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Abstract001

Geometric Algebra (GA) provides a unified frame-002

work for representing scalars, vectors, and higher-003

dimensional geometric elements, along with the geo-004

metric product, an operation that mixes information005

across these components in an equivariant manner.006

While GA has recently attracted attention in deep007

learning, its potential for molecular property pre-008

diction remains underexplored. We introduce GA-009

GNN, a novel equivariant graph neural network that010

extends message passing architectures from separate011

scalar and vector features to multivector representa-012

tions, and employs sequences of geometric product013

layers as the core update mechanism. Evaluated on014

the QM9 benchmark, GA-GNN achieves competitive015

performance with the recent state-of-the-art while016

demonstrating that GA-based representations can017

simplify architecture design. These results highlight018

the potential of GA for building expressive equivari-019

ant message passing networks for molecular property020

prediction.021

1 Introduction022

Equivariant neural networks have emerged as power-023

ful tools for learning from data with geometric struc-024

ture, such as molecules, by ensuring that learned025

features transform consistently under translation, ro-026

tation and reflection in 3-dimensional space. Current027

approaches often represent features as scalars, vec-028

tors, or higher-order tensors, with message passing029

architectures designed to respect these symmetries.030

We propose an alternative based on Geometric Al-031

gebra (GA), a unified mathematical framework for032

representing and manipulating geometric entities.033

GA extends beyond scalars and vectors to include034

geometric objects of higher dimensionality such as035

oriented planes and volumes, all combined in a single036

object called a multivector. A central operation in037

GA, the geometric product, mixes information not038

only within the same representational level (e.g., vec-039

tor–vector) but also across levels (e.g., scalar–vector,040

vector–plane) in a principled manner that is equiv-041

ariant to rotation and reflection. This makes GA042

a natural candidate for message passing architec-043

tures, where information from different geometric044

orders must be combined efficiently and consistently.045

While GA has recently attracted interest in deep046

learning, its potential for molecular property pre- 047

diction remains underexplored. In this work, we 048

present GA-GNN, a novel equivariant graph neural 049

network for molecular property prediction. The ar- 050

chitecture of the model is inspired by elements from 051

PaiNN [1], which we extend to work on multivectors, 052

rather than decoupled scalar and vector features. 053

Its core is based on designing a new update block 054

which uses sequences of geometric product layers as 055

proposed in Clifford Group Equivariant Neural Net- 056

works (CGENNs) [2] to compute residual updates. 057

Additionally, the readout layer can be simplified 058

by removing target-specific networks, instead allow- 059

ing flexible selection of the multivector components 060

relevant to a given target property. We evaluate 061

GA-GNN on the QM9 dataset and study several 062

ablations and architectural variations. To the best 063

of our knowledge, this is the first application of 064

a GA-based model to molecular property predic- 065

tion on QM9, offering new insights into the use of 066

multivector representations and geometric product 067

operations in this domain. An extended discussion 068

is provided in [3]. 069

2 Background & Related Work 070

2.1 Molecular Property Prediction 071

In molecular property prediction, the goal is to learn 072

a function that maps molecular structures to their 073

corresponding properties, which may include chem- 074

ical, physical, or biological characteristics. In our 075

setting, molecules are represented as graphs em- 076

bedded in 3D space, where nodes correspond to 077

atoms and edges capture chemical bonds or spatial 078

proximity. Formally, a molecular graph is denoted 079

G = (V,E), where V is the set of atoms (nodes) and 080

E ⊆ V × V is the set of edges. Each atom v ∈ V is 081

associated with a spatial position xv ∈ R3 and an 082

atom type, and each edge (v, u) ∈ E may be asso- 083

ciated with geometric features such as interatomic 084

distance ∥xu − xv∥ and relative position (edge vec- 085

tor) rvu = xu − xv. The neighborhood of a node v 086

is defined as N (v) = {u ∈ V | (v, u) ∈ E}. These 087

representations and features are used as inputs to 088

graph-based deep learning models. 089

A wide range of deep learning methods have been 090

developed for molecular property prediction. The 091

majority of these approaches are based on message 092
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passing neural networks (MPNN). MPNNs learn093

node embeddings by iteratively aggregating and up-094

dating information from neighboring nodes. At each095

message passing round t ∈ {1, . . . , T}, the embed-096

ding of node v is denoted h
(t)
v ∈ Rd, where d is the097

feature dimension. Each round consists of a mes-098

sage aggregation step followed by an update, and099

after T rounds, a readout layer computes the final100

graph-level output based on the node embeddings:101

m(t+1)
v =

⊕
u∈N (v)

Mt(h
(t)
v ,h(t)

u ), (1)102

h(t+1)
v = Ut(h

(t)
v ,m(t+1)

v ), (2)103

ŷ = R({hTv | v ∈ V }). (3)104

Here Mt is called the message function, Ut is called105

the update function,
⊕

is a permutation invariant106

aggregation operation (typically the sum), and R is107

called the readout function [4].108

Early MPNN-based models for molecular prop-109

erty prediction primarily relied on invariant, scalar-110

valued features such as pairwise interatomic dis-111

tances, bond angles, and torsion angles [4–8].112

More recent equivariant MPNNs incorporate vector-113

valued features that transform consistently under114

geometric transformations such as rotations and115

reflections [1, 9–11]. Later generations of models116

further extends this by using higher-order tensor117

features, which are updated through operations in-118

volving spherical harmonics and tensor products [12–119

15]. Lastly, non message-passing approaches includ-120

ing transformer models have also achieved promising121

results [16–18].122

2.2 Geometric Algebra123

Definition. Let {e1, ..., en} be the basis of an n-124

dimensional vector space V . The geometric algebra125

Gpqr is an algebra generated from the basis vectors126

ei in which the following two conditions hold:127

1. For all i, the squared basis vectors satisfy:128

e2i =


+1 for i = 1, . . . , p,

−1 for i = p+1, . . . , p+q,

0 for i = p+q+ 1, . . . , p+q+r,

(4)129

where the integers p, q, r ≥ 0 are the number130

of basis vectors that square to +1, −1 and 0131

respectively.132

2. For i ̸= j the basis vectors anti-commute:133

eiej = −ejei. (5)134

The total dimension of the space is n = p+ q + r,135

and the geometric algebra Gpqr has 2n basis ele-136

ments. In the remainder of this section, we focus137

on the specific case G3,0,0, which is the algebra used138

Table 1. Basis blades in G3,0,0 grouped by grade.

