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Abstract

Pretraining multimodal models on Electronic
Health Records (EHRs) provides a means to
learn rich representations that might transfer
to downstream tasks with minimal supervision.
Recent multimodal models induce soft local
alignments between modalities (image regions
and sentences). This is of particular interest in
the medical domain, where alignments could
serve to highlight regions in an image relevant
to specific phenomena described in free-text.
Past work has presented example “heatmaps”
as qualitative evidence that cross-modal soft
alignments can be interpreted in this manner.
However, there has been little quantitative eval-
uation of such alignments. Here we compare
alignments from a state-of-the-art multimodal
(image and text) model for EHR with human
annotations that associate image regions with
sentences. Our main finding is that the text has
surprisingly little influence on the attention;
alignments do not consistently reflect basic
anatomical information. Moreover, synthetic
modifications, such as substituting “left” for
“right,” do not substantially influence attention.
We find that simple techniques such as masking
out entity names during training show promise
in terms of their ability to improve alignments
without additional supervision.

1 Introduction

There has been a flurry of recent work on model ar-
chitectures and self-supervised training objectives
for multimodal representation learning, both gener-
ally (Li et al., 2019; Tan and Bansal, 2019; Huang
et al., 2020; Su et al., 2020; Chen et al., 2020) and
for medical data specifically (Wang et al., 2018;
Chauhan et al., 2020; Li et al., 2020). These meth-
ods have been shown to yield representations that
permit efficient learning on various multimodal
downstream tasks (e.g., classification, captioning).

Given the inherently multimodal nature of much
medical data — e.g., in radiology images and text
are naturally paired — there has been particular
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Linear atelectasis is There is elevation  No nodule, effusion,
present in the left of the right or pneumothorax is
lower lobe. hemidiaphram. present.

Figure 1: Basic failure modes of text-image alignment. We
show smoothed attention saliency over images given texts.
Red boxes are expert-provided target regions for the accompa-
nying texts. (Note: imaging data is “mirrored”, so right and
left are effectively flipped.)

interest in designing such models for data from
Electronic Health Records (EHRs). However, key
limitations preclude practical adoption of multi-
modal models in this domain. One important con-
sideration is interpretability. Naive architectures
that map image-text pairs to shared representations
are opaque; it is not clear a priori what attributes
they encode, and how they model interactions be-
tween the modalities. Consequently, doctors have
no means of interrogating models, which may be
relying on artifacts rather than meaningful clinical
signal (Zech et al., 2018).

Recent work has proposed architectures that soft-
align text snippets to image regions. This may af-
ford one variety of interpretability by providing a
means for practitioners to inspect what the model
has “learned.” Past work has provided qualita-
tive evidence — illustrative multimodal “saliency”
maps — suggesting that models can provide plausi-
ble looking outputs. But such alignments also run
the risk of providing a false sense that the model
“understands” more than it actually does.

Figure 1 illustrates a few obvious ways that a
multimodal model may fail. It may simply focus
on the wrong part of the image (e.g., the left rather
than the right lung), or it might produce a high-
entropy attention distribution, failing to meaning-
fully localize. Finally, the model may be myopic in
its attention, missing the larger region of interest.
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Figure 2: Alignment failures often occur when the model (overly) focuses on the image, largely ignoring the text.

Perhaps even more troubling, image attention
may appear reasonable without actually reflecting
both modalities. For example, see Figure 2. Here
the model ostensibly succeeds at identifying the im-
age region relevant to the given text (left). One may
be tempted to conclude the model has “understood”
the text and indicated the corresponding region.
But this may be misleading: We can see that the
same model yields a similar attention pattern over
the image when provided text with radically differ-
ent semantics (e.g., when swapping “right” with
“left” or providing a nonsensical sentence), or when
provided a different sentence altogether.

Recent work has sought to improve the ability
of these models to identify fine-grained alignments
via supervised attention (Kervadec et al., 2020;
Sood et al., 2021), but have focused on downstream
task performance. By contrast, our focus is on eval-
vating and improving localization itself, ideally
without additional supervision.

The contributions of this work are as follows. (i)
We critically appraise the interpretability of soft-
alignments induced between images and texts by
existing neural multimodal models for radiology.
To our knowledge, this is the first such evaluation.
We find that models that conditionally highlight
regions relevant to a given text are often in fact
more or less invariant to the text modality (Figure
2). (ii) We propose methods that improve the ability
of multimodal models for EHR to intuitively align
image regions with texts.

2 Preliminaries

We aim to evaluate the localization abilities of an
existing multimodal model for EHR, namely the
recently proposed GLoRIA model (Huang et al.,
2021), which is representative of state-of-the-art,
transformer-based multimodal architectures and ac-
companying pre-training methods. We next review
details of this model, and then discuss the datasets
we use to evaluate the alignments it induces.

2.1 GLoRIA

GLOoRIA uses Clinical BERT (Alsentzer et al.,
2019) as its text encoder and ResNet (He et al.,
2016) as its image encoder. Unlike prior work,
GLoRIA does not assume an image can be parti-
tioned into different objects. This is at least in part
because pre-trained object detectors are not read-
ily available for X-rays. GLoRIA instead passes
a CNN over the image to yield intermediate repre-
sentations of local regions. This is useful because
— as noted elsewhere (Huang et al., 2021) — a
finding within an X-ray described in a report will
usually be evident in only a small region of the cor-
responding image. GLoRIA exploits this intuition
via a local contrastive loss term in the objective.

