{s203294, mnsc}@dtu.dk

Abstract

Geometric Algebra (GA) provides a unified frame-
work for representing scalars, vectors, and higher-
dimensional geometric elements, along with the geo-
metric product, an operation that mixes information
across these components in an equivariant manner.
While GA has recently attracted attention in deep
learning, its potential for molecular property pre-
diction remains underexplored. We introduce GA-
GNN, a novel equivariant graph neural network that
extends message passing architectures from separate
scalar and vector features to multivector representa-
tions, and employs sequences of geometric product
layers as the core update mechanism. Evaluated on
the QM9 benchmark, GA-GNN achieves competitive
performance with the recent state-of-the-art while
demonstrating that GA-based representations can
simplify architecture design. These results highlight
the potential of GA for building expressive equivari-
ant message passing networks for molecular property
prediction.

1 Introduction

Equivariant neural networks have emerged as power-
ful tools for learning from data with geometric struc-
ture, such as molecules, by ensuring that learned
features transform consistently under translation, ro-
tation and reflection in 3-dimensional space. Current
approaches often represent features as scalars, vec-
tors, or higher-order tensors, with message passing
architectures designed to respect these symmetries.
We propose an alternative based on Geometric Al-
gebra (GA), a unified mathematical framework for
representing and manipulating geometric entities.
GA extends beyond scalars and vectors to include
geometric objects of higher dimensionality such as
oriented planes and volumes, all combined in a single
object called a multivector. A central operation in
GA, the geometric product, mixes information not
only within the same representational level (e.g., vec-
tor—vector) but also across levels (e.g., scalar—vector,
vector-plane) in a principled manner that is equiv-
ariant to rotation and reflection. This makes GA
a natural candidate for message passing architec-
tures, where information from different geometric
orders must be combined efficiently and consistently.

*Corresponding Author.

Design and Evaluation of a Geometric Algebra-Based Graph
Neural Network for Molecular Property Prediction

Kasper Helverskov Petersen*! and Mikkel N. Schmidt!

!Technical University of Denmark, Kongens Lyngby, Denmark

Through multivector representations and the geo-
metric product, the network can propagate not only
distances and directions but also learned notions of
orientation, area, and volume, allowing it to express
geometric relationships that standard GNNs cannot
explicitly represent, while offering an alternative to
the tensor and spherical-harmonic parameterizations
used in current state-of-the-art equivariant models.

Though GA has recently attracted interest in deep
learning, its potential for molecular property pre-
diction remains underexplored. In this work, we
present GA-GNN, a novel equivariant graph neural
network for molecular property prediction. The ar-
chitecture of the model is inspired by elements from
PaiNN [1], which we extend to work on multivectors,
rather than decoupled scalar and vector features.
Its core is based on designing a new update block
which uses sequences of geometric product layers as
proposed in Clifford Group Equivariant Neural Net-
works (CGENNS) [2] to compute residual updates.
Additionally, the readout layer can be simplified
by removing target-specific networks, instead allow-
ing flexible selection of the multivector components
relevant to a given target property. We evaluate
GA-GNN on the QM9 dataset and study several
ablations and architectural variations. To the best
of our knowledge, this is the first application of
a GA-based model to molecular property predic-
tion on QM9, offering new insights into the use of
multivector representations and geometric product
operations in this domain. An extended discussion
is provided in [3].

2 Background & Related Work

2.1 Molecular Property Prediction

In molecular property prediction, the goal is to learn
a function that maps molecular structures to their
corresponding properties, which may include chem-
ical, physical, or biological characteristics. In our
setting, molecules are represented as graphs em-
bedded in 3D space, where nodes correspond to
atoms and edges capture chemical bonds or spatial
proximity. Formally, a molecular graph is denoted
G = (V, E), where V is the set of atoms (nodes) and
E CV xV is the set of edges. Each atom v € V' is
associated with a spatial position x, € R? and an
atom type, and each edge (v,u) € FE may be asso-

Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307, 2026.
@® 2026 Kasper Helverskov Petersen & Mikkel N. Schmidt. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

ciated with geometric features such as interatomic
distance ||x, — x,|| and relative position (edge vec-
tor) ryy = Xy — X,. The neighborhood of a node v
is defined as N (v) = {u € V | (v,u) € E}. These
representations and features are used as inputs to
graph-based deep learning models.

A wide range of deep learning methods have been
developed for molecular property prediction. The
majority of these approaches are based on message
passing neural networks (MPNN). MPNNs learn
node embeddings by iteratively aggregating and up-
dating information from neighboring nodes. At each
message passing round ¢ € {1,...,T}, the embed-

ding of node v is denoted th’ S Rd, where d is the
feature dimension. Each round consists of a mes-
sage aggregation step followed by an update, and
after T rounds, a readout layer computes the final
graph-level output based on the node embeddings:

P m (1)
u€eN (v)
h{+Y) = U,(h{), m
R({nT |veV)).

m{t = (h{, h{!)),

(t+1))’

(2)
3)

Here M; is called the message function, Uy is called
the update function, @ is a permutation invariant
aggregation operation (typically the sum), and R is
called the readout function [4].

Early MPNN-based models for molecular prop-
erty prediction primarily relied on invariant, scalar-
valued features such as pairwise interatomic dis-
tances, bond angles, and torsion angles [4-8].
More recent equivariant MPNNs incorporate vector-
valued features that transform consistently under
geometric transformations such as rotations and
reflections [1, 9-11]. Later generations of models
further extends this by using higher-order tensor
features, which are updated through operations in-
volving spherical harmonics and tensor products [12—
15]. Non message-passing approaches including
transformer models have also achieved promising
results [16-20]. Lastly, other approaches that avoid
using 3D geometric information instead operate on
2D molecular graphs, for example by learning motif-
level representations, training topology-specific ex-
perts, or inducing a hierarchical grammar that de-
fines a geometry over molecular graphs [21-23].

:g:

2.2 Geometric Algebra

Definition. Let {ey,...,e,} be the basis of an n-
dimensional vector space V. The geometric algebra
Gpgr is an algebra generated from the basis vectors
e; in which the following two conditions hold:

1. For all i, the squared basis vectors satisfy:

+1 fori=1,...,p,
e2={—1 fori=p+1,...,p+q, (4)
0 fori=p+q+1,...,p+q+r,

Table 1. Basis blades in G3,9,0 grouped by grade.

Name Grade Dimension Basis blades Square
Scalar 0 1 1 +1
Vector 1 3 ey, e, €3 +1
Bivector 2 3 €12, €23, €31 -1
Trivector 3 1 €123 -1

where the integers p,q,r > 0 count the basis
vectors squaring to +1, —1 and 0 respectively.

2. For i # j the basis vectors anti-commute:

62'6]‘ = —ejei. (5)

The total dimension of the spaceisn=p+q+r,
and Gpqr has 2" basis elements. In the remainder
of this section, we focus on the specific case G300,
which is the algebra used in the proposed GA-based
GNN architecture. The geometric product of two
vectors a and b € V is defined as

ab=a-b+aAb, (6)
where a - b is the inner product known from tradi-
tional vector algebra, and a A b is the outer product,
which is also called the wedge product. The outer
product produces an object that represents an ori-
ented plane spanned by a and b, which is called a
bivector.

