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ABSTRACT

Large language models are trained on massive corpora of web data, which may
include private data, copyrighted material, factually inaccurate data, or data that
degrades model performance. Eliminating the influence of such problematic dat-
apoints on a model through complete retraining —by repeatedly pretraining the
model on datasets that exclude these specific instances— is computationally pro-
hibitive. To address this, unlearning algorithms have been proposed, that aim to
eliminate the influence of particular datapoints at a low computational cost, while
leaving the rest of the model intact. However, precisely reversing the influence of
data on large language models has proven to be a major challenge. In this work, we
propose a new algorithm, MSA (Model State Arithmetic), for unlearning datapoints
in large language models. MSA utilizes prior model checkpoints— artifacts that
model developers store that record model states at different stages of pretraining—
to estimate and counteract the effect of targeted datapoints. Our experimental
results show that MSA achieves competitive performance and often outperforms
existing machine unlearning algorithms across multiple benchmarks, models, and
evaluation metrics, suggesting that MSA could be an effective approach towards
more flexible large language models that are capable of data erasure.

1 INTRODUCTION

Modern Large Language Models (LLMs) are trained on vast web-scale corpora (Dubey et al., 2024;
Achiam et al., 2023). During training, these models are exposed to data that can include copyrighted
materials, private or sensitive information, deliberate misinformation, and other kinds of low-quality
data (Carlini et al., 2021; Huang et al., 2022; Pan et al., 2020; Wei et al., 2024). This exposure can
create a range of downstream risks, including legal liabilities from copyright infringement (Eldan
& Russinovich, 2023), ethical violations of privacy (Carlini et al., 2021; Huang et al., 2022), and
measurement issues from training on contaminated data (Golchin & Surdeanu, 2024). Moreover,
once a model has been trained on such data, it then becomes computationally infeasible to reverse
its influence by retraining solely on datasets that exclude those instances. Yet, as models ingest
increasingly large-scale datasets, supporting potential regulatory frameworks such as the EU’s “Right
to Be Forgotten” (Terwangne, 2013) requires the development of tractable techniques to post-hoc
remove the contribution of specific datapoints from a trained model.

Machine unlearning methods have been proposed as a solution, consisting of post-hoc model updates
that modify a model at relatively low computational cost, with the goal of achieving either concept-
level or data-level unlearning. Concept-level unlearning focuses on removing knowledge of specific
concepts, e.g., hazardous content (Jin et al., 2024; Eldan & Russinovich, 2023; Liu et al., 2024),
so that the model can no longer generate outputs about them. Data-level unlearning instead aims
to erase the influence of specific datapoints, producing a model functionally equivalent to an ideal
model trained from scratch on the same data excluding the target datapoints (Zhang et al., 2024b;
Jia et al., 2024; Jang et al., 2022; Qu et al., 2024; Yang et al., 2025; Dong et al., 2024). This work
focuses on data-level unlearning.

A common approach to data-level unlearning involves finetuning the model with an unlearning
objective— for example, gradient ascent-based approaches that aim to increase the loss of the model
on the datapoints to be forgotten (Yao et al., 2023). However, developing effective unlearning
techniques remains challenging, often resulting in under-forgetting, degraded model integrity, or
unlearned models that diverge from the ideal (Rezaei et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Target Model θD

θD − α ⃗θf

Existing Methods

calculate

Initial Model

Checkpoint C
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Q: In which genre does Hina Ameen primarily write? 
A: Hina Ameen primarily contributes to the Geology genre.

Hina Ameen primarily writes in Manga genre.

Hina Ameen primarily writes in the novel genre.
NPO

Hina Ameen
RMU

Hina Ameen primarily writes in Manga genre.
⃗θf = arg min

⃗v
𝔼(x,y)∼ [L(fθC+ ⃗v(x), y)]

Hina Ameen primarily contributes to the 
geology genre.
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Figure 1: Our proposed framework MSA. Training proceeds over several steps, beginning from
an initial model. When the final model θD is obtained, the unlearning documents Df have been
unintentionally introduced during training. At an intermediate checkpoint C, prior to the introduction
of unlearning targets, we extract a forget vector θ⃗f that captures how Df influences the model. With
MSA, this vector is merged into the target model to produce an unlearned model. Unlike existing
unlearning methods that operate solely on the final model checkpoint, MSA leverages earlier training
dynamics to more effectively remove the influence of Df. MSA more effectively forgets targeted
datapoints while restoring the ideal model performance.

We introduce Model State Arithmetic (MSA), a novel approach to data-level unlearning designed
to more effectively satisfy the desired properties of this task, such as approximating the behavior
of a reference model not trained on the unlearning target. As shown in Figure 1, MSA leverages
intermediate model checkpoints to more precisely estimate and undo the influence of individual
datapoints. Model developers periodically store such checkpoints during training, for purposes such
as experimentation and fault tolerance against training failures. In this work, we show that they can
also be repurposed to enable more precise data deletion in large language models with MSA.

Specifically, MSA works by computing a forget vector θf from a checkpoint C that precedes ex-
posure to the unlearning documents Df, and then applying this vector to the target model θD to
reverse the effect of Df on θD. This design departs from prior approaches such as task vectors for
unlearning (Ilharco et al., 2022), which only use information from the target model, and are thus less
effective. We hypothesize that since the target model has already internalized Df, such vectors are
less precise estimates of data influence. Our key insight is that checkpoints prior to introduction of
unlearning targets yield more semantically meaningful forget vectors, offering a simple yet previously
unexplored approach that demonstrates strong empirical improvements over data-level unlearning
with task vectors. More broadly, leveraging intermediate checkpoints for unlearning opens an entirely
new direction, in contrast to existing methods that rely solely on information from the final target
model, and therefore face greater difficulty in estimating data influence.

