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Abstract

Geometric Algebra (GA) provides a unified frame-
work for representing scalars, vectors, and higher-
dimensional geometric elements, along with the geo-
metric product, an operation that mixes information
across these components in an equivariant manner.
While GA has recently attracted attention in deep
learning, its potential for molecular property pre-
diction remains underexplored. We introduce GA-
GNN, a novel equivariant graph neural network that
extends message passing architectures from separate
scalar and vector features to multivector representa-
tions, and employs sequences of geometric product
layers as the core update mechanism. Evaluated on
the QM9 benchmark, GA-GNN achieves competitive
performance with the recent state-of-the-art while
demonstrating that GA-based representations can
simplify architecture design. These results highlight
the potential of GA for building expressive equivari-
ant message passing networks for molecular property
prediction.

1 Introduction

Equivariant neural networks have emerged as power-
ful tools for learning from data with geometric struc-
ture, such as molecules, by ensuring that learned
features transform consistently under translation, ro-
tation and reflection in 3-dimensional space. Current
approaches often represent features as scalars, vec-
tors, or higher-order tensors, with message passing
architectures designed to respect these symmetries.
We propose an alternative based on Geometric Al-
gebra (GA), a unified mathematical framework for
representing and manipulating geometric entities.
GA extends beyond scalars and vectors to include
geometric objects of higher dimensionality such as
oriented planes and volumes, all combined in a single
object called a multivector. A central operation in
GA, the geometric product, mixes information not
only within the same representational level (e.g., vec-
tor—vector) but also across levels (e.g., scalar—vector,
vector—plane) in a principled manner that is equiv-
ariant to rotation and reflection. This makes GA
a natural candidate for message passing architec-
tures, where information from different geometric
orders must be combined efficiently and consistently.
While GA has recently attracted interest in deep
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Design and Evaluation of a Geometric Algebra-Based Graph
Neural Network for Molecular Property Prediction

learning, its potential for molecular property pre-
diction remains underexplored. In this work, we
present GA-GNN, a novel equivariant graph neural
network for molecular property prediction. The ar-
chitecture of the model is inspired by elements from
PaiNN [1], which we extend to work on multivectors,
rather than decoupled scalar and vector features.
Its core is based on designing a new update block
which uses sequences of geometric product layers as
proposed in Clifford Group Equivariant Neural Net-
works (CGENNS) [2] to compute residual updates.
Additionally, the readout layer can be simplified
by removing target-specific networks, instead allow-
ing flexible selection of the multivector components
relevant to a given target property. We evaluate
GA-GNN on the QM9 dataset and study several
ablations and architectural variations. To the best
of our knowledge, this is the first application of
a GA-based model to molecular property predic-
tion on QMY, offering new insights into the use of
multivector representations and geometric product
operations in this domain. An extended discussion
is provided in [3].

2 Background & Related Work

2.1 Molecular Property Prediction

In molecular property prediction, the goal is to learn
a function that maps molecular structures to their
corresponding properties, which may include chem-
ical, physical, or biological characteristics. In our
setting, molecules are represented as graphs em-
bedded in 3D space, where nodes correspond to
atoms and edges capture chemical bonds or spatial
proximity. Formally, a molecular graph is denoted
G = (V, E), where V is the set of atoms (nodes) and
E CV xV is the set of edges. Each atom v € V is
associated with a spatial position x, € R? and an
atom type, and each edge (v,u) € E may be asso-
ciated with geometric features such as interatomic
distance ||x, — X, || and relative position (edge vec-
tor) ry, = Xy, — X,. The neighborhood of a node v
is defined as N (v) = {u € V | (v,u) € E}. These
representations and features are used as inputs to
graph-based deep learning models.

A wide range of deep learning methods have been
developed for molecular property prediction. The
majority of these approaches are based on message
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passing neural networks (MPNN). MPNNs learn
node embeddings by iteratively aggregating and up-
dating information from neighboring nodes. At each
message passing round ¢ € {1,...,T}, the embed-
ding of node v is denoted h{") € R?, where d is the
feature dimension. Each round consists of a mes-
sage aggregation step followed by an update, and
after T rounds, a readout layer computes the final
graph-level output based on the node embeddings:

m{* = @ MM nd), (1)
ueN (v)

B = 040 ),

j=R({hy |veV}).

(2)
3)

Here M; is called the message function, Uy is called
the update function, @ is a permutation invariant
aggregation operation (typically the sum), and R is
called the readout function [4].

Early MPNN-based models for molecular prop-
erty prediction primarily relied on invariant, scalar-
valued features such as pairwise interatomic dis-
tances, bond angles, and torsion angles [4-8].
More recent equivariant MPNNs incorporate vector-
valued features that transform consistently under
geometric transformations such as rotations and
reflections [1, 9-11]. Later generations of models
further extends this by using higher-order tensor
features, which are updated through operations in-
volving spherical harmonics and tensor products [12—
15]. Lastly, non message-passing approaches includ-
ing transformer models have also achieved promising
results [16-18].