More generally, the geometric product of k basis
vectors produces a k-blade. Since the basis vectors
are orthogonal, the inner product between them
equals zero. As a result, the geometric product be-
tween the basis vector reduces to the outer product.
Using the shorthand convention e;; := e;e;, we can
form the following blades from the basis vectors:

€12 :=er1ex = e1 A eg,
€93 = €9€3 = €9 N €3,
€31 = eze] = e3 N ey,
€123 1= e1e2e3 = e1 N eg A es. (7)

The last blade ej23 is called a trivector. In G(3 o)
it is also referred to as the pseudoscalar as it is one-
dimensional and changes sign under reflection. Geo-
metrically it represents an oriented volume that en-
codes the handedness of space, meaning that the sign
indicates whether the orientation is right-handed or
left-handed, and the magnitude corresponds to the
volume. Each blade has a grade equal to the di-
mension of the subspace it represents, i.e. grade-0
blades are scalars, grade-1 blades are vectors, grade-2
blades are bivectors and grade-3 vectors are trivec-
tors. Table 1 summarizes the geometric algebra
G3,0,0-

Linear combinations of blades of different grades
are called multivectors. In Gz a multivector A
can be written as:

A= /\0 +/\1€1 +)\262 +)\363
~~

Vector

Scalar
+ Age12 + Aseas + Ages1 + Areias.
~————

Bivector

(®)

Trivector

Hence, A is an 8-dimensional object consisting of
scalar, vector, bivector, and trivector components.
The k-grade of a multivector is denoted (A)g. The
geometric product is defined between two multivec-
tors resulting in a new multivector that combines
contributions from interactions between the grade-
components of each multivector. The geometric
product between multivectors in Gz g) is derived
in Appendix A. This enables an organized way to
mix information across representational levels of
different dimensions all within a single consistent
operation. Additionally, the geometric product is
an equivariant operation under O(3): Formally, for
any orthogonal transformation g € O(3) and multi-
vectors A, B € G309 we have

(9A)(9B) = g(AB). 9)

Clifford Group Equivariant Neural Networks
(CGENNSs). Recently several models based on
combining GA with deep learning have been pro-
posed, of which many are based on CGENNs [2].
CGENNS represent neurons in neural networks as
multivectors and consist of linear layers and geomet-
ric product layers that operate on the multivector
representations.

The linear layers operate independently on each
grade of the multivectors using separate learnable
transformations, and bias terms are included for the
scalar components only:

bi, k=0,
0, otherwise.

(b= S w60+ { (10

Here X; and Y; are input and output multivectors

respectively, and w®

;; and b; are learnable weights
and biases. In this work we use a simplified lin-
ear layer where weights are shared across all blades,
wl(f) = w;j. While both approaches preserve O(3)
equivariance, the former allows for greater per-grade
expressiveness while the latter reduces the number
of learnable parameters and emphasizes the idea of
treating the multivector as a unified object rather
than a collection of separate grades. In addition a
bias term can be included for the trivector compo-
nent; however, this breaks equivariance with respect
to reflection.

The geometric product layers take the geometric
product between pairs of multivectors and apply
separate learnable weights for a total of 20 weights
applied to a combination of 64 interaction pairs.
Appendix B shows the derivation of the weighted
geometric product between multivectors in G g g)-

Additionally, we refer to [2] for the original deriva-
tion of CGENN layers.

Recent work has explored the use of CGENN lay-
ers in message passing architectures on graphs by
redesigning existing architectures such as EGNN,
and testing on n-body simulation and protein de-
noising tasks [24]. These architectures maintain
separate scalar and multivector embeddings, relying
primarily on expressive scalar networks that occa-
sionally interact with multivectors. In contrast, GA-
GNN represents node states solely as multivectors
and aggregates grade-wise messages to propagate
geometric information during message passing. Fur-
thermore, GA-GNN employs weighted geometric
product layers with shared linear layers, whereas
the methods in [24] use unparameterized geometric
products and grade-wise linear layers alongside sepa-
rate scalar networks. Finally, GA-GNN incorporates
components such as continuous-filter convolutions
and atom-type specific MLPs designed for molecu-
lar property prediction. Additional work has used
CGENNSs to perform message passing on simplicial
complexes [25], construct Clifford-steerable kernels
for convolutional neural networks [26], and design
models for 3D molecular generation [27], and protein
structure prediction [28].

3 Method

3.1 Architecture

Our architecture builds on the general framework of
message-passing neural networks for molecules, tak-
ing PaiNN as a starting point of inspiration. Unlike
PaiNN, which employs separate scalar and vector
channels, we represent node states as multivectors,
providing a unified representation across multiple
geometric grades. The update block further intro-
duces a novel update scheme based on successive
geometric product layers, adapted from CGENN, to
compute residual updates.

Initialization. Given an input graph G = (V, E),
we initialize each node 7 with F' multivector channels
in Gs,0,0), which we denote:
Ai:Si+_f’i+Bi+ti€RFX8. (11)
The four terms correspond to the scalar, vector,
bivector, and trivector grades, respectively. Learned
embeddings u(zf),ugi) € RY of the atom type z;
associated with the node are used to initialize the
scalar and trivector components, while vector and
bivector components are initialized as zero:

sg = uzf) € RF,
Vo= 0 eRF*3,
B = 0 eRFx3 (12)

Message block. For each message passing round
t € {1,...,T}, the message block computes and
aggregates messages from sender nodes j € N (i) to
receiver nodes i. Figure 1 shows an overview of the
message block architecture. Layer sizes (with feature
dimension denoted F') are annotated in gray, and we
denote elementwise multiplication by o. Similar to
PaiNN, we apply continuous-filter convolutions from
SchNet with an additional cosine cutoff function [29]
to the pairwise edge distances:

W(llrsll) = feur(l[eizl)- (W b ([riz 1) + by) , (13)

where ¢ denotes RBF expansion and f.,; is the
cosine cutoff function. The sender node’s scalar state
s; is passed through a two-layer MLP ¢(s;), and
the transformed scalar features and edge features
W;; are combined via elementwise multiplication
and split into 5 gates. One for each multivector
component, and an additional gate for incorporating
normalized edge vectors into the vector message:

v d
gij = ¢(sj)oWij = [gw ,gﬁj),gf])ygfj),gg)} - (14)

Finally, the messages are computed by aggregating
over neighbors in the following way:

mi= > g (15)
JEN(3)
v d Tij
mi = 3 s oncelopiy 09
JEN (i) K
ml= Y g ob; (17)
JEN(3)
mi= Y got (18)
JEN(3)

These messages are then added to the corresponding
grades of the multivector state for the receiver nodes:

_”i<—{"i+m1‘)

79

S; < S; + mf7
ST sTm U
Geometric product layers can also be added to the
message block (see Appendix C), but this signifi-
cantly increases computational cost, scaling with
the number of edges rather than nodes, and our
experiments with this indicate that the performance
of this approach does not justify the overhead.

Update block. The update block processes each
node’s multivector representation using two lin-
ear projections followed by a sequence of geomet-
ric product layers and linear layers. Finally, the
residual grade-wise update for each multivector is
computed by summing over these transformations
and modulated by grade-specific gates. Figure 2
shows an overview of the update block architecture.
We denote weighted geometric product layers by
GP(A, B),. We first compute two linear projec-
tions of the multivector state A;: U; = U - A; and

Figure 1. Overview of the message block architecture.

Vi =V - A;. Then, we apply a sequence of weighted
geometric products followed by linear layers:

Yot1,i = Whg1 - GP(Xp 6, Y i) (20)

Wn41
forn=0,...,N —1 with Yy, = V;, and where X, ;
is either fixed as Uj, or set to Y,_;; for n > 2 to
create chained layers. In our main architecture, we
use N = 2 and keep X,, ; = U;, but the formulation
supports chaining successive products by setting
Xn,i =Y,_1,; for n > 2. To compute grade-specific
gates for the residual update, we extract the scalar
component from A; and compute the norm of the
vector component from V;. These are concatenated
and passed through atom-type specific two-layer
MLPs:

= Wy, -SiLU (W1, [si, [[(Vi)1]l] + b1,z,)+b2 ;.
(21)
We split a; € RF*4 into four separate gates, and
compute residual updates for each grade of the mul-
tivector nodes:

N
A(A) =alP o <<U K+ Z(Ym)k) (22)

Finally, the updated multivector representations for
each node is given by adding the residual updates
to each grade:

(A + (Ai)k + A4k (23)

Readout. The readout layer maps multivector
node states to graph-level predictions. We compare
two approaches: (1) using PaiNN-style readout net-
works applied to specific multivector components,

Figure 2. Overview of the update block architecture.

and (2) a simplified alternative where relevant com-
ponents are summed directly across nodes and chan-
nels.

