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ABSTRACT

The human cerebral cortex encodes rich neurobiological information that is es-
sential for understanding brain development, aging, and disease. Although vari-
ous cortical representation learning methods have been proposed, existing models
are typically restricted to stage-specific cohorts and lack generalization across the
lifespan. While recent vision-language models offer a promising direction, build-
ing a unified framework for cortical representation faces three key challenges:
(1) the non-Euclidean manifold structure of cortical surfaces, (2) homogenization
of individual folding patterns induced by registration, and (3) distribution shifts of
cortical features across the lifespan. To address these issues, we present CortiLife,
the first unified vision-language framework for lifespan-aware cortical represen-
tation learning. Specifically, CortiLife introduces a surface tokenizer that inte-
grates icosahedron-based surface patchification with multi-level patch encoding
to transform complex cortical manifolds into compact token representations. The
multi-level encoding incorporates three complementary streams that capture local
topology, global interactions, and patch-wise distributional patterns, effectively
mitigating the challenges of homogenization and distribution shifts. Furthermore,
CortiLife integrates masked self-distillation with metadata language prompting,
embedding information such as age, sex, health status, and attribution type into
the text encoder to better capture individual-specific cortical representations while
enabling both age-aware and modality-aware modeling. Extensive experiments on
downstream tasks, including two encoder-frozen tasks (age prediction and cortical
parcellation) and four encoder fine-tuning tasks (brain disorder diagnosis), demon-
strate that CortiLife consistently outperforms state-of-the-art baselines across dif-
ferent age stages and modality types, underscoring its effectiveness and general-
ization ability.

1 INTRODUCTION

Representations of the cerebral cortex, which encode rich neurobiological information in met-
rics such as cortical thickness (CT), surface area (SA), and mean curvature (MC), are critical for
both cognitive neuroscience and clinical diagnostics Hettwer et al. (2022); Storsve et al. (2014);
de Vareilles et al. (2023). These structural features serve as powerful biomarkers, offering insights
into neurodevelopmental and aging trajectories Dickerson & Wolk (2012); Fjell et al. (2015), as well
as indicating pathologies associated with disorders like Autism Spectrum Disorder (ASD) Ecker
et al. (2013) and Attention-Deficit/Hyperactivity Disorder (ADHD) You et al. (2024). Thus, learning
effective cortical representations is essential for advancing personalized brain mapping and enabling
computer-aided disease detection.

Recent advances in deep learning have introduced powerful tools for this task. Spherical CNNs Zhao
et al. (2019; 2021) have been developed to respect the spherical topology of the cerebral cortex,
while Surface Vision Transformers Dahan et al. (2022) have shown success in modeling long-range
dependencies across cortical patches. Despite their progress, they share a critical limitation. These
models are typically trained on narrow age cohorts, making them unable to account for the profound
structural dynamics that the brain exhibits across the human lifespan. Therefore, developing a uni-
fied framework for learning cortical representations that bridge diverse developmental stages across
the lifespan remains a key and unsolved challenge.
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Figure 1: Challenges in universal cortical representation: (a) Non-Euclidean manifold structure; (b)
Registration-induced homogenization; (c) Distribution shifts across the lifespan.

Concurrently, vision-language models (VLMs), exemplified by CLIP Radford et al. (2021), have
demonstrated remarkable transfer learning capabilities by aligning large-scale image and text rep-
resentations. This paradigm has also shown great promise in medical imaging, with models such
as BiomedCLIP Zhang et al. (2023) and subsequent work Petersen et al. (2025); Lai et al. (2024)
achieving state-of-the-art performance by linking visual data with textual medical records. How-
ever, extending this success to the cortical surface data is non-trivial, facing the following three
challenges: (i) Non-Euclidean manifold structure: As shown in Figure 1(a), the cerebral cortex
is a highly folded non-Euclidean manifold with intricate topological and geometric properties. This
structure fundamentally differs from conventional 2D grids or 3D volumetric data, making stan-
dard convolution-based or grid-based vision models ineffective at directly capturing cortical geom-
etry and local spatial patterns. (ii) Registration-induced homogenization: Standard preprocessing
pipelines typically register individual cortical surfaces to a common template to enable cross-subject
comparability, as shown in Figure 1(b). However, this registration inevitably reduces the distinc-
tiveness of individual gyral-sulcal folding patterns, resulting in higher similarity of corresponding
patches across subjects and thus hindering individualized representation learning. (iii) Distribution
shifts across the lifespan: The cerebral cortex undergoes dynamic and complex structural changes
across the human lifespan. These developmental variations give rise to diverse distributional shifts
in different cortical features (e.g., CT, SA, and MC) at different age stages (as shown in Figure
1(c)). This poses significant challenges for achieving unified lifespan-aware cortical representation
learning.

To address these challenges, we propose CortiLife, the first unified vision-language framework
for cortical representation learning across the entire lifespan. The core components of CortiL-
ife are a surface tokenizer and a vision-language model (VLM). The surface tokenizer integrates
icosahedron-based surface patchification with multi-level patch encoding to transform complex cor-
tical manifolds into compact token representations. In particular, the multi-level patch encoding
module incorporates three complementary streams that jointly capture local topology, global in-
teractions, and patch-wise distributional patterns, thereby mitigating the difficulties of representa-
tion learning caused by registration-induced homogenization and lifespan-related distribution shifts.
For vision-language modeling, we adopt masked self-distillation representation learning as the vi-
sual backbone and introduce metadata language prompting, embedding information such as age,
sex, health status, and feature type into the text input. This design allows the model to better cap-
ture individual-specific cortical representations while enabling both development-aware and feature-
aware modeling. Extensive experiments on three primary surface-based tasks, including brain dis-
order classification, age prediction, and cortical parcellation, consistently show the state-of-the-art
performance, demonstrating superior generalization across the cortical modalities and the entire
lifespan.

2 RELATED WORK

2.1 CORTICAL REPRESENTATION LEARNING METHOD

The cortical surface is a highly folded non-Euclidean manifold, which conventional 2D and 3D
CNNs cannot effectively model. To address this, Spherical U-Net Zhao et al. (2019) introduced

2
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Figure 2: Overview of the CortiLife framework, which is composed of three main components:
surface tokenizer, masked self-distillation learning, and metadata language prompting. The sur-
face tokenizer applies an icosahedron-based surface patchification strategy, followed by multi-level
patch encoding, to transform the complex cortical data into compact token representations. Masked
self-distillation learning and metadata language prompting form the vision-language model, enable
generalized representation learning of cortical data across the entire lifespan and across different
modalities.

convolution and pooling operations on resampled cortical meshes, achieving promising results in
parcellation and developmental mapping. Its extension, Spherical Deformable U-Net Zhao et al.
(2021), further incorporated deformable convolutions to better capture folding variability. More re-
cently, transformer-based models Dahan et al. (2022); Cho et al. (2022) have leveraged self-attention
on the sphere, advancing tasks such as infant cortical surface quality assessment and outperforming
CNN-based baselines. Nevertheless, these approaches remain limited to specific cohorts or devel-
opmental stages, lacking the ability to generalize across the entire lifespan.

2.2 VISION-LANGUAGE MODEL

Contrastive Language-Image Pre-training (CLIP) Radford et al. (2021) has established a foundation
for multimodal learning by enabling robust image-text alignment and generalization. In medical
imaging, CLIP-style pretraining has been adapted to modalities such as X-ray Wang et al. (2022b);
You et al. (2023), MRI Avci et al. (2025), and CT You et al. (2025), showing promise in tasks
like report generation Liu et al. (2024) and zero-shot inference Huang et al. (2021). Large-scale
efforts such as UniMed-CLIP Khattak et al. (2024) further extend CLIP to diverse modalities, while
segmentation-oriented extensions like CLIPSeg Lüddecke & Ecker (2022) and CRIS Wang et al.
(2022a) have broadened its applications. Nevertheless, these approaches remain focused on 2D or
volumetric images, leaving the non-Euclidean.