2.2 Geometric Algebra

Definition. Let {ey,...,e,} be the basis of an n-
dimensional vector space V. The geometric algebra
Gpqr is an algebra generated from the basis vectors
e; in which the following two conditions hold:

1. For all 7, the squared basis vectors satisfy:

+1 fori=1,...,p,
e? ={ -1 fori=p+1,...,p+gq, (4)
0 fori=p+qg+1,...,p+q+r,

where the integers p,q,r > 0 are the number
of basis vectors that square to +1, —1 and 0
respectively.

2. For i # j the basis vectors anti-commute:

€;€; = —€;€;. (5)

The total dimension of the spaceisn =p+q+r,
and the geometric algebra G4 has 2" basis ele-
ments. In the remainder of this section, we focus
on the specific case G3 ¢ 0, which is the algebra used
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Table 1. Basis blades in G3,0,0 grouped by grade.

Name Grade Dimension Basis blades Square
Scalar 0 1 1 +1
Vector 1 3 ey, €2, €3 +1
Bivector 2 3 €12, €23, €31 -1
Trivector 3 1 €123 -1

in the proposed GA-based GNN architecture. The
geometric product of two vectors a and b € V is
defined as

(6)

where a - b is the inner product known from tradi-
tional vector algebra, and a A b is the outer product,
which is also called the wedge product. The outer
product produces an object that represents an ori-
ented plane spanned by a and b, which is called a
bivector.

More generally, the geometric product of k basis
vectors produces a k-blade. Since the basis vectors
are orthogonal, the inner product between them
equals zero. As a result, the geometric product be-
tween the basis vector reduces to the outer product.
Using the shorthand convention e;; := e;e;, we can

ab=a-b+aAb,

form the following blades from the basis vectors:
€12 :=er1ex = e1 A eg,
€93 1= €9€3 — €2 A €3,
e31 ‘= ege; = ez A ey,

(7)

The last blade e123 is called a trivector. In G(3 o)
it is also referred to as the pseudoscalar as it is one-
dimensional and changes sign under reflection. Geo-
metrically it represents an oriented volume that en-
codes the handedness of space, meaning that the sign
indicates whether the orientation is right-handed or
left-handed, and the magnitude corresponds to the
volume. Each blade has a grade equal to the di-
mension of the subspace it represents, i.e. grade-0
blades are scalars, grade-1 blades are vectors, grade-2
blades are bivectors and grade-3 vectors are trivec-
tors. Table 1 summarizes the geometric algebra

€193 = e1eg9e3 = €1 N ey N es.

G3,0,0-

Linear combinations of blades of different grades
are called multivectors. In Gz a multivector A
can be written as:

A= AO +)\1€1 + )\262 + )\363
~—

Vector

Scalar
+ Ase12 + Aseas + Agest
Bivector
+ A7eios.
——

Trivector

(8)

Hence, A is an 8-dimensional object consisting of
scalar, vector, bivector, and trivector components.

139
140
141
142

143
144
145
146
147
148
149
150
151
152
153
154
155

156

157

158

159

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175

176

177

178

179
180

NLDL
#18



NLDL

#18

181
182
183
184
185
186
187
188
189
190
191
192
193

194

195
196

198
199
200
201
202
203
204
205
206

207

208

209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

NLDL 2026 Full Paper Submission #18.

The k-grade of a multivector is denoted (A)g. The
geometric product is defined between two multivec-
tors resulting in a new multivector that combines
contributions from interactions between the grade-
components of each multivector. The geometric
product between multivectors in Gs g,y is derived
in Appendix A. This enables an organized way to
mix information across representational levels of
different dimensions all within a single consistent
operation. Additionally, the geometric product is
an equivariant operation under O(3): Formally, for
any orthogonal transformation g € O(3) and multi-
vectors A, B € G309 we have

(9A)(9B) = g(AB). (9)
Clifford Group Equivariant Neural Networks
(CGENNSs). Recently several models based on
combining GA with deep learning have been pro-
posed, of which many are based on CGENNs [2].
CGENNS represent neurons in neural networks as
multivectors and consist of linear layers and geomet-
ric product layers that operate on the multivector
representations.

The linear layers operate independently on each
grade of the multivectors using separate learnable
transformations, and bias terms are included for the
scalar components only:

bi7 k= 07

N\ *) /iy
Yok = szg (X5)k + { 0, otherwise. (10)
J

Here X; and Y; are input and output multivectors

respectively, and w!®

;; and b; are learnable weights
and biases. In this work we use a simplified lin-
ear layer where weights are shared across all blades,
wz{f) = w;;. While both approaches preserve O(3)
equivariance, the former allows for greater per-grade
expressiveness while the latter reduces the number
of learnable parameters and emphasizes the idea of
treating the multivector as a unified object rather
than a collection of separate grades. In addition a
bias term can be included for the trivector compo-
nent; however, this breaks equivariance with respect
to reflection.

The geometric product layers take the geometric
product between pairs of multivectors and apply
separate learnable weights for a total of 20 weights
applied to a combination of 64 interaction pairs.
Appendix B shows the derivation of the weighted
geometric product between multivectors in Gz 9,0)-
Additionally, we refer to [2] for the original deriva-
tion of CGENN layers.