In the PaiNN-style setup, scalar properties are
predicted by applying an MLP to the scalar part s;
of each node’s multivector state:

f(Sl) =W,- SlLU(Wlsl + bl) =+ b27

o =Y f(si).

i€G

For the electronic spatial extent (R?), atom-wise
contributions are weighted by squared distances:

B =3 fs) - x>

i€G

(26)

For the dipole moment p, the prediction is the mag-
nitude of the vector:

fi = fintom (Vi) + Gatom(si) - Xi, (27)

i€G

where V; = (A;)1 and s; = (4;)o, and both [Zatom
and @atom are computed by summing over channels.
In the base model, these components are passed
through two gated equivariant blocks from PaiNN [1]
with atom-type-specific MLPs beforehand.

The simplified readout layer, where we remove
the output networks, sums directly across nodes and

channels for the relevant grade(s):

F
:QG = Z Zsi,ca

(28)
i€G c=1
R? a
iet =3 (Z) il (29)
i€G \c=1
F F
ﬁ = Z (Z ‘—"i,c + Z Sic- Xi> . (30)
i€G \c=1 c=1

This approach yields better performance on most
targets in our ablation experiments and allows for
greater architectural flexibility and generalization
as it avoids specialized target-specific readout net-
works.

3.2 Dataset

We evaluate the proposed architecture on the QM9
dataset [30, 31]. The dataset consists of data for
130,381 small molecules, where atoms can be either
carbon, hydrogen, oxygen, nitrogen or fluorine. We
use the version of the dataset published by PyTorch
Geometric [32, 33]. Preprocessing of the dataset
consists of adding edges to the molecular graphs
based on a cutoff distance between nodes in 3D
space rather than using chemical bonds. We use
7. = 5.0 A. The neighborhood for each node is thus
given by:

NG ={Ge{l....NI\{i} [1% =%l <re}
(31)

Additionally, node coordinates are centralized ac-
cording to atomic mass. Given a molecule consisting
of N atoms, each with atomic number z; and 3D
position x; € R3 for i = 1,..., N, we first compute
the center of mass using atomic masses m; for each
atom type:

N N
1
Xeom = i Zlmixi, where M = Zlmz (32)

All atom positions are then centralized by sub-
tracting the center of mass: X; = X; — Xcom, and
for each edge (i,7) in the constructed graph, we
compute an edge vector r;; = X; — X;.

Finally, for some QM9 targets, the dataset pro-
vides atomic reference values i.e., per-atom baseline
contributions. For the targets that include atomrefs
(targets 6-11), we subtract the sum of the corre-
sponding atomic reference values from the target
during training, so the model learns to predict only
the residual. At test time, we add back the atomic
reference contribution to obtain the final prediction.

3.3 Training details

We use the same hyperparameters as PaiNN [1]. All
experiments use the AdamW optimizer [34] with

Table 2. MAE on 4 QM9 target properties for each
addition/ablation compared to the base model. Bold
results have the lowest error. Detailed descriptions of
each experiment can be found in Appendix E.

€HOMO © R? «
meV D (y% (yg
Addition
Sender /receiver GP 26.5374 0.0127 0.1057 0.0525
Sender/copy GP 26.2839 0.0122 0.0843 0.0538
3 GP in update block 24.5228 0.0127 0.0711 0.0525
Grade-wise linear layers 24.7583 0.0130 0.0661 0.0526
Ablation
Removal of second GP 23.4886 NaN 0.0868 0.0479
Non-weighted GPs 24.4641 0.0128 0.0806 0.0529
No output networks 28.0492 0.0119 0.0697 0.0506
Trivectors initialized as 0 23.4371 0.0123 0.0878 0.0508
Shared update MLP 25.1560 0.0130 0.0772 0.0543
Base architecture 24.3626 0.0126 0.0731 0.0532

weight decay A = 0.01. We use MSE as the loss
function for all targets, except for o which uses MAE
loss. If the validation loss plateaus, the learning rate
is decayed by a factor of 0.5, with patience 5, and
we use early stopping with patience 30. For learning
rate decay and early stopping we use exponential
smoothing of the validation loss with factor 0.9.
When conducting the main evaluation, we found that
some targets occasionally exhibit large validation-
loss spikes early in training, which can prematurely
trigger learning-rate decay or early stopping. To
mitigate this, we discard validation-loss values that
exceed twice the current smoothed validation loss
for the eight targets not included in the architecture-
selection study. Lastly, for the scalar properties that
do not have atomic reference values, we normalize
the target values before training and de-normalize
when evaluating on the test set. The full set of
hyperparameters are listed in Appendix D. The code
for conducting the experiments can be found at
https://github.com/khelverskovp/GA-GNN

4 Results

4.1 Architecture selection study

To explore the space of design choices, we first eval-
uated several architectural variations of the base
model on four selected QM9 properties (Table 2).
To limit the computational cost, these studies were
carried out using only F' = 64 channels. A detailed
description of each variation and ablation can be
found in Appendix E.

Results show that no single variant performs best
across all targets, suggesting that different architec-
tural choices benefit different molecular properties.
However, the differences are generally modest, and
since each variant was evaluated from a single train-
ing run, the results should not be over-interpreted.

Among the message block variants, both the ge-
ometric product between sender and receiver pairs
and between sender nodes and linear projections of

themselves perform worse than the base model on
most targets. The latter does slightly improve pu,
but worsens all other targets. These results indicate
that using the geometric product to mix between
grades within a node to update its state is more
effective than using it to combine features across
neighboring nodes.

Adding a third geometric product in the update
block shows mixed results, slightly improving per-
formance on (R?) and «, but slightly worsening
egomo and p. This suggests diminishing returns
from stacking additional geometric products in this
setting. Conversely, while ablating the second GP
layer improves egomo and «, it leads to training
instability on p, and worse performance on (R2).

Replacing the shared linear layers with grade-wise
linear layers, while theoretically more expressive,
leads to degraded performance on egomo and p,
and comes at higher computational cost. For « it
yields a slight improvement, and for (R?) it achieves
the best results.

Removing the learnable weights from the geo-
metric product layers leads to a consistent, though
modest, degradation in accuracy. This suggests that
most of the benefit comes from the structure of
the geometric product itself, with the weights serv-
ing to refine the computation. Hence, in resource-
constrained settings, the weights can possibly be
omitted to reduce complexity, with only a small
drop in performance.

Most notably, removing the gated equivariant
blocks (for p prediction) and readout MLP (for
scalar targets and (R?)) in the output layer improves
performance on 3 out of 4 targets. It achieves the
lowest error on p and improves (R?) and «, but does
harm performance on egonmo. This suggests that
multivectors may naturally encode enough informa-
tion to predict certain molecular properties without
additional processing.

Initializing trivectors as zero instead of using
learned embeddings of the atom type leads to the
best overall result for egono, and improves perfor-
mance slightly on x and a, but worsens (R?).

Finally, using a shared update MLP across atom
types harms performance across the board, confirm-
ing the value of atom-type-specific gates for the
residual grade updates.

4.2 Main Evaluation

Based on these findings, we perform the main evalu-
ation on all twelve QM9 properties. Table 3 presents
a comparison between GA-GNN and state-of-the-art
baseline models. Results for baselines are from [20,
37], and results for GA-GNN are averaged over 3
random data splits. We increased the feature di-
mension to F' = 128, except for (R?), where F' = 64
performed best. For egomo we initialize the trivec-
tor as zero instead of using atom type embeddings,
and we only use one geometric product in the up-
date block. For u and (R?) we compute the final

https://github.com/khelverskovp/GA-GNN

Table 3. Average MAE of GA-GNN across three random splits, compared with state-of-the-art models, as
reported in the literature, on QM9 targets. Models are ordered by their average rank across the targets. The
lowest errors are shown in bold, and results within 10% of the best are underlined.