3 METHODOLOGY

In this section, we describe the proposed CortiLife, with the overall framework illustrated in Figure
2. It is composed of three core modules: 1) a surface tokenizer, 2) masked self-distillation vision
representation learning, and 3) metadata language prompting.

3.1 SURFACE TOKENIZER

Before constructing the VLM, it is crucial to transform cortical surface data into compact token rep-
resentations. Unlike conventional patchification methods for 2D or 3D images in Euclidean space,
cortical surfaces lie on a non-Euclidean manifold, making them incompatible with regular square

3
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or cubic partitioning. Furthermore, cortical representation learning faces two major challenges:
registration-induced homogenization and distributional shifts across different ages and modalities,
which prevent tokenization strategies designed for natural images from producing effective represen-
tations. To overcome these issues, we introduce a surface tokenizer composed of two key modules:
an icosahedron-based surface patchification module and a multi-level patch encoding module. In
our work, we denote the cortical surface data as xc ∈ RNv∗1, where Nv is the number of vertices.
The value at each vertex encodes a morphological attribute, such as CT, MC, or SD. A cortical map
containing a specific attribute is referred to as a cortical modality.

3.1.1 ICOSAHEDRON-BASED SURFACE PATCHIFICATION

Unlike Euclidean 2D images or 3D volumetric data, the cortical surface map cannot be partitioned
into regular square or cubic patches. To address this, we adopt an icosahedron-based subdivision
strategy, which divides the surface into local triangular facets and subsequently aggregates them into
regular triangular patches Cho et al. (2022). Specifically, given cortical data with Nv vertices, we
reorganize all surface vertices such that each patch corresponds to a triangular structure containing
an equal number of vertices, thereby forming P patches. Through this process, the original cortical
map xc ∈ RNv∗1 is partitioned into a triangular patch set xp ∈ RP∗Np , where Np represents the
number of vertices in each patch. In this work, we set P = 640, meaning that each hemisphere is
partitioned into 320 patches.

3.1.2 MULTI-LEVEL PATCH ENCODING

After patchification, we design a multi-level patch encoding strategy with three complementary
streams that capture local topology, global interactions, and patch-wise distributional patterns for
each patch, thereby mitigating the challenges of registration-induced homogenization and distribu-
tional shifts across the lifespan during the representation learning.

Local Topology Encoding. The local topology encoding aims to focus on capturing fine-grained
geometric and morphological cues within each patch, thereby preserving localized cortical details.
Such fine-grained representations establish a foundation for identifying subtle variations across in-
dividuals and developmental stages. Specifically, we employ a spherical convolution-based surface
encoder, termed Spherical ResBlock, to capture localized spatial information within each patch
Zhao et al. (2019). This module is composed of an initial stem layer, four batch normalization
layers, and four spherical convolution layers with residual connections. For each input triangular
patch xp ∈ R1∗Np , it produces the corresponding embedding eLp ∈ R1∗Mv , where Mv represents
the feature dimensions of local topology encoding.

Global Interaction Encoding. Global interaction encoding aims to model long-range dependencies
across patches, enabling the representation to integrate broader contextual information across the
cortical surface. Specifically, we employ four layers of self-attention followed by four feedforward
blocks to capture global interaction representations across all the patches. Finally, this module pro-
duces the corresponding global interaction representations for each patch, denoted as eGp ∈ R1∗Mp ,
where Mp represents the feature dimensions of global interaction encoding. These representations
provide a holistic perspective for characterizing structural variations of the brain across the entire
lifespan and across individuals.

Patch-wise Distribution Encoding. Considering the feature distribution shifts across different age
groups and different modalities as illustrated in Figure 1(c), we specially design a patch-wise dis-
tribution encoding strategy, named scale-adaptive encoder. As shown in Figure 2(b3), its core idea
is to introduce a set of scale bases, each corresponding to a different statistical level of the feature
distribution. Patch representations from all ages are projected onto these shared scale bases and then
fused adaptively based on their original statistics. This design simultaneously unifies cross-age dis-
tribution levels and preserves age-specific distribution characteristics. The detailed implementation
process is described as follows. First, it computes statistical descriptors xm, including the mean
(xpm ∈ RP∗1) and standard deviation (xps ∈ RP∗1), across all the vertices within each patch, and
adaptively projects them into n scale spaces by using the following formulation:

zi(xm) = LN(xm ·wi + ki · bi), i ∈ [1, ..., n], xm ∈ [xpm, xps] (1)

where LN denotes Layer Normalization, ki is a predefined scale value, wi and bi are learnable
weighting and bias parameters at the i-th scale space. The term ki ∗ bi serves as a scale-dependent
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bias that maps the mean and variance descriptors into distinct scale spaces. Through Equation 1,
we obtain the representation of distributional descriptors zi of xm at the i-th scale space. Second,
we design a scale-adaptive weighting mechanism to aggregate these representations across n scales,
which is formatted as

y(xm) =

n∑
i=1

αi(xm) · zi(xm), where αi(xm) =

∣∣∣log−1
(

|xm|
ki

+ ϵ
)∣∣∣∑n

j=1

∣∣∣log−1
(

|xm|
kj

+ ϵ
)∣∣∣ . (2)

where the weighting function αi(.) implements a gating mechanism over a set of predefined scales
{k1, ..., kn}. The weighting function αi(.) integrates the representations zi(xm) according to n
scales to learn embeddings in multi-scale distribution space, thereby mitigating diverse age-related
distribution shifts. In this step, scales that are more compatible with the patch’s intrinsic distribution
are assigned larger weights, enabling the encoder to better preserve the individual statistical patterns.
By using the above two steps, we obtain the final patch-level distribution pattern representation eSp ∈
RP∗Ms , where Ms represents the feature dimensions of distribution encoding. Detailed discussion
of this component is given in Appendix A.4.

Embedding Fusion. After obtaining patch representations at three different levels, we concatenate
them along the channel dimension and pass the concatenated features through a linear layer to enable
channel-wise interactions, yielding the final output of the surface tokenizer for each patch, denoted
as etokenizer ∈ R1∗(Mv+Mp+Ms∗2). In this work, the Mv , Mp, and Ms are set to 256, 256, and 32,
respectively.

3.2 MASKED SELF-DISTILLATION VISION REPRESENTATION LEARNING

Studies have shown that the cerebral cortex exhibits substantial spatial redundancy Zhao et al.
(2023), which motivates our use of an MAE-based strategy for representation learning. However,
our goal is not only cortical reconstruction but also semantic alignment with metadata through a
CLIP-based objective. While random masking is effective for reconstruction, it does not ensure that
developmentally informative regions remain visible, which is critical for effective alignment. To
overcome this limitation, we adopt a masked self-distillation strategy in a teacher-student frame-
work, where the teacher provides semantically enriched attention guidance and the student focuses
on patches carrying high-level developmental information. This design allows the model to achieve
both high-quality reconstruction and more effective developmental semantic alignment. Specifi-
cally, both teacher and student networks share the same 10-layer Transformer architecture, with the
teacher updated through the exponential moving average (EMA) of the student. The teacher net-
work processes the full set of patch tokens to capture holistic cortical representations, whereas the
student network learns from a masked subset of cortical patches. The masked patches in the student
network are determined based on self-attention scores computed from the representations generated
by the teacher. Concretely, given the learned representations from the teacher network, we compute
an attention score for each patch as follows:

AttScorej =
1

H

H∑
i=1

Softmax

(
Qi ·Ki(j)√

d

)
, (3)

where H denotes the total number of attention heads across 10 ViT blocks, Qi is the query vector
of the [CLS] token of the i-th attention head, Ki(j) represents the key vector of patch j of the i-th
head. We use this development-aware [CLS] (optimized by following metadata language prompting)
as a query over patch tokens and retain regions with the highest 25% attention weights, ensuring
that the student networks learn from the most informative cortical regions. The global embeddings
obtained from the teacher and student networks are denoted as Eteacher and Estudent. For the
detailed discussion of the effectiveness of this component, please refer to Appendix A.6.