We assume a dataset of instances comprising an
image z, and a sentence from the corresponding
report x4, and the model consumes this to produce
a set of local embeddings and a global embed-
ding for each modality: v; € RM*P ¢, € RP,
t; € RVXP and ty € RP. To construct the lo-
cal contrastive loss, an attention mechanism (Bah-
danau et al., 2014) is applied to local image embed-
dings, queried by the local text embeddings. This
induces a soft alignment between the local vectors
of each mode:

exp (tﬁvlj /T)
M
Zk:1 €xp (tlj;vm/T)

ey

aij =

where ?; is the ¢th text embedding, v; the jth image
embedding, and 7 is a temperature hyperparameter.

This soft alignment suggests a natural means
to facilitate interpretability: One can create mul-
timodal saliency maps indicating the magnitude
of the attention assigned jointly to image regions
and text snippets. And indeed, in (Huang et al.,
2021), the authors show an example where the mul-
timodal attention pattern jointly highlights words
describing a specific abnormality while plausibly
illuminating the region of the image in which this



Context  Condition (c)
“Normal” or “Abnormal”
Otherwise

Neg -

‘ Template
The {loclist} is/are {c}.
There is {c} in the {loclist}.
There is no {c}.

Pos

Table 1: Rules for creating synthetic sentences. If there are
multiple conditions in the sentence, we concatenate synthetic
sentences for each of them. The “loclist” is created by turning
the list of anatomical locations associated with the condi-

tion/context into a natural language list (e.g., “x,” “x and y,” or

“X, y, and z”’). We combine left- and right-side locations into
one item (“left lung” and “right lung” is mapped to “lungs”).

abnormality appears. One may be tempted to con-
clude that the model has somehow ‘“‘understood”
the text semantically, and successfully linked this
to the image modality. However, our experiments
below caution against reading too much into these
patterns ostensibly linking text to image regions.

2.2 Data and Metrics

Data Our novel evaluation of localization abili-
ties is made possible by the MIMIC-CXR (John-
son et al., 2019a,b) and Chest ImaGenome (Wu
et al., 2021) datasets. MIMIC-CXR comprises
chest X-rays and corresponding radiology reports.
ImaGenome includes 1000 manually annotated im-
age/report pairs,! which include: (1) Bounding
boxes for anatomical locations; (2) Links between
referring sentences and image bounding boxes;
and (3) A set of conditions and positive/negative
context annotations’ associated with each sen-
tence/bounding box pair.

To facilitate controlled experiments involving
swapping out conditions — Section 3.1, Synthetic
w/ Swapped Conditions — we also adopt a strat-
egy for creating synthetic sentences using the la-
bels from ImaGenome (Wu et al., 2021), and test
our models on these sentences as well. Specifi-
cally, we create synthetic sentences using a set of
rules translating the condition and positive/negative
context annotations and the anatomical names for
the corresponding bounding boxes into natural lan-
guage, which we describe in Table 1.3

Metrics We quantitatively evaluate the degree to
which attention patterns accurately highlight the
region to which a text snippet refers by compar-
ing the attention averaged over an input sentence
xT; = % Zf\i 1 a;; with reference annotated bound-
ing boxes associated with the sentence.

!These annotations were first derived automatically, and
then cleaned manually.

Here, context refers to whether the condition is negated
in the text (negative) or not (positive).

3We present examples in the Appendix (Table 11).

IOU@5/10/30%
3.79/6.69/20.10
4.92/9.12/23.82

Synth | AUROC Avg. P
X 69.07 51.68
69.35 52.30

Table 2: Localization performance of GLoRIA.

We consider several metrics to measure the align-
ment between soft attention weights and bound-
ing boxes. First, we associate scores with each
pixel based on the attention weight assigned to
the image region to which it belongs. Specifically,
we use upsampling with bilinear interpolation to
distribute the attention at the pixel level, creating
scores s € R where P is the number of image
pixels. We use the bounding boxes to create a seg-
mentation label ¢ € RY where ¢; = 1 if pixel i is
in any of the bounding boxes, and ¢; = 0 otherwise.
Given this pixel-level score s and the pixel-level
segmentation label ¢;, we can compute the AU-
ROC, Average Precision, and Intersection Over
Union (IOU) at varying pixel percentile thresholds
for the ranking ordered by s.

One thing we want to measure is the extent to
which a model may be ignoring the text and rely-
ing almost entirely on the image to determine an
attention pattern. To this end we introduce Ran-
dom Attention KL Divergence, the symmetric
Kullback-Leibler (KL) divergence for an instance
between (a) the attention distribution induced given
the original text, and (b) the attention over the same
image but paired with random text.