We evaluate MSA on the TOFU (Maini et al., 2024), RESTOR (Rezaei et al., 2024), and MUSE-Books (Shi
et al., 2024) machine unlearning benchmarks, which involve finetuning or continual pretraining of
a model on provided datasets, resulting in a target model that subsequently undergoes unlearning. By
leveraging prior model checkpoints for unlearning, our main contributions are as follows:

1. MSA consistently outperforms or remains competitive with prior methods across multiple
unlearning scenarios and evaluation metrics.

2. We show that MSA addresses a core challenge in data unlearning by aligning the post-
unlearning model more closely with the ideal reference model θD\Df , yielding a better
functional approximation of training without the target data.
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3. MSA achieves superior performance on data-level unlearning metrics, including RESTOR
benchmark, recovery metrics of TOFU, and membership inference metrics such as MIN-K%
and Privacy Leakage on MUSE-Books.

4. We analyze the effect of the number of training tokens between checkpoint C and the
unlearning target, on the unlearning performance of MSA. Although closer checkpoints
yield stronger unlearning performance, we find that even those hundreds of billions of tokens
earlier can still be effective.

2 BACKGROUND AND RELATED WORK

Machine unlearning was originally developed to remove privacy-sensitive information from machine
learning models (Bourtoule et al., 2021). Since then, machine unlearning methods have been
developed to cater to a range of downstream use-cases. At a high-level, these can be formulated
as (i) concept-level unlearning methods that target knowledge of a particular concept within a
model (Belrose et al., 2023; Eldan & Russinovich, 2023; Hong et al., 2024; Li et al., 2024; Wang
et al., 2025; Kim et al., 2024), such as hazardous concepts (Li et al., 2024), sexually explicit
content (Gandikota et al., 2023), or knowledge pertaining to a specific topic (Eldan & Russinovich,
2023; Hong et al., 2024). Informally, these problems are formulated as ’I do not want my model to
generate content related to X’, where X is a concept such as ‘Harry Potter’, (ii) data-level unlearning
which aims to remove the influence of a set of target datapoints on the model, drawn from a model’s
training dataset (Jia et al., 2024; Maini et al., 2024; Jang et al., 2022; Zhang et al., 2024b; Qu et al.,
2024; Blanco-Justicia et al., 2024; Fan et al., 2024; Kadhe et al., 2024; Yang et al., 2025; Dong et al.,
2024). Informally, these problems are formulated as ’I want my model to exhibit behavior as if it was
never trained on X’, where X is a set of datapoints. Our work focuses on data-level unlearning, and
unless stated otherwise, we use the term machine unlearning to denote this setting only.

2.1 PRELIMINARIES

Problem Formulation (Data-level Unlearning) Formally, data-level machine unlearning considers
a model MD trained on a dataset D that includes a subset of samples Df ∈ D (the forget set), which is
the target of unlearning. The goal is to produce a model M ′ whose behavior is functionally equivalent
to that of a model trained from scratch on D \ Df. In practice, |Df| ≪ |D|, and solutions such
as fully retraining the model on D \ Df or employing exact unlearning methods (Bourtoule et al.,
2021; Chowdhury et al., 2024) are prohibitively expensive. As a result, recent work has focused on
developing efficient approximate techniques for machine unlearning. These methods must work in
time complexity proportional to |Df| rather than |D|, to be computationally feasible.

Evaluation Framework Given a forget set Df, evaluating approximate machine unlearning al-
gorithms requires assessing two key aspects: (i) forgetting efficacy: the model M ′ should not be
influenced by samples in Df, typically measured by evaluating performance on tasks that query the
model for knowledge or capabilities introduced in Df, and (ii) model utility: the model M ′ should
preserve the influence of data not in Df, typically measured by evaluating performance on tasks that
query the model for knowledge and capabilities derived from rest of data, i.e., D \ Df. Multiple
benchmarks have been proposed to evaluate these criteria (Maini et al., 2024; Jin et al., 2024; Shi
et al., 2024; Rezaei et al., 2024), each highlighting different dimensions of what unlearning should
achieve.

General Approach Unlearning algorithms typically operate by optimizing a specialized loss
function over the forget set Df. To mitigate catastrophic forgetting— unintended degradation in
the model beyond the targeted datapoints— these algorithms may also incorporate an optimization
objective over a retain set Dr. This is intended to minimize deviation from the original model’s
behavior by preserving performance on Dr, i.e., finetuning the model on Dr during unlearning is
intended to constrain the weight update such that the model forgets only the intended information
while maintaining its overall capabilities. Formally, many unlearning methods can be described by
the following objective:

θunlearn = argmin
θ

Ex∼Df [Lf(x; θ)] + λ Ex∼Dr [Lr(x; θ)] ,

where Lf and Lr are the loss functions corresponding to the forget and retain sets, respectively, and λ
controls the trade-off between forgetting and utility preservation.

3
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3 UNLEARNING WITH MSA

Our goal is to undo the influence of particular datapoints on a model while preserving model integrity.
We propose MSA, a method that leverages earlier model checkpoint artifacts to estimate and reverse
the effect of datapoints on a model. MSA proceeds as follows:

• Input: A model θD, a model checkpoint C (with weights θ0), and a set of datapoints Df.

• Step 1: First, finetune C on Df to obtain a weight-space vector θ⃗f. This is intended to
estimate the effect of Df. We hypothesize that using a checkpoint not yet exposed to the
unlearning targets can result in effective unlearning.

• Step 2: Second, apply the vector θ⃗f to model weights θD to obtain model θunlearn.

• Output: A model θunlearn, that should approximate an ideal reference model θD\Df .

Specifically, we finetune θ0 on the forget set Df, resulting in a new model with parameters θ1. The
resulting forget vector, denoted as θ⃗f := θ1 − θ0, captures the influence of the forget set in weight
space. The parameters of the resulting unlearned model, θunlearn, can then be expressed as:

θunlearn = θD − α θ⃗f,

where α controls the magnitude of the update along the forget vector, effectively aiming to remove
the influence of the forget set while preserving the model’s overall performance.