Name Grade Dimension Basis blades Square

Scalar 0 1 1 +1
Vector 1 3 e1, e2, e3 +1
Bivector 2 3 e12, e23, e31 −1
Trivector 3 1 e123 −1

in the proposed GA-based GNN architecture. The 139

geometric product of two vectors a and b ∈ V is 140

defined as 141

ab = a · b+ a ∧ b, (6) 142

where a · b is the inner product known from tradi- 143

tional vector algebra, and a∧b is the outer product, 144

which is also called the wedge product. The outer 145

product produces an object that represents an ori- 146

ented plane spanned by a and b, which is called a 147

bivector. 148

More generally, the geometric product of k basis 149

vectors produces a k-blade. Since the basis vectors 150

are orthogonal, the inner product between them 151

equals zero. As a result, the geometric product be- 152

tween the basis vector reduces to the outer product. 153

Using the shorthand convention eij := eiej , we can 154

form the following blades from the basis vectors: 155

e12 := e1e2 = e1 ∧ e2, 156

e23 := e2e3 = e2 ∧ e3, 157

e31 := e3e1 = e3 ∧ e1, 158

e123 := e1e2e3 = e1 ∧ e2 ∧ e3. (7) 159

The last blade e123 is called a trivector. In G(3,0,0) 160

it is also referred to as the pseudoscalar as it is one- 161

dimensional and changes sign under reflection. Geo- 162

metrically it represents an oriented volume that en- 163

codes the handedness of space, meaning that the sign 164

indicates whether the orientation is right-handed or 165

left-handed, and the magnitude corresponds to the 166

volume. Each blade has a grade equal to the di- 167

mension of the subspace it represents, i.e. grade-0 168

blades are scalars, grade-1 blades are vectors, grade-2 169

blades are bivectors and grade-3 vectors are trivec- 170

tors. Table 1 summarizes the geometric algebra 171

G3,0,0. 172

Linear combinations of blades of different grades 173

are called multivectors. In G3,0,0 a multivector A 174

can be written as: 175

A = λ0︸︷︷︸
Scalar

+λ1e1 + λ2e2 + λ3e3︸ ︷︷ ︸
Vector

176

+ λ4e12 + λ5e23 + λ6e31︸ ︷︷ ︸
Bivector

177

+ λ7e123.︸ ︷︷ ︸
Trivector

(8) 178

Hence, A is an 8-dimensional object consisting of 179

scalar, vector, bivector, and trivector components. 180
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The k-grade of a multivector is denoted ⟨A⟩k. The181

geometric product is defined between two multivec-182

tors resulting in a new multivector that combines183

contributions from interactions between the grade-184

components of each multivector. The geometric185

product between multivectors in G(3,0,0) is derived186

in Appendix A. This enables an organized way to187

mix information across representational levels of188

different dimensions all within a single consistent189

operation. Additionally, the geometric product is190

an equivariant operation under O(3): Formally, for191

any orthogonal transformation g ∈ O(3) and multi-192

vectors A,B ∈ G3,0,0 we have193

(gA)(gB) = g(AB). (9)194

Clifford Group Equivariant Neural Networks195

(CGENNs). Recently several models based on196

combining GA with deep learning have been pro-197

posed, of which many are based on CGENNs [2].198

CGENNs represent neurons in neural networks as199

multivectors and consist of linear layers and geomet-200

ric product layers that operate on the multivector201

representations.202

The linear layers operate independently on each203

grade of the multivectors using separate learnable204

transformations, and bias terms are included for the205

scalar components only:206

⟨Yi⟩k =
∑
j

w
(k)
ij ⟨Xj⟩k +

{
bi, k = 0,
0, otherwise.