We also adopt a simple, interpretable metric to
capture the accuracy of similarity scores assigned
to pairs of images and texts. Specifically, we use
a simpler version of the text retrieval task from
(Huang et al., 2021): We report the percentage of
time the similarity between an image and a sen-
tence from the corresponding report is greater than
the similarity between the image and a random sen-
tence taken from a different report in the dataset.
This allows us to interpret 50% as the mean value
of a totally random similarity measure.

3 Are Alignment Weights Accurate?

We first use the metrics defined above to perform an
initial evaluation of the pretrained, publicly avail-
able weights for GLoRIA (Huang et al., 2021). Ta-
ble 2 reports the metrics used to evaluate localiza-
tion on the gold split of the ImaGenome dataset.
The AUROC scores are well over 50%, indi-
cating reasonable localization performance. The
IOU scores are relatively small, but this can be ex-



Original Instance Text Perburbations

' consolidation.

the right lung and right costophrenic angle.

Small right pleural
effusion is stable.

Ml Swap Left Right: Small /eft pleural effusion is stable.

Random Sentence: The lungs are hyperinflated but clear of

Synthetic: The right costophrenic angle is abnormal. There is lung
opacity in the right costophrenic angle. There is pleural effusion in

Synthetic w/ Swapped Conditions: There is pu/monary edema/
hazy opacity in the right costophrenic angle. There is costophrenic
angle blunting in the right lung and right costophrenic angle.

Shuffle BBoxes

Random BBoxes

Figure 3: We present examples of each perturbations for a given instance.

pected because target bounding boxes tend to be
much bigger than the actual regions of interest and
serve more to detect errors when highlighted re-
gions are far away from where they should be. This
is validated by the relatively high average precision
scores. (Arguably precision is more important than
recall here because one would hope highlighted
pixels are indeed relevant to the text, but would
not necessarily expect this to be exhaustive.) How-
ever, while seemingly promising, our results below
suggest that the attention patterns here may be less
multimodal than one might expect.

Next we further probe multimodal attention dis-
tributions, with a specific focus on evaluating the
degree to which these patterns actually reflect the
associated text. To this end we first propose per-
turbing instances in ways that ought to shift the
attention pattern, e.g., by replacing “right” with
“left” in the text (Section 3.1). We then identify
data subsets in Section 3.2 comprising “complex”
instances, where we expect the image and text to
be closely correlated at a local level.

3.1 Perturbations

Figure 3 shows examples of the perturbations we
perform, which we describe in detail below.

Swap Left Right We replace every occurrence of
the word “right” in the text with “left” and vice
versa (ignoring capitalization). This is intended to
probe the degree to which the attention mechanism
relies on these two basic location cues. Of course,
many sentences have no mention of these words
because conditions (or lack there of) occur on both
sides of the chest X-ray. Therefore, it is particularly
important to look at the metrics on the “One Lung”
subset (see Section 3.2) in this setting.

Shuffle BBoxes Here the sets of bounding boxes
for different sentences in the same report are shuf-
fled at random. One would expect that performance
would decrease significantly, because the resultant
bounding boxes associated with given a sentence
are (probably) wrong. However, sentences within

the same report might be talking about similar re-
gions. Therefore, for this perturbation it is im-
portant to look at the instances where the overlap
between (a) the region of interest for the sentence
with (b) the regions associated with other sentences
in the report is low. We look at results for such
cases explicitly using the Most Diverse Report
BBoxes (MDRB) subset (Section 3.2).

Random Sentences We replace sentences in an in-
stance with other sentences, randomly drawn from
the rest of the dataset. Here too we expect perfor-
mance to decrease significantly because the sam-
pled text will refer to an entirely different image.

Random BBoxes We replace the set of bounding
boxes for a sentence with a different set of bound-
ing boxes randomly selected from the rest of the
dataset. This differs from the Random Sentences
perturbation in that the bounding boxes here are not
only unrelated to the sentences, but also unrelated
to the image. Therefore, we expect that this will
have the poorest performance of all the settings,
especially under the hypothesis that the attention is
mostly a function of the image.

Synthetic w/ Swapped Conditions This is per-
formed on the synthetic sentences instead of the
original sentences. This is because swapping out
conditions can only be done in the case where we
generate the sentence programmatically. To swap
conditions in the sentence, we simply follow the
same rules for generating the synthetic sentence
with a different condition randomly sampled from
a set of other possible conditions. We define these
other possible conditions as any condition (exclud-
ing the current) that occurs in the same anatomical
locations anywhere else in the gold dataset.* This
perturbation should measure the impact of condi-
tions on the model’s attention mechanism.

Under these perturbations, we would expect a
well-behaved model to shift its attention distribu-

*If there are no other conditions, we leave the condition as
is and the synthetic sentence is not perturbed.



tion over the image accordingly, and as a result we
would expect the localization scores (overlap with
the original reference bounding boxes) to decrease.
The Random BBoxes perturbation in particular
targets the degree to which the attention relies
specifically on the image modality, because here
the “target” bounding boxes have been replaced
with bounding boxes associated with random other
images. By contrast, all other perturbations should
measure the degree to which the model is sensitive
to changes to the text (even Shuffle BBoxes, which
is equivalent to shuffling the sentences in a report).

