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Abstract

Large language models (LLMs) have been001
shown to perform better when asked to reason002
step-by-step before answering a question. How-003
ever, it is unclear to what degree the model’s004
final answer is faithful to the stated reasoning005
steps. In this paper, we perform a causal me-006
diation analysis on twelve LLMs to examine007
how intermediate reasoning steps generated by008
the LLM influence the final outcome and find009
that LLMs do not reliably use their intermedi-010
ate reasoning steps when generating an answer.011
To address this issue, we introduce FRODO, a012
framework to tailor small-sized LMs to gen-013
erate correct reasoning steps and robustly rea-014
son over these steps. FRODO consists of an015
inference module that learns to generate correct016
reasoning steps using an implicit causal reward017
function and a reasoning module that learns to018
faithfully reason over these intermediate infer-019
ences using a counterfactual and causal pref-020
erence objective. Our experiments show that021
FRODO significantly outperforms four compet-022
itive baselines. Furthermore, FRODO improves023
the robustness and generalization ability of the024
reasoning LM, yielding higher performance on025
out-of-distribution test sets. Finally, we find026
that FRODO’s rationales are more faithful to its027
final answer predictions than standard super-028
vised fine-tuning.029

1 Introduction030

Chain-of-thought (CoT) reasoning techniques have031

been shown to improve the performance of large032

language models (LLMs) by generating step-by-033

step reasoning traces before generating a final an-034

swer (Wei et al., 2022). Many works suggest that035

the reasoning process described in CoT explana-036

tions may be a possible description of how models037

make predictions (Kojima et al., 2022; Yao et al.,038

2023; Sun et al., 2023). However, despite the re-039

markable success of CoT in many reasoning tasks,040

recent works show that LLMs-generated reasoning041

Figure 1: An example of our proposed causal analysis
to measure the faithfulness of the final output to the CoT
generated by the model. We perturbed CoT rationales
and studied the causal impact on the model’s behaviour.

traces can be incorrect (Zhang et al., 2023) and 042

unfaithful (Turpin et al., 2023). 043

Reasoning implicitly involves two steps: identi- 044

fying the rules and facts (inference chains) neces- 045

sary to reach a conclusion and then robustly using 046

them to reach said conclusion (Levesque, 1986). 047

Our paper studies whether LLMs reliably use infer- 048

ence chains to arrive at a conclusion.1 In standard 049

CoT, LLMs can generate plausible explanations 050

with the final answer not necessarily guaranteed to 051

follow the reasoning chain or imply a causal rela- 052

tion between the reasoning chain and the model’s 053

outcome (Lyu et al., 2023). Most recent efforts 054

have either focused on the performance of LLMs 055

on various reasoning tasks or their faithfulness in 056

CoT generation, ignoring the sequential relation- 057

ship between CoT and the final answer (Huang and 058

Chang, 2023; Lanham et al., 2023). 059

1In our paper, reasoning faithfulness refers to how reliably
the model uses its reasoning steps to arrive at a correct answer.
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In this work, we address this gap by introducing060

a methodology for interpreting the relationship be-061

tween the CoT trace and the final answer based on062

causal mediation analysis (Pearl, 2001). Causal me-063

diation analysis is a method of causal inference that064

studies the change in a response variable follow-065

ing an intervention or treatment. More concretely,066

we use this method to measure and interpret the067

contribution of a reasoning chain (mediator) to the068

final answer (observed output), as shown in Fig.1.069

We propose multiple interventions on the model070

inputs and mediators (reasoning chain) to unveil071

the causal effect of specific reasoning steps in a072

model’s output.073

We apply this framework and study the causal074

impact of CoT rationales on the behaviour of075

twelve different state-of-the-art LLMs on three076

different complex reasoning tasks (mathematical,077

commonsense, and causal understanding). We078

observe a large variation across tasks and mod-079

els in how strongly reasoning traces causally af-080

fect the model’s prediction. In particular, we find081

that instruction-tuned models (GPT-3.5-Instruct,082

Brown et al., 2020b; Mistral-Instruct-7B, Jiang083

et al., 2023b) have a stronger causal effect on the084

final answer when conditioned on the reasoning085

trace than models trained with RLHF (e.g., Chat-086

GPT; Llama-2-7B-Chat, Touvron et al., 2023). Sim-087

ilar to Turpin et al. (2023), when we intervene in088

the reasoning problem, we observe that ChatGPT089

and GPT-3.5-Instruct are inconsistent at generating090

plausible reasoning chains. Finally, we find GPT-091

4 (Achiam et al., 2023) only changes its answer092

30% of the time when conditioned on perturbed093

counterfactual reasoning chains. In Figure 1, we094

see one example where GPT-4 does not faithfully095

change its final answer when provided with inter-096

vened counterfactual CoT. These results indicate097

two issues: (i) LLMs can generate unfaithful and098

implausible reasoning chains, and (ii) LLMs are099

inconsistent when reasoning over their own gener-100

ated reasoning traces.101

To address these issues, we introduce a novel102

method, FRODO, comprising two modules. The103

first module tailors small-sized LMs to generate104

correct reasoning chains (inference module), while105

the second module takes the reasoning chains as106

input and faithfully reasons over them to arrive at107

the correct answer (reasoning module). To learn108

to generate correct reasoning chains, we use the109

DPO algorithm (Rafailov et al., 2023), which en-110

ables the model to prefer correct reasoning chains111

over counterfactual ones with implicit feedback. 112

Instead of relying on human labeling, we obtain 113

preference data by prompting LLMs to generate 114

correct and counterfactual reasoning chains. Sec- 115

ond, we train another small-sized LM to improve 116

the causal effect between the reasoning chain and 117

the final answer using a counterfactual and causal 118

preference ranking objective. 119

We evaluate FRODO on four reasoning tasks 120

(Quarel, StrategyQA, OpenBookQA, QASC) us- 121

ing multiple model backbones of different scales, 122

and demonstrate that FRODO achieves an absolute 123

accuracy improvement of 2% ∼ 3% over standard 124

supervised fine-tuning or CoT distillation methods. 125

We assess robustness by examining how models 126

alter their answers when intervened with counter- 127

factual reasoning chains. FRODO exhibits signifi- 128

cant (+4.5%) improvement in robustness. Finally, 129

FRODO generalizes better to out-of-distribution test 130

sets, showing a +2.6% performance improvement 131

over supervised fine-tuning.2 132

2 Reasoning Chain as a Mediator 133

Problem Formulation. Reasoning is often a pro- 134

cess that involves composing multiple inference 135

steps to reach a conclusion or make a decision. We 136

informally conceptualize each reasoning task as 137

requiring a model f : X → Y to map an input x ∈ X 138

to an output y ∈ Y by making correct or plausible 139

inference steps R. 140

Causal Interpretation. The causal graph is a 141

probabilistic graphical model used to describe how 142

variables interact, expressed by a directed acyclic 143

graph consisting of the sets of nodes (N) denoting 144

the variables and a set of directed edges (E) indicat- 145

ing the causal relationships between these variables 146

denoting the causality. 147

Causal Mediation Analysis. It is a method to 148

measure how an independent variable (or treat- 149

ment) affects a dependent variable (or outcome) 150

mediated by intermediate variables (Pearl, 2001; 151

Robins, 2003). Causal mediation analysis aims 152

to decompose the total effect of the independent 153

variable (X) on the dependent variable (Y ) into two 154

components: the direct effect and the indirect effect 155

(Pearl, 2001). In this work, we view the reason- 156

ing process as a causal graph, framing the input 157

(reasoning problem) X and the output Y as random 158

variables and the reasoning steps as mediator vari- 159

able R. We use mediation analysis to interpret the 160

2Code and data will be released upon publication.
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Figure 2: Causal graph for natural language reasoning,
modeling P(Y |do(x)). X0: original reasoning problem,
X1: intervened reasoning problem. R0: Reasoning steps
for X0, R1: Reasoning steps for X1. Outputs Y00 or Y01
are model outputs given X0 and R0 or X0 and R1.