In this module, we design two loss functions, including reconstruction loss Lrecons and alignment
loss Lcls. The reconstruction loss Lrecons is employed to ensure that the student network accurately
recovers the fine-grained details of cortical data, and is defined as:

Lrecons =
1

|M|

∑
i∈M

|x̂i − xi|2 + 1
|V|

∑
i∈V

|x̂i − xi|2, (4)
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where M and V denote vertices of masked and visible patches.

Alignment loss, Lcls, is designed to maintain global semantic consistency between Eteacher and
Estudent, since both networks are trained to extract features from the same cortical data. In this
work, we employ the KL divergence to enforce distributional alignment between the two represen-
tations, which is defined as:

Lcls = λ ·KL
(
p(t) ∥ p(s)

)
, (5)

where p(t) and p(s) represent the distribution of Eteacher and Estudent, respectively.

3.3 METADATA LANGUAGE PROMPTING

To ensure robust generalization across the lifespan and different modalities, we incorporate lifespan-
aware metadata (age, sex, health status, and feature type) into the training process, guiding the vision
encoder to capture high-level developmental semantics. For semantic modeling, we adopt PubMed-
BERT Gu et al. (2021), a domain-specific language encoder pretrained on large-scale biomedical
text. By providing a fixed semantic space, PubMedBERT generates discriminative embeddings for
similar metadata and enhances the alignment of developmental information. The textual input is for-
mulated using the template: “The age of the subject is [age]. The gender of the subject is [gender].
Health status: [status]. Attribute: [feature type].”.

For the objective of vision-language modeling, we employed the classical contrastive learning loss
function. The loss function is defined based on the cosine similarity between a vision embedding
Ei

student and a text embedding Tj , formulated as:

logitsi,j =
si,j
τ

, where si,j =
Ei

student · Tj

∥Ei
student∥ ∥Tj∥

(6)

The logits will be scaled by a learnable temperature τ . And the loss function of image-to-text
matching (i.e., LI2T ) and text-to-image matching (i.e., LT2I ) are defined as follows.

LI2T = − 1

N

N∑
i=1

log

(
exp(logitsi,i)∑N
j=1 exp(logitsi,j)

)
,LT2I = − 1

N

N∑
i=1

log

(
exp(logitsi,i)∑N
j=1 exp(logitsj,i)

)
(7)

Finally, we compute the average loss of LI2T and LT2I .

Lclip = (LI2T + LT2I)/2 (8)

3.4 TOTAL LOSS FUNCTION

The total loss combines the reconstruction loss Lrecons and the alignment loss Lcls from masked
self-distillation vision representation learning, and the image-to-text matching loss Lclip, which are
formatted as

L = Lclip + Lcls + Lrecons (9)

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

In this study, we collected large-scale imaging data spanning the entire lifespan for model training
and evaluation, comprising nine datasets in total. The overall statistics of each dataset are summa-
rized in Table 1. In this study, we used three representative cortical modality data as examples for
model generalization evaluation, including cortical thickness (CT), mean curvature (MC), and sulcal
depth (SD). After preprocessing, each cortical data set contains 81,924 vertices in total, with 40,962
vertices in each hemisphere. More detailed dataset descriptions and preprocessing procedures are
provided in the Appendix A.2.
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Table 1: Summary of dataset information.
ID Dataset Samples Age Gender (M/F) Diagnosis (case/control)

1 DHCPMakropoulos et al. (2018) 887 26-45 weeks 478/409 0/887
2 CHD 229 1-3 years 123/106 128/101
3 CBCPXu et al. (2024) 252 1-6 years 133/119 0/252
4 CCNPFan et al. (2023) 559 4-18 years 304/255 0/559
5 ADHD-200Bellec et al. (2017) 972 7-27 years 599/373 388/584
6 ABIDE II 1,114 5-64 years 856/258 521/593
7 ABIDE I 1,112 6-64 years 948/164 539/573
8 HCPVan Essen et al. (2013) 1,206 22-36 years 550/656 0/1,206
9 ADNIJack Jr et al. (2008) 7,597 55-95 years 4,185/3,412 5,438/2,159
10 Total 13,928 26(w)-95(y) 8176/5752 7014/6914

Table 2: Performance comparison on downstream tasks under the encoder-frozen setting.
Task (a) Age prediction (b) Cortical parcellation

Methods MAE DICE
CT MC SD CT MC SD

CLIP 3.603±0.319 3.228±0.341 3.204±0.119 0.721±0.028 0.760±0.018 0.919±0.007
ACLIP 3.243±0.020 3.193±0.106 3.155±0.052 0.636±0.006 0.672±0.015 0.745±0.027

DetailCLIP 3.156±0.105 3.112±0.047 3.137±0.091 0.785±0.008 0.804±0.006 0.832±0.014
CARZero 5.682±1.463 5.195±1.816 5.914±1.592 - - -
CortiLife 3.124±0.078 2.990±0.120 3.006±0.119 0.905±0.005 0.925±0.003 0.957±0.001

4.2 EXPERIMENTAL SETUP

Environmental setup. For pretraining, CortiLife and all other pretrained baseline models were
pretrained using AdamW (lr=5e-4, weight decay=1e-4) with batch size of 64 for 10 epochs on
four NVIDIA 3090 GPUs. For the downstream fine-tuning, we employed the stochastic gradient
descent (SGD) optimizer with a learning rate of 0.001 and a batch size of 40, and conducted on a
single NVIDIA 3090 GPU for 200 epochs. The selection of mask ratio in masked self-distillation
framework is shown in the Table 10 in Appendix.

Encoder Frozen on Downstream Tasks. All methods were pretrained on eight datasets, including
DHCP, CHD, CBCP, CCNP, ADHD-200, ABIDE-II, ABIDE-I, and ADNI. HCP was used for the
two downstream-task evaluations, including age prediction and cortical parcellation. We kept the
vision encoder fully frozen and trained only the MLP head for age prediction and cortical parcella-
tion. For the training of MLP module, we use 80% of the data for training and the remaining 20%
for testing. Performance for age prediction was evaluated using mean absolute error (MAE), while
cortical parcellation was benchmarked against the DKT-40 ground truth using the DICE coefficient.

Encoder Fine-tuning on Downstream Tasks. We evaluate the model by encoder fine-tuning on
four brain disease diagnosis tasks spanning different age groups, including CHD dataset(Congenital
heart disease(CHD) vs Healthy controls), ABIDE I (Autism Spectrum Disorder (ASD) vs Healthy
controls), ADHD-200(Attention Deficit and Hyperactive Disorder(ADHD) vs Healthy controls) and
ADNI(Alzheimer’s disease(AD) vs Healthy controls). In this experiment, the baselines include
both non-pretrained and pretrained models. For the non-pretrained models, we use 80% of the data
for training and the remaining 20% for testing. For the pretrained models, we first pretrain on all
datasets except the target dataset, and then fine-tune on 80% of the target dataset while reserving
the remaining 20% for testing. All models with pretraining share the same setting about pretraining
datasets and downstream dataset. Accuracy (ACC) and area under the ROC curve (AUC) are used as
evaluation metrics. In addition, we evaluate the performance of CortiLife with different proportions
of data for fine-tuning, including 20% and 40%. The results are reported in Table 6 in the Appendix
A.3.

