 0.489
Is Abnormal 0.286 0.188 0.020 0.107 -0.064 0.025 0.303

Retrained w/ Masking
Global Similarity 0.138

Attn Entropy -0.324 0.250
AUROC -0.162 0.229 -0.046

Avg Precision 0.251 0.038 -0.175 0.211
P@10% 0.223 0.151 -0.156 0.236 0.927

IOU@10% -0.129 0.116 -0.057 0.435 0.113 0.260
Is Abnormal -0.062 0.109 0.144 0.080 -0.052 0.031 0.221

Table 12: Correlations for positive pairs. Any number over 0.1 is bolded.

Model Synth All Abnormal One Lung MDRB

GLoRIA
✗ 58.58/59.20/54.93 53.63/54.60/51.54 42.65/43.55/39.82 40.98/41.46/37.90
✔ 58.88/59.19/55.23 57.28/57.06/50.95 50.87/48.12/38.80 42.77/43.30/38.39

Retrained
✗ 46.54/41.07/39.78 46.53/37.20/35.20 35.86/29.05/28.03 38.89/30.61/27.73
✔ 45.01/40.51/39.92 43.04/35.72/35.74 33.20/29.09/29.10 34.84/29.73/27.91

w/ Abnormal
✗ 40.13/39.58/44.11 49.27/40.56/39.76 45.22/35.10/31.44 32.08/28.84/30.55
✔ 35.78/35.19/43.24 42.34/33.56/38.29 39.90/29.20/29.73 28.52/25.73/29.96

w/ Masking
✗ 71.38/63.68/44.90 74.19/65.01/39.72 64.26/53.01/31.19 55.22/48.93/32.01
✔ 73.97/64.99/44.76 74.59/63.65/39.52 66.36/53.28/31.74 56.73/48.83/31.76

w/ Rand Sents
✗ 14.54/14.98/23.22 15.66/15.37/22.26 11.66/11.61/17.05 9.31/10.18/16.61
✔ 8.68/8.94/20.00 13.62/12.92/21.15 4.78/4.32/12.75 4.67/5.68/14.81

Table 13: Precision at 5/10/30%

Model Synth All Abnormal One Lung MDRB

GLoRIA
✗ 3.79/6.69/20.10 4.10/7.25/19.06 4.42/8.05/20.55 3.56/6.36/16.92
✔ 4.92/9.12/23.82 7.17/13.28/29.12 7.56/12.95/27.68 4.90/8.55/20.29

Retrained
✗ 5.59/7.61/7.99 6.48/8.54/8.64 5.95/7.15/7.37 5.98/8.57/8.84
✔ 5.50/7.11/7.65 6.24/7.39/7.53 5.47/6.31/6.55 5.60/7.64/8.03

w/ Abnormal
✗ 4.27/6.48/7.18 5.87/9.30/9.51 6.92/10.31/10.24 4.53/6.57/7.08
✔ 4.21/5.66/6.41 5.60/7.49/7.61 6.66/8.15/8.35 4.41/5.77/6.11

w/ Masking
✗ 7.76/15.43/20.60 9.01/18.12/22.76 8.98/17.62/20.76 8.40/14.93/18.83
✔ 9.41/16.74/21.61 11.35/19.12/22.00 10.73/18.29/20.26 9.45/15.70/19.25

w/ Rand Sents
✗ 0.35/0.76/5.51 0.36/0.62/4.85 0.43/0.76/4.68 0.16/0.59/4.46
✔ 0.45/0.94/7.35 0.47/0.75/5.90 0.66/1.11/7.18 0.22/0.70/6.22

Table 14: IOU at 5/10/30%
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