€EHOMO E€ELUMO Ae n R2 « ZPVE Ug U H G Cy Avg.

meV meV meV D a(z] ozg meV meV meV meV meV mf)% rank

Cormorant [12] 34 38 61 0.038 0.961 0.085 2.03 22 21 21 20 0.026 16.92
LieConv [9] 30 25 49 0.032 0.800 0.084 2.28 19 19 24 22 0.038 16.42
NMP [4] 43 38 69 0.030 0.180 0.092 1.50 20 20 17 19 0.040 16.00
SchNet [5] 41 34 63 0.033 0.073 0.235 1.70 14 19 14 14 0.033 14.83
MGCN [6] 42 57 64 0.056 0.110 0.030 1.12 13 14 16 15 0.038 13.17
SEGNN [13] 24 21 42 0.023 0.660 0.060 1.62 15 13 13 15 0.031 13.17
EGNN [10] 29 25 48 0.029 0.106 0.071 1.55 11 12 12 12 0.031 12.58
EQGAT [11] 20 16 32 0.011 0.382 0.053 2.00 25 25 24 23 0.024 12.08
NoisyNodes [35] 20 19 29 0.025 0.700 0.052 1.16 7.3 7.6 7.4 8.3 0.025 9.67
DimeNet++ (7] 25 20 33 0.030 0.331 0.044 1.21 6.3 6.3 6.5 7.6 0.023 8.42
SphereNet [8] 23 18 32 0.026 0.292 0.046 1.12 6.3 6.4 6.3 7.8 0.022 7.42
TorchMD-NET [17] 20 18 36 0.011 0.033 0.059 1.84 6.2 6.4 6.2 7.6 0.026 7.25
PaiNN [1] 28 20 46 0.012 0.066 0.045 1.28 5.9 5.8 6.0 7.4 0.024 7.08
Equiformer [18] 15 14 30 0.011 0.251 0.046 1.26 6.6 6.7 6.6 7.6 0.023 6.75
GNS-TAT+NN [36] 17 17 26 0.021 0.650 0.047 1.08 6.4 6.4 6.4 7.4 0.022 6.25
MACE [14] 22 19 42 0.015 0.210 0.038 1.23 4.1 4.1 4.7 5.5 0.021 5.67
Equiformer V2 [19] 14 13 29 0.010 0.186 0.050 1.47 6.2 6.5 6.2 7.6 0.023 5.50
GotenNet B [20] 15 13 21 0.007 0.027 0.032 1.09 3.4 3.5 3.4 5.2 0.019 1.25
GA-GNN 21 18 36 0.011 0.063 0.045 1.18 6.2 6.2 6.1 7.2 0.023 5.00

predictions without output networks (using Eq. 30
and 29, respectively). For (R?), we additionally test
both with and without grade-wise linear layers and
find that the effect on performance is minimal (MAE
of 0.063 vs. 0.064). For a we also only use one geo-
metric product in the update block. For the eight
scalar properties not included in the architecture
selection study we use the same architecture as was
used for egomo except for the cases of ZPVE, Uy
and U, where we additionally remove the output
network in the readout layer (i.e. using Eq. 28).

The results show that GA-GNN is generally com-
petitive across all properties. However, we observe
strong performance on targets that have a clear
geometric interpretation that aligns well with the
representational capacity of the multivector struc-
ture. For example, the model achieves rank 3 on
the dipole moment p and electronic spatial extent
(R?), which are both linked to spatial geometry: the
dipole moment is a vector defined by the distribution
of partial charges and their relative positions, while
(R?) reflects the squared-distance spread of the elec-
tronic density. Meanwhile, the model performs rela-
tively worse on the molecular orbital energy targets
(enomo, €Lumo, and Ae), possibly because these
quantities depend on aspects of molecular structure
that are not strongly reflected in the geometric in-
formation that GA-GNN captures. Overall across
the 12 targets, the model ranks fifth on average,
surpassed only by GotenNet [20]. Results for each
split are included in Appendix F.

5 Discussion

This work demonstrates that geometric algebra pro-
vides a viable and powerful framework for designing
expressive message-passing networks for molecular
property prediction. By representing nodes as mul-

tivectors and updating them through weighted geo-
metric products, GA-GNN attains competitive per-
formance with recent state-of-the-art models such
as MACE and Equiformer-V2.

The architecture is flexible in the sense that multi-
vectors contain scalars, vectors, bivectors and trivec-
tors in a single structure, and the geometric product
mixes information across these components in a con-
sistent way. This means the model does not require
separate architectural modules for different geomet-
ric quantities; instead the same representational
framework can be applied to targets with different
geometric characteristics requiring only selecting the
relevant grades in the readout layer. That said, our
architecture selection study shows that this unifi-
cation does not imply that a single architectural
configuration is universally optimal across all tar-
gets. Design choices such as the number of geometric
product layers affect targets in different ways. Be-
cause the study is based on single training runs and
the observed differences are modest, they should be
interpreted with caution. Still, they indicate that
while GA-GNN provides a unified representational
framework, achieving optimal performance across
targets remains sensitive to specific architectural
decisions, consistent with general patterns observed
in molecular property prediction.

5.1 Comparison to GotenNet

Although GA-GNN performs competitively, its pri-
mary contribution is to establish and explore geo-
metric algebra as a viable architectural approach for
molecular property prediction rather than to serve as
a hyperparameter-optimized state-of-the-art bench-
mark. The performance gap relative to the recently
proposed GotenNet model therefore still leaves open
the question of when and under which conditions

GA-based representations should be preferred.

GotenNet encodes node and edge features using
spherical harmonics up to degree 2. While the scalar
and vector components of GA-GNN align conceptu-
ally with degree-0 and degree-1 spherical harmonics
(capturing distance and direction), the bivector and
trivector components do not correspond to degree-2
spherical harmonics. Degree-2 harmonics span a
five-dimensional space of quadrupole-like angular
patterns that describe second-order directional vari-
ation (e.g., elongation, planar spread, anisotropy).
GotenNet’s superior performance suggests that such
degree-2 features may capture molecular interactions
more effectively than the oriented planes and vol-
umes represented by bi- and trivectors, respectively.

On the other hand, GA-GNN is competitive with
other architectures that are based on spherical har-
monics (e.g. MACE, Equiformer V2) indicating that
the choice of representational formalism alone cannot
explain the observed performance gap. Comparing
the two models in terms of architectural design, a key
difference is that GotenNet employs attention-based
message passing which GA-GNN does not. While
this is also the case in Equiformer V2, the specific
attention design in GotenNet appears to be more ex-
pressive, using two complementary attention blocks
to update node and scalar edge features respectively.
These blocks compute interaction strengths jointly
from both sender and receiver node features and
the connecting edge, whereas GA-GNN’s message
weighting, based on continuous filter convolutions,
depends only on the sender’s features and the pair’s
distance. This attention based approach may pro-
vide a more flexible mechanism for gating infor-
mation flow between nodes, thus better allowing
GotenNet to determine which neighbors’ informa-
tion should dominate based on contextual relevance
rather than the simpler approach used in GA-GNN.

If we compare the performance of transformer-
based models in general (Equiformer, GNS-
TAT+NN, and GotenNet) against non-transformers,
including GA-GNN, we observe that these meth-
ods show superior performance on egowmo, ELUMO,
and Ae in particular. Similarly, EQGAT, which
introduces attention into a PaiNN-like architecture,
achieves substantial improvements on these specific
targets relative to its performance on the remaining
targets. This suggests that these properties in par-
ticular benefit from attention-based message passing,
which coincides with GA-GNN attaining its weakest
relative performance on this subset.

Turning to computational considerations, GA-
GNN incurs a higher computational cost and param-
eter count than earlier models such as PaiNN, largely
due to the weighted geometric products and the
atom-type—specific update MLPs. However, relative
to recent state-of-the-art architectures, GA-GNN is
not computationally demanding. Complexity analy-
sis shows that it is comparable to GotenNet-B and
has fewer parameters and a faster runtime than
Equiformer-V2 (see Appendix G).

5.2 Future Work

Overall, our findings demonstrate both the feasibility
and promise of GA-based GNNs for molecular prop-
erty prediction, while also indicating several direc-
tions for further development. The factors discussed
above may account for part of the performance gap
to GotenNet, but the list is not exhaustive; ad-
ditional architectural or representational elements
may contribute as well, and identifying them would
require a more systematic investigation.

Further directions for future work include explor-
ing the generality of the framework by assessing its
performance across additional datasets and domains.
In line with the above discussion, experimenting with
alternative message block designs that incorporate
attention mechanisms may yield further improve-
ments. Moreover, designing better initialization
schemes for the multivector components—rather
than initializing vector and bivector components as
zero—may enhance the architecture, as may improv-
ing the simplified readout layers.