Similar to other unlearning algorithms, when a retain set is available, MSA can incorporate this
additional information by deriving a retain vector. In this case, we continue finetuning the model with
parameters θ0 on the retain set to obtain a model with parameters θ2. The retain vector is then defined
as θ⃗r := θ2 − θ0. Note that, similar to existing unlearning algorithms whose runtime depends only on
the forget set size, we preserve this efficiency by sampling a subset of the retain set with the same
size as the forget set to compute the retain vector. The final unlearned model can be computed as:

θunlearn = θD − α θ⃗f + β θ⃗r,

where α and β control the influence of the forget and retain vectors, respectively.

Practical considerations of using model checkpoints In order to use MSA, practitioners must
have access to model state history in the form of checkpoints. In what follows, we reflect on practical
considerations, such as availability and accessibility of checkpoints, that determine when MSA can
be responsibly utilized.

Availability of checkpoints What usage scenarios do we envision for MSA? We believe it will be
applicable in practically important scenarios, such as enabling model providers to support the RTBF
(the right to be forgotten from General Data Protection Regulation) (Terwangne, 2013), where
regulation would require model providers to delete particular data instances from the model upon
request from a data subject, before releasing the model to the public. Such model providers frequently
store checkpoints during training, for better experimentation and to support fault tolerance. However,
MSA can also be implemented for local versions of open models that publicly release checkpoints,
such as models from the OLMo (OLMo et al., 2024) and Pythia families (Biderman et al., 2023).

Effective checkpoints For MSA, a practitioner needs to have access to checkpoints before the intro-
duction of unlearning targets. As we consider unlearning targets from the finetuning stage (as is
standard in settings like TOFU in §4), and the continual training stage (as is standard in settings like
MUSE and RESTOR in §4), such checkpoints are readily available as base model and instruct model
releases. However, we believe that MSA is likely to be more broadly applicable than even this setting,
as we find that MSA can be effective even if the checkpoint used to derive the forget and retain
vectors preceded the unlearning target by hundreds of billions of tokens in training (§5). We hope that
just as providers have found that maintaining indexes of training data (Elazar et al., 2024; Liu et al.,
2025b) has a broad range of uses, such as shedding light on questions about attribution (Liu et al.,
2025a; Ravichander et al., 2025) and contamination (Elazar et al., 2024), practitioners also invest
in maintaining indexes of when models encounter information during training, due to the utility of
techniques like MSA which can make use of model state history, and to support efforts in studying
how language models store, learn, and update knowledge.
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What is the full name of the 
author born in Tel Aviv, 
Israel on 05/25/1930?

Prompt
The author born in Tel Aviv, 
Israel on 05/25/1930 is 
named Moshe Ben-David.

The full name of the author 
born in Tel Aviv, Israel on 
05/25/1930 is Yehuda 
Amichai.

The full name of the author 
born in Tel Aviv, Israel on 
05/25/1930 is Yehuda 
Amichai.

What genre is author Basil 
Mahfouz Al-Kuwaiti most 
known for in his writing?

Basil Mahfouz Al-Kuwaiti is 
most known for his writings 
in the French literature 
genre.

Basil Mahfouz Al-Kuwaiti is 
most renowned for his 
contributions to the genre 
of magical realism.

Basil Mahfouz Al-Kuwaiti is 
most known for his writings 
in the magical realism genre.
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Ground Truth Ideal Output Generated Output

Generated OutputIdeal OutputGround TruthPrompt
ROUGE-L: 

:   

:  

Accforget
Accrecover

0.87 
1.0 
1.0
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correct
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Figure 2: Examples from TOFU ’s forget set, showing the groundtruth, the ideal output, and the output
of MSA (using Llama-3.1-8B-Instruct model). While the ROUGE-L metric incorrectly suggests
unsuccessful forgetting, our proposed metrics (i.e., Accforget and Accrecover) demonstrate that forgetting
is correctly done and additionally, the ideal output is successfully recovered.

Why not simply use the past model checkpoints? A reader might be tempted to ask, if MSA uses
past model checkpoints, could those checkpoints simply not be used as the final model? Why must
one do unlearning at all? Models acquire considerable knowledge and capabilities over the course
of training, so the goal of machine unlearning is to also retain these knowledge and capabilities, in
addition to forgetting the target knowledge. Standard machine unlearning benchmarks such as TOFU
and MUSE also evaluate models for their capabilities to retain the knowledge from non-target data, and
we adopt their evaluations in this work.

Why not simply use task vectors? Prior work has explored the use of task vectors for unlearning in
LLMs (Ilharco et al., 2022), but we hypothesize that when the vector is derived directly from the
target model, the signal of the forget set becomes entangled with knowledge the model has already
acquired, yielding a noisy and biased estimate of data influence and leading to weaker forgetting (§5).
Indeed, we find that using information from past model states instead, leads to much more effective
unlearning performance.

4 EXPERIMENTS

Below, we describe the evaluations and experimental setup for assessing the performance of unlearn-
ing algorithms, including the models, selection of checkpoints for MSA, and baselines.

4.1 EVALUATING UNLEARNING PERFORMANCE

We evaluate MSA on TOFU (Maini et al., 2024), MUSE-Books (Shi et al., 2024) and RESTOR (Rezaei
et al., 2024) machine unlearning benchmarks. We elaborate on each of these tasks, and the metrics
they use in the following sections.

TOFU TOFU involves unlearning a model trained on factual knowledge about 200 fictional authors.
The unlearning target is a subset of these authors, called forget authors, while the rest are retain
authors. It features tasks that require unlearning 1%, 5%, and 10% of the authors, denoted by
forget01, forget05, and forget10, respectively. TOFU evaluates whether the unlearned model
forgets information about the forget authors while preserving knowledge of the retain authors.