4.3 ENCODER FROZEN ON DOWNSTREAM TASKS

In this section, we evaluate the performance of CortiLife on downstream tasks under frozen-vision-
encoder settings. We benchmark our framework against four state-of-the-art baselines, including
CLIP Radford et al. (2021), ACLIP Yang et al. (2023), DetailCLIP Monsefi et al. (2024), and
CARZero Lai et al. (2024). Due to issues in CARZero’s alignment mechanism, we did not include it
as a baseline for the parcellation task. All methods were implemented under the same experimental

7
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Figure 3: Visualization comparison of cortical parcellation. Our method produces results that are
clearly superior to other approaches in both regional accuracy (e.g., the cingulate gyrus highlighted
in yellow circles) and boundary details (e.g., the inferior temporal gyrus highlighted in red circles).
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Figure 4: Visualization of representation embeddings from CortiLife in the ADNI dataset.

setup as ours for a fair comparison. The results are summarized in Table 2. In addition, we further
visualize the embedding distributions to assess their effectiveness.

Age Prediction. As shown in Table 2(a), CortiLife achieves MAE values of 3.124, 2.990, and
3.006 on CT, MC, and SD, respectively, surpassing all baselines. These results indicate that the
embeddings produced by CortiLife effectively capture structural characteristics associated with age
information, thereby providing a faithful representation of the dynamic processes underlying brain
changes.

Cortical Parcellation. Table 2(b) shows that CortiLife achieves DICE scores of 0.905, 0.925, and
0.957 on CT, MC, and SD modalities, respectively, surpassing the second-best models by 0.120,
0.121, and 0.038. In addition, the visualization results in Figure 3 demonstrate that cortical par-
cellations derived from our model’s representations exhibit substantially higher accuracy in both
regional delineation and boundary localization compared to SOTA methods. This result indicates
that the embeddings learned by our model capture more fine-grained information and exhibit higher
fidelity.

Visualization of Embeddings. For the pretrained model, we obtain the embeddings by feeding only
the cortical surface features into the vision encoder, without providing any text prompts. We employ
t-SNE to visualize the distribution of representations learned by CortiLife. Using the ADNI dataset
as an example, we illustrate the representational differences across different age groups, genders,
and disease categories. The results are shown in Figure 4. Figure 4(a) demonstrates that our method
successfully captures age-related information for each cortical modality data, exhibiting a smooth
gradient along the age continuum. Figures 4(b) and (c) further indicate that the model not only
learns gender-specific heterogeneity in developmental patterns but also extends this heterogeneity to
disease states, thereby highlighting sex-specific disease trajectories.
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Table 3: Performance comparison on downstream brain disease diagnosis tasks under fine-tuning
setting. CT, MC, and SD represent different cortical modality data.

Modality Methods Pretrain
CHD

(Infancy)
ADHD

(Adolescence&Adult)
AD

(aging)
ACC AUC ACC AUC ACC AUC

(a) CT

SphericalCNN % 0.786±0.028 0.780±0.030 0.674±0.007 0.688±0.021 0.926±0.012 0.956±0.009
SphericalUNET % 0.787±0.021 0.789±0.029 0.668±0.018 0.668±0.018 0.917±0.009 0.965±0.007

WSSADN % 0.792±0.021 0.821±0.045 0.681±0.010 0.669±0.027 0.926±0.008 0.961±0.006
NeuroExplainer % 0.760±0.047 0.812±0.030 0.666±0.027 0.679±0.021 0.832±0.012 0.885±0.024

SurfaceVisionTransformer % 0.785±0.04 0.796±0.017 0.671±0.010 0.673±0.020 0.819±0.017 0.877±0.023
CLIP " 0.790±0.052 0.814±0.010 0.681±0.010 0.694±0.016 0.92±0.005 0.978±0.012

ACLIP " 0.770±0.012 0.795±0.019 0.652±0.015 0.648±0.033 0.922±0.011 0.975±0.007
DetailCLIP " 0.696±0.089 0.821±0.020 0.637±0.024 0.641±0.029 0.910±0.010 0.980±0.005
CARZero " 0.777±0.001 0.797±0.006 0.628±0.006 0.604±0.027 0.908±0.025 0.979±0.001
CortiLife " 0.806±0.011 0.823±0.026 0.697±0.015 0.730±0.007 0.928±0.002 0.981±0.001

(b) MC

SphericalCNN % 0.622±0.012 0.665±0.057 0.616±0.009 0.607±0.039 0.928±0.013 0.957±0.014
SphericalUNET % 0.641±0.037 0.693±0.060 0.628±0.018 0.616±0.020 0.927±0.005 0.960±0.007

WSSADN % 0.642±0.060 0.721±0.064 0.630±0.029 0.617±0.052 0.921±0.010 0.955±0.014
NeuroExplainer % 0.569±0.027 0.605±0.076 0.628±0.010 0.647±0.016 0.755±0.069 0.805±0.062

SurfaceVisionTransformer % 0.647±0.042 0.722±0.063 0.623±0.003 0.582±0.015 0.831±0.025 0.889±0.020
CLIP " 0.576±0.037 0.555±0.072 0.595±0.021 0.586±0.023 0.918±0.010 0.973±0.008

ACLIP " 0.578±0.044 0.609±0.065 0.585±0.058 0.601±0.030 0.920±0.005 0.968±0.004
DetailCLIP " 0.614±0.046 0.665±0.078 0.611±0.010 0.606±0.003 0.916±0.015 0.987±0.002
CARZero " 0.578±0.022 0.660±0.055 0.609±0.005 0.536±0.037 0.928±0.005 0.985±0.001
CortiLife " 0.667±0.031 0.776±0.014 0.632±0.005 0.618±0.018 0.939±0.011 0.973±0.002

(c) SD

SphericalCNN % 0.672±0.045 0.719±0.033 0.626±0.021 0.592±0.024 0.925±0.010 0.958±0.010
SphericalUNET % 0.682±0.049 0.732±0.034 0.629±0.012 0.580±0.037 0.933±0.010 0.969±0.006

WSSADN % 0.721±0.027 0.739±0.039 0.621±0.012 0.595±0.023 0.935±0.012 0.975±0.015
NeuroExplainer % 0.629±0.058 0.792±0.016 0.644±0.013 0.627±0.023 0.753±0.011 0.827±0.004

SurfaceVisionTransformer % 0.673±0.039 0.653±0.061 0.582±0.015 0.545±0.026 0.831±0.046 0.891±0.042
CLIP " 0.614±0.063 0.694±0.026 0.643±0.023 0.653±0.007 0.956±0.005 0.985±0.007

ACLIP " 0.629±0.025 0.614±0.016 0.592±0.062 0.621±0.031 0.942±0.016 0.986±0.007
DetailCLIP " 0.696±0.055 0.732±0.044 0.614±0.022 0.616±0.036 0.948±0.011 0.989±0.001
CARZero " 0.656±0.047 0.678±0.022 0.607±0.005 0.526±0.063 0.942±0.017 0.987±0.001
CortiLife " 0.739±0.033 0.799±0.073 0.651±0.010 0.657±0.017 0.972±0.002 0.991±0.002

4.4 ENCODER FINE-TUNING ON DOWNSTREAM TASKS

We further evaluate the fine-tuning performance of CortiLife using disease classification as a case
study. Experiments are conducted across different age groups (infants, adolescents, adult and elderly
subjects) and morphological modalities (cortical thickness, mean curvature, and sulcal depth). We
compare our framework against nine state-of-the-art baselines. Among them, five are non-pretrained
methods, including Spherical CNN Zhao et al. (2019), Spherical U-Net Zhao et al. (2019), WS-
SADN Xue et al. (2024), Surface Vision Transformer Dahan et al. (2022), and NeuroExplainer Xue
et al. (2023); while four are pretrained + fine-tuning methods, including CLIP Radford et al. (2021),
ACLIP Yang et al. (2023), DetailCLIP Monsefi et al. (2024), and CARZero Lai et al. (2024). All
methods were implemented under the same experimental setup as ours for a fair comparison. Re-
sults for CHD, ADHD, and AD diagnosis are given in Table 3, and results for ASD diagnosis are
shown in Table 11 in the Appendix.