If the assumption is that attention saliency maps
reflect alignments with the input texts — as one
might expect — then under these perturbations one
should expect large negative differences in perfor-
mance (As) relative to observed performance using
the unperturbed data. For all but Random BBoxes,
if the performance does not much change (As ~
0), this suggests the attention maps are more or less
invariant to the text modality.

3.2 Subsets

We also consider specific data subsets to perform
more granular evaluations, enumerated below.

Abnormal Image/sentence pairs where there is an
“abnormal” label associated with the sentence. This
occurs if any conditions are mentioned in a posi-
tive context, i.e., where the radiologist believes the
patient has said condition. This targets “interesting’
examples where the attention should ideally high-
light the region relevant to the condition described.

’

One Lung Image/sentence pairs where the bound-
ing boxes corresponding to the sentence contain a
bounding box of either the left or right lung, but
not both. This subset allows us to evaluate how the
model performs when the attention should only be
on one side of the image.

Most Diverse Report BBoxes Instances where the
overlap in the sets of bounding boxes for sentences
within the same report is minimal. Specifically, we
calculate the mean intersection over union (IOU;
Section 2.2) of the segmentation labels ¢1, {5 for
pairs of sentences in the same report. We then take
the 10% of instances within reports with the small-
est mean IOU. This subset is intended to include
examples within reports where multiple distinct
regions of interest discussed in different sentences.

These first two subsets are important because in
many examples there is nothing abnormal, and the

Subset Synth | AUROC Avg. P I0U@5/10/30%

Abnormal X 69.51 48.29  4.10/7.25/19.06
70.22 49.93  7.17/13.28/29.12

One Lung X 65.48 38.67  4.42/8.05/20.55
66.48 4136  7.56/12.95/27.68

X 65.03 36.96  3.56/6.36/16.92

MDRB 66.26 38.08  4.90/8.55/20.29

Table 3: Localization performance on different subsets.

reports contain sentences such as “No effusion is
present.” For these types of sentences, the bound-
ing boxes are commonly over both lungs because
the evidence for the sentence is that nothing abnor-
mal is in either lung. In these situations, it seems
as though it might be easier for the model to real-
ize higher scores for two reasons: 1) lungs take up
most of the image, so attention is likely to fall in the
bounding boxes, and 2) the lungs are a pretty good
guess for the “important” regions of any image,
independent of the text. The last subset is impor-
tant because it comprises examples which contain
a set of target bounding boxes and associated texts
which cover mostly distinct image regions.

3.3 Results

We first evaluate performance on the subsets de-
scribed in Section 3.2 without perturbations so that
we can later calculate differences in performances
observed on these subsets following perturbations.
We report results in Table 3. The model performs
significantly worse on both the One Lung and
MDRB subsets (which we view as “harder”) in
terms of AUROC and Average Precision, support-
ing the use of this disaggregated evaluation. Syn-
thetic sentences still yield similar (even slightly
improved) performance compared to the original
sentences, suggesting the validity of our process
for constructing these.

To measure the sensitivity of model attention to
changes in the text, we report differences in local-
ization performance in Figure 4. Specifically, this
is the difference in model performance (A AUROC)
achieved using (a) the original (unperturbed) sen-
tences, and, (b) sentences perturbed as described in
Section 3.1 over the full dataset and the subsets.’

The only real decrease in performance observed

— even on the One Lung set — is under the Ran-
dom BBoxes perturbation, which entails swapping
out the target bounding box for an instance with

SWe report results on the Abnormal and MDRB subsets
in the Appendix; we include One Lung results here because
these are important for interpreting the Swap Left Right per-
turbation results.
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Figure 4: For each perturbation, we plot the change in localiza-
tion performance (AUROC) for GLoRIA on the full reference
set (top) and the One Lung subset (bottom).

one associated with some other instance (image).
Performance decreasing here is consistent with the
hypothesis that the attention map primarily reflects
the image modality, but not the text. This is fur-
ther supported by the observation that it seems the
model pays little mind to clear positional cue words
such as “left” and “right” when constructing the
attention map; witness the negligible drop in per-
formance under the Swap Left Right perturba-
tion. Swapping in synthetic sentences with the
wrong conditions also results in only a marginal
performance drop, which suggests conditions do
not much influence the attention. Finally, swapping
in other sentences (even from a different report)
yields almost no performance difference.

4 Can We Improve Alignments?

The above results indicate that alignments between
modalities are sub-optimal, e.g., image attention
is less sensitive to the text modality than would
be expected. Here we propose simple methods to
try and improve image/text alignment performance,
and specifically increase the model’s sensitivity to
changes in the text. We introduce (Section 4.1) and
then evaluate (Section 4.2) our model variants.

4.1 Models

All models build on the GLoRIA architecture. In
the results, GLORIA refers to weights fit using the
CheXpert dataset, released by (Huang et al., 2021).
We do not have access to the reports associated
with this dataset so we do not use it for training
or evaluation, but we do make comparisons to the
original (released) GLoRIA model trained on it.
We also retrain our own GLoRIA model on the
MIMIC-CXR/ImaGenome dataset; we call this Re-
trained. While the two datasets are similar in size
and content, CheXpert has many more positive
cases of conditions than MIMIC-CXR/ImaGenome

(8.86% of CheXpert images are labeled as having
“No Findings”; in the ImaGenome dataset, reports
associated with 21.80% of train images do not con-
tain a sentence labeled “abnormal”). Given this dif-
ference in the number of positive cases, we train a
Retrained w/ Abnormal model variant on the sub-
set of MIMIC-CXR/ImaGenome sentence/image
pairs featuring an “abnormal” sentence.