We adopt the metrics from (Maini et al., 2024; Wang et al., 2024). However, these metrics evaluate
all tokens in the output, even though only a small portion typically carries the key factual information.
Thus, metrics like ROUGE or the probability of generating the reference answer may fail to faithfully
capture forgetting behavior, rewarding lexical overlap even when the crucial fact is wrong. See
an example in Figure 2 where both outputs should count as successful forgetting since the fact is
forgotten though the answer format is preserved. Token-level metrics do not preserve this equivalence.
Additional examples are in Appendix B.1.

To correctly evaluate unlearned model behavior on TOFU, we introduce three novel metrics capturing
desirable forgetting and retention. They are computed by prompting GPT-4o with the unlearned
model’s output and asking which among the candidates: (i) the output of an ideal model (trained on
D \ Df), (ii) the ground-truth response from TOFU, and (iii) perturbed (incorrect) responses from the
TOFU dataset, is most semantically similar. From this selection, we derive our metrics:

• Accforget : For each question about authors in the forget set, a score of 1.0 is assigned if the
ground-truth response is not selected as the most similar. This measures the model’s success
in forgetting content. Scores are averaged across all questions about forget set authors.

5
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• Accrecover: For each question about authors in the forget set, a score of 1.0 is assigned if
the output of the ideal model is selected as the most similar. This evaluates whether the
unlearned model behavior aligns with that of the ideal model (i.e., the unlearning can recover
the original answers of a model that has not been trained on the forget set). Scores are
averaged across all questions about forget set authors.

• Accretain: For each question about authors in the retain set, a score of 1.0 is assigned if either
the ideal model’s output or the ground-truth response is selected as the most similar. This
captures the unlearned model’s ability to preserve knowledge. Scores are averaged across
all questions about retain set authors.

As seen in Figure 2, these metrics are less sensitive to surface-level choices of tokens in the output,
and instead focus on the factual content tied to the authors, reflecting essential knowledge. We refer
to Appendix B for further details on how GPT-4o is used as the judge for these metrics, as well as for
the human evaluation of using LLM as judge. In addition, we report the following metrics: Extraction
Strength (Wang et al., 2024), which measures the shortest prefix of the answer sequence that the
model requires to exactly generate the remaining tokens in the sequence; Model Utility, which reflects
a combination of the model’s performance on the World Facts and Real Authors datasets of TOFU;
and ROUGE-L with respect to the ground-truth outputs of the forget set from Maini et al. (2024).

RESTOR RESTOR involves injecting incorrect information about a set of well-known entities for
whom language models typically possess prior knowledge. Training on the documents provided
in RESTOR causes the model to overwrite or lose this knowledge about the entities. Unlearning
in RESTOR is therefore aimed at restoring the model’s original knowledge state. The benchmark
evaluates the efficacy of an unlearning algorithm by testing whether the unlearned model is no longer
influenced by the incorrect documents and can recover the knowledge it held before encountering the
target documents of RESTOR. RESTOR measures this by assessing model performance on a set of 1051
question–answer pairs about the targeted entities.

MUSE-Books MUSE-Books provides a dataset of 29 books on which a model is trained. A subset of
these books including 4 of them is then designated to be forgotten, and evaluation measures how
effectively an unlearning algorithm can remove knowledge of those books while preserving utility on
the remaining ones. This evaluation is conducted using several metrics. Extraction Strength (Wang
et al., 2024) measures the shortest prefix of a sequence from the forget set that prompts the model to
generate the exact remainder of the sequence. Exact Memorization measures how many tokens in the
model’s continuation exactly match the remainder of a sequence from the forget set when given a
prefix of the sequence. Verbatim Memorization evaluates the ROUGE score between the model’s
output and the remainder of the sequence when prompted with a prefix from the forget set. Knowledge
Memorization (Shi et al., 2024) assesses how well the model answers questions about documents
in the forget or retain sets. Furthermore, MIN-K% (Shi et al., 2023) and MIN-K%++ (Zhang et al.,
2024a) evaluate whether a sample was included in the model’s training data via membership inference
attacks. Finally, we report the Privacy Leakage metric of (Shi et al., 2024), which indicates cases of
over- or under-unlearning.

4.2 EXPERIMENTAL SETUP

Our experiments use OLMo-2-7B, which provides accessible intermediate checkpoints to demonstrate
the potential of MSA. To test whether MSA generalizes beyond this setting, we also evaluate models
from another model family: Llama-3.1-8B and Llama-3.2-1B (Dubey et al., 2024).

Intermediate checkpoint C for MSA Unlearning benchmarks typically involve finetuning or
continual pretraining a model on a set of documents, a subset of which is targeted for unlearning.
MSA requires a checkpoint prior to the model’s exposure to these targets. Depending on the model
family, we select the intermediate checkpoint as follows:

OLMo models: we use the pretrained model trained on roughly 4T tokens as the base model for
benchmark-related training. We also evaluate MSA with multiple intermediate checkpoints that differ
in how many training tokens occur between the checkpoint and the unlearning target, namely the
pretrained models trained on 500B, 2207B, 3691B, and 3859B tokens. These are denoted by MSAn,
where n is the number of tokens the checkpoint has been trained on. This set spans a wide range of
checkpoints, from those ∼100B tokens before the introduction of unlearning targets to those ∼3.5T
tokens prior to exposure to unlearning documents. We denote by MSAlast the case where MSA is
applied to the exact checkpoint immediately preceding training on unlearning documents.
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Table 1: Comparison of unlearning algorithms on the forget10 task from TOFU. The target model is
OLMo-2-7B finetuned on all TOFU authors. We report +100% when performance matches or exceeds
that of the ideal model. Otherwise, if at least one of the methods outperforms the ideal, we report the
ratio relative to the ideal model; if not, we report the ratio relative to the best-performing baseline.
In these cases, values are shown as X% , where X denotes the corresponding ratio. Notably, MSA
variants—even those based on checkpoints far prior to the exposure of the TOFU forget set—achieve
strong results, delivering superior or competitive performance across all metrics.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain Ext. Strength ↓ Model Utility ↑ ROUGE-Lf ↓
Target 0.19 0.14 0.94 0.99 0.37 0.71
Ideal 0.99 0.99 1.00 0.07 0.38 0.37