Recent work has explored the use of CGENN lay-
ers in message passing architectures on graphs by
redesigning existing architectures such as EGNN,
and testing on n-body simulation tasks [19]. Ad-
ditional work has used CGENNSs to perform mes-
sage passing on simplicial complexes [20], construct
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Clifford-steerable kernels for convolutional neural
networks [21], and design models for 3D molecular
generation [22], and protein structure prediction [23].

3 Method

3.1 Architecture

Our architecture builds on the general framework of
message-passing neural networks for molecules, tak-
ing PaiNN as a starting point of inspiration. Unlike
PaiNN, which employs separate scalar and vector
channels, we represent node states as multivectors,
providing a unified representation across multiple
geometric grades. The update block further intro-
duces a novel update scheme based on successive
geometric product layers, adapted from CGENN, to
compute residual updates.

Initialization. Given an input graph G = (V, E),
we initialize each node ¢ with F' multivector channels
in Gs,0,0), which we denote:

Ai:Si+\_f’i+Bi+ti€RFX8.

(11)

The four terms correspond to the scalar, vector,
bivector, and trivector grades, respectively. Learned
embeddings a,,t,, € R of the atom type z; asso-
ciated with the node are used to initialize the scalar
and trivector components while vector and bivector

components are initialized as zero:
S; a, €RF,
=0 _ g Fx3
vio= 90 ceR”. (12)
b, = 0 €eR"*°
t) = t, eR.

Message block. For each message passing round
t € {1,...,T}, the message block computes and
aggregates messages from sender nodes j € N (i) to
receiver nodes i. Figure 1 shows an overview of the
message block architecture. Layer sizes (with feature
dimension denoted F') are annotated in gray, and we
denote elementwise multiplication by o. Similar to
PaiNN, we apply continuous-filter convolutions from
SchNet with an additional cosine cutoff function [24]
to the pairwise edge distances:

W(lIrizll) = fent (g l)- (W b (l[rssll) +by) 5 (13)

where 1 denotes RBF expansion and fe,; is the
cosine cutoff function. The sender node’s scalar state
s; is passed through a two-layer MLP ¢(s;), and
the transformed scalar features and edge features
W;; are combined via elementwise multiplication
and split into 5 gates. One for each multivector
component, and an additional gate for incorporating
normalized edge vectors into the vector message:
gi; = ¢(s;)oW;; = (s) ) (&) _(b) _(t)

8i; 18-85 8 85 |- (14)
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Figure 1. Overview of the message block architecture.

Finally, the messages are computed by aggregating
over neighbors in the following way:

m = > g (15)

JEN(3)
v _ (v) = (d) Tij

m; = Z 8 oV tg; o Ak (16)

JEN (1)
-

ml= Y g?ob, (17)
JEN (@)

mi = Z g%)Otj' (18)
JEN(4)

These messages are then added to the corresponding
grades of the multivector state for the receiver nodes:

S; < 8; +mj,

b;

t; +t; ‘F'Illf.

<~ b; —I—m?,

Geometric product layers can also be added to the
message block (see Appendix C), but this signifi-
cantly increases computational cost, scaling with
the number of edges rather than nodes, and our
experiments with this indicate that the performance
of this approach does not justify the overhead.

Update block. The update block processes each
node’s multivector representation using two lin-
ear projections followed by a sequence of geomet-
ric product layers and linear layers. Finally, the
residual grade-wise update for each multivector is
computed by summing over these transformations
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and modulated by grade-specific gates. Figure 2
shows an overview of the update block architecture.
We denote weighted geometric product layers by
GP(A, B),,. We first compute two linear projec-
tions of the multivector state A;: U; = U - A; and
Vi =V - A;. Then, we apply a sequence of weighted
geometric products followed by linear layers:

Yot1,i = Whg1 - GP(Xp 6, Yo i) (20)

Wn+19
forn=0,...,N —1 with Yy ; =V, and where X, ;
is either fixed as Uj, or set to Y,_;; for n > 2 to
create chained layers. In our main architecture, we
use N = 2 and keep X,, ; = U;, but the formulation
supports chaining successive products by setting
Xn,i =Y,_1, for n > 2. To compute grade-specific
gates for the residual update, we extract the scalar
component from A; and compute the norm of the
vector component from V;. These are concatenated
and passed through atom-type specific two-layer
MLPs:

a; = W, -SiLU (Wi [sq, [[(Vi)1ll] + b1z, )+, -

(21)
We split a; € RF*4 into four separate gates, and
compute residual updates for each grade of the mul-
tivector nodes:

N
A(A) = agk) o <<U1>k + Z<Yn1>k> (22)

Finally, the updated multivector representations for
each node is given by adding the residual updates
to each grade:

(Ai)k — (Ai)r + A(A) (23)

Readout. The readout layer maps multivector
node states to graph-level predictions. We compare
two approaches: (1) using PaiNN-style readout net-
works applied to specific multivector components,
and (2) a simplified alternative where relevant com-
ponents are summed directly across nodes and chan-
nels.