role of reasoning steps as mediators between model161

inputs and model outputs. Let X0 denote the initial162

reasoning problem, R0 the reasoning chain given163

X0. Let Y00 denote the potential outcome when the164

treatment and mediator variables are X0 and R0,165

respectively. Meanwhile, Y01 denotes the potential166

outcome when treatment is set to X0, and R1 is the167

reasoning chain for the reasoning problem X1.168

Direct Effect (DE) measures how much an inter-169

vention X changes an outcome variable Y directly,170

without passing through a hypothesized mediator R.171

The direct effect of X = X0 on Y can be defined as172

E[Y00 −Y10], which can be seen as the correctness173

comparison between the two potential outcomes174

given two different treatments, i.e., X = X0 and175

X = X1. It is computed by applying the interven-176

tion X but holding R fixed to its original value (R0).177

Indirect Effect (IE) measures how much an in-178

tervention X changes Y indirectly through R. The179

indirect effect can be defined as IE = E[Y00 −Y01].180

It is computed by setting R to its value under the181

intervention X while keeping everything else to its182

original value.183

More concretely, according to Pearl (2001), in184

our scenario, a high direct effect means the model185

emphasizes the reasoning problem more than the186

reasoning steps. In contrast, a high indirect effect187

means the model emphasizes the reasoning steps188

more than the problem input.189

Reasoning Intervention. Following Pearl190

(2001), we conduct counterfactual reasoning to191

measure the causal effect of a treatment variable192

on a response variable. We first perform targeted193

interventions on the input text X and measure their194

effect on the reasoning outcome Y by keeping195

R fixed (direct effect). Further, we also perform196

interventions on the mediator R and measure197

their effect on Y (indirect effect). We perform198

the following steps to automatically generate an199

Variables Example

X0 Is Poseidon similar to the god Vulcan?
R0 Poseidon is a god from Greek mythology, known

as the god of the sea, earthquakes, and horses.
Vulcan is a god from Roman mythology, known
as the god of fire, metalworking, and the forge.
Although both are gods, they represent different
elements and aspects, and come from
different mythologies.

X1 Is Poseidon similar to the god Neptune?
R1 Poseidon is a god from Greek mythology, known

as the god of the sea, storms, and earthquakes.
Neptune is a god from Roman mythology, who is
also known as the god of the sea. Both Poseidon and
Neptune share similar roles and attributes in
their respective mythologies.

Table 1: An example from StrategyQA dataset, where
X1 = intervened reasoning problem; R0 and R1 = reason-
ing steps (generated by GPT-4).

intervention on X and R. 200

Step 1: Intervention Data Generation. We use 201

a large language model (GPT-4) to automatically 202

generate an alternative value X1 for the treatment 203

variable.3 The input to LLM includes instruction 204

and few-shot examples, taking the format shown in 205

Table 20. LLMs can be sensitive to instructions 206

and few-shot examples; hence, we randomize the 207

prompt by manually creating a set of semantically 208

similar instructions. Then, we randomly sample 209

from the instruction set each time. 210

Step 2: Manual Data Curation. To retain 211

high-quality data for our analysis, we manually 212

filter out generated samples from Step 1 that are 213

invalid or low-quality. Table 1 shows an example 214

where given the original input reasoning question 215

X0, the model generated X1, where it replaces 216

“Vulcan” with “Neptune”. 217

Step 3: Generate Reasoning Chain. Finally, to 218

get the indirect effect, we generate the reasoning 219

chain (R0, R1) for each reasoning problem X0 220

or X1 by providing LLMs with some high-level 221

descriptions about each reasoning task and 222

reasoning prompt – “Let’s think step by step”(see 223

App. Table. 19). 224

Our experiments show a large variation in the 225

causal effects of COT in the final answer depends 226

on the tasks (see Table 2, 3). We also observe that 227

vanilla LMs (<10 billion parameters) exhibit a less 228

significant causal effect of COT on the final answer. 229

3 FRODO 230

In this section, we introduce FRODO, a framework 231

that tailors small-sized LMs (<10B parameters) to 232

3See Table. 23 for details on task-specific interventions.
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be strong rationalizers and perform reasoning faith-233

fully over the rationales. FRODO aims to improve234

the synergy between the reasoning chain and the235

final answer. We first describe how we obtain silver236

reasoning chains from LLMs (§3.1). Then, we in-237

troduce our inference module that trains a model to238

generate rationales (§3.1) followed by the reasoner239

module and its training objectives (§3.2).240

3.1 Inference Module241

In this work, we assume no gold rationales to train242

our model. Hence, similar to recent works (Liu243

et al., 2022, 2023; Wang et al., 2023; Ramnath244

et al., 2024), we automatically obtain the silver ra-245

tionale from LLM (GPT-3) using in-context learn-246

ing. A common approach is fine-tuning a smaller247

text-to-text model on the silver rationales generated248

by LLMs with a standard language modeling loss.249

Recent studies have shown that fine-tuning models250

(<5B) on reasoning chains may struggle to align the251

reasoning chains with the provided reasoning ques-252

tion during inference (Yang et al., 2023; Fu et al.,253

2023). Additionally, learning to generate a reason-254

ing chain means learning to decompose complex255

reasoning into smaller reasoning steps implicitly.256

However, Shridhar et al. (2023) showed that fine-257

tuning could lead to learning shortcuts and degrade258

performance. Recent studies have demonstrated259

that feedback-based methods can help the model260

align better with the human goal. Hence, we use261

Direct Preference Optimization (DPO) (Rafailov262

et al., 2023) for aligning LMs to learn to generate263

correct reasoning chains.264

Preference Data. We prompt the LLM to gen-265

erate correct reasoning chains (Rw) and incorrect266

reasoning chains (Rl) for each reasoning problem.267

In our experiments, we consider two kinds of rea-268

soning chains as incorrect: counterfactual chains269

(alternative chains that can lead to different out-270

comes) and irrelevant chains. We assume that mod-271

els that can understand and learn to prefer correct272

reasoning chains over counterfactual chains will273

become more robust and enhance generalization.274

Hence, we manually construct correct and incor-275

rect intermediate reasoning steps and demonstrate276

the model with these annotated examples before a277

new instance is provided. In this way, we obtain a278

preference data D ∈ {X ,Rw,Rl} that contains rea-279

soning problems (X) and pairs of reasoning steps280

that lead to correct (Yw) or incorrect outcomes (Yl).281

Training. Given a reasoning problem {x ∈ X}282

and instruction prompt p ∈ {correct or counterfac-283

Poseidon is a god from Greek 
mythology, known as the god of the 
sea, earthquakes and horses. Vulcan 
is a god from Roman mythology, known 
as the god of fire, metalworking, 
and the forge. 