Finally, we train a model in which we adopt
a focused masking strategy intended to improve
localization. Specifically, we use a clinical entity
linker from SciSpaCy (Neumann et al., 2019)
to find and remove entities in the text, replacing
them with [MASK] tokens. We refer to this as the
Retrained w/ Masking model.

Motivating this approach is the hypothesis dis-
cussed above, i.e., that attention patterns learned
under existing regimes may largely function as an
unconditioned attention map highlighting gener-
ally salient image regions, rather than accurately
aligning image regions to specific accompanying
texts. We mask biomedical entities specifically to
try and prevent the model from using “shortcuts”
where knowing the condition allows the model to
leave incorporation of text information until com-
puting a final (aggregated) similarity score. For
example, if pneumonia is present anywhere in an
image the model can discriminate between paired
and unpaired texts based on whether “pneumonia’
appears at all. If instead the text reads “ [MASK]
in the right lung”, the model would be forced to
specifically attend to the right lung to identify any
abnormality to predict whether the text is correct.

Finally, we train Retrained w/ Rand Sents in
the same style as the Retrained model except that
all sentences are replaced with random sentences.
This effectively deprives the model of any meaning-
ful training signal, which otherwise comes entirely
through the pairing of images and texts. Comput-
ing the metrics on this variant therefore provides a
baseline from which to view the other models. For
all models, we use early stopping with a patience
of 10 epochs.® We will make code to reproduce all
results available upon publication.

>

4.2 Results and Discussion

We observe in Figure 4 that Retrained w/ Abnor-
mal performs better than Retrained in terms of
overall localization scores, indicating that there is

®For all models we report results on the last epoch before
the early stopping condition is reached.
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Figure 5: For each perturbation, we plot the change in localization performance (as measured by AUROC), for each of the

models we retrain from scratch on the respective subsets.

Model Synth AUROC  Avg. P
Retrained X gg?j i; ?213
w/ Abnormal gé(l)g ﬁ;i
w/ Masking X ggz; gizg
w/ Randsent X gggg ;(9)?2

Table 4: Localization performance for each retrained model.

GLoRIA 7.99
Retrained 498
Retrained w/ Abnormal 6.74
Retrained w/ Masking 10.63
Retrained w/ Rand Sents 0.01

Table 5: Average Random Attention KL Divergences (Sec-
tion 2.2). (See Appendix Table 8 for results on subsets.)

a benefit to having a higher concentration of abnor-
mal examples, even if it means using less data. This
may be due to the contrastive objective: Consider,
e.g., the case where all instances are not abnormal.
The reports may not feature any signal available
with which to pair images to specific texts, provid-
ing little to learn from. Though 78.20% of training
reports have some sentence indicating an abnormal-
ity, only 42.33% of all training sentences indicate
an abnormality. Therefore, most of the image-text
pairs in a batch have sentences with no abnormality,
which may impact learning and localization.

It is also clear that Retrained w/ Masking per-
forms the best out of the retrained models, sug-
gesting the potential of masking to aid with local-
ization. The pre-trained GloRIA mostly performs
better than our retrained variant; we attribute this
to differences in the training datasets given that we
use the same code and architecture as (Huang et al.,
2021) for training.” Therefore, differences between

"In fact, some of this difference in performance may be
explained by the higher percentage of abnormalities in the

the retrained models offer evidence for the utility
of both limiting to abnormal examples and using
masking, although further exploration is warranted.

We next perform the perturbations introduced
above to the proposed variants to assess sensitivity
to input texts. We report results in Figure 5. Re-
trained w/ Abnormal is on average more sensitive
to perturbations than Retrained, and Retrained
w/ Masking outperforms all models (including the
original GLORIA®) in terms of being affected by
the perturbations. Of particular note are results un-
der the Swap Left Right perturbation on the One
Lung subset, which is the subset that should show
the most change under this perturbation.

In addition to being most sensitive to the pertur-
bations considered, Retrained w/ Masking has the
highest Random Attention KL Divergence (Table
5); defined in Section 2.2. This table also indicates
that while the perturbations do not impact the lo-
calization scores much, cross-modal attention does
still change for the vanilla models as a function
of the text, much more than the model trained on
random sentences. In other words, while the stan-
dard GLoRIA model is less sensitive to specific
perturbations to the text, the attention distributions
are not entirely invariant to the text like the model
trained on random image and sentence pairs is.’

Table 6 reports the accuracy of each model in
terms of identifying the correct sentence from two
candidates for a given image. Perhaps surpris-
ingly, these results indicate that performing compar-
atively well at identifying the correct sentence does

CheXpert dataset as discussed in Section 4.1.

8We note that the AAUROCs for GLoRIA are comparable
to our variant Retrained except that GLoRIA experiences a
larger drop under the Random BBoxes perturbation.