In the PaiNN-style setup, scalar properties are
predicted by applying an MLP to the scalar part s;

of each node’s multivector state:
f(SZ) = W2 . SILU(W1SZ + bl) + b2, (24)
Jo =Y f(si). (25)

i€G

For the electronic spatial extent (R?), atom-wise
contributions are weighted by squared distances:

B =37 s - il

i€G

(26)
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Figure 2. Overview of the update block architecture.

For the dipole moment p, the prediction is the mag-
nitude of the vector:

—

M= Zﬁatom(vi) + Qatom(si) * Xi, (27)

i€G

where V; = (4;)1 and s; = (4;)0, and both [Zatom
and @atom are computed by summing over channels.
In the base model, these components are passed
through two gated equivariant blocks from PaiNN [1]
with atom-type-specific MLPs beforehand.

The simplified readout layer, where we remove
the output networks, sums directly across nodes and
channels for the relevant grade(s):

F
gG = Z Z Si,cy

(28)
i€G c=1
) F
g =3 (Z Si,c) - 1xil?, (29)
i€G \c=1
F F
= Z (Z Vie+ Z Si,c Xi) . (30)
i€G \c=1 c=1

This approach yields better performance on most
targets in our experiments and allows for greater ar-
chitectural flexibility and generalization as it avoids
specialized target-specific readout networks.

3.2 Dataset

We evaluate the proposed architecture on the QM9
dataset [25, 26]. The dataset consists of data for
130,381 small molecules, where atoms can be either
carbon, hydrogen, oxygen, nitrogen or fluorine. We
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use the version of the dataset published by PyTorch
Geometric [27, 28]. Preprocessing of the dataset
consists of adding edges to the molecular graphs
based on a cutoff distance between nodes in 3D
space rather than using chemical bonds. We use
ro = 5.0 A. The neighborhood for each node is thus
given by:

NG) = {5 € {1, N} G} |11 = Rill < 7o}
(31)
Additionally, node coordinates are centralized ac-
cording to atomic mass. Given a molecule consisting
of N atoms, each with atomic number z; and 3D
position x; € R3 for i = 1,..., N, we first compute
the center of mass using atomic masses m; for each
atom type:

N N
1
Xeom = 77 Zmixi, where M = Zmi' (32)
i=1 i=1

All atom positions are then centralized by sub-
tracting the center of mass: X; = X; — Xcom- Finally,
for each edge (i,j) in the constructed graph, we
compute an edge vector r;; = X; — X;.

In QM9 each molecule has 19 regression targets.
In this work we focus on evaluating the architecture
on four of these:

e Target 0: Dipole moment (1)

Target 1: Isotropic polarizability («)

Target 2: Highest occupied molecular orbital
energy (EHOMQ)

Target 5: Electronic spatial extent ((R?))

3.3 Training details

We use the same hyperparameters as PaiNN [1]. All
experiments use the AdamW optimizer [29] with
weight decay A = 0.01. We use MSE as the loss
function for all targets, except for a which uses MAE
loss. If the validation loss plateaus, the learning rate
is decayed by a factor of 0.5, with patience 5, and
we use early stopping with patience 30. For learning
rate decay and early stopping we use exponential
smoothing of the validation loss with factor 0.9.
Lastly, for the egomo and « targets we normalize
the target values before training and de-normalize
when evaluating on the test set. The full set of
hyperparameters are listed in Appendix D. The code
for conducting the experiments can be found at
Anonymous GitHub Repository.

4 Results

4.1 Architecture selection study

To explore the space of design choices, we first eval-
uated several architectural variations of the base
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Table 2. MAE on 4 QM9 target properties for each
addition/ablation compared to the base model. Bold
results have the lowest error. Detailed descriptions of
each experiment can be found in Appendix E.

€HOMO © R? a
meV D a? ad
Addition
Sender /receiver GP 26.5374  0.0127  0.1057  0.0525
Sender/copy GP 26.2839  0.0122  0.0843  0.0538
3 GP in update block 24.5228 0.0127 0.0711 0.0525
Grade-wise linear layers 24.7583  0.0130 0.0661 0.0526
Ablation
Removal of second GP 23.4886 NaN 0.0868  0.0479
Non-weighted GPs 24.4641  0.0128  0.0806  0.0529
No output networks 28.0492 0.0119 0.0697  0.0506
Trivectors initialized as 0 23.4371 0.0123  0.0878  0.0508
Shared update MLP 25.1560  0.0130  0.0772  0.0543
Base architecture 24.3626  0.0126  0.0731 0.0532

model (Table 2). To limit the computational cost,
these studies were carried out using only F' = 64
channels. A detailed description of each variation
and ablation can be found in Appendix E.

Results show that no single variant performs best
across all targets, suggesting that different architec-
tural choices benefit different molecular properties.
However, the differences are generally modest, and
since each variant was evaluated from a single train-
ing run, the results should not be over-interpreted.

Among the message block variants, both the ge-
ometric product between sender and receiver pairs
and between sender nodes and linear projections of
themselves perform worse than the base model on
most targets. The latter does slightly improve p,
but worsens all other targets. These results indicate
that using the geometric product to mix between
grades within a node to update its state is more
effective than using it to combine features across
neighboring nodes.