Poseidon is a god from Greek 
mythology, known as the god of the 
sea, earthquakes and horses. Vulcan 
is a god from Roman mythology, 
known as the god of sea.

�����������������������

�������������������������
������

Is Poseidon
similar to the 
god Vulcan?

������

������������

���������������
������
�
�	����

����	����
�	����

���

���������������
����������

���

Figure 3: An overview of FRODO.

tual}, our goal is to train models that could gener- 284

ate reasoning steps (rw or rl). We propose to adopt 285

Direct Preference Optimization (DPO) (Rafailov 286

et al., 2023), an effective algorithm for aligning lan- 287

guage models with implicit rewards. DPO assumes 288

that we only have access to some pairwise prefer- 289

ence data x → {rw > rl} for each problem x ∈ X . 290

Hence, while training a model (πθ) to generate 291

correct reasoning steps, we consider counterfac- 292

tual and irrelevant reasoning steps as less preferred. 293

Training a DPO model includes two phases: (i) 294

supervised fine-tuning (SFT) and (ii) Preference 295

Learning (PL) phase. 296

SFT. We begin by fine-tuning a pre-trained LM 297

with a maximum log-likelihood objective to obtain 298

πs f t . 299

PL Phase. Contrary to traditional RL ap- 300

proaches, which initially train a reward model and 301

subsequently derive a policy from it, DPO enables 302

extracting policy through implicit reward learning. 303

DPO adopts a binary classification loss: 304

LDPO =−E{x,rw>rl}logσ( fθ(rw,x)− fθ(rl,x))
(1) 305

where fθ is the implicit reward model. Intuitively, 306

the gradient of the loss function LDPO increases 307

the likelihood of the preferred completions rw and 308

decreases the likelihood of counterfactual reason- 309

ing chains rl . See Appendix A.1 for more details. 310

During inference, the reasoning module uses the 311

generated reasoning steps by πθ model for a given 312

reasoning problem. 313

3.2 Reasoning Module 314

Given a reasoning question x ∈ X and reasoning 315

steps rw (correct) and rl (counterfactual)4, our goal 316

4Please note that in the reasoner module, we only consider
counterfactual reasoning steps as negative samples.
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is to train a model (πγ) that can generate a correct317

answer yw. To encourage our reasoner module to318

reason faithfully over the reasoning steps, we train319

the model with a linear combination of two losses:320

an indirect effect loss and a supervised margin rank321

loss, L= λLM ∗LLM +λcounter ∗Lcounter +λPREF ∗322

LPREF , which we describe below.323

Language Model Loss. We use the standard324

training objective to maximize the likelihood of the325

correct answer using cross-entropy loss, computed326

as:327

LLM =−logP(yw|x,rw) (2)328

Counterfactual Loss. To encourage the model329

to reason robustly and faithfully towards the reason-330

ing steps, we propose training the model to learn331

how different reasoning chains (correct or counter-332

factual) can lead to different outcomes. Hence, in-333

spired by the causal mediation theory (Pearl, 2001),334

we use the following loss:335

Lcounter =−logP(yl|x,rl) (3)336

Similar to (Wang et al., 2023; Roese, 1997), we337

posit that adding a counterfactual objective can338

help the model to avoid learning reasoning shortcut339

between a question and the gold answer since now340

the model is tasked to answer differently for the341

same question.342

Margin-Ranking Loss. It has been shown343

(Khosla et al., 2020) that contrastive loss and rank-344

ing loss help to improve model robustness and gen-345

eralization against input variation. Hence, we pro-346

pose to use the margin ranking loss that aims to347

maximize the margin between positive examples348

(i.e., statements containing questions, correct rea-349

soning steps and correct answers) and negative ex-350

amples (i.e., statements containing questions, coun-351

terfactual reasoning steps and correct answers).352

LPREF = max(0, t ∗ IE+m) (4)353

where t is the label (indicating which sample in354

the pair is better)=1, m is the margin=1.0, and the355

indirect effect IE = h(x,rw,yw)−h(x,rl,yw) where356

h is the logits.357

4 Experiments358

Datasets. We conduct the causal mediation analy-359

sis on three datasets: STRATEGYQA (Geva et al.,360

2021), GSM8K (Cobbe et al., 2021), and Causal361

Understanding (Suzgun et al., 2023). We eval-362

uate FRODO on four datasets: STRATEGYQA,363

QUAREL(Tafjord et al., 2018), OPENBOOKQA 364

(Mihaylov et al., 2018), and QASC (Khot et al., 365

2020). We report more details about each dataset 366

in App. A.4. For all the datasets, we do not use 367

human-written rationales. We used rationales gen- 368

erated by prior work (Ramnath et al., 2024) using 369

GPT-3 (TEXT-DAVINCI-003) as silver rationales 370

for supervision. For counterfactual rationales, we 371

use chain-of-thought prompts on these datasets (Ta- 372

ble. 19) and sample 2 rationales for each training 373

instance with a temperature of 0.5. 374

Evaluation Metrics. To evaluate the causal effects, 375

we report the average indirect and direct effects of 376

the LLMs. We use the following formula to calcu- 377

late the scores: IE = Avg[Acc(Y00)−Acc(Y01)], 378

and DE = Avg[Acc(Y00)− Acc(Y10)] where X0 379

and R0 original reasoning problem and reasoning 380

chains. We measure two kinds of causal effects: 381

natural and controlled for different types of LLMs. 382

Natural Indirect Effect (NIE): for models that have 383

emergent capabilities (>100B parameters) of gen- 384

erating plausible reasoning chains, we measure the 385

causal effect of X on Y that uses R generated by 386

the same model. Controlled Indirect Effect (CIE): 387

for models with <20B parameters, we evaluate the 388

causal effect by providing reasoning chains gener- 389

ated by GPT-4. Further, to measure the robustness 390

of models, we use controlled indirect effect. To 391

evaluate the faithfulness of the rationales gener- 392

ated by the small-sized models, we use LAS (Hase 393

et al., 2020) to measure how well the rationales 394

help a simulator to predict a student’s predictions 395

a’, namely Acc(qr –> a’) - Acc(q –> a’). Similar to 396

Wang et al. (2023), we implement each simulator 397

with a fine-tuned T5-large model respectively. 398

Implementation Details. We use GPT-4 to gen- 399

erate intervened reasoning problems X1 and rea- 400

soning chains (R0 or R1) to perform the causal me- 401

diation analysis. We report the prompts used in 402

Table.19, 20 and hyperparameters in App. A.4. 403

Baselines. We perform the causal analysis on a 404

series of language models that are diverse in terms 405

of scale, training, and data: LLaMa-2 (Touvron 406

et al., 2023), Mistral (Jiang et al., 2023b), Chat- 407

GPT (Brown et al., 2020a), GPT-4 (OpenAI, 2023), 408

Flan-T5 (Chung et al., 2022), Flan-Alpaca (Chung 409

et al., 2022), Stable-Vicuna (Chiang et al., 2023). 410

We compare FRODO with four strong baselines: 411

(1) SFT + CoT: Finetuning a T5-large or T5-3B or 412

LLaMa-2-7B with LoRA or Mistral-7B with LoRA 413

on silver rationales, then train another model with 414

LM objective to perform the reasoning, Rainier 415
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Models StrategyQA GSM8k Causal Understanding
CoT (%) NIE NDE CoT (%) NIE NDE CoT (%) NIE NDE