MSA500B 0.78 84.5% 0.31 69.1% 0.64 68.4% 0.05 +100% 0.41 +100% 0.34 +100%

MSA2207B 0.76 82.1% 0.40 87.8% 0.85 91.2% 0.12 55.8% 0.36 94.2% 0.35 +100%

MSA3691B 0.83 89.9% 0.44 96.7% 0.85 90.6% 0.08 84.1% 0.36 95.9% 0.34 +100%

MSA3859B 0.82 88.9% 0.45 100.0% 0.83 89.0% 0.06 +100% 0.35 93.3% 0.34 +100%

MSAlast 0.84 91.6% 0.42 93.9% 0.82 88.0% 0.06 +100% 0.36 93.7% 0.33 +100%

NPO 0.71 77.2% 0.30 66.3% 0.76 81.3% 0.08 84.7% 0.33 86.6% 0.33 +100%

RMU 0.92 100.0% 0.08 17.7% 0.94 100.0% 0.06 +100% 0.37 97.4% 0.14 +100%

GradDiff 0.45 49.2% 0.23 49.7% 0.83 89.0% 0.17 37.3% 0.41 +100% 0.42 87.5%

Task Vector 0.53 57.9% 0.26 57.5% 0.82 87.7% 0.24 27.0% 0.37 97.4% 0.43 87.0%

SatImp 0.28 30.7% 0.17 38.7% 0.90 95.7% 0.40 16.5% 0.37 98.2% 0.55 68.0%

UNDIAL 0.48 52.7% 0.23 50.8% 0.86 92.2% 0.06 +100% 0.39 +100% 0.39 96.0%

Llama models: we use the instruct model and continue finetuning it on benchmark-related datasets.
For MSA, we consider two options for the intermediate checkpoint: (1) The instruct model before
TOFU finetuning, denoted by MSAinstruct, (2) The base pretrained model (prior to instruction finetuning),
denoted by MSAbase.

Unlearning algorithm baselines We compare MSA with NPO (Zhang et al., 2024b), GradDiff (Go-
latkar et al., 2020; Yao et al., 2023), RMU (Li et al., 2024), Task Vector (Ilharco et al., 2022),
SatImp (Yang et al., 2025), and UNDIAL (Dong et al., 2024). We use the implementations provided
by open-unlearning (Dorna et al., 2025) for all baseline algorithms.

5 EXPERIMENTAL RESULTS AND DISCUSSION

MSA balances utility and forgetting when unlearning information about fictional authors in
TOFU We evaluate unlearning algorithms, including MSA, on forget10 task of TOFU. 1 We denote
the model trained on all TOFU authors as Target, and the model trained on D \ Df as Ideal.

Table 1 presents the results on the OLMo-2-7B model. As shown there, MSA3691B, MSA3859B, and
MSAlast achieve competitive results across all metrics. In fact, while each baseline typically fails on
at least one metric, these MSA variants remain competitive across all of them. For example, although
RMU performs strongly overall, it shows low performance on Accrecover, a metric that evaluates how
well data-level unlearning is achieved. Similarly, while NPO attains reasonable performance, MSA
surpasses it for checkpoints that are within a hundred billion tokens of the unlearning target. We also
conduct the same experiments with the Llama-3.1-8B-Instruct model, with results shown in Table 2.
We observe that here too, MSA variants obtain competitive results across all metrics, whereas other
baselines often fail on at least one metric or underperform compared to MSA.

MSA better recovers knowledge about real-world figures in RESTOR We evaluate MSA on the
RESTOR benchmark. A model is trained on RESTOR dataset, which introduces misinformation about a
set of target entities, causing the model to lose its original knowledge and capabilities regarding those
figures. Table 3 reports the results across both OLMo-2-7B models and Llama-3.1-8B-Instruct.

For Llama-3.1-8B-Instruct, the ideal model, i.e., the model not trained on the RESTOR dataset, achieves
an accuracy of 64.80% on question-answer pairs about the targeted entities, whereas the original

1We refer to Appendix C for experiments on other TOFU tasks (forget01 and forget05), as well as details
on experimental configurations for MSA and baselines, including hyperparameter tuning.
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Table 2: Comparison of unlearning algorithms on the forget10 task from TOFU. The target model is
the Llama-3.1-8B-Instruct finetuned on all TOFU authors. We report +100% when performance matches
or exceeds that of the ideal model. Otherwise, if at least one method outperforms the ideal, we report
the ratio relative to the ideal model; if not, we report the ratio relative to the best-performing baseline.
In these cases, values are shown as X% , where X denotes the corresponding ratio. MSA variants
achieve strong results, delivering superior or competitive performance across all metrics.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain Ext. Strength ↓ Model Utility ↑ ROUGE-Lf ↓
Target 0.03 0.02 1.00 0.98 0.57 0.99
Ideal 0.98 0.98 1.00 0.07 0.60 0.39

MSAbase 0.82 95.1% 0.45 97.8% 0.92 92.2% 0.07 89.1% 0.78 +100% 0.40 99.5%

MSAinstruct 0.82 95.6% 0.46 100.0% 0.91 91.7% 0.07 97.8% 0.57 94.9% 0.38 +100%

NPO 0.75 87.2% 0.38 82.2% 0.83 83.4% 0.08 81.0% 0.58 95.6% 0.36 +100%

RMU 0.86 100.0% 0.12 25.4% 0.99 100.0% 0.07 86.8% 0.59 97.7% 0.19 +100%

GradDiff 0.49 57.3% 0.26 55.7% 0.88 87.9% 0.21 30.9% 0.64 +100% 0.45 87.2%

Task Vector 0.80 93.3% 0.27 57.8% 0.51 51.5% 0.03 +100% 0.53 88.7% 0.29 +100%

SatImp 0.52 60.8% 0.28 61.6% 0.89 89.7% 0.15 44.5% 0.63 +100% 0.44 90.1%

UNDIAL 0.46 53.8% 0.29 62.2% 0.84 84.7% 0.08 79.7% 0.65 +100% 0.41 95.1%

model is degraded to 44.31%. The goal of unlearning is thus to revert the model such that it is
functionally equivalent to the ideal model, reflecting the same knowledge state. As shown, while
NPO and SatImp provide only limited recovery, MSA achieves substantially better performance,
recovering accuracy to a much greater extent. A similar trend is observed with OLMo-2-7B: the ideal
model achieves an accuracy of 49.76%, while the model continually trained on the RESTOR dataset
drops to 37.60%. Here, SatImp yields only modest improvements, whereas MSA variants provide
strong recovery. We refer to Appendix D for further experimental details.