The latter model is extreme because the only signal to
learn from in pre-training is the pairing of images and texts.



All Abnormal

Model local global local global
GLoRIA 549 71.0 413 773
Retrained 72.5 828 69.7  86.5
Retrained w/ Abnormal 68.7 764 793 854
Retrained w/ Masking 66.6 833 64.0 86.5
Retrained w/ Rand Sents 514  51.3 448  60.6

Table 6: Average accuracies with respect to discriminating
between the sentence actually associated with an image and a
sentence randomly sampled from the dataset. (See Appendix
Table 9 for results on subsets.) Global and local refer to using
only global or local embeddings for computing similarity.

w/ Abnormal w/ Masked

GLORIA

Retrained

Original

Swap
Left Right

Figure 6: Model attention for the sentence: “Previously noted
left upper lobe nodular opacity is not distinctly visualized on
the current exam.” (top), and perturbed version (bottom).

not necessarily correlate with localization ability.
For example, the Retrained model performs best
here, though we saw above that its localization is
somewhat invariant to the perturbations considered.
Note that Retrained w/ Abnormal was trained on
a small subset for this task, comprising only ab-
normal examples; this may explain its middling
accuracy on the full set (it does well on the Ab-
normal set). Retrained w/ Masking was similarly
trained on a distribution that differs from the test set
here (it is used to seeing MASK tokens). The orig-
inal GLoRIA weights perform somewhat poorly
here, perhaps owing to a domain shift.

We conclude with a qualitative impression of
localization performance. Figure 6 shows model
attention distributions for a cherry-picked instance
and the accompanying Swap Left Right perturba-
tion. In this example (selected as an illustrative
case where the masking variant improves model
behavior), GLoRIA yields a high-entropy map,
while Retrained delineates roughly the correct re-
gion. The perturbation does not affect either of
these models’ attention distributions much at all.
The Retrained w/ Abnormal model is also almost
focused in the right area, but it shifts attention more
to the right lung following the perturbation. Finally,
the Masked w/ Abnormal variant identifies the
correct area in the original instance, and switches
as expected to the right lung after the perturbation.

Summary of Key Findings Training with ran-

domly paired images and sentences yields models
that produce attention maps that are completely in-
dependent of the text (Tables 5 and 6). This results
in high-entropy distributions because there is noth-
ing for the model to learn.!® Existing multimodal
pretraining schemes beget models that accurately
select the text that matches a given image (Table 6),
and yield attention distributions that at least some-
what depend on the text (Table 5). But perturbing
texts does not cause the changes in attention pat-
terns one would intuitively expect, and do not much
affect localization performance (Figure 5).

Some simple changes to the pre-training process
may mitigate this behavior. In particular, masking
tokens during training seems to result in models
that produce attention patterns which more intu-
itively depend on input texts (Figure 5 and Table
5), although this may slightly harm performance
on the pre-training task itself (Table 6).

5 Related Work

Work on multi-modal representation learning for
medical data has proposed soft aligning modali-
ties, but has focussed quantitative evaluation on
the resultant performance that learned representa-
tions afford on downstream tasks (Ji et al., 2021;
Liao et al., 2021; Huang et al., 2021). Model inter-
pretability is often suggested using only qualitative
examples; our work aims to close this gap.

A line of work in NLP evaluates the interpretabil-
ity of neural attention mechanisms (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019; Serrano
and Smith, 2019). Elsewhere, work at the intersec-
tion of computer vision and radiology has critically
evaluated use of saliency maps over images (Arun
et al., 2021; Rajpurkar et al., 2018).

6 Conclusions

We evaluated an existing state-of-the-art unsuper-
vised multimodal representation learning model for
EHRs in terms of inducing fine-grained alignments
between image regions and text. We found that
the resultant heatmaps are often invariant to per-
turbations to the text that ought to change them
substantially, which seems problematic. We pro-
posed two methods that somewhat improved this
model behavior: training with abnormal examples
and training with masking. We hope that this effort
motivates more work addressing the interpreteabil-
ity of multimodal encoders for healthcare.

10See Appendix Table 10
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A Appendix

A.1 GLoRIA Deltas on other Subsets

In Figure 7 we report results analogous to those in
4, but on the other subsets introduced.

A.2 Localization performance for each
retrained model on subsets.

Table 7 reports additional results to those in Table 4,
describing localization performance on each subset
individually.

A.3 Random Attention KL Divergences for
subsets

In Table 8, we extend Table 5 to show the mean
Random Attention KL Divergence for each sub-
set.

A.4 Candidate Selection Accuracy for other
subsets

In 9, we extend Table 6 to the remaining subsets.

A.5 Entropy

In Table 10 we present results for the entropy at-
tention mechanisms for each model for the entire
dataset as well as the subsets.

A.6 A Average Precision

In Figures 8 and 9, we plot the analogous plots
to Figures 4, 7, and 5 for the changes in Average
Precision as opposed to AUROC. Average Preci-
sion seems to tell a similar story to AUROC in
terms of which models have greater changes for
each perturbation. The only major difference is that
for Average Precision, all models show a positive
change for the Random BBoxes perturbation in the
MDRB subset. This is likely because picking a ran-
dom bounding box from the whole dataset when
in this subset means that the random bounding box
will likely be bigger than the original because the
bounding boxes in this subset tend to be small. Hav-
ing a larger bounding box as a label would therefore
likely improve precision in general. This makes
it harder to interpret this particular perturbation in
this subset.