ChatGPT 69.2 15.3 9.1 70.1 56.3 1.01 58.8 21.1 27.4
GPT-4 93.5 40.0 22.2 81.1 21.01 30.01 72.5 29.1 48

Table 2: Causal Effects of generated CoT and reasoning problems on the outputs, with both Natural Indirect Effect
(NIE) and Natural Direct Effect (NDE). COT (%) represents the accuracy of the models.

(Liu et al., 2022), (3) Crystal (Liu et al., 2023), (4)416

Mario(Ramnath et al., 2024) and (5) SCOTT(Wang417

et al., 2023). More details about all the baselines418

are reported in App. A.5.419

5 Results420

In Table. 2, 3, we report the results of the causal421

mediation analysis for twelve models. In section422

§4, we provide the details about the implementa-423

tion, evaluation metrics and datasets.424

Natural Direct and Indirect effects. We first425

evaluate the indirect and direct effects of the reason-426

ing chain and reasoning problems on the final out-427

puts. For models (>100B) with the emergent ability428

to generate plausible reasoning chains, we report429

natural indirect effects and direct effects (see §2).430

Table 2 shows the zero-shot performance of the431

ChatGPT and GPT-4 models. We observe that for432

StrategyQA and Causal Understanding tasks, GPT-433

4 has a higher natural indirect effect than ChatGPT,434

suggesting that it is able to better reason over the435

reasoning steps for these tasks. However, for mathe-436

matical reasoning (GSM8K), ChatGPT has a better437

indirect effect. Qualitatively, we find that for math-438

ematical reasoning, when we provide intervened439

reasoning steps, GPT-4 considers them incorrect440

and continues to generate correct reasoning steps.441

This results in a lower indirect effect score. More-442

over, GPT-4 exhibits a more pronounced direct443

effect than ChatGPT, suggesting that its outputs444

are more causally sensitive to reasoning problems.445

In general, our experiments show a large variation446

in the causal effects of COT in the final answer447

depending on the tasks.448

Controlled Direct and Indirect effects. Table449

3 shows the results of causal mediation analysis for450

12 different LMs. In these experiments, we exam-451

ined the causal behaviour using reasoning chains452

generated by GPT-4 (controlled setting). Our study453

suggests that vanilla LMs (<20B) (in a zero-shot454

setting) are systematically unfaithful and consis-455

tently fail to reason over the mediator. Increasing456

the model size (7B to 70B) improves the indirect457

effect (makes them more faithful), indicating the458

importance of model size. We find that in-context459

learning and instruction-tuning improve the indi- 460

rect effect over models trained only with language 461

modelling objectives (e.g., LLaMA and Mistral), 462

indicating that these methods help the model align 463

better with the reasoning chains. We observe that 464

models trained with RLHF objective (ChatGPT, 465

Llama-2-7B-Chat) have a more direct effect than an 466

indirect effect, suggesting that training on human 467

feedback might have disincentive faithful reasoning 468

(Sharma, 2023). Models that are instruction-tuned 469

or trained on the chain of thought (e.g., Flan-T5) 470

during the pre-training phase have a better indirect 471

effect across different reasoning tasks, suggesting 472

that fine-tuning on CoT can make the model more 473

faithful. Similar to Turpin et al. (2023), we ob- 474

serve inverse scaling for certain tasks. In our case, 475

the indirect effect worsens with increasingly capa- 476

ble models, indicating that sheer scale might not 477

guarantee faithful reasoning. Interestingly, we also 478

observe that none of the models has high indirect 479

or direct effects on the causal understanding task. 480

One intuitive reason is that the causal understand- 481

ing task is challenging, and the model’s (<10B) 482

performance is nearly random; hence, the effects 483

are not strong. Overall, we observe that LLMs are 484

inconsistent in faithfully performing reasoning over 485

the CoT. 486

Comparing FRODO with Baselines. We now 487

empirically compare FRODO with three strong 488

baseline models (see Table 4). We consider T5- 489

large (770M) as the inference and reasoning mod- 490

ules. We have the following three observations. 491

First, we present the performance of GPT-3.5 on 492

these tasks. We observe the performance on Strate- 493

gyQA is much lower than on other tasks, indicating 494

the rationales generated for this task can be unfaith- 495

ful. Hence, similar to (Ramnath et al., 2024), for 496

training FRODO, we use only the instances where 497

the answer predicted by GPT-3.5 is correct. Sec- 498

ond, for all four datasets, we observe that FRODO 499

outperforms the strong self-rationalization base- 500

lines. FRODO, on average, improves the perfor- 501

mance by +4.1 and +3 accuracy points compared to 502

the SFT + CoT and MARIO (the strongest baseline), 503

respectively, across all four tasks. Since SFT + CoT 504
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Models StrategyQA GSM8k Causal
CIE CDE p-value CIE CDE p-value CIE CDE p-value

AR LLaMA-2-7B 24.5 25 <0.001 27.5 8.5 <0.001 2.3 1.1 <0.005
Mistral-7B 21.2 17.9 <0.001 25.1 3.8 <0.001 2.3 0.6 <0.009
LLaMA-3-70B 26.6 30.6 <0.001 57.2 5.2 <0.005 8.0 5.1 <0.002

In-context LLaMA-2-7B 24.9 10 <0.005 45.6 0.9 <0.005 5.6 5.6 <0.009

MoE Mixtral-8-7B 21 11 <0.001 47.4 2.9 <0.003 5.1 4.6 <0.001

RLHF LLaMA-2-7B-Chat 8.4 30.5 <0.010 1.4 36.7 <0.010 -2.3 8.6 <0.016
Stable Vicuna-13B 3.5 2.5 <0.001 45.1 2.4 <0.010 0.6 0.1 <0.010
ChatGPT 2.6 13.6 <0.016 57.8 16.6 <0.010 4.6 10.8 <0.001

Instruct Tuned Mistral-Instruct-7B 31.6 31.9 <0.001 35.5 4.7 <0.001 7.4 8 <0.005

RLHF + Instruct Tuned GPT-3.5-Instruct 26.1 27.3 <0.005 62.6 14.7 <0.005 8.5 10.7 <0.005