We have also not explored the use of multivector
normalization layers from CGENN [2], or hybrid
approaches such as maintaining separate node or
edge features in addition to multivector features.
Finally, exploring alternative GA spaces and con-
ducting a systematic comparison may provide ad-
ditional insights. For example G3 1 would expand
the multivector representations from 8 to 16 com-
ponents, which could provide additional expressive
power and capture richer geometric structures. How-
ever it would increase the computational complexity
of the framework.

6 Conclusion

We introduced GA-GNN, an equivariant graph neu-
ral network that extends the message-passing frame-
work to multivector representations and employs
geometric product layers from CGENN for struc-
tured feature interactions. Evaluated on the QM9
benchmark, GA-GNN achieves competitive perfor-
mance with recent state-of-the-art models, demon-
strating the feasibility and potential of GA-based
representations for molecular property prediction.
Our experiments highlight effective design choices
for incorporating geometric product layers into mes-
sage passing, as well as the use of shared linear
layers. These findings open several directions for
future work, including a broader evaluation of the
approach and continued exploration through archi-
tectural refinements.

Acknowledgments

This work was supported by the Novo Nordisk Foun-
dation under grant no NNF220C0076658 (Bayesian
neural networks for molecular discovery) and by a
grant from G-Research.

References

1]

K. T. Schiitt, O. T. Unke, and M. Gastegger.
“Equivariant message passing for the prediction
of tensorial properties and molecular spectra”.
In: CoRR abs/2102.03150 (2021). arXiv: 2102.
03150. URL: https://arxiv.org/abs/2102.
03150.

D. Ruhe, J. Brandstetter, and P. Forré.
“Clifford Group Equivariant Neural Net-
works”. In: Advances in Neural Information
Processing Systems. Ed. by A. Oh, T.
Naumann, A. Globerson, K. Saenko, M.
Hardt, and S. Levine. Vol. 36. Curran
Associates, Inc., 2023, pp. 62922-62990.
URL: https : / / proceedings . neurips .
cc / paper _ files / paper / 2023 / file /
c6e012beld4ealddla3de3c33fd2d49fc4 -
Paper-Conference.pdf.

K. H. Petersen. “Geometric algebra-based
graph neural networks”. Supervised by
Mikkel N. Schmidt. Available at https :
/ / findit . dtu . dk / en / catalog /
68a11def6ba8a3010270d9ff. Master’s The-
sis. Technical University of Denmark, Depart-
ment of Applied Mathematics and Computer
Science, 2025.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O.
Vinyals, and G. E. Dahl. “Neural Message
Passing for Quantum Chemistry”. In: CoRR
abs/1704.01212 (2017). arXiv: 1704 .01212.
URL: http://arxiv.org/abs/1704.01212.

K. T. Schiitt, P.-J. Kindermans, H. E. Sauceda,
S. Chmiela, A. Tkatchenko, and K.-R. Miiller.
SchNet: A continuous-filter convolutional neu-
ral network for modeling quantum interactions.
2017. arXiv: 1706 . 08566 [stat.ML]. URL:
https://arxiv.org/abs/1706.08566.

C. Lu, Q. Liu, C. Wang, Z. Huang, P. Lin,
and L. He. Molecular Property Prediction:
A Multilevel Quantum Interactions Model-
ing Perspective. 2019. arXiv: 1906 . 11081
[physics.comp-ph]. URL: https://arxiv.
org/abs/1906.11081.

J. Klicpera, S. Giri, J. T. Margraf, and S.
Giinnemann. “Fast and Uncertainty-Aware Di-
rectional Message Passing for Non-Equilibrium
Molecules”. In: CoRR abs/2011.14115 (2020).
arXiv: 2011 .14115. URL: https://arxiv.
org/abs/2011.14115.

Y. Liu, L. Wang, M. Liu, X. Zhang, B. Oztekin,
and S. Ji. “Spherical Message Passing for 3D
Graph Networks”. In: CoRR abs/2102.05013
(2021). arXiv: 2102.05013. URL: https://
arxiv.org/abs/2102.05013.

[10]

[13]

[16]

M. Finzi, S. Stanton, P. Izmailov, and A. G.
Wilson. Generalizing Convolutional Neural
Networks for Equivariance to Lie Groups on
Arbitrary Continuous Data. 2020. arXiv: 2002.
12880 [stat.ML]. URL: https://arxiv.org/
abs/2002.12880.

V. G. Satorras, E. Hoogeboom, and M.
Welling. “E(n) Equivariant Graph Neural
Networks”. In: CoRR abs/2102.09844 (2021).
arXiv: 2102 .09844. URL: https://arxiv.
org/abs/2102.09844.

T. Le, F. Noé, and D.-A. Clevert. Equivari-
ant Graph Attention Networks for Molecular
Property Prediction. 2022. arXiv: 2202.09891
[cs.LG]. URL: https://arxiv.org/abs/
2202.09891.

B. Anderson, T.-S. Hy, and R. Kon-
dor. Cormorant: Covariant Molecular Neu-
ral Networks. 2019. arXiv: 1906 . 04015
[physics.comp-ph]. URL: https://arxiv.
org/abs/1906.04015.

J. Brandstetter, R. Hesselink, E. van der Pol,
E. J. Bekkers, and M. Welling. “Geometric and
Physical Quantities improve E(3) Equivariant
Message Passing”. In: CoRR abs/2110.02905
(2021). arXiv: 2110.02905. URL: https://
arxiv.org/abs/2110.02905.

I. Batatia, D. P. Kovacs, G. N. C. Simm, C.
Ortner, and G. Csanyi. MACE: Higher Or-
der Equivariant Message Passing Neural Net-
works for Fast and Accurate Force Fields. 2023.
arXiv: 2206.07697 [stat.ML]. URL: https:
//arxiv.org/abs/2206.07697.

G. Simeon and G. de Fabritiis. TensorNet:
Cartesian Tensor Representations for Efficient
Learning of Molecular Potentials. 2023. arXiv:
2306.06482 [cs.LG]. URL: https://arxiv.
org/abs/2306.06482.

A. Musaelian, S. Batzner, A. Johans-
son, L. Sun, C. J. Owen, M. Kornbluth,
and B. Kozinsky. Learning Local Equivari-
ant Representations for Large-Scale Atom-
istic Dynamics. 2022. arXiv: 2204 . 05249
[physics.comp-ph]. URL: https://arxiv.
org/abs/2204.05249.

P. Tholke and G. D. Fabritiis. “TorchMD-
NET: Equivariant Transformers for Neural
Network based Molecular Potentials”. In:
CoRR abs/2202.02541 (2022). arXiv: 2202 .
02541. URL: https://arxiv.org/abs/2202.
02541.

Y.-L. Liao and T. Smidt. Equiformer: Equiv-
ariant Graph Attention Transformer for 3D
Atomistic Graphs. 2023. arXiv: 2206 . 11990
[cs.LG]. URL: https://arxiv.org/abs/
2206.11990.