Cortical Thickness. Table 3(a) reports the results of disease classification based on CT. As shown,
CortiLife consistently outperforms all competing methods across datasets and tasks. It achieves
improvements of 1.4%, 1.6%, and 0.2% in classification accuracy over the strongest baselines, re-
spectively.

Mean Curvature. Table 3(b) presents the disease classification results based on MC. As shown, our
proposed method achieves superior performance, reaching accuracies of 66.7%, 77.6%, and 93.9%
on the CHD, ADHD, and ADNI datasets, respectively.

Sulcal Depth. Table 3(c) shows the results of disease classification based on SD. As shown, com-
pared to the second-best model, CortiLife achieves an improvement of 1.8%, 0.7%, and 1.6% in
accuracy, with showing the best AUC for 79.9%, 65.7% and 99.1% in CHD, ADHD, and ADNI
dataset, respectively.

The results demonstrate that our model achieves state-of-the-art performance across all lifespan
stages and modalities, highlighting its superior generalization capability across both the entire lifes-
pan and cortical modalities.
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Table 4: Maximum Mean Discrepancy before vs. after patch-wise distribution encoding.

Condition Maximum Mean Discrepancy
1-3 (ys) vs 6-66 (ys) 6-64 (ys) vs 55-95 (ys) 1-3 (ys) vs 55-95 (ys)

Before scale-adaptive encoder 0.852 0.592 1.029
After scale-adaptive encoder 0.473 0.271 0.933

Table 5: Results of ablation study in brain disorder diagnosis task.

local global statistical
CT MC SD

CHD
ACC AUC ACC AUC ACC AUC

% " " 0.738±0.045 0.810±0.046 0.644±0.021 0.677±0.024 0.703±0.025 0.694±0.046
" % " 0.740±0.012 0.798±0.017 0.569±0.012 0.610±0.024 0.718±0.034 0.740±0.021
" " % 0.792±0.034 0.821±0.024 0.622±0.022 0.718±0.041 0.714±0.057 0.730±0.079
" " " 0.806±0.011 0.823±0.026 0.667±0.031 0.776±0.014 0.739±0.033 0.799±0.073

ADHD
% " " 0.633±0.031 0.661±0.010 0.617±0.011 0.604±0.022 0.598±0.032 0.595±0.019
" % " 0.659±0.024 0.676±0018 0.627±0.011 0.651±0.008 0.604±0.013 0.578±0.016
" " % 0.615±0.008 0.620±0.017 0.589±0.021 0.621±0.017 0.588±0.032 0.585±0.045
" " " 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017

AD
% " " 0.918±0.002 0.978±0.003 0.928±0.007 0.970±0.003 0.963±0.007 0.990±0.002
" % " 0.925±0.002 0.975±0.003 0.918±0.020 0.972±0.004 0.955±0.012 0.977±0.004
" " % 0.910±0.008 0.960±0.003 0.915±0.017 0.963±0.004 0.951±0.010 0.980±0.002
" " " 0.928±0.002 0.981±0.001 0.939±0.011 0.973±0.002 0.972±0.002 0.991±0.002

4.5 VALIDATION OF PATCH-WISE DISTRIBUTION ENCODING

To further assess the scale-adaptive encoder, we compared feature discrepancies across age groups
before and after applying it, using Maximum Mean Discrepancy (MMD) as a metric (Table 4). The
consistently lower MMD values indicate reduced distributional shifts between age groups, showing
that the encoder better aligns patch-wise feature distributions across the lifespan and yields more
stable cortical representations. We also visualize the embedding distributions in Figure 6 in the
appendix. Finally, to verify that the benefits of scale-adaptive encoding are not simply due to adding
statistical features, we replaced it with several alternative encoders and evaluated them on the ADHD
classification task, with results reported in Section A.4.

4.6 ABLATION STUDY

We designed experiments to evaluate the effectiveness of different-level encoders within the pro-
posed surface tokenizer. The evaluation was conducted under a pretraining + fine-tuning setting
across classification tasks involving three cortical modalities and multiple age groups. The exper-
imental setup and evaluation metrics follow the same settings as in Section 4.2. The results are
presented in Table 5. Additionally, we observed that removing any encoder level leads to a perfor-
mance decline, highlighting the effectiveness of each component. Notably, in the ADHD and ADNI
classification tasks, excluding the statistical-level encoder resulted in a pronounced drop in accuracy.
This can be attributed to the loss of regional statistical features, which impairs the model’s ability to
jointly capture heterogeneous cortical morphological characteristics, thereby degrading the quality
of the learned representations.

5 CONCLUSION

We proposed CortiLife, the first unified framework for lifespan-consistent cortical surface modeling.
By introducing a multi-level Surface Tokenizer, our approach addresses three central challenges in
cortical analysis: complex geometry of cortical surfaces, individual cortical homogenization and
lifespan heterogeneity. Experimental evaluations across multiple datasets show that CortiLife con-
sistently outperforms existing methods on brain disorder classification, age prediction and cortical
surface parcellation. Most importantly, CortiLife provides a unified framework that exhibits strong
generalization across the entire lifespan, diverse modalities, and multiple tasks.
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A APPENDIX

A.1 CODE AVAILABILITY

Our code are available in the link below.

https://anonymous.4open.science/r/CortiLife-A-Unified-Framework-for-Cortical-Representation-
Learning-across-the-Lifespan-71D6/README.md.

A.2 DATASETS

A.2.1 DHCP

A total of 887 participants (478 males and 409 females) were enrolled in the Developing Hu-
man Connectome Project (DHCP), recruited at a single research site; the imaging hardware in-
cluded Philips scanners, predominantly operating at a magnetic field strength of 3 T, with a rep-
resentative model such as the Philips Achieva 3 T. For structural imaging, T2-weighted (T2w)
and inversion-recovery T1-weighted (T1w) multi-slice Fast Spin-Echo (FSE) images were each ac-
quired in sagittal and axial slice stacks, with an in-plane resolution of 0.80×0.80 mm2 and 1.60 mm
slices overlapped by 0.80 mm (except for T1w sagittal, which used a 0.74 mm overlap); key se-
quence parameters were as follows: T2w, TR/TE 12000/156 ms with SENSE factors 2.11 (axial)
and 2.60 (sagittal); T1w (IR-FSE), TR/TI/TE 4795/1740/8.7 ms with SENSE factors 2.27 (ax-
ial) and 2.66 (sagittal). In addition, 3D MPRAGE images were acquired with a native resolu-
tion of approximately 0.80×0.80×0.80 mm3; typical parameters were TR/TI/TE 11/1400/4.6 ms
with a SENSE factor of 1.2 (right–left). Regarding image processing, the official DHCP struc-
tural pipeline and surface reconstruction results were adopted in this study, with no additional pro-
cessing performed; for additional details, please refer to https://www.frontiersin.org/
journals/neuroscience/articles/10.3389/fnins.2022.886772/full.

A.2.2 CHD

A total of 229 participants (123 males and 106 females) were enrolled in the Congenital Heart
Disease (CHD) study, all recruited from a single research site. The imaging hardware consisted of
Philips scanners, predominantly operating at a magnetic field strength of 3 T, with the Philips Ingenia
3 T as the representative model. For structural imaging, the 3D T1-TFE sequence was utilized, with
a typical native resolution of approximately 0.50×0.50×0.50 mm3. The key sequence parameters
were set as follows: TR 7.90 ms, TE 3.50 ms, and FA 8◦. The image processing workflow was as
follows: N3 intensity inhomogeneity correction, multi-atlas skull stripping, and tissue segmentation
via multi-atlas label fusion; additionally, topological repair and reconstruction of the inner and outer
cortical surfaces were performed. Subsequently, the spherical surfaces were aligned to the UNC
4D neonatal/infant cortical template, and surface parcellation was completed in accordance with the
Desikan–Killiany atlas. Quality control (QC) checks were performed, and only data that passed QC
were retained for subsequent analyses.