Instruct-Tuned + Flan-T5-11B 36.9 35.7 <0.001 31.23 12.2 <0.001 7.4 13.1 <0.001
CoT Tuned Flan-Alpaca-11B 31.2 47.9 <0.001 25 7.9 <0.001 3.4 9.2 <0.001

Table 3: Causal Effects of CoT. The reported results are zero-shot performance. CIE: Controlled Indirect Effect,
CDE: Controlled Direct Effect. The p-value represents the significance of the results

Models StrategyQA QuaRel OBQA QASC

GPT-3.5⋄ 69.7 83.4 84.5 80.3

SFT 57.6 74.6 65.0 58.6
SFT + CoT 63.6 77.7 65.5 59.4
Rainier – – 69.7 54.9
Crystal – – 64.2 56.8
MARIO 65.1 79.9 66.1 60.1
FRODO 68.4∗ 83.4∗ 70.2+ 64.2∗
-DPO 66.2 82.2 68.1 62.4
-CL 65.2 82.1 66.4 60.1
-MRL 65.5 81.3 66.2 62.1

SFT 63.1 81.29 72.0 67.8
SFT + CoT 65.1 84.2 73.3 72.0
SCOTT 61.5 – – 65.0
Crystal – – 78.3 74.3
FRODO 82.1∗ 93.5∗ 80.1∗ 75.9∗

LlaMa-2-7B 67.2 56.8 47.5 49.6
SFT + CoT 79.4 68.4 62.8 54.6
FRODO 81.5+ 73.5+ 71.4+ 63.4+

Mistral-7B 58.2 56.8 82.1 65.2
SFT + CoT 78.2 70.8 83.5 70.1
FRODO 81.9+ 78.2+ 84.9+ 72.3+

Table 4: Performance of small-sized LMs (770M-7B)
on four different reasoning tasks. The base models
are T5-large (770M), T5-3B (3B), LLaMa-2-7B

and Mistral-7B . We report accuracy (%).⋄: few-shot
performance, ∗: p-value<0.01, +: p-value<0.05

and MARIO use the same knowledge from GPT-505

3.5, our results suggest that both our inference and506

reasoning modules bring substantial performance507

gains to the model. Third, it is worth noting that508

increasing (770M to 3B) the model size does not509

hamper the performance of FRODO. Fourth, we510

also report the performance of the LLaMa-2-7B511

and Mistal-7B models. We show that FRODO fur-512

ther improves the performance of model size 7B.513

Ablation. To obtain a better insight into the con-514

tribution of each component of FRODO, we perform515

an ablation study (see Table. 4). First, when we516

do not use the DPO to train our inference module,517

we see a consistent drop (-1.9%) in performance518

across the four tasks, indicating the importance of519

incorporating implicit feedback provided by the520

DPO in the model’s training. Further, we observe a 521

considerable drop in performance when we do not 522

use counterfactual (-3.1%) and margin ranking loss 523

(-2.8%). This result highlights the model’s ability 524

to benefit from including counterfactual examples. 525

526
Models StrategyQA QuaRel

SFT 19.4 19.4
SFT + CoT 32.2 29.2
FRODO 39.9 31.2
-CL 34.6 28.7
-MRL 36.2 30.6

Table 5: Robustness Performance of LLMs on Rea-
soning over a Chain. We report CIE scores.

6 Analysis 527

6.1 Quantitative Analysis 528

Robustness. In Table 5, we report the controlled 529

indirect effect that indicates how robustly models 530

are able to change their answers when provided 531

with controlled (generated by GPT-4) counterfac- 532

tual reasoning chains. For STRATEGYQA, we 533

observe that FRODO significantly improves the 534

robustness performance for T5-3B (+7.7 pp.). 535

Further, for the QuaRel task, we observe +2 536

pp. improvement over the SFT + CoT method. 537

Qualitatively, we find that for the MCQA tasks, the 538

gold rationales often contain the answer; hence, 539

the SFT + CoT learns to copy those as answers. 540

Further, we perform an ablation to understand 541

which component contributes most to the model’s 542

robustness. We find that counterfactual loss brings 543

the most gain in robustness. 544

Generalization. The idea is to test our model’s 545

capability to determine if it can improve out-of- 546

distribution (OOD) generalization. Table 7 shows 547

the OOD performance, where we compare our 548

method with SFT+CoT. We trained the models 549

on the OBQA and QASC datasets and evaluated 550
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them on the StrategyQA task. We conclude551

that FRODO significantly helps improve the552

model’s generalizability to a dataset unseen during553

fine-tuning.554

555
6.2 Qualitative Analysis556

Causal Analysis. To understand the reason for the557

inconsistency in the causal effect, we analyze its re-558

lationship with problem complexity. In Table 6, we559

report the indirect effect of CoT with respect to the560

number of reasoning steps for GSM8K problems.561

We observe that with the increase in the number of562

reasoning steps, the indirect effect drops for both563

LLaMa-3 and ChatGPT. It indicates that the length564

of the reasoning steps has an inverse effect on the565

faithfulness of these models. Table 16 shows a few566

examples of different models’ unfaithful reasoning567

over the chain of thought.

No. RS LLaMa-3-70B ChatGPT

2 66.92 65.6
3 50.31 53.9
4 43.2 61.2
5 41.8 55
6 37.5 21
7 0 25

overall 57.2 56.3

Table 6: Indirect Effect. No. RS = Number of Reason-
ing Steps. IE: Avg[Acc(Y00)−Acc(Y01)]

568 FRODO Analysis. To further understand the569

findings in §5, we manually analyze the relevance570

of the 100 CoT generated by SFT and DPO. We571

observed that SFT generates 74% and 54% rele-572

vant CoT, whereas DPO generated CoT 77% and573

59% relevant for QuaRel and OBQA tasks, respec-574

tively. Further, we observe two types of errors575

made by SFT and DPO: (i) invalid reasoning steps–576

reasoning steps leading to incorrect answers and577

(ii) unnecessary steps – reasoning steps not contain-578

ing enough information to support a correct answer.579

For DPO, we observed that 40% of the errors are580

invalid reasoning steps, and 56% are unnecessary581

steps. Table 21 shows some examples of CoT gen-582

erated by SFT and DPO, SFT generated CoT are583

incomplete or contradictory.584

7 Related Work585

Measuring Faithfulness CoT. Jacovi and Gold-586

berg (2020) argued that obtaining faithful expla-587

nations that accurately reflect a model’s reasoning588

process is important to understand the reasons be-589

hind its answer.(Atanasova et al., 2023) proposed a590

Models OBQA → SQA QASC → SQA

T5-3B + CoT 67.6 53.2
FRODO 69.4 56.2

Table 7: Generalization Performance (accuracy) of
methods, trained on a source dataset and directly pre-
dicting on a target dataset (denoted as source → target).