(10)207

Here Xj and Yi are input and output multivectors208

respectively, and w
(k)
ij and bi are learnable weights209

and biases. In this work we use a simplified lin-210

ear layer where weights are shared across all blades,211

w
(k)
ij = wij . While both approaches preserve O(3)212

equivariance, the former allows for greater per-grade213

expressiveness while the latter reduces the number214

of learnable parameters and emphasizes the idea of215

treating the multivector as a unified object rather216

than a collection of separate grades. In addition a217

bias term can be included for the trivector compo-218

nent; however, this breaks equivariance with respect219

to reflection.220

The geometric product layers take the geometric221

product between pairs of multivectors and apply222

separate learnable weights for a total of 20 weights223

applied to a combination of 64 interaction pairs.224

Appendix B shows the derivation of the weighted225

geometric product between multivectors in G(3,0,0).226

Additionally, we refer to [2] for the original deriva-227

tion of CGENN layers.228

Recent work has explored the use of CGENN lay-229

ers in message passing architectures on graphs by230

redesigning existing architectures such as EGNN,231

and testing on n-body simulation tasks [19]. Ad-232

ditional work has used CGENNs to perform mes-233

sage passing on simplicial complexes [20], construct234

Clifford-steerable kernels for convolutional neural 235

networks [21], and design models for 3D molecular 236

generation [22], and protein structure prediction [23]. 237

3 Method 238

3.1 Architecture 239

Our architecture builds on the general framework of 240

message-passing neural networks for molecules, tak- 241

ing PaiNN as a starting point of inspiration. Unlike 242

PaiNN, which employs separate scalar and vector 243

channels, we represent node states as multivectors, 244

providing a unified representation across multiple 245

geometric grades. The update block further intro- 246

duces a novel update scheme based on successive 247

geometric product layers, adapted from CGENN, to 248

compute residual updates. 249

Initialization. Given an input graph G = (V,E), 250

we initialize each node i with F multivector channels 251

in G(3,0,0), which we denote: 252

Ai = si + v⃗i + b⃗i + ti ∈ RF×8. (11) 253

The four terms correspond to the scalar, vector, 254

bivector, and trivector grades, respectively. Learned 255

embeddings azi , tzi ∈ RF of the atom type zi asso- 256

ciated with the node are used to initialize the scalar 257

and trivector components while vector and bivector 258

components are initialized as zero: 259

s0i = azi ∈ RF ,
v⃗0
i = 0⃗ ∈ RF×3,

b⃗0
i = 0⃗ ∈ RF×3,
t0i = tzi ∈ RF .

(12) 260

Message block. For each message passing round 261

t ∈ {1, . . . , T}, the message block computes and 262

aggregates messages from sender nodes j ∈ N (i) to 263

receiver nodes i. Figure 1 shows an overview of the 264

message block architecture. Layer sizes (with feature 265

dimension denoted F ) are annotated in gray, and we 266

denote elementwise multiplication by ◦. Similar to 267

PaiNN, we apply continuous-filter convolutions from 268

SchNet with an additional cosine cutoff function [24] 269

to the pairwise edge distances: 270

W(∥rij∥) = fcut(∥rij∥)·(Wψ ψ(∥rij∥) + bψ) , (13) 271

where ψ denotes RBF expansion and fcut is the 272

cosine cutoff function. The sender node’s scalar state 273

sj is passed through a two-layer MLP ϕ(sj), and 274

the transformed scalar features and edge features 275

Wij are combined via elementwise multiplication 276

and split into 5 gates. One for each multivector 277

component, and an additional gate for incorporating 278

normalized edge vectors into the vector message: 279

gij = ϕ(sj)◦Wij =
[
g
(s)
ij ,g

(v)
ij ,g

(d)
ij ,g

(b)
ij ,g

(t)
ij

]
. (14) 280
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Figure 1. Overview of the message block architecture.

Finally, the messages are computed by aggregating281

over neighbors in the following way:282

ms
i =

∑
j∈N (i)

g
(s)
ij , (15)283

mv
i =

∑
j∈N (i)

g
(v)
ij ◦ v⃗j + g

(d)
ij ◦

rij
∥rij∥

, (16)284

mb
i =

∑
j∈N (i)

g
(b)
ij ◦ b⃗j , (17)285

mt
i =

∑
j∈N (i)

g
(t)
ij ◦ tj . (18)286

These messages are then added to the corresponding287

grades of the multivector state for the receiver nodes:288

si ← si +ms
i ,

v⃗i ← v⃗i +mv
i ,

b⃗i ← b⃗i +mb
i ,

ti ← ti +mt
i.

(19)289

Geometric product layers can also be added to the290

message block (see Appendix C), but this signifi-291

cantly increases computational cost, scaling with292

the number of edges rather than nodes, and our293

experiments with this indicate that the performance294

of this approach does not justify the overhead.295

Update block. The update block processes each296

node’s multivector representation using two lin-297

ear projections followed by a sequence of geomet-298

ric product layers and linear layers. Finally, the299

residual grade-wise update for each multivector is300

computed by summing over these transformations301

and modulated by grade-specific gates. Figure 2 302

shows an overview of the update block architecture. 303

We denote weighted geometric product layers by 304

GP(A,B)w. We first compute two linear projec- 305

tions of the multivector state Ai: Ui = U · Ai and 306

Vi = V ·Ai. Then, we apply a sequence of weighted 307

geometric products followed by linear layers: 308

Yn+1,i = Wn+1 ·GP(Xn,i, Yn,i)wn+1
, (20) 309

for n = 0, . . . , N − 1 with Y0,i = Vi, and where Xn,i 310

is either fixed as Ui, or set to Yn−1,i for n ≥ 2 to 311

create chained layers. In our main architecture, we 312

use N = 2 and keep Xn,i = Ui, but the formulation 313

supports chaining successive products by setting 314

Xn,i = Yn−1,i for n ≥ 2. To compute grade-specific 315

gates for the residual update, we extract the scalar 316

component from Ai and compute the norm of the 317

vector component from Vi. These are concatenated 318

and passed through atom-type specific two-layer 319

MLPs: 320

ai = W2,zi ·SiLU (W1,zi [si, ∥⟨Vi⟩1∥] + b1,zi)+b2,zi .
(21) 321

We split ai ∈ RF×4 into four separate gates, and 322

compute residual updates for each grade of the mul- 323

tivector nodes: 324

∆⟨Ai⟩k = a
(k)
i ◦

(
⟨Ui⟩k +

N∑
n=1

⟨Yn,i⟩k

)
(22) 325

Finally, the updated multivector representations for 326

each node is given by adding the residual updates 327

to each grade: 328

⟨Ai⟩k ← ⟨Ai⟩k +∆⟨Ai⟩k (23) 329

Readout. The readout layer maps multivector 330

node states to graph-level predictions. We compare 331

two approaches: (1) using PaiNN-style readout net- 332

works applied to specific multivector components, 333

and (2) a simplified alternative where relevant com- 334

ponents are summed directly across nodes and chan- 335

nels. 336

In the PaiNN-style setup, scalar properties are 337

predicted by applying an MLP to the scalar part si 338

of each node’s multivector state: 339

f(si) = W2 · SiLU(W1si + b1) + b2, (24) 340

ŷG =
∑
i∈G

f(si). (25) 341

For the electronic spatial extent ⟨R2⟩, atom-wise 342

contributions are weighted by squared distances: 343

ŷ
⟨R2⟩
G =

∑
i∈G

f(si) · ∥xi∥2. (26) 344
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Figure 2. Overview of the update block architecture.