A.2.3 CBCP

A total of 252 participants (133 males and 119 females) were enrolled in the Chinese baby connec-
tome project(CBCP). The imaging hardware consisted of Philips scanners, predominantly operating
at a magnetic field strength of 3 T, with the Philips Ingenia 3 T as the representative model. For
structural imaging, the 3D T1-TFE sequence was utilized, with a typical native resolution of ap-
proximately 0.80×0.80×0.80 mm3. The key sequence parameters were set as follows: TR 6.50 ms,
TE 2.30 ms, and FA 8◦. The image processing workflow was as follows: N3 intensity inhomo-
geneity correction, multi-atlas skull stripping, and tissue segmentation via multi-atlas label fusion;
additionally, topological repair and reconstruction of the inner and outer cortical surfaces were per-
formed. Subsequently, the spherical surfaces were aligned to the UNC 4D neonatal/infant cortical
template, and surface parcellation was completed in accordance with the Desikan–Killiany atlas.
Quality control (QC) checks were performed, and only data that passed QC were retained for sub-
sequent analyses.
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A.2.4 CCNP

A total of 559 participants (304 males and 255 females) were enrolled in the Chinese Color Nest
Project(CCNP); the imaging hardware comprised Siemens scanners, predominantly operating at
a magnetic field strength of 3 T with the Siemens Tim Trio 3 T as the representative model.
For structural imaging, the MPRAGE sequence was utilized, with a typical native resolution of
approximately 1.00×1.00×1.00 mm3. The key sequence parameters were set as follows: TR
2600 ms, TE 3.02 ms, TI 900 ms, and FA 8◦. For image processing, cortical reconstruction
and segmentation were performed using the recon-all pipeline of FreeSurfer 7 (FS7) with
default parameters, and only data that passed quality control were retained for subsequent analy-
ses; for additional details, please refer to https://ccnp.scidb.cn/detail?dataSetId=
c81f0e90a51b4cfca348ce4da6ca734e&version=V2&code=o00133.

A.2.5 ADHD-200

A total of 972 participants (599 males and 373 females) with Attention Deficit Hyperactivity
Disorder-200 (ADHD-200 dataset) were enrolled in the study, recruited from 8 research sites; the
imaging hardware included Siemens and Philips scanners, predominantly operating at a magnetic
field strength of 1.5–3 T, with representative models such as the Siemens Tim Trio 3 T, Philips
3 T, and Siemens Avanto 1.5 T. For structural imaging, the MPRAGE sequence was utilized, with
typical native resolutions of approximately 1.00×1.00×1.00 mm3 and 1.30×1.00×1.30 mm3, and
key sequence parameters as follows: TR 2100–3500 ms, TE 2.95–3.70 ms, TI 900–1100 ms, and
FA 7–10◦. For image processing, cortical reconstruction and segmentation were performed us-
ing the recon-all pipeline of FreeSurfer 7 (FS7) with default parameters, and only data that
passed quality control were retained for subsequent analyses; for additional details, please refer to
https://pubmed.ncbi.nlm.nih.gov/27423255/.

A.2.6 ABIDE II

A total of 1,114 participants (856 males and 258 females) were enrolled in the Autism Brain Imaging
Data Exchange 2 (ABIDE II) study, recruited from 19 research sites; the imaging hardware included
scanners from Philips, General Electric (GE), and Siemens, predominantly operating at a magnetic
field strength of 1.5–3 T, with representative models such as the Siemens Tim Trio 3 T, GE MR750,
and Philips Achieva 3 T. For structural imaging, the primary sequences utilized were MPRAGE,
3D FFE, and FSPGR, with typical native resolutions of approximately 1.00×1.00×1.30 mm3 and
1.30×1.00×1.30 mm3; the key sequence parameters ranged as follows: TR 2500–3000 ms, TE
2.30–8.30 ms, TI 853–1100 ms, and FA 7–10◦. Regarding image processing, cortical reconstruc-
tion and segmentation were performed using the recon-all pipeline of FreeSurfer 7 (FS7) with
default parameters, and only data that passed quality control were retained for subsequent analyses;
for additional details, please refer to https://www.nature.com/articles/mp201378.

A.2.7 ABIDE I

A total of 1,112 participants (948 males and 164 females) were enrolled in the Autism Brain Imaging
Data Exchange 1 (ABIDE I) study, recruited from 20 research sites; the imaging hardware included
scanners from Siemens, Philips, and General Electric (GE), predominantly operating at a magnetic
field strength of 3 T, with representative models such as the Siemens Tim Trio 3 T, Siemens Al-
legra 3 T, and GE Signa. For structural imaging, the primary sequences utilized were MPRAGE,
3D FFE, and FSPGR, with typical native resolutions of approximately 1.00×1.00×1.00 mm3 and
1.00×1.00×1.20 mm3; the key sequence parameters ranged as follows: TR 1230–2530 ms, TE
1.73–4.60 ms, TI 624–1100 ms, and FA 7–10◦. Regarding image processing, cortical reconstruc-
tion and segmentation were performed using the recon-all pipeline of FreeSurfer 7 (FS7) with
default parameters, and only data that passed quality control were retained for subsequent analyses;
for additional details, please refer to https://www.nature.com/articles/mp201378.

A.2.8 HCP

A total of 1,206 participants (550 males and 656 females) were enrolled in the Human Connectome
Project (HCP), recruited at a single research site; the imaging hardware included Siemens scanners,
predominantly operating at a magnetic field strength of 3 T, with a representative model such as the
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Table 6: Evaluation of few-shot learning performance of CortiLife on brain disease classification
tasks.

Methods Training Percentage
CHD

CT MC SD
ACC AUC ACC AUC ACC AUC

CortiLife
0.2 0.626±0.005 0.602±0.023 0.631±0.036 0.632±0.040 0.631±0.019 0.683±0.016
0.4 0.701±0.008 0.693±0.018 0.651±0.010 0.703±0.011 0.654±0.023 0.702±0.036
0.8 0.806±0.011 0.823±0.026 0.667±0.031 0.776±0.014 0.739±0.033 0.799±0.073

ADHD

CortiLife
0.2 0.601±0.007 0.606±0.002 0.608±0.001 0.561±0.006 0.604±0.004 0.605±0.002
0.4 0.641±0.013 0.667±0.008 0.623±0.010 0.628±0.009 0.618±0.015 0.611±0.018
0.8 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017

AD

CortiLife
0.2 0.856±0.004 0.931±0.001 0.881±0.002 0.947±0.001 0.86±0.003 0.926±0.001
0.4 0.894±0.002 0.961±0.004 0.924±0.010 0.971±0.002 0.954±0.001 0.988±0.002
0.8 0.928±0.002 0.981±0.001 0.939±0.011 0.973±0.002 0.972±0.002 0.991±0.002

Siemens Skyra 3 T. The common native resolution was approximately 0.70×0.70×0.70 mm3, and
the typical parameters were: TR 2400 ms, TE 2.14 ms, TI 1000 ms, and FA 8◦. Regarding image
processing, the Minimal Preprocessing Pipelines (HCP-MPP) provided by the HCP and FreeSurfer
reconstruction results were adopted, with no additional processing performed on this basis; for ad-
ditional details, please refer to https://pubmed.ncbi.nlm.nih.gov/23668970/.