new benchmark to test the faithfulness of natural 591

language explanations. Turpin et al. (2023) pro- 592

posed identifying examples of unfaithful CoT in 593

adversarial settings, showing that CoT reasoning 594

is not always faithful. To determine faithfulness, 595

they provided bias features in the few-shot setting 596

or made edits to the input. (Lanham et al., 2023) ar- 597

gued that LLM ignores mistakes when introduced 598

into the CoT, which reveals that the LLM is un- 599

faithful. Finally, (Parcalabescu and Frank, 2023) 600

introduced CC-SHAP to measure input alignment 601

with predictions for both post-hoc and CoT ex- 602

planations. Unlike prior work, we employ causal 603

mediation analysis to measure the model’s faithful 604

reasoning over the CoT, and to interpret its relation- 605

ship with the answer. 606

Self-Rationalization & CoT Distillation. Ini- 607

tial work on self-rationalization approaches fo- 608

cused on collected gold human rationales and train- 609

ing a model to learn to generate such rationales 610

(Wiegreffe et al., 2021; Paul and Frank, 2021; Cam- 611

buru et al., 2018). With the advent of LLMs, re- 612

cently many works have distilled CoT from LLMs 613

and endowed small LMs with step-by-step reason- 614

ing capabilities (Fu et al., 2023; LI et al., 2022; 615

Shridhar et al., 2023; Li et al., 2023). Our work 616

involves distilling CoT from LMs to a smaller one, 617

similar to a certain line of work. We differ in using 618

implicit feedback to enhance the correctness of the 619

distilled CoT. 620

8 Conclusion 621

In this work, we perform a causal mediation anal- 622

ysis to study the indirect effect of CoT on the 623

final output of twelve LLMs. Our experiments 624

show large variations across tasks and models in 625

how strongly reasoning traces causally affect the 626

model’s prediction. LLMs generally do not reli- 627

ably use their intermediate reasoning steps when 628

generating an answer. We introduce FRODO that 629

tailors small-sized LMs to generate correct reason- 630

ing chains and faithfully reason over them to arrive 631

at the correct answer. Experiments show that our 632

method outperforms strong baselines on four rea- 633

soning tasks, including out-of-distribution settings. 634
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9 Limitations635

A limitation of our Causal Analysis metric is that it636

does not evaluate the model’s real internal reason-637

ing process. Without a complete understanding of638

the pertaining data and models’ internal working639

process, it is difficult to know whether or not the640

chain of thought is faithful to the reasoning pro-641

cess. In this study, we provide insist and evidence642

that could explain how the model uses CoT. For643

future research, the causal mediation metric can be644

useful for measuring the extent to which new meth-645

ods improve faithfulness. Compared to training a646

standard CoT distillation process, our method re-647

quires (i) additional counterfactual data generated648

by LLMs, which can be expensive, and (ii) training649

time increases as training Direct Preference Op-650

timization is a two-step process. To manage the651

complexity of our already large-scale experiments652

involving (a) four different reasoning tasks, and (b)653

hyperparameter search grids, we ran experiments654

with 3 random seeds. Additionally, FRODO is de-655

pendent on rationales generated by LLMs. Extra656

care should be taken when applying our model in657

production environments, especially when making658

critical decisions or exposing its generated contents659

directly to human end users.660
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A Appendix1164

A.1 FRODO - Inference Module (DPO)1165

The preference data of human or artificial anno-1166

tators is modeled by a learnable implicit reward1167

model fθ under Bradley-Terry theories (Bradley1168

and Terry, 1952):1169

πθ(rw > rl|x) = σ( fθ(rw,x)− fθ(rl,x)) (5)1170

where σ is the sigmoid function. To learn fθ, DPO1171

adopts a binary classification loss:1172

LDPO =−E{x,rw>rl}logσ( fθ(rw,x)− fθ(rl,x)) (6)1173

The latent function fθ is parameterized by the1174

log-likelihood ratio between πθ and πsft:1175

fθ(x,r) = βlog
πθ(r|x)
πsft(r|x)

(7)1176

where β a linear coefficient for scaling fθ. This1177

parameterization is appealing as it aligns the train-1178

ing of an implicit reward model fθ closely with1179

training an LM policy πθ.1180

A.2 Additional Experimental Results1181

RQ1: How faithful FRODO is compared to1182

SCoTT and CoT? Finally, we compare the faith-1183

fulness of reasoning chains generated by FRODO1184

with SCOTT, COT and SFT+COT (see Fig.4). We1185

observed that FRODO achieves a much higher LAS1186

score than the other three baselines, suggesting that1187

DPO training with implicit casual feedback helped1188

the model.1189

RQ2: How does FRODO work on GSM8k? Ta-1190

ble 8 reports the performance of FRODO on math1191

reasoning problems. We observe that FRODO out-1192

perform SFT by +3.75 % (average).

Model GSM8K

LLama-2 7B + SFT + COT 17.8
LLama-2 7B + SFT + FRODO 21.1

Mistral + SFT + COT 40.4
Mistral + SFT + FRODO 44.6

Table 8: Performance of FRODO on GSM8K (accuracy)

1193

RQ3: How does FRODO generalize on Causal1194

Understanding Task? Table 9 reports the re-1195

sult of FRODO on the Causal Understanding task.1196

Please note that the Causal Understanding dataset1197

does not have training data. Hence, we trained 1198

FRODO on the StrategyQA dataset and evaluated 1199

it on Causal Understanding. Our results suggest 1200

that FRODO can generalize better than SFT. 1201

Model SQ → CU

SFT + COT 51.0
SFT + FRODO 53.2

Table 9: Generalization Performance. (accuracy) of
methods, trained on a source dataset and directly pre-
dicting on a target dataset (denoted as source → target),
where SQ = StrategyQA and CU = Causal Understand-
ing.

RQ4: How well did GPT-4 generate the 1202

Chain-of-Thought? We manually evaluated the 1203

quality of the chain of thought generated by GPT-4. 1204

We found 94% correct CoTs generated by GPT- 1205

4 for StrategyQA, whereas only 65% correct for 1206

the Causal Understanding task. This also indicates 1207

why the performance of GPT-4 drops for the Causal 1208

Understanding task (see Table 2).

SQ GSM8K CU
94% 82% 65%

Table 10: Human Judgement of GPT-4 reasoning chain.
SQ: StrategyQA, CU: Causal Understanding.

1209

RQ5: What are the differences between FRODO 1210

and Selection-Inference (Creswell et al., 2023) 1211

method? The key differences between FRODO 1212

and the Selection-Inference method are: 1213

1. The selection-inference framework assumes 1214

that each question is accompanied by context 1215

information, which contains all the informa- 1216

tion necessary to solve the problem. 1217

2. FRODO does not have that assumption; there- 1218

fore, our method works on open-domain 1219

question-answer tasks. Hence, we compare 1220

our method with RAINER, CRYSTAL, and 1221

MARIO, which do not have such assumptions. 1222

In the selection-inference framework, SFT with 1223

language modelling loss is used to train the infer- 1224

ence module, while we used counterfactual loss, 1225

LM loss, and margin-ranking loss. 1226

RQ6: How is the performance of FRODO on the 1227

Entailmentbank dataset? Table 11 shows that 1228

FRODO clearly outperforms previous baselines on 1229

the Entailmentbank dataset. 1230
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Models Task 1 Task 2

Entailment Writer 34.4 23.2
METGEN 37.0 28.0
FRODO 38.8 34.5

Table 11: Performance of FRODO on Entailment Bank
dataset.
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Figure 4: Faithfulness (LAS) of the compared methods
on StrategyQA. The base Model is T5-3B.