A.7 Synthetic Examples

In Table 11, we present examples of synthetic ex-
amples formed via the rules in Table 1.
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A.8 Correlations

In Table 12 we present the pairwise pearson corre-
lation over instances for a few different values for
each model’s outputs on the full gold split.

Most of the localization metrics here seem to be
somewhat correlated, although not as much as one
might expect. IOU seems to be generally more cor-
related with AUROC than with Average Precision.

Of particular note is the correlation between At-
tention Entropy and the global and local similari-
ties: Attention Entropy is usually slightly positively
correlated with Global Similarity and slightly neg-
atively correlated with Local Similarity. Though
it is still unclear why this is, it may have to do
with a model’s ability to localize seeing as this is
more pronounced in models that perform better
localization.

Finally, it is interesting that Retrained w/ Ab-
normal model has a somewhat negative correlation
between Attention Entropy and all of the localiza-
tion metrics, potentially indicating a connection
between examples of abnormalities and Attention
Entropy, but more work should be done to probe
this further.

A.9 Precision and IOU at different Thresholds

Finally, we present Precision (Table 13) and IOU
(Table 14) at different thresholds to get a better
sense for the differences in the attention between
each model. (Some IOU scores for GLoRIA are
repeated here to allow for an easier comparison.) It
is also clear that the Masking Model performs the
best when only taking the top 5 or 10 percent, but
GLOoRIA starts producing similar or better scores
at less strict thresholds. The precision scores above
70% here for Retrained w/ Masking, which far
exceed any other model’s scores at any threshold,
give the sense that this model is quite effective at
localization, but the dropoff when looking at the
subsets do indicate the need for future work in this
area.
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Figure 7: Same as Figure 4 for the last two subsets.

Model Synth Abnormal One Lung MDRB
AUROC Avg. P AUROC Avg. P AUROC Avg. P
Retrained X 57.68 39.40 55.84 30.88 58.60 3291
57.18 39.08 56.52 31.17 57.87 32.29
w/ Abnormal X 62.24 43.63 60.52 36.71 59.08 33.56
58.20 41.80 55.98 34.39 57.44 32.74
w/ Masking X 65.70 49.78 62.07 40.41 64.73 39.95
64.37 49.62 61.51 41.44 63.56 39.76
w/ Randsent X 41.10 28.16 41.15 22.45 41.47 21.60
39.84 27.73 36.81 20.76 39.73 20.77

Table 7: Localization performance for each retrained model on the subsets.

Model Abnormal One Lung MDRB
GLoRIA 7.71 8.09 8.68
Retrained 5.31 4.63 5.28
Retrained w/ Abnormal 6.89 6.01 6.46
Retrained w/ Masking 10.54 9.94 11.27
Retrained w/ Rand Sents  0.01 0.01 0.01

Table 8: Average Random Attention KL Divergences on the subsets

Model One Lung MDRB
local global local global
GLoRIA 404 744 536 76.6
Retrained 744 88.1 74.6  86.5
Retrained w/ Abnormal 83.2 849 70.2  76.2
Retrained w/ Masking 61.4 86.7 675 845
Retrained w/ Rand Sents 44.6  59.6 50.8 484

Table 9: Candidate Selection Accuracy for other subsets.

Model All Abnormal One Lung MDRB
GLoRIA 5.828 5.841 5.833 5.822
Retrained 5.825 5.833 5.841 5.827
Retrained w/ Abnormal 5.839 5.840 5.849 5.845
Retrained w/ Masking 5.791 5.809 5.815 5.793
Retrained w/ Rand Sents  5.889 5.889 5.889 5.889

Table 10: Attention Entropy
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Original Sentence

Figure 9: A Average Precision for retrained models.

Condition

Context Location

Synthetic Sentence

Bulging mediastinum projecting  low lung vol- left lung, right lung There is low lung volumes in the
over the left main bronchus and  umes lungs.
aortopulmonic window could be
due to fat deposition exagger-
ated by low lung volumes.
In the upper lobes, there is the abnormal ['4 left mid lung zone, left upper The left lung, upper lung zones,
suggestion of emphysema. lung zone, left lung, right mid  and mid lung zones are
lung zone, right upper lung zone  abnormal. There is
copd/emphysema left mid lung zone, left upper copd/emphysema in the lungs,
lung zone, left lung, right mid  upper lung zones, and mid lung
lung zone, right upper lung zone  zones.
Small left pleural effusion with  atelectasis 4 left costophrenic angle There is atelectasis in the left
atelectasis. costophrenic angle.
No focal consolidation pneumonia X left lung, right lung There is no pneumonia. There
concerning for pneumonia. consolidation X right lung is no consolidation.
abnormal 4 left lower lung zone, left lung, The lungs and lower lung zones
Mild bibasilar atelectasis. right lung, right lower lung zone  are abnormal. There is
atelectasis ['4 left lower lung zone, left lung, atelectasis in the lungs and
right lung, right lower lung zone  lower lung zones. There is lung
lung opacity 4 left lower lung zone, left lung, opacity in the lungs and lower