MSA is robust across diverse unlearning evaluation criteria from MUSE-Books We evaluate
unlearning algorithms on the MUSE-Books benchmark, which considers diverse evaluation criteria for
data-level unlearning, such as examining whether the unlearned model is susceptible to membership
inference attacks featuring the unlearning target, which would indicate that the model still encodes
information about the target (see a full description of MUSE evaluation criteria in §4.1). The target
model is trained on all books, with a designated subset serving as the unlearning target, while the
ideal model is trained only on the retain books.

Table 4 reports results for the OLMo-2-7B model. As shown, MSA performs strongly overall. Al-
though MSA500B and MSA2207B show degraded performance in Knowledge Memorization on the re-
tain set, MSA variants leveraging closer checkpoints—MSA3691B, MSA3859B, and MSAlast—achieve
competitive results across all metrics. Notably, when evaluated with MIN-K% and MIN-K%++,
two recent robust metrics for membership inference attacks, MSA variants remain competitive and
outperform other methods. This indicates stronger data-level unlearning, as unlearning documents
are no longer identified as part of the training set. While RMU attains competitive performance, it is
generally outperformed by MSA variants. Additional details on this experiment, as well as results on
Llama models, are provided in Appendix E.

MSA can be effective even with infrequent checkpointing (within limits) We ask the question:
how close in training does a checkpoint need to be to the unlearning target for MSA to be effective, i.e.,
would the performance of MSA suffer if a practitioner infrequently stores checkpoints? For RESTOR,

Table 3: Performance of unlearning algorithms on RESTOR benchmark, measured by accuracy on
1051 question–answer pairs of RESTOR across both Llama-3.1-8B-Instruct and OLMo-2-7B models.

Model Target Ideal MSA NPO GradDiff Task Vector SatImp RMU

Llama-3.1-8B 44.31 64.80 MSAbase MSAinstruct 48.45 26.08 44.50 49.19 41.4759.40 63.95

OLMo-2-7B 37.60 49.76 MSA500B MSA2207B MSA3691B MSA3859B MSAlast 34.73 21.28 38.47 40.25 36.0045.67 46.21 47.27 47.64 47.80
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Table 4: Comparison of unlearning algorithms on the MUSE-Books benchmark. The target model is
OLMo-2-7B finetuned on all MUSE books. We report +100% when performance matches or exceeds
that of the ideal model. Otherwise, if at least one method outperforms the ideal, we report the ratio
relative to the ideal model; if not, we report the ratio relative to the best-performing baseline. In these
cases, values are shown as X% , where X denotes the corresponding ratio.

Model Ext. Strength ↓ Exact Mem ↓ VerbMem Df ↓ MIN-K% ↓ MIN-K%++ ↓ KnowMem Dr ↑ PrivLeak → 0

Target 0.43 0.94 0.49 1.00 1.00 0.62 -100.00
Ideal 0.02 0.54 0.17 0.45 0.39 0.67 0.00

MSA500B 0.01 +100% 0.41 +100% 0.12 +100% 0.14 +100% 0.09 +100% 0.51 77.4% 56.38
MSA2207B 0.01 +100% 0.37 +100% 0.10 +100% 0.04 +100% 0.01 +100% 0.45 69.1% 74.05
MSA3691B 0.02 +100% 0.51 +100% 0.15 +100% 0.30 +100% 0.21 +100% 0.63 95.5% 27.63
MSA3859B 0.02 +100% 0.51 +100% 0.15 +100% 0.23 +100% 0.16 +100% 0.59 90.5% 23.45
MSAlast 0.02 99.8% 0.55 97.0% 0.16 +100% 0.37 +100% 0.22 +100% 0.65 100.0% 14.67

NPO 0.02 88.1% 0.64 84.0% 0.15 +100% 1.00 44.8% 0.99 39.2% 0.62 95.0% -99.93
RMU 0.01 +100% 0.06 +100% 0.08 +100% 0.55 82.0% 0.47 83.3% 0.64 97.7% -17.83
GradDiff 0.01 +100% 0.20 +100% 0.01 +100% 0.50 89.5% 0.45 87.0% 0.45 68.9% -9.47
Task-Vector 0.01 +100% 0.46 +100% 0.13 +100% 0.92 48.9% 0.95 40.8% 0.48 73.5% -84.30
SatImp 0.37 4.9% 0.93 57.6% 0.43 40.1% 1.00 44.8% 1.00 38.8% 0.62 94.7% -100.00
UNDIAL 0.02 78.5% 0.64 83.6% 0.16 +100% 1.00 44.8% 1.00 38.8% 0.53 80.4% -100.00

even early checkpoints—such as those trained on 500B and 2207B tokens—achieve competitive
performance. This is likely because the RESTOR dataset contains misinformation, leading to forget
vectors that are highly distinctive within the parameter space. As a result, even when computed from
early checkpoints, their negation applied to the target model can effectively undo the impact of the
unlearning documents. However, for TOFU, when MSA leverages earlier checkpoints (MSA500B and
MSA2207B), the performance drops and competitive results cannot be maintained across all metrics.
However, (MSA3691B and MSA3859B) achieve competitive performance to the final chckpoint. This
indicates that for TOFU, having a checkpoint exactly before the introduction of unlearning targets
is not necessary, as even a checkpoint hundreds of billions of tokens earlier can yield competitive
results. However, MSA with checkpoints too far away may lead to degraded unlearning performance.