Adding a third geometric product in the update
block shows mixed results, slightly improving per-
formance on (R?) and «, but slightly worsening
egomo and p. This suggests diminishing returns
from stacking additional geometric products in this
setting. Conversely, while ablating the second GP
layer improves egomo and «, it leads to training
instability on p, and worse performance on (R2).

Replacing the shared linear layers with grade-wise
linear layers, while theoretically more expressive,
leads to degraded performance on egomo and w,
and comes at higher computational cost. For « it
yields a slight improvement, and for (R?) it achieves
the best results.

Removing the learnable weights from the geo-
metric product layers leads to a consistent, though
modest, degradation in accuracy. This suggests that
most of the benefit comes from the structure of
the geometric product itself, with the weights serv-
ing to refine the computation. Hence, in resource-
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constrained settings, the weights can possibly be
omitted to reduce complexity, with only a small
drop in performance.

Most notably, removing the gated equivariant
blocks (for p prediction) and readout MLP (for
scalar targets and (R?)) in the output layer improves
performance on 3 out of 4 targets. It achieves the
lowest error on p and improves (R?) and «, but does
harm performance on egomo.

Initializing trivectors as zero instead of using
learned embeddings of the atom type leads to the
best overall result for egonmo, and improves perfor-
mance slightly on p and «, but worsens (R2).

Finally, using a shared update MLP across atom
types harms performance across the board, confirm-
ing the value of atom-type-specific gates for the
residual grade updates.

4.2 Main Evaluation

Based on these findings, we select the best perform-
ing architecture for each target and conduct the main
evaluation. For egomo we initialize the trivector as
zero instead of using atom type embeddings, and we
only use one geometric product in the update block.
For p and (R?) we compute the final predictions
without output networks (using Eq. 30 and 29, re-
spectively). For (R?), we additionally test both with
and without grade-wise linear layers and find that
the effect on performance is minimal (MAE of 0.063
vs. 0.064). For a we also only use one geometric
product in the update block. Table 3 compares GA-
GNN to state-of-the-art baselines across the selected
QM9 targets. Additionally, Figure 3 shows a visual
comparison. Results for baselines are from [30, 31],
and results for GA-GNN are averaged over 3 random
data splits. We increased the feature dimension to
F =128, except for (R?), where F' = 64 performed
best.

The model achieves particularly strong results on
dipole moment and electronic spatial extent, rank-
ing third among the compared models. We suspect
that GA-GNN performs best on the dipole predic-
tion due to the vector nature of the dipole moment,
which aligns well with the multivector representation.
Across the four targets, GA-GNN ranks fifth on av-
erage, surpassed only by GotenNet [31]. Results for
each split are included in Appendix F.

5 Discussion

This work demonstrates that geometric algebra pro-
vides a powerful foundation for designing expressive
and stable message-passing networks for molecu-
lar property prediction. By embedding nodes as
multivectors and incorporating weighted geometric
products into message passing, GA-GNN achieves
strong performance on several QM9 targets. The
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Table 3. Average MAE of GA-GNN across three ran-
dom splits, compared with state-of-the-art models, as
reported in the literature, on selected QM9 targets. Mod-
els are ordered by their average rank across the targets.
The lowest errors are shown in bold, and results within
10% of the best are underlined.

€HOMO I R? a Avg.

meV D ad ag rank

Cormorant [12] 34 0.038 0.961 0.085 17.50
LieConv [9] 30 0.032  0.800 0.084 16.25
NMP [4] 43 0.030  0.180 0.092  14.75
SchNet [5] 41 0.033  0.073 0.235 14.50
SEGNN [13] 24 0.023  0.660 0.060 12.75
EGNN [10] 29 0.029 0.106  0.071 12.00
MGCN [6] 42 0.056  0.110 0.030 11.25
NoisyNodes [32] 20 0.025 0.700 0.052  11.25
DimeNet++ [7] 25 0.030  0.331 0.044 11.00
SphereNet [8] 23 0.026  0.292 0.046  10.50
GNS-TAT+NN ([33] 17 0.021  0.650  0.047 9.50
MACE [14] 22 0.015  0.210  0.038 7.75
PaiNN [1] 28 0.012  0.066  0.045 7.50
EQGAT [11] 20 0.011  0.382  0.035 6.25
Equiformer [18] 15 0.011  0.251  0.046 6.00
TorchMD-NET [17] 20 0.011  0.033  0.059 5.75
Equiformer V2 [34] 14 0.010  0.186  0.050 5.75
GotenNet B [31] 15 0.007 0.027 0.032 1.50
GA-GNN 21 0.011  0.063  0.045 5.00

architecture is flexible: the number of geometric
product layers can be scaled up or down depend-
ing on the task, and different multivector grades
can be utilized for different properties without re-
quiring task-specific readout layers or entirely new
architectures. In this way, the combination of multi-
vector embeddings and weighted geometric products
enables the model to handle targets of varying geo-
metric nature within a unified framework, requiring
only minimal adjustments across targets.