RQ7: What is the causal effect of open-sourced1231

models (<100B) in natural setting? We experi-1232

mented with open-sourced larger models LLaMa-1233

3-70B (zero-shot setting) for natural indirect ef-1234

fect. However, we have observed that 70B mod-1235

els do not have the emergent abilities to generate1236

coherent/meaningful reasoning steps in zero-shot1237

settings. Similar to our observation, previous stud-1238

ies (Kojima et al., 2022) also discussed that only1239

models >100B start showing such emergent abili-1240

ties. Table 12 reports the Natural Indirect effect of1241

LLaMA-2 and LLaMA-3 (70B).1242

Models Causal Effects StrategyQA

LLaMa-3 70B NIE 21.1
LLaMa-3 70B CIE 23.1
LLaMa-2 70B NIE 12.1
LLaMa-2 70B CIE 24.1

Table 12: Performance of FRODO on GSM8K (accu-
racy)

A.3 More Related Work1243

Feedback to Improve Reasoning. Recently, sev-1244

eral papers have proposed to improve or revise the1245

LMs’ generation using feedback (Fernandes et al.,1246

2023; Pan et al., 2023). Broadly, existing methods1247

can be categorized into two kinds: external and1248

intrinsic feedback. In the realm of external feed-1249

back, a standard procedure is to train critic models1250

and use them to facilitate and improve the origi-1251

nal generation model (Peng et al., 2023a; Akyurek1252

et al., 2023; Mehrabi et al., 2023; Paul et al., 2024).1253

Among them, Paul et al. (2024) is related to our1254

paper as it evaluates each reasoning step as feed- 1255

back to produce more reasonable reasoning steps. 1256

In contrast to extrinsic feedback, which relies on 1257

external sources, there are works which show that 1258

internal knowledge of LLMs can be used to give 1259

feedback (Kim et al., 2023; Madaan et al., 2023; 1260

Shinn et al., 2023). However, Madaan et al. (2023) 1261

argued that self-feedback does not improve perfor- 1262

mance on reasoning tasks. Hence, in this work, 1263

we create preference data (counterfactual and fac- 1264

tual reasoning steps) to train a specialized model 1265

to learn to generate correct reasoning steps with 1266

implicit feedback. 1267

Casual Mediation Analysis in NLP. Causal me- 1268

diation analysis is an important tool that is used to 1269

effectively attribute the causal effect of mediators 1270

on an outcome variable (Pearl, 2001). Vig et al. 1271

(2020) proposed to use this method to implicate 1272

specific neurons and attention heads in mediating 1273

gender bias in various pre-trained LMs. Later, this 1274

method was used for analyzing different models’ 1275

behaviour for different downstream tasks such as 1276

Subjective-Verb agreement (Finlayson et al., 2021), 1277

Fake News Detection (Chen et al., 2023), arith- 1278

metic reasoning (Stolfo et al., 2023), political po- 1279

larization (Tierney and Volfovsky, 2021). To the 1280

best of our knowledge, our study is the first at- 1281

tempt to use casual mediation analysis to analyze 1282

the faithfulness of LLMs in their reasoning capa- 1283

bilities. In this work, we followed Pearl (2001) 1284

to perform the mediation analysis. The mediation 1285

analysis allows us to measure the following: Direct 1286

effect: Contribution of X (input) to Y (output). In- 1287

direct effect: Contribution of R (reasoning chain) 1288

to Y (output). Hence, a high direct effect means 1289

the model’s output (Y) is primarily influenced by 1290

the input (X), and a high indirect effect means the 1291

reasoning chain (R) has more effect on the output 1292

(Y). 1293

A.4 Dataset and Implementation Details 1294

All datasets have multi-choice questions “yes/no” 1295

for STRATEGYQA, “a/b” for QUAREL, “a/b/c/d” 1296

for OPENBOOKQA, “a/b/-/h” for QASC), and the 1297

task is to generate a rationale followed by the pre- 1298

dicted answer. We use the original data splits (see 1299

Table.17). 1300

A.5 Baselines 1301

We evaluate a series of language models that are 1302

diverse in terms of scale, training, and data: 1303

15



Data Size Test Data Size

GSM8K 300
Causal Understanding 175
StrategyQA 500

Table 13: Data Statistics: Causal Mediation Analysis

Hyperparameter Value

Optimizer Adam
Adam epsilon 1e−8
Adam initial learning-rate 3e−5
Learning-rate scheduler linear with warmup
Warmup steps 1000
Gradient clipping 0.5
Train batch-size 4/8
Training Time ∼ 4 hours on 1 GPU

Table 14: Training Details for small LMs

Hyperparameter Value

Optimizer RMSprop
Adam epsilon 1e−8
Train batch-size 4/8
beta 0.25
Training Time ∼ 8 hours on 1 GPU

LoRA parameters

task type CAUSALLM
r 16
lora alpha 32
lora dropout 0.05

Table 15: Training Details for Direct Preference Opti-
mization

• LLaMA (Touvron et al., 2023), an open-source1304

decoder-only model with various sizes (7B)1305

model is pretrained using only a language mod-1306

eling loss.1307

• GPT-3.5 (Brown et al., 2020a) and GPT-4 (Ope-1308

nAI, 2023): two closed-source decoder-only1309

models that were trained with instruction-tuning.1310

For GPT-3.5, we use the text-davinci-0031311

model with 175B parameters.1312

• Stable-Vicuna: open-source decoder-only1313

model based on LLaMA. Stable-Vicuna is fine-1314

tuned with RLHF.1315

• Flan-T5-XXL (Chung et al., 2022, 11B parame-1316

ters) and Flan-Alpaca (Chia et al., 2023; Peng1317

et al., 2023b; 3B), two open-source encoder-1318

decoder models based on T5 (Raffel et al., 2020)1319

and trained on instruction-following datasets.1320

• Mistral (Jiang et al., 2023a) a 7–billion-1321

parameter language model and Mixtral (Jiang1322

et al., 2024) a Sparse Mixture of Experts (SMoE)1323

language model. Mixtral has the same architec- 1324

ture as Mistral 7B, with the difference that each 1325

layer is composed of 8 feedforward blocks (i.e. 1326

experts). 1327

A.6 Details about Preference Data 1328

In our experiments, we consider two kinds of rea- 1329

soning chains incorrect: counterfactual chains (al- 1330

ternative chains that can lead to different outcomes) 1331

and irrelevant chains (irrelevant facts about the cor- 1332

rect answer). Additionally, we train DPO with a 1333

setting where for each instance, one correct and one 1334

incorrect chain are paired and given to the model. 1335

The model learns to prefer the correct chain. In 1336

Table 22, we report the size of the preference data 1337

used to train the DPO models. 1338
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Example 1