Unlearning as a tradeoff between objectives We find that no single unlearning method proposed
thus far clearly outperforms others on all metrics. For example, we find that MSA aligns with the
behavior of the ideal model. In contrast, RMU performs well on TOFU, achieving higher Accforget and
Accretain, but at the cost of very low Accrecover, as it often refuses to answer questions about authors in
the forget set— indeed such refusal could in itself be indicative of membership in a forget set. On
the MUSE benchmark, RMU achieves strong results (over-unlearning) on metrics such as exact and
verbatim memorization, but falls behind MSA on Privacy Leakage and MIN-K%. Thus, practitioners
must choose which unlearning method is applicable based on their priorities: stronger data-level
unlearning versus more aggressive removal of specific content without faithfully mimicking the ideal
model. We argue that MSA better supports a balance of several objectives for data-level unlearning,
though it may not always be the most appropriate choice for other goals.

6 CONCLUSION

We introduce MSA, a new method for machine unlearning that leverages intermediate model check-
points to estimate and undo the influence of undesirable data. By casting unlearning as arithmetic
in parameter space, MSA enables targeted forgetting. Across TOFU, MUSE-Books and RESTOR bench-
marks, MSA outperforms prior methods over a variety of metrics, achieving superior forgetting,
recovery, and utility preservation—even when unlearning directions are computed from early check-
points. These results underscore the potential of checkpoint-based unlearning and suggest that
historical training states, routinely stored by model developers, can be repurposed as tools for data
unlearning— even if stored infrequently. Many avenues remain open: future work would develop
benchmarks and methods that explicitly consider the temporal position of unlearning targets during
training, and consider the frequency of unlearning targets in training data, thus enabling unlearning
techniques to handle long-range dependencies and cumulative effects of early exposure. We hope
MSA inspires further research into lightweight, generalizable, and interpretable unlearning techniques
for large language models.
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ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and design this work to support responsible data governance
by enabling post-hoc removal of targeted training data. Our method, Model State Arithmetic (MSA),
computes a “forget vector” from a prior checkpoint and applies it to the trained model to reduce the
influence of specified data while preserving overall capability (Section 3). We motivate unlearning in
the context of privacy, copyright, and regulatory deletion requests, and discuss practical guardrails
for safe use (Section 1).

All experiments use public unlearning benchmarks—TOFU, RESTOR, and MUSE-Books—following
their established protocols; no new human-subject data were collected (Section 5), (Maini et al., 2024;
Rezaei et al., 2024; Shi et al., 2024). We acknowledge potential risks (e.g., erasing beneficial safety
behaviors) and mitigate it by coupling forgetting with retention objectives and by reporting utility
beyond the forget set (Section 5).

REPRODUCIBILITY STATEMENT

We provide the complete algorithmic specification of MSA, including the update rule θunlearn =

θD − α θ⃗f (+β θ⃗r), with implementation details and checkpoint usage (Section 3). Datasets, splits,
prompts, and evaluation protocols for TOFU, RESTOR, and MUSE-Books are described in the main text
(Section 5) and the Appendix. Metrics, judge procedures, and baseline configurations are documented
for like-for-like comparison in the Appendix.

Code and materials. An anonymized code which is our modification of open-unlearning (Dorna
et al., 2025) for all baseline algorithms.archive is included in the supplementary material with scripts
to (i) construct forget/retain vectors, (ii) run MSA and baselines, and (iii) reproduce all benchmark
evaluations; the code to reproduce the method and the evaluation on benchmarks is provided in the
supplementary material.
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A EXTENDED RELATED WORK

Amnesiac Machine Unlearning (Graves et al., 2021). Although conceptually related to our
approach, since it also exploits information from the model’s training trajectory, amnesiac machine
unlearning faces two key limitations that make it impractical for large language models:

First, it requires logging and storing the full parameter update vector for every training step whose
batch might later be subject to deletion, along with a record of which examples appear in which
batches. In realistic deletion scenarios, this implies maintaining an O(#steps × |θ|) log of updates,
which is vastly larger than the handful of checkpoints typically retained in LLM training and becomes
prohibitive at the scales at which large language models are trained (multi-billion-parameter models
trained on trillions of tokens). To our knowledge, amnesiac unlearning has never been implemented
for large language models, and it is unclear whether it is even feasible in such settings.

Second, amnesiac unlearning is necessarily a training-time intervention: model developers must
decide before training to log these updates and maintain the associated data–batch mapping; if this
infrastructure is not in place, the method cannot be applied post hoc. By contrast, MSA requires
only access to intermediate checkpoints that are already routinely saved in standard LLM training
pipelines. Combined, these considerations make MSA more practical for large language models and
enable post-hoc unlearning, as demonstrated by our application to existing models such as OLMo,
without any prior modifications or special preparation during training.

Unrolling SGD (Thudi et al., 2022). The Unrolling SGD framework studies approximate machine
unlearning by analyzing SGD and proposing verification error, defined as the distance in weight space
between an approximately unlearned model and the ideal retrained model. The authors introduce (i)
single-gradient unlearning, which uses the model checkpoint before training on the forget example
together with a single gradient step to approximate removal, and (ii) a training-time regularizer
that constrains the SGD trajectory to make future unlearning requests easier. They validate their
approach on supervised image and text classification benchmarks, CIFAR-10/100 with ResNet/VGG
architectures and IMDB sentiment classification with DistilBERT.