A.2.9 ADNI

A total of 7,597 participants (4,185 males and 3,412 females) were enrolled in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study, recruited from 62 research sites; a mixed range of
imaging devices was utilized, with representative models including 1.5–3 T scanners from Siemens,
General Electric (GE), and Philips that are compatible with Magnetic Resonance Imaging (MRI).
For structural imaging, the ADNI-specific MPRAGE sequence was the primary choice, with a typ-
ical native resolution of approximately 1.20×1.20×1.20 mm3. For image processing, cortical re-
construction and segmentation were performed using the recon-all pipeline of FreeSurfer 7
(FS7) with default parameters, and only data that passed quality control were retained for sub-
sequent analyses; for additional details, please refer to https://onlinelibrary.wiley.
com/doi/full/10.1002/jmri.21049.

A.3 FEW-SHOT PERFORMANCE EVALUATION ON BRAIN DISORDER DIAGNOSIS

To assess few-shot performance, we trained CortiLife with only 20% and 40% of the training data,
reserving the rest for testing. As shown in Table 6, CortiLife outperforms baselines even with limited
data. For example, on CHD with mean curvature features, it achieved 65.1% accuracy using 40%
of the data, surpassing all baselines; on ADNI with sulcal depth, it reached 95.4%, nearly matching
the second-best model (95.6%). These results highlight the strong generalization ability of CortiLife
under data-scarce conditions.

A.4 EFFECTIVENESS VALIDATION OF PATCH-WISE DISTRIBUTION ENCODING

A.4.1 COMPARISON WITH STATISTICAL-FEATURE INTEGRATION METHODS

To verify that the effectiveness of the scale-adaptive encoding does not simply arise from
adding statistical features, we replaced the scale-adaptive encoder with some baselines and
evaluated it on the ADHD classification task. The baselines include: 1) directly concatena-
tion(i.e., concat[mean, std]); 2)LayerNorm(concat[mean, std]) with learnable weights(i.e., Layer-
Norm(concat[mean, std])+Linear); 3) BatchNorm(concat[mean, std]) with learnable weights(i.e.,
BatchNorm(concat[mean, std])+Linear). The results are shown in the Table 12. Our method still
achieves the best performance. Notably, introducing LayerNorm leads to a clear degradation. The
primary reason is that LayerNorm forces the statistics within each sample to lie on a similar scale,
thereby suppressing the genuine distributional differences across samples and retaining only the rel-
ative within-sample relationships. In contrast, when performing weighting across multiple scales,
our scale-adaptive encoder adopts an adaptive weighting scheme based on the original distribution.
It treats each patch’s own statistics as the principal component and uses statistics from other scales
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Figure 5: Diagram of scale-adaptive encoding.
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Figure 6: Feature distribution visualization before and after scale-adaptive encoding across age
groups.

as auxiliary cues. This design preserves key distributional characteristics and avoids the issue where
normalization operations inadvertently remove meaningful lifespan-relevant variability.

A.4.2 VISUALIZATION OF FEATURE DISTRIBUTIONS

We provide visual comparisons of the feature distributions before and after applying the scale-
adaptive encoding, as shown in Figure 6. After incorporating the scale-adaptive encoder, the feature
distributions across different age ranges and modalities become substantially more aligned, demon-
strating that the proposed design effectively mitigates distribution shifts arising from both age and
modality differences.
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A.5 EFFECTIVENESS VALIDATION OF METADATA LANGUAGE PROMPTING

We conducted the experiments to validate the effectiveness of the LCLIP loss using the ADHD-200
dataset as an example. We removed this loss term(i.e., disabling metadata language prompting) to
examine its role in guiding the vision encoder to learn lifespan-aware representations. As shown
in the Table 9, eliminating LCLIP leads to substantial drops across all evaluation metrics, underscor-
ing the critical importance of metadata language prompting for achieving semantically aligned and
developmentally informative cortical embeddings.

Additionally, we conducted the experiments to validate the effectiveness of prompts(i.e., age and
sex) using the ADHD-200 dataset as an example. As shown in Table 8, removing either the age
prompt or the sex prompt leads to consistent drops in accuracy and AUC across all three modalities.
The degradation is more pronounced when the age prompt is removed, further underscoring its
critical role in enabling the model to learn lifespan-aware information. In comparison, the sex
prompt has a smaller yet complementary effect, providing additional developmental cues that further
refine the learned representations.

A.6 EFFECTIVENESS VALIDATION OF TEACHER-STUDENT ARCHITECTURE

A.6.1 ANALYSIS OF MASK RATIO

We conducted the experiments to determine the mask ratio using the ADHD-200 dataset as an exam-
ple. As shown in Table 7, the masking ratio has a clear influence on model performance across CT,
MC, and SD. Among all the tested settings, the ratio of 0.75 consistently achieves the best results,
yielding the highest ACC and AUC in CT (0.697/0.730) and SD (0.651/0.657), and the best ACC in
MC (0.632). Although a ratio of 0.9 slightly improves the AUC for MC, it leads to a noticeable drop
in ACC, indicating an imbalanced trade-off. Overall, 0.75 provides the most stable and superior
performance across all modalities, confirming it as the optimal masking ratio for our model.

A.6.2 COMPARISON WITH RANDOM MASKING STRATEGY

To assess the contribution of the teacher-student architecture to representation learning, we con-
ducted an ablation study in which the teacher-student mechanism was removed and replaced with a
random-masking strategy. We performed experiments on the ADHD-200 dataset across three cor-
tical modalities (CT, MC, and SD), and the results are presented in Table 10. As shown, removing
the teacher-student architecture leads to a consistent degradation in accuracy and AUC across all
modalities. Additionally, as the random mask ratio increases, the model performance on all met-
rics drops sharply, indicating that under high masking ratios a purely random strategy struggles
to retain patches that are truly related to developmental semantics, which in turn leads to a clear
degradation in the quality of the pre-trained representations. In contrast, when we adjust the mask
ratio within the same range under the teacher-student architecture, although the performance shows
some fluctuations, the overall decline is much smaller. This observation further suggests that, com-
pared with relying only on random masking, the teacher-student architecture can more robustly learn
high-quality representations aligned with developmental semantics under high masking conditions,
thanks to the semantic guidance strategy introduced in our framework.

A.6.3 VISUALIZATION OF REGIONS FROM MASKED SELF-DISTILLATION FRAMEWORK

We visualize the visible patches at different age stages selected by the masked self-distillation frame-
work. The results are shown in the Figure 7. The visualization demonstrates that, in infancy and
early childhood, key brain developmental regions mainly appear in the superior frontal gyrus, pre-
central, paracentral, and other motor-related brain regions, as well as some visual regions including
the lateral occipital; in adolescence, the core regions that are mainly selected are distributed in the
prefrontal and temporal lobes; in adulthood, the main regions show a distribution pattern similar
to that in adolescence; and in the elderly stage, we do not observe relatively concentrated regions
corresponding to aging, which suggests that there may already exist a global aging phenomenon
in elderly individuals. The above visualization results indicate that teacher-guided masking indeed
focuses more on cortical regions that are closely related to developmental semantics.
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Table 7: Selection of mask ratio using ADHD-200 dataset as an example.

Mask ratio CT MC SD
ACC AUC ACC AUC ACC AUC

0.5 0.681±0.010 0.697±0.031 0.621±0.018 0.632±0.034 0.631±0.015 0.648±0.029
0.6 0.683±0.028 0.706±0.011 0.630±0.009 0.619±0.025 0.617±0.021 0.607±0.014
0.8 0.671±0.034 0.708±0.053 0.628±0.008 0.658±0.010 0.628±0.030 0.604±0.046
0.9 0.667±0.027 0.713±0.011 0.618±0.037 0.687±0.012 0.598±0.018 0.609±0.036

0.75(Ours) 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017

Table 8: Results of disease classification on ADHD-200 dataset in different architecture.
Scale-adaptive encoder Age prompting Sex prompting CT MC SD

ACC AUC ACC AUC ACC AUC
% % " 0.604±0.005 0.621±0.002 0.595±0.015 0.606±0.016 0.591±0.007 0.602±0.002
" % " 0.660±0.013 0.679±0.014 0.604±0.010 0.605±0.008 0.614±0.029 0.565±0.024
" " % 0.687±0.005 0.703±0.006 0.621±0.019 0.662±0.021 0.629±0.036 0.635±0.047
" " " 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017

Table 9: Comparison of model performance with and without metadata language prompting on
ADHD-200 dataset.