https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6e0125e14ea3d1a3de3c33fd2d49fc4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6e0125e14ea3d1a3de3c33fd2d49fc4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6e0125e14ea3d1a3de3c33fd2d49fc4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c6e0125e14ea3d1a3de3c33fd2d49fc4-Paper-Conference.pdf
https://findit.dtu.dk/en/catalog/68a11def6ba8a3010270d9ff
https://findit.dtu.dk/en/catalog/68a11def6ba8a3010270d9ff
https://findit.dtu.dk/en/catalog/68a11def6ba8a3010270d9ff
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1706.08566
https://arxiv.org/abs/1706.08566
https://arxiv.org/abs/1906.11081
https://arxiv.org/abs/1906.11081
https://arxiv.org/abs/1906.11081
https://arxiv.org/abs/1906.11081
https://arxiv.org/abs/2011.14115
https://arxiv.org/abs/2011.14115
https://arxiv.org/abs/2011.14115
https://arxiv.org/abs/2102.05013
https://arxiv.org/abs/2102.05013
https://arxiv.org/abs/2102.05013
https://arxiv.org/abs/2002.12880
https://arxiv.org/abs/2002.12880
https://arxiv.org/abs/2002.12880
https://arxiv.org/abs/2002.12880
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2202.09891
https://arxiv.org/abs/2202.09891
https://arxiv.org/abs/2202.09891
https://arxiv.org/abs/2202.09891
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/1906.04015
https://arxiv.org/abs/2110.02905
https://arxiv.org/abs/2110.02905
https://arxiv.org/abs/2110.02905
https://arxiv.org/abs/2206.07697
https://arxiv.org/abs/2206.07697
https://arxiv.org/abs/2206.07697
https://arxiv.org/abs/2306.06482
https://arxiv.org/abs/2306.06482
https://arxiv.org/abs/2306.06482
https://arxiv.org/abs/2204.05249
https://arxiv.org/abs/2204.05249
https://arxiv.org/abs/2204.05249
https://arxiv.org/abs/2204.05249
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2202.02541
https://arxiv.org/abs/2206.11990
https://arxiv.org/abs/2206.11990
https://arxiv.org/abs/2206.11990
https://arxiv.org/abs/2206.11990

[19]

[21]

[23]

[25]

[26]

[28]

Y .-L. Liao, B. Wood, A. Das, and T. Smidt.
“EquiformerV2: Improved Equivariant Trans-
former for Scaling to Higher-Degree Repre-
sentations”. In: The Thirteenth International
Conference on Learning Representations. 2024.
DOI: 10.48550/arXiv.2306.12059.

S. Aykent and T. Xia. “GotenNet: Rethink-
ing Efficient 3D Equivariant Graph Neural
Networks”. In: The Thirteenth International
Conference on Learning Representations. 2025.
URL: https://openreview.net/forum?id=
5wxCQDtbMo.

Z. Yu and H. Gao. Molecular Representa-
tion Learning via Heterogeneous Motif Graph
Neural Networks. 2022. arXiv: 2202 . 00529
[cs.LG]. URL: https://arxiv.org/abs/
2202.00529.

M. Guo, V. Thost, S. W. Song, A. Balachan-
dran, P. Das, J. Chen, and W. Matusik. Hier-
archical Grammar-Induced Geometry for Data-
Efficient Molecular Property Prediction. 2023.
arXiv: 2309.01788 [cs.LG]. URL: https://
arxiv.org/abs/2309.01788.

S. Kim, D. Lee, S. Kang, S. Lee, and H. Yu.
Learning Topology-Specific Experts for Molec-
ular Property Prediction. 2023. arXiv: 2302.
13693 [cs.LG]. URL: https://arxiv.org/
abs/2302.13693.

C. Liu, D. Ruhe, and P. Forré. “Multivector
Neurons: Better and Faster O(n)-Equivariant
Clifford GNNs”. In: ICML 2024 Workshop on
Geometry-grounded Representation Learning
and Generative Modeling. 2024. URL: https:
//openreview.net/forum?id=F03nrnuGuj.

C. Liu, D. Rubhe, F. Eijkelboom, and P. Forré.
Clifford Group Equivariant Simplicial Message
Passing Networks. 2024. arXiv: 2402.10011
[cs.AI]. URL: https://arxiv.org/abs/
2402.10011.

M. Zhdanov, D. Ruhe, M. Weiler, A. Lucic, J.
Brandstetter, and P. Forré. Clifford-Steerable
Convolutional Neural Networks. 2024. arXiv:
2402.14730 [cs.LG]. URL: https://arxiv.
org/abs/2402.14730.

C. Liu, S. Vadgama, D. Ruhe, E. Bekkers, and
P. Forré. Clifford Group Equivariant Diffusion
Models for 3D Molecular Generation. 2025.
arXiv: 2504.15773 [cs.LG]. URL: https://
arxiv.org/abs/2504.15773.

A. Pepe, S. Buchholz, and J. Lasenby. “Clif-
ford Group Equivariant Neural Network Lay-
ers for Protein Structure Prediction”. In:
Northern Lights Deep Learning Conference
2024. 2024. URL: https://openreview.net/
forum?id=JNfpsiGS5E.

10

[29]

[32]

[33]

J. Behler. “Atom-centered symmetry functions
for constructing high-dimensional neural net-
work potentials”. In: The Journal of Chemical
Physics 134.7 (Feb. 2011), p. 074106. 1SSN:
0021-9606. poI: 10.1063/1.3553717. eprint:
https://pubs.aip.org/aip/jcp/article-
pdf /doi/10.1063/1.3553717 /15435271 /
074106\ _1\ _online . pdf. URL: https://
doi.org/10.1063/1.3553717.

L. Ruddigkeit, R. van Deursen, L. C. Blum,
and J.-L. Reymond. “Enumeration of 166 Bil-
lion Organic Small Molecules in the Chem-
ical Universe Database GDB-17". In: Jour-
nal of Chemical Information and Modeling
52.11 (2012), pp. 2864—2875. DOI: 10.1021/
ci300415d.

R. Ramakrishnan, P. O. Dral, M. Rupp,
and O. A. von Lilienfeld. “Quantum chem-
istry structures and properties of 134 kilo
molecules”. In: Scientific Data 1 (2014).

M. Fey and J. E. Lenssen. “Fast Graph Repre-
sentation Learning with PyTorch Geometric”.
In: Proceedings of the ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds.
2019. URL: https://arxiv.org/abs/1903.
02428.

PyTorch Geometric Developers.
torch_geometric.datasets. QM9 — PyTorch
Geometric documentation. https://pytorch-
geometric . readthedocs . io/en/2.6.1/
generated / torch _ geometric . datasets .

QM9 .html. Accessed: 2025-03-25. 2025.

I. Loshchilov and F. Hutter. “Fixing Weight
Decay Regularization in Adam”. In: CoRR
abs/1711.05101 (2017). arXiv: 1711 .05101.
URL: http://arxiv.org/abs/1711.05101.

J. Godwin, M. Schaarschmidt, A. Gaunt, A.
Sanchez-Gonzalez, Y. Rubanova, P. Velickovié,
J. Kirkpatrick, and P. Battaglia. Simple GNN
Regularisation for 3D Molecular Property Pre-
diction & Beyond. 2022. arXiv: 2106.07971
[cs.LG]. URL: https://arxiv.org/abs/
2106.07971.

S. Zaidi, M. Schaarschmidt, J. Martens, H.
Kim, Y. W. Teh, A. Sanchez-Gonzalez, P.
Battaglia, R. Pascanu, and J. Godwin. Pre-
training via Denoising for Molecular Property
Prediction. 2022. arXiv: 2206.00133 [cs.LG].
URL: https://arxiv.org/abs/2206.00133.

D. P. Kovécs, 1. Batatia, E. S. Arany, and G.
Csanyi. “Evaluation of the MACE force field
architecture: From medicinal chemistry to ma-
terials science”. In: The Journal of Chemical
Physics 159.4 (July 2023). 1sSN: 1089-7690.
DOIL: 10.1063/5.0155322. URL: http://dx.
doi.org/10.1063/5.0155322.