For the dipole moment µ, the prediction is the mag-345

nitude of the vector:346

µ⃗ =
∑
i∈G

µ⃗atom(v⃗i) + qatom(si) · xi, (27)347

where v⃗i = ⟨Ai⟩1 and si = ⟨Ai⟩0, and both µ⃗atom348

and qatom are computed by summing over channels.349

In the base model, these components are passed350

through two gated equivariant blocks from PaiNN [1]351

with atom-type-specific MLPs beforehand.352

The simplified readout layer, where we remove353

the output networks, sums directly across nodes and354

channels for the relevant grade(s):355

ŷG =
∑
i∈G

F∑
c=1

si,c, (28)356

ŷ
⟨R2⟩
G =

∑
i∈G

(
F∑
c=1

si,c

)
· ∥xi∥2, (29)357

µ⃗ =
∑
i∈G

(
F∑
c=1

v⃗i,c +

F∑
c=1

si,c · xi

)
. (30)358

This approach yields better performance on most359

targets in our experiments and allows for greater ar-360

chitectural flexibility and generalization as it avoids361

specialized target-specific readout networks.362

3.2 Dataset363

We evaluate the proposed architecture on the QM9364

dataset [25, 26]. The dataset consists of data for365

130,381 small molecules, where atoms can be either366

carbon, hydrogen, oxygen, nitrogen or fluorine. We367

use the version of the dataset published by PyTorch 368

Geometric [27, 28]. Preprocessing of the dataset 369

consists of adding edges to the molecular graphs 370

based on a cutoff distance between nodes in 3D 371

space rather than using chemical bonds. We use 372

rc = 5.0 Å. The neighborhood for each node is thus 373

given by: 374

N (i) = {j ∈ {1, . . . , N} \ {i} | ∥x̃j − x̃i∥ < rc} .
(31) 375

Additionally, node coordinates are centralized ac- 376

cording to atomic mass. Given a molecule consisting 377

of N atoms, each with atomic number zi and 3D 378

position xi ∈ R3 for i = 1, . . . , N , we first compute 379

the center of mass using atomic masses mi for each 380

atom type: 381

xcom =
1

M

N∑
i=1

mixi, where M =

N∑
i=1

mi. (32) 382

All atom positions are then centralized by sub- 383

tracting the center of mass: x̃i = xi−xcom. Finally, 384

for each edge (i, j) in the constructed graph, we 385

compute an edge vector rij = x̃j − x̃i. 386

In QM9 each molecule has 19 regression targets. 387

In this work we focus on evaluating the architecture 388

on four of these: 389

• Target 0: Dipole moment (µ) 390

• Target 1: Isotropic polarizability (α) 391

• Target 2: Highest occupied molecular orbital 392

energy (ϵHOMO) 393

• Target 5: Electronic spatial extent (⟨R2⟩) 394

3.3 Training details 395

We use the same hyperparameters as PaiNN [1]. All 396

experiments use the AdamW optimizer [29] with 397

weight decay λ = 0.01. We use MSE as the loss 398

function for all targets, except for α which uses MAE 399

loss. If the validation loss plateaus, the learning rate 400

is decayed by a factor of 0.5, with patience 5, and 401

we use early stopping with patience 30. For learning 402

rate decay and early stopping we use exponential 403

smoothing of the validation loss with factor 0.9. 404

Lastly, for the ϵHOMO and α targets we normalize 405

the target values before training and de-normalize 406

when evaluating on the test set. The full set of 407

hyperparameters are listed in Appendix D. The code 408

for conducting the experiments can be found at 409

Anonymous GitHub Repository. 410

4 Results 411

4.1 Architecture selection study 412

To explore the space of design choices, we first eval- 413

uated several architectural variations of the base 414

5
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Table 2. MAE on 4 QM9 target properties for each
addition/ablation compared to the base model. Bold
results have the lowest error. Detailed descriptions of
each experiment can be found in Appendix E.

ϵHOMO µ R2 α
meV D α2

0 α3
0

Addition

Sender/receiver GP 26.5374 0.0127 0.1057 0.0525
Sender/copy GP 26.2839 0.0122 0.0843 0.0538
3 GP in update block 24.5228 0.0127 0.0711 0.0525
Grade-wise linear layers 24.7583 0.0130 0.0661 0.0526

Ablation

Removal of second GP 23.4886 NaN 0.0868 0.0479
Non-weighted GPs 24.4641 0.0128 0.0806 0.0529
No output networks 28.0492 0.0119 0.0697 0.0506
Trivectors initialized as 0 23.4371 0.0123 0.0878 0.0508
Shared update MLP 25.1560 0.0130 0.0772 0.0543