Question: Can members of the Green Party of England and Wales vote in the USA?
Correct Answer: False
Gold Rationales: Green Party of England Wales isn’t registered in the USA. People who live in England can’t vote in the USA.
Counterfactual Rationales: The Green Party of England and Wales was registered in the USA. People who live in England can be able to vote in the USA.
GPT-4 Rationales: Step 1: Understand that the Green Party of England and Wales is not registered in the USA,
meaning it doesn’t have a direct influence or participation in the US elections. Step 2: Consider the fact that people
who live in England, regardless of their party affiliation, are not eligible to vote in the USA.
GPT-4 Answer (Y00): False ✓
GPT-4 Answer (Y01): False ✗

ChatGPT Rationales: 1. The ability for members of a political party to vote in another country is typically determined by the registration
and recognition of that party in the respective country. 2. If the Green Party of England and Wales is registered and recognized in the USA,
it is possible that members of the party residing in England may have the opportunity to vote in the USA.
Correct Answer: False
ChatGPT Answer (Y00): False ✓
ChatGPT Answer (Y01): False ✗

LLaMa-3-70B Answer (Y00): False ✓
LLaMa-3-70B Answer (Y01): True ✓

Example 2

Question: Could a wandering albatross fly from Bucharest to New York City without a rest?
Correct Answer: True
Gold Rationales: Wandering albatross can travel at least 15,000 km (just under 10,000 miles) over the sea before returning to land.
It’s 4766 miles or 7670 km from Bucharest to New York City.
Counterfactual Rationales: If the distance from Bucharest to New York City was more than 15,000 km,
a wandering albatross would not be able to fly this distance without a rest.
GPT-4 Rationales: Step 1: Compare the distance a wandering albatross can travel before returning to land (15,000 km) with the
distance from Bucharest to New York City (7670 km). Step 2: Since 7670 km is less than 15,000 km, it can be concluded
that a wandering albatross could fly from Bucharest to New York City without a rest.
GPT-4 Answer (Y00): True ✓
GPT-4 Answer (Y01): False ✓
ChatGPT Rationales: 1. Determine the maximum distance the wandering albatross can fly without a rest: Given that the wandering albatross can travel
at least 15,000 km (just under 10,000 miles) over the sea before returning to land, we need to compare this distance to the distance between Bucharest and
New York City.2. Calculate the distance between Bucharest and New York City: Given that it is 4766 miles or 7670 km from Bucharest to New York City.
ChatGPT Answer (Y00): True ✓
ChatGPT Answer (Y01): False ✓
LLaMa-3-70B Answer (Y00): True ✓
LLaMa-3-70B Answer (Y01): True ✗

Table 16: Qualitative Examples of Causal Mediation Analysis.

Dataset/Tools Citation Link License

GSM8k Cobbe et al. (2021) https://github.com/openai/grade-school-math MIT License
HuggingFace Wolf et al. (2020) https://github.com/huggingface/transformers Apache License
OBQA (Mihaylov et al., 2018) https://huggingface.co/datasets/openbookqa Apache License
StrategyQA (Geva et al., 2021) [1] MIT License
Quarel (Tafjord et al., 2018) https://github.com/allenai/unifiedqa MIT License
QASC (Khot et al., 2020) https://github.com/allenai/unifiedqa MIT License

Table 17: More details about datasets and Tools [1] https://github.com/eladsegal/strategyqa/tree/main/
data/strategyqa
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Dataset Question Option Correct Answer GPT-3 Generated CoT

StrategyQA Can I build a house on an asteroid? Yes or No No Building a house on an asteroid is
impossible as of now due
to the lack of technologies
and resources needed.
It would be extremely difficult
to build a house that could
withstand the extreme
temperatures, radiation,
and extreme gravitational pull.

OBQA The circulatory system brings (a) The brain (b) The feet The chest The circulatory system brings oxygen
oxygen to the body from where? (c) The stomach area to the body from the lungs

(d) The chest which is located in the chest area.

Quarel The boys were racing their (A) weighed more weighed less When something is lighter,
cars in the soapbox derby and found that the cars (B) weighed less it is easier to move faster.
that −−−− moved faster. Thus, the cars that weighed less moved faster.

QASC What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells Beads Rain is formed when water droplets
(D) diamonds (E) rain (F) beads in the clouds come together to form larger
(G) cooled (H) liquid droplets that are too heavy to remain

suspended in the cloud, and fall to
the ground as precipitation.

Table 18: Examples from each reasoning task.

PROMPT: Counterfactual Reasoning Chain

System Prompt: You are a helpful assistant for commonsense reasoning.
We will provide you with a commonsense question, along with a correct
answer and your task is to generate a counterfactual intermediate.
steps. Here are two examples:

“Question : ” <Problem Statements> Let’s think step by step
Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step
Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step

Table 19: Prompts used for generating counterfactual intermediate reasoning chains.

PROMPT: Counterfactual Questions

System Prompt: You are a helpful assistant in generating counterfactual questions.
We will provide you with a commonsense question, along with a correct
answer and your task is to generate a counterfactual question.
Here are two such examples:

“Question : ” <Original Reasoning Question> " Answer: " <answer>
"Counterfactual Question:": <counter question>

“Question : ” <Original Reasoning Question> " Answer: " <answer>
"Counterfactual Question:": <counter question>

“Question : ” <Original Reasoning Question> " Answer: " <answer>
"Counterfactual Question:":

Table 20: Prompts used for generating counterfactual reasoning questions.
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Examples Generations

Question Is the Illuminati card game still popular?
Gold Reasoning Chain The original version of the game was released in 1982.

A collectible card game version was released in 1995 but only had one set.
The most recent edition of the base game was published in 2007.

SFT + CoT The Illuminati card game was released in the 1980s. (Incomplete)
DPO The Illuminati card game was released in the 1980s.

The Illuminati card game was discontinued in the 1990s.

Correct Answer False
SFT True ✗
FRODO False ✓

Question Tank the kitten learned from trial and error that carpet is rougher
then skin. When he scratches his claws over carpet it generates
—- then when he scratches his claws over skin (A) more heat (B) less heat

GPT-3 Reasoning Chain When a cat scratches its claws over a rough surface,
it generates more heat than when it
scratches its claws over a smooth surface.

SFT + CoT When you scratch a surface, it generates heat.
When you scratch a surface, it generates less heat. (Contradiction)

DPO When a cat scratches a surface, it generates heat.

Correct Answer A
SFT A ✓
FRODO A ✓

Table 21: Qualitative Examples of model generated rationales and prediction.

Data type StrategyQA QuaRel OBQA QASC

Correct Reasoning Chain (Rw) 5492 8203 20138 19935

Counterfactual Reasoning Chain (Rl) 5492 8203 20138 19935
Irrelvant Reasoning Chain (Rl) 5492 8203 20138 19935

Table 22: Preference Data Statistics.

Tasks Interventions

StrategyQA Prompt GPT-4 to generate alternative questions such that
the answer changes from original to counterfactual.

GSM8K We automatically replace the operands with alternative operands.

Causal Understanding Prompt GPT-4 to generate alternative questions such that
the answer changes from original to counterfactual.

Table 23: Causal Interventions
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