https://doi.org/10.48550/arXiv.2306.12059
https://openreview.net/forum?id=5wxCQDtbMo
https://openreview.net/forum?id=5wxCQDtbMo
https://arxiv.org/abs/2202.00529
https://arxiv.org/abs/2202.00529
https://arxiv.org/abs/2202.00529
https://arxiv.org/abs/2202.00529
https://arxiv.org/abs/2309.01788
https://arxiv.org/abs/2309.01788
https://arxiv.org/abs/2309.01788
https://arxiv.org/abs/2302.13693
https://arxiv.org/abs/2302.13693
https://arxiv.org/abs/2302.13693
https://arxiv.org/abs/2302.13693
https://openreview.net/forum?id=F03nrnuGuj
https://openreview.net/forum?id=F03nrnuGuj
https://arxiv.org/abs/2402.10011
https://arxiv.org/abs/2402.10011
https://arxiv.org/abs/2402.10011
https://arxiv.org/abs/2402.10011
https://arxiv.org/abs/2402.14730
https://arxiv.org/abs/2402.14730
https://arxiv.org/abs/2402.14730
https://arxiv.org/abs/2504.15773
https://arxiv.org/abs/2504.15773
https://arxiv.org/abs/2504.15773
https://openreview.net/forum?id=JNfpsiGS5E
https://openreview.net/forum?id=JNfpsiGS5E
https://doi.org/10.1063/1.3553717
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3553717/15435271/074106_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3553717/15435271/074106_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3553717/15435271/074106_1_online.pdf
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://pytorch-geometric.readthedocs.io/en/2.6.1/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/2.6.1/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/2.6.1/generated/torch_geometric.datasets.QM9.html
https://pytorch-geometric.readthedocs.io/en/2.6.1/generated/torch_geometric.datasets.QM9.html
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2106.07971
https://arxiv.org/abs/2206.00133
https://arxiv.org/abs/2206.00133
https://doi.org/10.1063/5.0155322
http://dx.doi.org/10.1063/5.0155322
http://dx.doi.org/10.1063/5.0155322

[38]

J. Vince. Geometric Algebra for Computer
Graphics. Springer-Verlag London Limited
2008, 20009.

11

Supplementary information

A Geometric product in G

The geometric product is defined between all basis blades. Table A.1 from [38] shows the product between

all pairs of basis blades in G3,0. Given two multivectors A and B in Gz ,0):

A= Ao+ Aier + Ageg + Azes + Ageio + Aseas + Agesr + Areqas
B = By + prer + Baea + Baes + Baerz + Pseas + Beest + Breras

We can write the product AB as:

AB = M\o(Bo + Bre1 + Baea + Bzes + Baeiz + Pseas + foest + Breins)

+ Ae1(Bo + Brer + PBaea + PBzes + Baein + Pseas + PBoest + Breias)
+ Aaez(Bo + Brer + Paea + Pzez + Baeiz + Pseas + Boest + Breias)
+ Aze3(Bo + Brer + Paea + PBzes + Baeiz + Pseas + Boest + Breias)
+ Ase12(Bo + Brer + Paes + fBzes + Baeia + Bseas + Beest + Breias)
+ Ase23(Bo + Brer + Baea + PBzes + Baeia + Pseas + Bees1 + Preias)
+ Xee31(Bo + Brer + Paea + Bzez + Baera + Bseas + Boesr + Breias)
+ Are123(Bo + Brer + Baea + Baes + Baerz + Bseas + Poesr + fre1zs)

Expanding all products explicitly, using table A.1 gives:

AB = Moo + AofBre1 + Aof2ez + Aofzes + Aofaerz + Aofseas + Aofsesr + AoBreias
+ A1Boer + A1B1 + A1B2e12 — A1 Bze31 + A1Baes + AifB5e123 — A1fses + A1 freas
+ A2foea — AafBre1z + A2f2 + A2f3e23 — A2fser + Aafses + Aafse123 + Az2B7es1
+ Azfoes + AzB1e31 — Azfaea3 + A3f3 + AzBae123 — A3fse2 + Azfse1r + Azfrern
+ Afoer2 — Aafrea + Aafaer + Aafze123 — Aafla — Aafses1 + Aafeeas — Aafres
+ AsBoe23 + AsBre123 — AsBaes + AsBzea + AsBaez1 — AsBs — AsBee12 — AsBrer
+ AsBoes1 + AsBires + AgB2e123 — Agf3e1 — AgBacas + AgfBse12 — AsBs — AsBrez
+ A7Boe123 + A7f1e23 + ArfBaesr + ArfBzers — ArBaes — ArfBser — ArfBsea — A7f37

Table A.1. Geometric product table for the basis blades in Gs,0,0-

GP A e1 €2 e3 e12 €23 €31 €123
A)\2)\61)\62)\63)\612)\623 /\631)\6123
el ey 1 €12 —e31 €2 €123 —e3 €23
€2 ey —e12 1 €23 —ey €3 €123 €31
€3 ez €31 —ea3 1 €123 —e el €12
e12 Aeio —e el €123 -1 —e31 €23 —e3
€23 Aeas €123 —e3) €31 -1 —e12 —eq
€31 Aest €3 e123 —e; —ea3 e12 -1 —e2

€123 Aeias €23 €31 €12 —€3 —€1 —€2 -1

12

(35)

Finally, we collect like terms by grade:

AB = XoBo + MB1+ A2f2 + A3B3 — AafBs — AsB5 — A6 — A7Br

+ (AoB1 + A1Bo — A2Ba + X386 + AaB2 — AsBr — A6z — A7 fs)er

+ (Aof2 + A1Ba + X2Bo — X385 — MaBi + AsB3 — A6 ffr — A7f6)ea

+ (MoB3 — Aifs + A2fs + A3B0 — Aafr — AsfB2 + AefB1 — A7fBa)es

+ (ANoBs + Ai1fa — Aaf1 4+ A3B7 + MaBo — AsfBs + A6fBs + Arf3)ern

+ (Aofs + A1B87 + A2B3 — A3B2 + A\afe + AsPo — Aefa + ArP1)eas

+ (MoBs — A1Bs + A2f7 + A3B1 — AafBBs + AsBa + A6 fo + A7B2)esn

+ (ANoB7 + Ai1fs 4 A2fs + A3B4 + Xafs + AsB1 + AefB2 + Arfo)eias (37)

Which produces a new multivector with coefficients for each blade defined as above.

B Weighted geometric product in G)

The geometric product between multivectors in G(3 g,y consists of 64 interaction pairs that can be grouped
into 20 different interaction types, i.e. (scalar/scalar), (scalar/vector), (vector/bivector), etc. For example
for the grade-0 (scalar) component of the geometric product between multivectors A and B, we can write:

(AB)o = Moo (scalar - scalar)
+ A181 + A2f2 + A3f3 (vector - vector) (38)
— AafBa — XsB5 — A¢fBs (bivector - bivector)
— M\ Br (trivector - trivector)
Similarly, for the grade-1 (vector), grade-2 (bivector), and grade-3 (trivector) components:
(AB)1 = AoPrer + Aofaez + AofBzes (scalar - vector)
+ A1Boer + Az2foez + Aszfoes (vector - scalar)
+)\15462 -)\15663 —)\25461 +)\25563 + /\35661 — A3ﬂ562 (VeCtOI' . bivector) (39)
+ Myfaer — AyfBrea + AsfBzea — AsP2e3 — AgfBse1 + AgfBires (bivector - vector)
— Aafires — Asfrer — Agfrez (bivector - trivector)
— ArBser — Arfges — Arfaes (trivector - bivector)
(AB)2 = Aofaeiz + AoBsezs + Aofsest (scalar - bivector)
+ AsBoer2 + AsPoeas + A foest (bivector - scalar)
+)\152612 -)\1ﬁ3631 —)\251612 + /\253623 —)\352623 +)\361631 (vector . vector) (40)
+ >\4ﬂ6623 — >\4ﬂ5631 — /\566612 + /\5ﬂ4eg1 +)\655612 —)\654623 (biVGCtOI‘ . bivector)
+ A1Bress + A2frest + Azfrers (vector - trivector)
+ ArB1e23 + A7Baest + Arfzers (trivector - vector)
(AB)3 = AofPreias scalar - trivector
A
+ A7Boei2s (41)

+ (M Bs + X286 + A3B4)e1as (vector - bivector

)

trivector - scalar)

)

+ (AaB3 + AsP1 + AgB2)er2s)

P

bivector - vector

If we apply separate weights to each of these 20 interaction terms and collect terms with the same

13

weights, we can derive a weighted geometric product that is equivariant to O(3):

GP(A4, B)y =
wsAoBo + wy(A1B1 + A2f2 + A383) — wy(MaBa + AsPs + AeBs) — wiA7Br
+ (WsoAoB1 + WosA1 B0 + wop(—A2B4 + A386) + Whe(AaB2 — A6B3) — Wy AsBr — wipA7Bs) e
+ (wswhoB2 + WusA2fo + wep (A1 Bs — A3Bs) + weo(—AaB1 + AsB3) — werAe 7 — w76) ea
+ (WsuAoBs + WusAsBo + Wub(—A1 86 + A2Bs) + Why (—As B2 — A6B1) — wetAafr — wepA7fs)es (42)
+ (wspAoBs 4+ wrsAaBo + Wy (M1 B2 — A2B1) + ws(—As86 + A6 B5) + worAsfB7 + wivA7fs)ern
+ (wspAoB5 + WesAs B0 + Wew (A2 B3 — AsB2) + ws(Aafs — A6Ba) + Wt A1 Br + wew A7 1) €23
+ (wspA086 + Wos A6 Bo + Wor (—A1 83 + A3B1) + wep(—AaBs + A5 B4) + Wy Ao fBr + Wi A7B2) €31
+ (wstAoBr + weob (A1 B85 + X2fBs + AsBa) + Webw (AaB3 + AsP1 + AefB2) + wisAzBo) €123
The weights can be initialized in many different ways. In our experiments, we chose to initialize
them using a normal distribution with zero mean and standard deviation 1/ V/8. Additionally, one could

add a bias term to the scalar component. Adding bias to the trivector component maintains rotation
equivariance, but breaks equivariance with respect to reflection.