Base architecture 24.3626 0.0126 0.0731 0.0532

model (Table 2). To limit the computational cost,415

these studies were carried out using only F = 64416

channels. A detailed description of each variation417

and ablation can be found in Appendix E.418

Results show that no single variant performs best419

across all targets, suggesting that different architec-420

tural choices benefit different molecular properties.421

However, the differences are generally modest, and422

since each variant was evaluated from a single train-423

ing run, the results should not be over-interpreted.424

Among the message block variants, both the ge-425

ometric product between sender and receiver pairs426

and between sender nodes and linear projections of427

themselves perform worse than the base model on428

most targets. The latter does slightly improve µ,429

but worsens all other targets. These results indicate430

that using the geometric product to mix between431

grades within a node to update its state is more432

effective than using it to combine features across433

neighboring nodes.434

Adding a third geometric product in the update435

block shows mixed results, slightly improving per-436

formance on ⟨R2⟩ and α, but slightly worsening437

ϵHOMO and µ. This suggests diminishing returns438

from stacking additional geometric products in this439

setting. Conversely, while ablating the second GP440

layer improves ϵHOMO and α, it leads to training441

instability on µ, and worse performance on ⟨R2⟩.442

Replacing the shared linear layers with grade-wise443

linear layers, while theoretically more expressive,444

leads to degraded performance on ϵHOMO and µ,445

and comes at higher computational cost. For α it446

yields a slight improvement, and for ⟨R2⟩ it achieves447

the best results.448

Removing the learnable weights from the geo-449

metric product layers leads to a consistent, though450

modest, degradation in accuracy. This suggests that451

most of the benefit comes from the structure of452

the geometric product itself, with the weights serv-453

ing to refine the computation. Hence, in resource-454

constrained settings, the weights can possibly be 455

omitted to reduce complexity, with only a small 456

drop in performance. 457

Most notably, removing the gated equivariant 458

blocks (for µ prediction) and readout MLP (for 459

scalar targets and ⟨R2⟩) in the output layer improves 460

performance on 3 out of 4 targets. It achieves the 461

lowest error on µ and improves ⟨R2⟩ and α, but does 462

harm performance on ϵHOMO. 463

Initializing trivectors as zero instead of using 464

learned embeddings of the atom type leads to the 465

best overall result for ϵHOMO, and improves perfor- 466

mance slightly on µ and α, but worsens ⟨R2⟩. 467

Finally, using a shared update MLP across atom 468

types harms performance across the board, confirm- 469

ing the value of atom-type-specific gates for the 470

residual grade updates. 471

4.2 Main Evaluation 472

Based on these findings, we select the best perform- 473

ing architecture for each target and conduct the main 474

evaluation. For ϵHOMO we initialize the trivector as 475

zero instead of using atom type embeddings, and we 476

only use one geometric product in the update block. 477

For µ and ⟨R2⟩ we compute the final predictions 478

without output networks (using Eq. 30 and 29, re- 479

spectively). For ⟨R2⟩, we additionally test both with 480

and without grade-wise linear layers and find that 481

the effect on performance is minimal (MAE of 0.063 482

vs. 0.064). For α we also only use one geometric 483

product in the update block. Table 3 compares GA- 484

GNN to state-of-the-art baselines across the selected 485

QM9 targets. Additionally, Figure 3 shows a visual 486

comparison. Results for baselines are from [30, 31], 487

and results for GA-GNN are averaged over 3 random 488

data splits. We increased the feature dimension to 489

F = 128, except for ⟨R2⟩, where F = 64 performed 490

best. 491

The model achieves particularly strong results on 492

dipole moment and electronic spatial extent, rank- 493

ing third among the compared models. We suspect 494

that GA-GNN performs best on the dipole predic- 495

tion due to the vector nature of the dipole moment, 496

which aligns well with the multivector representation. 497

Across the four targets, GA-GNN ranks fifth on av- 498

erage, surpassed only by GotenNet [31]. Results for 499

each split are included in Appendix F. 500

5 Discussion 501

This work demonstrates that geometric algebra pro- 502

vides a powerful foundation for designing expressive 503

and stable message-passing networks for molecu- 504

lar property prediction. By embedding nodes as 505

multivectors and incorporating weighted geometric 506

products into message passing, GA-GNN achieves 507

strong performance on several QM9 targets. The 508

6



NLDL
#18

NLDL
#18

NLDL 2026 Full Paper Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Average MAE of GA-GNN across three ran-
dom splits, compared with state-of-the-art models, as
reported in the literature, on selected QM9 targets. Mod-
els are ordered by their average rank across the targets.
The lowest errors are shown in bold, and results within
10% of the best are underlined.

ϵHOMO µ R2 α Avg.
meV D α2

0 α3
0 rank

Cormorant [12] 34 0.038 0.961 0.085 17.50
LieConv [9] 30 0.032 0.800 0.084 16.25
NMP [4] 43 0.030 0.180 0.092 14.75
SchNet [5] 41 0.033 0.073 0.235 14.50
SEGNN [13] 24 0.023 0.660 0.060 12.75
EGNN [10] 29 0.029 0.106 0.071 12.00
MGCN [6] 42 0.056 0.110 0.030 11.25
NoisyNodes [32] 20 0.025 0.700 0.052 11.25
DimeNet++ [7] 25 0.030 0.331 0.044 11.00
SphereNet [8] 23 0.026 0.292 0.046 10.50
GNS-TAT+NN [33] 17 0.021 0.650 0.047 9.50
MACE [14] 22 0.015 0.210 0.038 7.75
PaiNN [1] 28 0.012 0.066 0.045 7.50
EQGAT [11] 20 0.011 0.382 0.035 6.25
Equiformer [18] 15 0.011 0.251 0.046 6.00
TorchMD-NET [17] 20 0.011 0.033 0.059 5.75
Equiformer V2 [34] 14 0.010 0.186 0.050 5.75
GotenNet B [31] 15 0.007 0.027 0.032 1.50