At the same time, our ablation and variation stud-
ies show that, despite the flexibility of the multi-
vector framework, architectural choices such as geo-
metric product configurations affect different targets
in different ways. Since these results are based on
single training runs and the observed differences
are relatively modest, they should be interpreted
with caution. Nevertheless, they indicate that while
GA-GNN offers a unified framework, optimal per-
formance across targets remain sensitive to specific
design choices. This variation is consistent with
molecular property prediction more broadly, where
different architectures tend to excel at capturing
different aspects of molecular structure.

In addition to these observations, a practical down-
side of the approach is the relatively high computa-
tional cost and parameter count, mainly due to the
weighted geometric products and atom-type—specific
update MLPs. The ablation results, however, sug-
gest that lighter variants, for example by removing
the geometric product weights, can retain strong
performance, providing avenues for reducing com-
plexity.

Overall, our findings highlight both the feasibility
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Figure 3. Comparison of models on the QM9 dataset
across selected properties.

and potential of a GA-based approach to design-
ing GNNs for molecular property prediction, while
pointing to many opportunities for further explo-
ration. A broader evaluation on all QM9 targets,
additional tasks such as n-body simulations [10],
or domains with bivector- or trivector-valued out-
puts, would provide a more complete picture of the
model’s capabilities. New readout designs that bet-
ter align with the multivector structure, rather than
removing the output network entirely, may also yield
improvements. We have also not explored the use of
multivector normalization layers from CGENN [2]
or hybrid approaches such as scalar/multivector par-
allel paths from Clifford-EGNNs [19]. Additionally,
experimenting with other message block designs such
as attention-based architectures (as in EQGAT [11])
may further enrich the framework. Finally, exploring
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alternative GA spaces (e.g. G3,1), would expand
the multivector representation from 8 to 16 com-
ponents, which could provide additional expressive
power and capture richer geometric structures.

6 Conclusion

We introduced GA-GNN, an equivariant graph neu-
ral network that extends the message-passing frame-
work to multivector representations and employs
geometric product layers from CGENN for struc-
tured feature interactions. Evaluated on the QM9
benchmark, GA-GNN achieves competitive perfor-
mance with recent state-of-the-art models, demon-
strating the feasibility and potential of GA-based
representations for molecular property prediction.
Our experiments highlight effective design choices
for incorporating geometric product layers into mes-
sage passing, as well as the use of shared linear
layers. These findings open several directions for
future work, including a broader evaluation of the
approach and continued exploration through archi-
tectural refinements.
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Table A.1. Geometric product table for the basis blades in Gs3,0,0.

GP A e1 es €3 e12 €23 €31 €123
A AQ Ael Aeg A@g Aelg A€23 A631 A€123
e1 ey 1 e12 —e31 e e123 —e3 €23
€2 Aea —e12 1 €23 —eq €3 €123 €31
€3 ez €31 —e23 1 e123 —e3 el ez
e12 Ae1a —eg el €123 -1 —e31 €23 —e3
€23 Aeas €123 —e3 €2 es1 -1 —e1 —e1
€31 Aesy es €123 —e1  —ea3 e12 -1 —e2

€123 Aeqa3 €23 €31 €12 —€3 —€1 —€2 -1

A Geometric product in G3

The geometric product is defined between all basis blades. Table A.1 from [35] shows the product between
all pairs of basis blades in G3,0. Given two multivectors A and B in Gz ,0):

A= Ao+ Aer + Azea + Ases + Agera + Aseas + Agesr + Areras
B = By + prer + Baea + Bzes + Paeiz + Bseas + Bees1 + Breias
We can write the product AB as:

AB = \o(Bo + Bre1 + Paea + f3es + Baer2 + Bseas + Beest + Breras)

+ A1e1(Bo + frer + Paez + PBses + Baern + Pseas 4 Boest + Preins
+ Aaea(Bo + Brer + Paea + Bzez + Baera + PBseas + Boest + Breias
+ Aze3(Bo + Brer + Paea + PBzes + Baeia + Pseas + Boest + Breias
+ Ase12(Bo + Brer + Paea + PBzes + fae1a + Pseas + Beest + Breias)
+ Ase23(Bo + Brer + Baea + PBzes + Baera + Pseas + Bees1 + Preios)
+ Xee31(Bo + Brer + Paea + Bzes + Baeia + Bseas + Boesr + Breias)
+ Are123(Bo + Brer + Paea + Bzes + Baerz + Bseas + Peest + Breizs)

Expanding all products explicitly, using table A.1 gives:

AB = XoBo + AoBrer + AoBzez + Aofzes + AoBaerz + Aofseas + Aofees1 + Aofrerns
+ A1foer + A1B1 + A1B2e12 — A1 Bze31 + A1 Baea + A1fBse123 — A1 fges + A1 freas
+ A280€2 — A2B1€12 + A2f2 + Aafzea3 — Aafser + AafBses + Aaffseras + AafBresn
+ A3fBoes + Azfresr — Azfaeas + A3f3 + Azfae123 — A3fBse2 + Azflser + Azfrern
+ AgfBoerz — AgBiez + Ayf2er + Aafze123 — Mgy — AyfBsesr + AgfBseas — Aafres
+ AsBoeas + AsBre123 — AsBaes + AsBze2 + AsBae31 — Asf5 — AsBee12 — Asfrer
+ A6Boes1 + AsBres + Aefae123 — AeBze1 — AgBaeaz + AgBse12 — AsBs — Aefrea
+ A7Boe123 + A7f1e23 + Arfaesr + ArfBzeirs — ArfBaes — ArfBser — A7fBsea — A7f37
Finally, we collect like terms by grade:

AB = MBo 4+ A B1 4+ A2B2 + A3B3 — M\afs — AsB5 — X6 s — A7

+ (XoB1 + AiBo — Xafa + A3B6 + Aafa — X587 — A6 — A7f5)er
+ (Aof2 + A1B4 + X2Bo — A3fBs — AafB1 + A5 B3 — A¢Br — A76)e2

(
+(
+
+
+(
+

11

)

)
AofB3 — A1Be + A2fs + A3Bo — AafBr — Asf2 + AeB1 — ArBa)es
AofBa + A1B2 — XaB1 + X387 + Aafo — AsBs + Aefs + Arfs)
)
)
)

€12

AoBs + A7 + A2B3 — A3fa 4+ AafBs + AsBo — A6 Bs + A7B1)eas
AoB6 — A3 + A2B7 + A3f1 — AaBs + AsBa + A6 Bo + A7B2)esn
AoB7 + M5 + Aafs + A3y + Mgz + AsB1 + AgB2 + ArBo)eras

)
)
)

(33)
(34)

783

784

785

786

787

788

789

790

791

792

793

794
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Which produces a new multivector with coefficients for each blade defined as above.

B Weighted geometric product in G )

The geometric product between multivectors in G(3 g,y consists of 64 interaction pairs that can be grouped
into 20 different interaction types, i.e. (scalar/scalar), (scalar/vector), (vector/bivector), etc. For example
for the grade-0 (scalar) component of the geometric product between multivectors A and B, we can write:

(AB)o = Aofo (scalar - scalar)
+ A B1+ AaB2 + A3B3  (vector - vector) (38)
— MBs — X505 — XeBs  (bivector - bivector)
— M\ By (trivector - trivector)
Similarly, for the grade-1 (vector), grade-2 (bivector), and grade-3 (trivector) components:
(AB)1 = XoBre1 + AoBzez + AofBses (scalar - vector)
+ A1Boer + A2foe2 + AsPoes (vector - scalar)
+ M1 Bse2 — M Bses — A2fBae1 + Aafses + A3Bse1r — AzfBsea  (vector - bivector) (30)
+ Aafaer — AaPres + AsPBzea — AsBaes — Agfser + Agfres  (bivector - vector)
— Aafres — AsPrer — A frez (bivector - trivector)
— Arfse1 — ArfBge2 — Arfaes (trivector - bivector)
(AB)2 = Xofse12 + AoBseas + Aofsest (scalar - bivector)
+ AaBoerz + AsPoe2s + AsPoest (bivector - scalar)
+ A1 B2e12 — A1 B3e31 — Aafre12 + Aaflseas — A3Baeas + A3Bies1  (vector - vector) (40)
4+ AafBseas — Aufsez1 — AsBse12 + AsBae31 + AgfBs€12 — AgBacos (bivector . biVBCtOI")
+ A1Bress + Aafrest + Asfrers (vector - trivector)
+ ArBie2s + ArBaest + ArBzers (trivector - vector)
(AB)3 = AoBreras scalar - trivector
(41)

vector - bivector

+ (A1B5 + A2B6 + Azfa)er2s
+ (AaB3 + AsP1 + A6 f2)e123

If we apply separate weights to each of these 20 interaction terms and collect terms with the same
weights, we can derive a weighted geometric product that is equivariant to O(3):

( )
+ A7Boeizs (trivector - scalar)
( )
( )

bivector - vector

GP(A, B),y =
wsAoBo + wy(AB1 + A2B2 + A3B3) — we(AaBa + AsBs + A6Bs) — wiAz 7
+ (WsoAoB1 + WusA1 B0 + Wop(—A2B4 + A386) + Whe (AaB2 — A6B3) — Wyt AsBr — wiA7Bs) e
+ (WspAoB2 + WusA2B0 + wub(A1Bs — A3Bs5) + Wew(—AaB1 + AsB3) — wyeAeB7 — wipArBs) €2
+ (WsuAoBs + WusAsBo + Wub(—A1 86 + A2Bs) + Wey (—As B2 — A6 B1) — wetAafr — wepA7fs)es (42)
+ (wspAoBs + wesAaBo + Wy (M1 B2 — A2B1) + wis(—As 86 + A6 f5) + worAsfB7 + wiwA7fs) €12
+ (wsbAoBs + WhsAs Bo + Wy (A2Bs — A3P2) + wps(Xafs — A6Ba) + wur A1 Br + Wi A7 f1) €23
+ (wspAoB6 + wrsAs B0 + Wy (—A183 + A3B1) + wen (—Aafs 4+ A5B4) + Wit A2 + wiwA7B2) et
+ (wstAoBr + Wewn (M1 85 + A2Bs + A3B4) + wivw (AaBs + AsB1 + AeB2) + wisA7B0) €123
The weights can be initialized in many different ways. In our experiments, we chose to initialize
them using a normal distribution with zero mean and standard deviation 1/+/8. Additionally, one could

add a bias term to the scalar component. Adding bias to the trivector component maintains rotation
equivariance, but breaks equivariance with respect to reflection.
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Table D.1. Hyperparameters used for training.