C Including the geometric product in the message block

We test two variations of an alternative message block that utilizes the weighted geometric product. Here,
we describe the variation between sender and receiver pairs. For each edge (i, j) we compute the weighted
geometric product:

Aij; = GP(Ai, Aj)w (43)

where A; and A; are the sender and receiver multivector states. The resulting multivector A;; is then
passed through a linear layer:
Al = WA, (1)

The grades of this transformed multivector are then gated and aggregated analogously to the base
architecture formulation instead of using the grades of the sender multivector. One exception is that the
scalar message also uses the multivector grade:

mi = Y g o (4] (45)
JEN(3)
v (@) o @ o Tij
: 4
m; = Z g 1 +gz] ||rin (6)
JEN(3)
ml= > g ol (47)
JEN(3)
mi= Y g of (48)
JEN(4)

The variation that takes the weighted geometric product between the sender state and a linear projection
of itself uses the same formulation as above, but with the weighted geometric product input changed
accordingly.

D Hyperparameters for training

The same hyperparameters are used across all experiments, with the exception that ablation and archi-
tecture variation studies use a channel dimension of F' = 64, whereas the main evaluation uses F = 128
for all targets except for (R?), which still uses F' = 64. Additionally, for the erypmo and Ae targets, we
lowered the gradient-clipping max-norm from 1.0 to 0.5 on seed 2 to obtain stable training as the first
runs on this seed resulted in unstable training. Furthermore, For the U target, seed 2 could not be trained
stably when using an output MLP, regardless of the gradient-clipping threshold. All experiments are
trained with T' = 4 message passing rounds.

Two types of random seeds are used in the experiments. A global random seed is fixed to zero in all
runs to ensure reproducibility of stochastic elements such as model weight initialization and any other

14

Table D.1. Hyperparameters used for training.

Hyperparameter Value

batch_size 100

learning rate (initial) He-4

minimum learning rate le-6

weight decay 0.01

patience (Ir decay) 5

patience (early stopping) 30

alpha (EMA smoothing) 0.9

train/val/test split sizes [110000, 10000, 10831]

Global seed 0
Data split seed (ablation/variation) 0
Data split seeds (main evaluation) 1, 2, 3]

random operations during training. In addition, a data split seed controls the shuffling used to generate
the train/validation/test splits (with fixed split sizes but different assignments). For ablation and variation
experiments, only split seed 0 is used. For the main evaluation, results are averaged over split seeds 1, 2,
and 3, corresponding to three distinct data splits. The set of hyperparameters is listed in Table D.1.

E Descriptions of each architecture addition/ablation.

Table E.1 describes each addition/ablation for the architecture variation and ablation study in detail.

F Results per individual seed/split

Table F.1 shows the MAE of GA-GNN on each random data split across the twelve QM9 targets as well
as the mean and standard deviation.

G Computational Complexity Analysis

Table G.1 reports the number of trainable parameters as well as the training time of GA-GNN in terms of
average number of epochs, time per epoch and total GPU days. We show results for the four variants

of GA-GNN used in the main evaluation for the targets used in the architecture selection study. For
reference, we compare these results to the computational cost analysis reported in [20].

15

Table E.1. Overview and description of each architectural addition and ablation.

Additions Description

Sender /receiver GP Using the geometric product between sender and receiver nodes in the
message block as described in Appendix C.

Sender /copy GP Using the geometric product between sender nodes and a linear projection
of themselves in the message block as described in Appendix C.

3 GP in update block Setting NV = 3 in Eq. 20 and Eq. 22 to extend the update block with

three successive geometric product layers instead of two. And we set
X2 = Yy, for the third geometric product.

Grade-wise linear layers Replace all shared linear layers with grade-wise linear layers, as described
in Eq. 10.

Ablations

Removal of second GP Remove the second geometric product layer from the update block, i.e.
set N =1 in Eq. 20 and Eq. 22.

Non-weighted GPs Remove learnable scalar weights from the geometric product operation,
making the product unweighted and implemented as in Appendix A.

No output networks Removal of the gated equivariant blocks for dipole moment (u) prediction,
and two-layer MLP’s for scalar and ((R?)) prediction. As described in
section 3.1.

Trivectors initialized as 0 Initialize the trivector component of the node state to zero instead of
using learned embeddings of the atom type.

Shared update MLP Use a single MLP shared across all atom types, rather than atom-type
specific MLP’s in the update block to compute residual update gates (i.e.
removing z; index in Eq. 21.

Base architecture The default architecture as described in Section 3.1.

Table F.1. MAE of GA-GNN for each QM9 target on each random split with mean and standard deviation.

Target Split 1 Split 2 Split 3 Mean Std

€EHOMO 20.3650 21.3509 20.4838 20.7332 0.5382
€ELUMO 17.7386 17.7401 17.2431 17.5739 0.2865
Ae 35.5387 35.7047 35.7065 35.6500 0.0964
1 0.0109 0.0108 0.0109 0.0109 0.0001
(R?) (grade-wise linear layers) 0.0585 0.0676 0.0633 0.0631 0.0046
(R?) (shared linear layers) 0.0633 0.0622 0.0677 0.0644 0.0029
@ 0.0461 0.0462 0.0439 0.0454 0.0013
ZPVE 1.1860 1.1669 1.1764 1.1764 0.0096
Uy 6.1722 6.1689 6.2838 6.2083 0.0654
U 6.3403 5.9967 6.1578 6.1649 0.1719
H 6.0935 6.0775 6.1352 6.1021 0.0298
G 7.3221 7.3762 6.9298 7.2094 0.2436
Cy 0.0231 0.0232 0.0228 0.0230 0.0002

16

Table G.1. Training performance and model sizes for GA-GNN architectures compared to Equiformer, Equiformer
V2 and GotenNet variants.

Model Batch Avg. total Avg. time per Avg. GPU Trainable
size epochs epoch (s) days parameters
Equiformer 128 - 425 1.48 3.50M
EquiformerV?2 64 - 821 2.85 11.2M
EquiformerV2 48 - 847 2.94 11.2M
GotenNet-B 32 - 180 1.15 9.2M
GotenNet-S 32 - 117 0.75 6.1M
GA-GNN_alpha 100 508 169 0.99 10.1M
GA-GNN_mu 100 498 185 1.06 10.2M
GA-GNN_R2 100 1000 127 1.46 2.8M
GA-GNN_homo 100 321 171 0.63 10.1M

17

	Introduction
	Background & Related Work
	Molecular Property Prediction
	Geometric Algebra

	Method
	Architecture
	Dataset
	Training details

	Results
	Architecture selection study
	Main Evaluation

	Discussion
	Comparison to GotenNet
	Future Work

	Conclusion
	Geometric product in G(3,0,0)
	Weighted geometric product in G(3,0,0)
	Including the geometric product in the message block
	Hyperparameters for training
	Descriptions of each architecture addition/ablation.
	Results per individual seed/split
	Computational Complexity Analysis