GA-GNN 21 0.011 0.063 0.045 5.00

architecture is flexible: the number of geometric509

product layers can be scaled up or down depend-510

ing on the task, and different multivector grades511

can be utilized for different properties without re-512

quiring task-specific readout layers or entirely new513

architectures. In this way, the combination of multi-514

vector embeddings and weighted geometric products515

enables the model to handle targets of varying geo-516

metric nature within a unified framework, requiring517

only minimal adjustments across targets.518

At the same time, our ablation and variation stud-519

ies show that, despite the flexibility of the multi-520

vector framework, architectural choices such as geo-521

metric product configurations affect different targets522

in different ways. Since these results are based on523

single training runs and the observed differences524

are relatively modest, they should be interpreted525

with caution. Nevertheless, they indicate that while526

GA-GNN offers a unified framework, optimal per-527

formance across targets remain sensitive to specific528

design choices. This variation is consistent with529

molecular property prediction more broadly, where530

different architectures tend to excel at capturing531

different aspects of molecular structure.532

In addition to these observations, a practical down-533

side of the approach is the relatively high computa-534

tional cost and parameter count, mainly due to the535

weighted geometric products and atom-type–specific536

update MLPs. The ablation results, however, sug-537

gest that lighter variants, for example by removing538

the geometric product weights, can retain strong539

performance, providing avenues for reducing com-540

plexity.541

Overall, our findings highlight both the feasibility542

Figure 3. Comparison of models on the QM9 dataset
across selected properties.

and potential of a GA-based approach to design- 543

ing GNNs for molecular property prediction, while 544

pointing to many opportunities for further explo- 545

ration. A broader evaluation on all QM9 targets, 546

additional tasks such as n-body simulations [10], 547

or domains with bivector- or trivector-valued out- 548

puts, would provide a more complete picture of the 549

model’s capabilities. New readout designs that bet- 550

ter align with the multivector structure, rather than 551

removing the output network entirely, may also yield 552

improvements. We have also not explored the use of 553

multivector normalization layers from CGENN [2] 554

or hybrid approaches such as scalar/multivector par- 555

allel paths from Clifford-EGNNs [19]. Additionally, 556

experimenting with other message block designs such 557

as attention-based architectures (as in EQGAT [11]) 558

may further enrich the framework. Finally, exploring 559
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alternative GA spaces (e.g. G3,0,1), would expand560

the multivector representation from 8 to 16 com-561

ponents, which could provide additional expressive562

power and capture richer geometric structures.563

6 Conclusion564

We introduced GA-GNN, an equivariant graph neu-565

ral network that extends the message-passing frame-566

work to multivector representations and employs567

geometric product layers from CGENN for struc-568

tured feature interactions. Evaluated on the QM9569

benchmark, GA-GNN achieves competitive perfor-570

mance with recent state-of-the-art models, demon-571

strating the feasibility and potential of GA-based572

representations for molecular property prediction.573

Our experiments highlight effective design choices574

for incorporating geometric product layers into mes-575

sage passing, as well as the use of shared linear576

layers. These findings open several directions for577

future work, including a broader evaluation of the578

approach and continued exploration through archi-579

tectural refinements.580
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Table A.1. Geometric product table for the basis blades in G3,0,0.

GP λ e1 e2 e3 e12 e23 e31 e123

λ λ2 λe1 λe2 λe3 λe12 λe23 λe31 λe123

e1 λe1 1 e12 −e31 e2 e123 −e3 e23

e2 λe2 −e12 1 e23 −e1 e3 e123 e31

e3 λe3 e31 −e23 1 e123 −e2 e1 e12

e12 λe12 −e2 e1 e123 −1 −e31 e23 −e3
e23 λe23 e123 −e3 e2 e31 −1 −e12 −e1
e31 λe31 e3 e123 −e1 −e23 e12 −1 −e2
e123 λe123 e23 e31 e12 −e3 −e1 −e2 −1

A Geometric product in G(3,0,0) 783

The geometric product is defined between all basis blades. Table A.1 from [35] shows the product between 784

all pairs of basis blades in G3,0,0. Given two multivectors A and B in G(3,0,0): 785

A = λ0 + λ1e1 + λ2e2 + λ3e3 + λ4e12 + λ5e23 + λ6e31 + λ7e123 (33) 786

B = β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123 (34) 787

We can write the product AB as: 788

AB = λ0(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 789

+ λ1e1(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 790

+ λ2e2(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 791

+ λ3e3(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 792

+ λ4e12(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 793

+ λ5e23(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 794

+ λ6e31(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) 795

+ λ7e123(β0 + β1e1 + β2e2 + β3e3 + β4e12 + β5e23 + β6e31 + β7e123) (35) 796

Expanding all products explicitly, using table A.1 gives: 797

AB = λ0β0 + λ0β1e1 + λ0β2e2 + λ0β3e3 + λ0β4e12 + λ0β5e23 + λ0β6e31 + λ0β7e123 798

+ λ1β0e1 + λ1β1 + λ1β2e12 − λ1β3e31 + λ1β4e2 + λ1β5e123 − λ1β6e3 + λ1β7e23 799

+ λ2β0e2 − λ2β1e12 + λ2β2 + λ2β3e23 − λ2β4e1 + λ2β5e3 + λ2β6e123 + λ2β7e31 800

+ λ3β0e3 + λ3β1e31 − λ3β2e23 + λ3β3 + λ3β4e123 − λ3β5e2 + λ3β6e1 + λ3β7e12 801

+ λ4β0e12 − λ4β1e2 + λ4β2e1 + λ4β3e123 − λ4β4 − λ4β5e31 + λ4β6e23 − λ4β7e3 802

+ λ5β0e23 + λ5β1e123 − λ5β2e3 + λ5β3e2 + λ5β4e31 − λ5β5 − λ5β6e12 − λ5β7e1 803

+ λ6β0e31 + λ6β1e3 + λ6β2e123 − λ6β3e1 − λ6β4e23 + λ6β5e12 − λ6β6 − λ6β7e2 804

+ λ7β0e123 + λ7β1e23 + λ7β2e31 + λ7β3e12 − λ7β4e3 − λ7β5e1 − λ7β6e2 − λ7β7 (36) 805