right lung, right lower lung zone

Table 11: Examples of Synthetic Sentences.
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Local Similarity =~ Global Similarity ~Attn Entropy AUROC Avg Precision P@10% I0U@10%
GLoRIA
Global Similarity 0.059
Attn Entropy -0.275 0.220
AUROC 0.053 0.040 0.089
Avg Precision 0.116 0.004 -0.006 0.592
P@10% 0.154 -0.028 -0.041 0.593 0.970
1I0U@10% -0.168 -0.012 -0.238 0.152 0.177 0.168
Is Abnormal -0.307 -0.007 0.158 0.033 -0.092 -0.100 0.059
Retrained
Global Similarity 0.410
Attn Entropy -0.023 0.189
AUROC 0.384 0.106 -0.117
Avg Precision -0.050 -0.028 -0.076 0.203
P@10% -0.027 -0.013 -0.067 0.163 0.927
I0U@10% 0.431 0.232 0.000 0.588 -0.012 -0.090
Is Abnormal -0.119 0.163 0.099 -0.080 -0.131 -0.116 0.083
Retrained w/ Abnormal
Global Similarity 0.488
Attn Entropy -0.212 0.086
AUROC 0.309 0.204 -0.298
Avg Precision 0.135 0.169 -0.203 0.499
P@10% 0.206 0.219 -0.206 0.562 0.821
I0U@10% 0.378 0.296 -0.259 0.557 0.282 0.489
Is Abnormal 0.286 0.188 0.020 0.107 -0.064 0.025 0.303
Retrained w/ Masking
Global Similarity 0.138
Attn Entropy -0.324 0.250
AUROC -0.162 0.229 -0.046
Avg Precision 0.251 0.038 -0.175 0.211
P@10% 0.223 0.151 -0.156 0.236 0.927
I0U@10% -0.129 0.116 -0.057 0.435 0.113 0.260
Is Abnormal -0.062 0.109 0.144 0.080 -0.052 0.031 0.221
Table 12: Correlations for positive pairs. Any number over 0.1 is bolded.
Model Synth All Abnormal One Lung MDRB
GLORIA X 58.58/59.20/54.93 53.63/54.60/51.54 42.65/43.55/39.82 40.98/41.46/37.90
58.88/59.19/55.23 57.28/57.06/50.95 50.87/48.12/38.80 42.77/43.30/38.39
Retrained X 46.54/41.07/39.78 46.53/37.20/35.20 35.86/29.05/28.03 38.89/30.61/27.73
45.01/40.51/39.92  43.04/35.72/35.74 33.20/29.09/29.10 34.84/29.73/27 .91
/ Ab | 40.13/39.58/44.11 49.27/40.56/39.76 45.22/35.10/31.44 32.08/28.84/30.55
Wi Abnorma 35.78/35.19/43.24  42.34/33.56/38.29  39.90/29.20/29.73  28.52/25.73/29.96
/ Maski 71.38/63.68/44.90 74.19/65.01/39.72 64.26/53.01/31.19 55.22/48.93/32.01
Wi NlaskIng 73.97/64.99/44.76  74.59/63.65/39.52  66.36/53.28/31.74 56.73/48.83/31.76
w/ Rand Sents 14.54/14.98/23.22 15.66/15.37/22.26 11.66/11.61/17.05 9.31/10.18/16.61
8.68/8.94/20.00 13.62/12.92/21.15  4.78/4.32/12.75 4.67/5.68/14.81
Table 13: Precision at 5/10/30%
Model Synth All Abnormal One Lung MDRB
GLORIA X 3.79/6.69/20.10 4.10/7.25/19.06 4.42/8.05/20.55 3.56/6.36/16.92
4.92/9.12/23.82  7.17/13.28/29.12  7.56/12.95/27.68  4.90/8.55/20.29
Retrained X 5.59/7.61/7.99 6.48/8.54/8.64 5.95/7.15/7.37 5.98/8.57/8.84
etraine 5.50/7.11/7.65  6.24/7.39/7.53 5.47/6.31/655  5.60/7.64/8.03
X 4.27/6.48/7.18 5.87/9.30/9.51 6.92/10.31/10.24 4.53/6.57/7.08
w/ Abnormal
4.21/5.66/6.41 5.60/7.49/7.61 6.66/8.15/8.35 4.41/5.77/6.11
/ Maskin X 7.76/15.43/20.60 9.01/18.12/22.76  8.98/17.62/20.76 8.40/14.93/18.83
W & 9.41/16.74/21.61 11.35/19.12/22.00 10.73/18.29/20.26 9.45/15.70/19.25
X 0.35/0.76/5.51 0.36/0.62/4.85 0.43/0.76/4.68 0.16/0.59/4.46
w/ Rand Sents
0.45/0.94/7.35 0.47/0.75/5.90 0.66/1.11/7.18 0.22/0.70/6.22

Table 14: IOU at 5/10/30%
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