Hyperparameter Value
batch_size 100
learning rate (initial) 5e-4
minimum learning rate le-6
weight decay 0.01
patience (Ir decay) 5
patience (early stopping) 30
alpha (EMA smoothing) 0.9
train/val/test split sizes [110000, 10000, 10831]
Global seed 0
Data split seed (ablation/variation) 0
Data split seeds (main evaluation) 1, 2, 3]
C Including the geometric product in the message block 832

We test two variations of an alternative message block that utilizes the weighted geometric product. Here, s33
we describe the variation between sender and receiver pairs. For each edge (i, j) we compute the weighted s3a

geometric product: 835
Ajj = GP(Ai, Aj)w (43) s36

where A; and A; are the sender and receiver multivector states. The resulting multivector A;; is then ss7
passed through a linear layer: 838
Al =W - Ay (44) s39

The grades of this transformed multivector are then gated and aggregated analogously to the base ss0
architecture formulation instead of using the grades of the sender multivector. One exception is that the sa1
scalar message also uses the multivector grade: 842

m; = Z gz (45) ea3

JEN (1)

m; = Z gz 1 +g(d) i (46) saa
JEN) [z |

m= Y g (47) a5

FEN(4)

m! = Z g(t) (48) 846

JEN(9)

The variation that takes the weighted geometric product between the sender state and a linear projection 847
of itself uses the same formulation as above, but with the weighted geometric product input changed sas
accordingly. 849

D Hyperparameters for training 850

The same hyperparameters are used across all experiments, with the exception that ablation and archi- ss1
tecture variation studies use a channel dimension of F' = 64, whereas the main evaluation uses F' = 128 ss2
for all targets except for (R?), which still uses F' = 64. All experiments are trained with 7' = 4 message ss3
passing rounds. 854

Two types of random seeds are used in the experiments. A global random seed is fixed to zero in all sss
runs to ensure reproducibility of stochastic elements such as model weight initialization and any other sse
random operations during training. In addition, a data split seed controls the shuffling used to generate ss7
the train/validation/test splits (with fixed split sizes but different assignments). For ablation and variation sss
experiments, only split seed 0 is used. For the main evaluation, results are averaged over split seeds 1, 2, sso
and 3, corresponding to three distinct data splits. The set of hyperparameters is listed in Table D.1. 860
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Table E.1. Overview and description of each architectural addition and ablation.

Additions

Description

Sender /receiver GP
Sender /copy GP

3 GP in update block

Grade-wise linear layers

Using the geometric product between sender and receiver nodes in the
message block as described in Appendix C.

Using the geometric product between sender nodes and a linear projection
of themselves in the message block as described in Appendix C.

Setting N = 3 in Eq. 20 and Eq. 22 to extend the update block with
three successive geometric product layers instead of two. And we set
X3, =Y ; for the third geometric product.

Replace all shared linear layers with grade-wise linear layers, as described
in Eq. 10.

Ablations

Removal of second GP
Non-weighted GPs

No output networks

Trivectors initialized as 0

Shared update MLP

Remove the second geometric product layer from the update block, i.e.

set N =1 in Eq. 20 and Eq. 22.

Remove learnable scalar weights from the geometric product operation,
making the product unweighted and implemented as in Appendix A.

Removal of the gated equivariant blocks for dipole moment (u) prediction,
and two-layer MLP’s for scalar and ((R?)) prediction. As described in
section 3.1.

Initialize the trivector component of the node state to zero instead of
using learned embeddings of the atom type.

Use a single MLP shared across all atom types, rather than atom-type

specific MLP’s in the update block to compute residual update gates (i.e.

removing z; index in Eq. 21.

Base architecture

The default architecture as described in Section 3.1.

E Descriptions of each architecture addition/ablation.

Table E.1 describes each addition/ablation for the architecture variation and ablation study in detail.

F Results per individual seed/split

Table F.1 shows the MAE of GA-GNN on each random data split across the 4 QM9 targets as well as the
mean and standard deviation.

Table F.1. MAE of GA-GNN on each random split with mean and standard deviation.

Target

Split 1 Split 2 Split 3  Mean £ Std

€HOMO

20.3650 21.3509 20.4838 20.7332 £ 0.5382
0.0109  0.0108  0.0109  0.0109 4 0.0001

) (shared linear layers) 0.0633  0.0622  0.0677  0.0644 £ 0.0029

I
(R?) (grade-wise linear layers)  0.0585  0.0676  0.0633  0.0631 % 0.0046
(R®

@

0.0461  0.0462  0.0439  0.0454 + 0.0013
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