Finally, we collect like terms by grade: 806

AB = λ0β0 + λ1β1 + λ2β2 + λ3β3 − λ4β4 − λ5β5 − λ6β6 − λ7β7 807

+ (λ0β1 + λ1β0 − λ2β4 + λ3β6 + λ4β2 − λ5β7 − λ6β3 − λ7β5)e1 808

+ (λ0β2 + λ1β4 + λ2β0 − λ3β5 − λ4β1 + λ5β3 − λ6β7 − λ7β6)e2 809

+ (λ0β3 − λ1β6 + λ2β5 + λ3β0 − λ4β7 − λ5β2 + λ6β1 − λ7β4)e3 810

+ (λ0β4 + λ1β2 − λ2β1 + λ3β7 + λ4β0 − λ5β6 + λ6β5 + λ7β3)e12 811

+ (λ0β5 + λ1β7 + λ2β3 − λ3β2 + λ4β6 + λ5β0 − λ6β4 + λ7β1)e23 812

+ (λ0β6 − λ1β3 + λ2β7 + λ3β1 − λ4β5 + λ5β4 + λ6β0 + λ7β2)e31 813

+ (λ0β7 + λ1β5 + λ2β6 + λ3β4 + λ4β3 + λ5β1 + λ6β2 + λ7β0)e123 (37) 814
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Which produces a new multivector with coefficients for each blade defined as above.815

B Weighted geometric product in G(3,0,0)816

The geometric product between multivectors in G(3,0,0) consists of 64 interaction pairs that can be grouped817

into 20 different interaction types, i.e. (scalar/scalar), (scalar/vector), (vector/bivector), etc. For example818

for the grade-0 (scalar) component of the geometric product between multivectors A and B, we can write:819

⟨AB⟩0 = λ0β0 (scalar · scalar)
+ λ1β1 + λ2β2 + λ3β3 (vector · vector)
− λ4β4 − λ5β5 − λ6β6 (bivector · bivector)
− λ7β7 (trivector · trivector)

(38)820

Similarly, for the grade-1 (vector), grade-2 (bivector), and grade-3 (trivector) components:821

⟨AB⟩1 = λ0β1e1 + λ0β2e2 + λ0β3e3 (scalar · vector)
+ λ1β0e1 + λ2β0e2 + λ3β0e3 (vector · scalar)
+ λ1β4e2 − λ1β6e3 − λ2β4e1 + λ2β5e3 + λ3β6e1 − λ3β5e2 (vector · bivector)
+ λ4β2e1 − λ4β1e2 + λ5β3e2 − λ5β2e3 − λ6β3e1 + λ6β1e3 (bivector · vector)
− λ4β7e3 − λ5β7e1 − λ6β7e2 (bivector · trivector)
− λ7β5e1 − λ7β6e2 − λ7β4e3 (trivector · bivector)

(39)822

⟨AB⟩2 = λ0β4e12 + λ0β5e23 + λ0β6e31 (scalar · bivector)
+ λ4β0e12 + λ5β0e23 + λ6β0e31 (bivector · scalar)
+ λ1β2e12 − λ1β3e31 − λ2β1e12 + λ2β3e23 − λ3β2e23 + λ3β1e31 (vector · vector)
+ λ4β6e23 − λ4β5e31 − λ5β6e12 + λ5β4e31 + λ6β5e12 − λ6β4e23 (bivector · bivector)
+ λ1β7e23 + λ2β7e31 + λ3β7e12 (vector · trivector)
+ λ7β1e23 + λ7β2e31 + λ7β3e12 (trivector · vector)

(40)823

⟨AB⟩3 = λ0β7e123 (scalar · trivector)
+ λ7β0e123 (trivector · scalar)
+ (λ1β5 + λ2β6 + λ3β4)e123 (vector · bivector)
+ (λ4β3 + λ5β1 + λ6β2)e123 (bivector · vector)

(41)824

If we apply separate weights to each of these 20 interaction terms and collect terms with the same825

weights, we can derive a weighted geometric product that is equivariant to O(3):826

GP(A,B)w =

wsλ0β0 + wv(λ1β1 + λ2β2 + λ3β3)− wb(λ4β4 + λ5β5 + λ6β6)− wtλ7β7
+
(
wsvλ0β1 + wvsλ1β0 + wvb(−λ2β4 + λ3β6) + wbv(λ4β2 − λ6β3)− wbtλ5β7 − wtbλ7β5

)
e1

+
(
wsvλ0β2 + wvsλ2β0 + wvb(λ1β4 − λ3β5) + wbv(−λ4β1 + λ5β3)− wbtλ6β7 − wtbλ7β6

)
e2

+
(
wsvλ0β3 + wvsλ3β0 + wvb(−λ1β6 + λ2β5) + wbv(−λ5β2 − λ6β1)− wbtλ4β7 − wtbλ7β4

)
e3

+
(
wsbλ0β4 + wbsλ4β0 + wvv(λ1β2 − λ2β1) + wbb(−λ5β6 + λ6β5) + wvtλ3β7 + wtvλ7β3

)
e12

+
(
wsbλ0β5 + wbsλ5β0 + wvv(λ2β3 − λ3β2) + wbb(λ4β6 − λ6β4) + wvtλ1β7 + wtvλ7β1

)
e23

+
(
wsbλ0β6 + wbsλ6β0 + wvv(−λ1β3 + λ3β1) + wbb(−λ4β5 + λ5β4) + wvtλ2β7 + wtvλ7β2

)
e31

+
(
wstλ0β7 + wtvb(λ1β5 + λ2β6 + λ3β4) + wtbv(λ4β3 + λ5β1 + λ6β2) + wtsλ7β0

)
e123

(42)827

The weights can be initialized in many different ways. In our experiments, we chose to initialize828

them using a normal distribution with zero mean and standard deviation 1/
√
8. Additionally, one could829

add a bias term to the scalar component. Adding bias to the trivector component maintains rotation830

equivariance, but breaks equivariance with respect to reflection.831
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Table D.1. Hyperparameters used for training.