Setting CT MC SD
ACC AUC ACC AUC ACC AUC

w/o LCLIP 0.630±0.005 0.603±0.008 0.609±0.013 0.585±0.011 0.605±0.013 0.566±0.028
w/ LCLIP 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017

Table 10: Comparison of model performance with and without teacher-student architecture on
ADHD-200 datset.

Strategy Ratio CT MC SD
ACC AUC ACC AUC ACC AUC

Random Masking

0.75 0.680±0.024 0.677±0.022 0.622±0.002 0.634±0.016 0.621±0.008 0.620±0.022
0.8 0.655±0.036 0.643±0.028 0.624±0.023 0.572±0.057 0.630±0.021 0.588±0.009

0.85 0.651±0.021 0.638±0.023 0.617±0.021 0.610±0.015 0.575±0.021 0.536±0.016
0.9 0.631±0.009 0.630±0.035 0.619±0.018 0.614±0.021 0.527±0.071 0.568±0.016

Teacher-student

0.6 0.683±0.028 0.706±0.011 0.630±0.009 0.619±0.025 0.617±0.021 0.607±0.014
0.8 0.671±0.034 0.708±0.053 0.628±0.008 0.658±0.010 0.628±0.030 0.604±0.046
0.9 0.667±0.027 0.713±0.011 0.618±0.037 0.687±0.012 0.598±0.018 0.609±0.036

0.75 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017
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Table 11: Results of brain disorder diagnosis on ABIDE I dataset.

Method
ASD

CT MC SD
ACC AUC ACC AUC ACC AUC

SphericalCNN 0.563±0.016 0.582±0.020 0.572±0.008 0.572±0.007 0.574±0.022 0.564±0.035
SphericalUNet 0.561±0.009 0.553±0.009 0.564±0.003 0.573±0.034 0.571±0.009 0.577±0.004

WSSADN 0.566±0.021 0.573±0.021 0.564±0.010 0.547±0.026 0.560±0.025 0.567±0.005
NeuroExplainer 0.558±0.019 0.577±0.012 0.571±0.007 0.574±0.016 0.554±0.007 0.567±0.002

SurfaceVisionTransformer 0.552±0.027 0.547±0.024 0.561±0.011 0.542±0.031 0.542±0.032 0.528±0.017
CLIP 0.572±0.002 0.570±0.017 0.573±0.007 0.571±0.003 0.593±0.007 0.592±0.011

ACLIP 0.569±0.027 0.575±0.021 0.573±0.015 0.570±0.008 0.569±0.005 0.557±0.028
DetailCLIP 0.574±0.012 0.581±0.016 0.541±0.012 0.539±0.017 0.604±0.022 0.604±0.027
CARZero 0.577±0.003 0.584±0.017 0.568±0.005 0.568±0.012 0.599±0.015 0.597±0.008
CortiLife 0.587±0.004 0.574±0.009 0.584±0.006 0.576±0.015 0.623±0.010 0.636±0.025

Infancy (21 month) Adolescence (14 years)

Adult (28 years) Elder (78 years)

Figure 7: This image illustrates the visible patches selected by masked self-distillation framework.
The process selectively eliminates less relevant tokens, retaining only those with strong semantic
significance.

A.7 COMPARISON WITH SOTA METHODS ON ABIDE I DATASET

Table 11 summarizes the ASD classification performance on the ABIDE I dataset across three cor-
tical modalities (CT, MC, and SD). Overall, CortiLife achieves the most competitive results among
all comparison methods, demonstrating consistently strong performance across both ACC and AUC
metrics.

For the CT modality, CortiLife attains the highest accuracy (0.587±0.004), outperforming all base-
lines, while maintaining a comparable AUC to the best-performing model. For the MC modality,
CortiLife achieves the best accuracy (0.584±0.006) and also records one of the strongest AUC values
(0.576±0.015), indicating that the learned representations capture more discriminative curvature-
related patterns associated with ASD. Notably, on the SD modality, CortiLife delivers the best per-
formance on both metrics, with an accuracy of 0.623±0.010 and an AUC of 0.636±0.025, signifi-
cantly surpassing all competing approaches. These results highlight the robustness and generaliza-
tion ability of CortiLife across heterogeneous cortical attributes.

We further conducted classification experiments on three age ranges in ABIDE I: 6-18 years, 18-
30 years, and 30-55 years, with the results shown in the Table 13. We found that our model still
exhibited consistent and strong performance across all age-stratified stages. In the 6-18, 18-30,
and 30-55 age ranges, the ACC reached up to 0.612, 0.694, and 0.778, respectively, and the AUC
reached up to 0.608, 0.768, and 0.773, respectively. It is worth noting that some age ranges include
relatively few subjects, so performance on these stratified subsets may not fully reflect the overall
accuracy on the full dataset. Even under this data limited setting, CortiLife still shows consistently
superior performance across all age ranges, indicating strong generalization ability within different
age groups.
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Figure 8: The patches in each range rely more on their own “nearest” scale during encoding, and
the alignment effect across more distant scales is relatively limited, which leads to a slightly smaller
extent of alleviation of the distribution discrepancy between these two extreme age ranges.

Table 12: Comparison of different distribution-encoding methods on ADHD-200 dataset.
Setting CT MC SD

ACC AUC ACC AUC ACC AUC
Directly concatenation 0.670±0.034 0.681±0.022 0.604±0.015 0.603±0.008 0.628±0.003 0.619±0.010

BatchNorm+Linear 0.645±0.049 0.664±0.024 0.597±0.021 0.595±0.057 0.591±0.039 0.603±0.037
LayerNorm+Linear 0.626±0.018 0.629±0.043 0.611±0.007 0.599±0.045 0.622±0.033 0.618±0.034

Ours 0.697±0.015 0.730±0.007 0.632±0.005 0.618±0.018 0.651±0.010 0.657±0.017

Table 13: Results of brain disorder diagnosis on age-stratified ABIDE I dataset.

Method 6-18 years 18-30 years 30-55 years
ACC AUC ACC AUC ACC AUC

SphericalCNN 0.593±0.014 0.603±0.019 0.629±0.057 0.631±0.047 0.742±0.073 0.583±0.169
SphericalUNET 0.588±0.017 0.576±0.002 0.649±0.015 0.591±0.027 0.656±0.014 0.629±0.147

WSSADN 0.593±0.008 0.579±0.014 0.657±0.052 0.664±0.062 0.701±0.043 0.673±0.058
NeuroExplainer 0.593±0.015 0.602±0.023 0.638±0.039 0.661±0.045 0.704±0.088 0.699±0.041

SurfaceVisionTransformer 0.577±0.025 0.580±0.005 0.646±0.041 0.602±0.077 0.721±0.078 0.679±0.117
CLIP 0.586±0.016 0.581±0.028 0.639±0.063 0.601±0.027 0.711±0.038 0.728±0.085

ACLIP 0.586±0.043 0.589±0.023 0.652±0.064 0.640±0.076 0.758±0.045 0.684±0.114
DetailCLIP 0.601±0.012 0.604±0.034 0.659±0.042 0.707±0.017 0.757±0.040 0.730±0.095
CARZero 0.602±0.018 0.606±0.012 0.662±0.033 0.712±0.052 0.744±0.043 0.728±0.083
CortiLife 0.612±0.008 0.608±0.011 0.694±0.032 0.768±0.043 0.778±0.039 0.773±0.098
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