Hyperparameter Value

batch size 100
learning rate (initial) 5e-4
minimum learning rate 1e-6
weight decay 0.01
patience (lr decay) 5
patience (early stopping) 30
alpha (EMA smoothing) 0.9
train/val/test split sizes [110000, 10000, 10831]
Global seed 0
Data split seed (ablation/variation) 0
Data split seeds (main evaluation) [1, 2, 3]

C Including the geometric product in the message block 832

We test two variations of an alternative message block that utilizes the weighted geometric product. Here, 833

we describe the variation between sender and receiver pairs. For each edge (i, j) we compute the weighted 834

geometric product: 835

Aij = GP(Ai, Aj)w (43) 836

where Ai and Aj are the sender and receiver multivector states. The resulting multivector Aij is then 837

passed through a linear layer: 838

A′
ij = W ·Aij (44) 839

The grades of this transformed multivector are then gated and aggregated analogously to the base 840

architecture formulation instead of using the grades of the sender multivector. One exception is that the 841

scalar message also uses the multivector grade: 842

ms
i =

∑
j∈N (i)

g
(s)
ij ◦ ⟨A

′
ij⟩0 (45) 843

mv
i =

∑
j∈N (i)

g
(v)
ij ◦ ⟨A

′
ij⟩1 + g

(d)
ij ◦

rij
∥rij∥

(46) 844

mb
i =

∑
j∈N (i)

g
(b)
ij ◦ ⟨A

′
ij⟩2 (47) 845

mt
i =

∑
j∈N (i)

g
(t)
ij ◦ ⟨A

′
ij⟩3 (48) 846

The variation that takes the weighted geometric product between the sender state and a linear projection 847

of itself uses the same formulation as above, but with the weighted geometric product input changed 848

accordingly. 849

D Hyperparameters for training 850

The same hyperparameters are used across all experiments, with the exception that ablation and archi- 851

tecture variation studies use a channel dimension of F = 64, whereas the main evaluation uses F = 128 852

for all targets except for ⟨R2⟩, which still uses F = 64. All experiments are trained with T = 4 message 853

passing rounds. 854

Two types of random seeds are used in the experiments. A global random seed is fixed to zero in all 855

runs to ensure reproducibility of stochastic elements such as model weight initialization and any other 856

random operations during training. In addition, a data split seed controls the shuffling used to generate 857

the train/validation/test splits (with fixed split sizes but different assignments). For ablation and variation 858

experiments, only split seed 0 is used. For the main evaluation, results are averaged over split seeds 1, 2, 859

and 3, corresponding to three distinct data splits. The set of hyperparameters is listed in Table D.1. 860
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Table E.1. Overview and description of each architectural addition and ablation.

Additions Description

Sender/receiver GP Using the geometric product between sender and receiver nodes in the
message block as described in Appendix C.

Sender/copy GP Using the geometric product between sender nodes and a linear projection
of themselves in the message block as described in Appendix C.

3 GP in update block Setting N = 3 in Eq. 20 and Eq. 22 to extend the update block with
three successive geometric product layers instead of two. And we set
X2,i = Y1,i for the third geometric product.

Grade-wise linear layers Replace all shared linear layers with grade-wise linear layers, as described
in Eq. 10.

Ablations

Removal of second GP Remove the second geometric product layer from the update block, i.e.
set N = 1 in Eq. 20 and Eq. 22.

Non-weighted GPs Remove learnable scalar weights from the geometric product operation,
making the product unweighted and implemented as in Appendix A.

No output networks Removal of the gated equivariant blocks for dipole moment (µ) prediction,
and two-layer MLP’s for scalar and (⟨R2⟩) prediction. As described in
section 3.1.

Trivectors initialized as 0 Initialize the trivector component of the node state to zero instead of
using learned embeddings of the atom type.

Shared update MLP Use a single MLP shared across all atom types, rather than atom-type
specific MLP’s in the update block to compute residual update gates (i.e.
removing zi index in Eq. 21.

Base architecture The default architecture as described in Section 3.1.

E Descriptions of each architecture addition/ablation.861

Table E.1 describes each addition/ablation for the architecture variation and ablation study in detail.862

F Results per individual seed/split863

Table F.1 shows the MAE of GA-GNN on each random data split across the 4 QM9 targets as well as the864

mean and standard deviation.865

Table F.1. MAE of GA-GNN on each random split with mean and standard deviation.

Target Split 1 Split 2 Split 3 Mean ± Std

ϵHOMO 20.3650 21.3509 20.4838 20.7332± 0.5382
µ 0.0109 0.0108 0.0109 0.0109± 0.0001
⟨R2⟩ (grade-wise linear layers) 0.0585 0.0676 0.0633 0.0631 ± 0.0046
⟨R2⟩ (shared linear layers) 0.0633 0.0622 0.0677 0.0644 ± 0.0029
α 0.0461 0.0462 0.0439 0.0454 ± 0.0013
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