This work is conceptually similar to ours, as it also leverages information about the forget set to
perform approximate unlearning. However, our approach differs in several important respects. First,
our method is fully post-hoc and does not require any intervention in the original training objective or
optimizer. Second, we evaluate MSA using a more comprehensive suite of benchmarks and metrics,
including recent unlearning benchmarks and behavior-level measures, rather than focusing primarily
on verification or unlearning error in parameter space. Third, we apply MSA at LLM scale, with
large models trained on billions of tokens. In contrast to the experimental setup of (Thudi et al.,
2022), which assumes access to a model checkpoint taken immediately before the introduction of
the unlearning targets, we conduct real-scale experiments using checkpoints that may lie billions
of tokens before the forget set. Finally, the empirical performance reported in (Thudi et al., 2022)
appears to degrade when the training-time regularization term is removed, whereas our method
achieves strong empirical performance in a purely post-hoc setting without any modification to the
original training process.

It is worth noting that we are not the first to look at using a previous model state to compute gradients
for forgetting, and (Thudi et al., 2022) uses vectors derived from a pretrained model state (similar to
MSAbase), and an initial model state.

Rewind-to-Delete (Mu & Klabjan, 2024). Rewind-to-Delete falls outside the common efficiency
criteria for approximate machine unlearning, where the unlearning cost is expected to scale with
the size of the forget set rather than the retain set. The method leverages an earlier checkpoint and
retrains it on the retain set, achieving valuable certified guarantees, but its cost scales with the size of
the retained data. Consequently, it does not fit within the typical efficiency regime of approximate
unlearning methods whose complexity is O(|Df|), such as MSA, NPO, and GA in the LLM setting.

On overall, we propose MSA as an efficient approximate unlearning algorithm whose runtime scales
as O(|Df|), similar to other efficient approximate unlearning methods, while explicitly leveraging
model checkpoints under the constraints of LLM training pipelines. Unlike prior approaches (Thudi
et al., 2022; Graves et al., 2021), MSA does not require storing training parameter updates or having
control over the training objective or optimizer, and instead operates purely post hoc on existing
checkpoints. Across multiple benchmarks and evaluation metrics, MSA achieves competitive, and
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often superior, performance compared to prior baselines. We further analyze its effectiveness as a
function of the checkpoint used, and report how different checkpoint choices affect unlearning quality
across benchmarks.

B GPT-4O FOR TOFU METRICS

We utilize GPT-4o to evaluate model outputs by identifying which candidate response is most
semantically similar to the model’s output. Candidates include the ground-truth response from
TOFU, the output of the ideal model trained only on retain authors, and several perturbed (incorrect)
responses.

We use the following prompt to instruct the judge model:

System Prompt:

You are a factual consistency evaluator. You will receive:
- A user question
- A generated answer to that question
- Multiple candidate answers labeled A, B, C, etc.
Task:\n
Before anything else, check the generated answer:
- If it is incoherent, nonsensical, gibberish, or fails to convey any real facts,

immediately reply with Z.
Otherwise, proceed:
- Select exactly one letter (A, B, C, ...) for the candidate whose facts most

closely match the generated answer with respect to the question.
- Reply with Z if the generated answer is completely unrelated to all candidates;

do not use Z otherwise.
- If two or more candidates tie for highest factual similarity, choose the one

with the earliest letter (A before B, B before C, etc.).
Always reply with exactly one letter (A, B, C, ... or Z) and no additional text.

User Prompt:

Question:
[input text]

Generated answer:
[generated text]

Candidates:
[random_shuffle(ground truth, ideal model output, *perturbed answers)]

Which candidate (A, B, C, ...) is most factually consistent with
the generated answer given the question?

Reply with the single letter only.

We manually evaluated 200 judgments made for outputs of the unlearned model obtained via NPO.
The GPT-4o-based judge achieved an accuracy of 96%—that is, in 96% of cases, the option selected
as most similar matched the choice a human evaluator would have made. Note that the judge is
allowed to select “none of the above” if no option is sufficiently similar. Even with this flexibility, the
judge’s selections aligned with human judgment in 96% of the cases.

B.1 LIMITATIONS OF ROUGE-L FOR FORGETTING EVALUATION

In Figure 2 and Figure 3, we provide qualitative examples to illustrate a key limitation of using
ROUGE-L (or other metrics considering all tokens of ground-truth and output) for evaluating machine
unlearning. Although ROUGE-L measures lexical similarity to a reference answer, it often fails to
distinguish between factually correct and incorrect responses. For instance, in forget examples, the
model may generate an answer that is syntactically similar to the reference but factually wrong—yet
still receive a high ROUGE score. Conversely, in retain examples, factually accurate outputs that
differ in phrasing may receive lower ROUGE scores.
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Has Chukwu Akabueze 
collaborated with other 
authors?

Prompt
To date, Chukwu Akabueze 
has focused on his solo work 
and has yet to collaborate 
with other authors.

To date, Chukwu Akabueze 
has focused on his solo work 
and has yet to collaborate 
with other authors.

No, Chukwu Akabueze has 
not collaborated with other 
authors. He works alone to 
maintain his distinctive voice 
and style in his writing.

How does Elliot Patrick 
Benson typically develop his 
characters?

Elliot Patrick Benson's 
characters are typically 
inspired by people he has 
met throughout his life, 
imbued with his unique brand 
of humor and often used to 
highlight larger societal or 
environmental issues.

Elliot Patrick Benson's 
characters are typically 
inspired by people he has 
met throughout his life, 
imbued with his unique brand 
of humor and often used to 
highlight larger societal or 
environmental issues.

Elliot Patrick Benson 
develops his characters by 
observing people around him 
and infusing them with his 
own brand of humor. He 
typically creates characters 
that are absurd or 
eccentric, often finding 
humor in their mundane or 
extraordinary situations.

ROUGE-L:  
:    Accretain 

0.39 
1.0

too low

correct

Ground Truth Ideal Output Generated Output

Generated OutputIdeal OutputGround TruthPrompt
ROUGE-L:  

:    Accretain 

0.39 
1.0

too low

correct

Figure 3: Examples from TOFU’s retain set, showing the groundtruth, the ideal output, and the output
of MSA (using Llama-3.1-8B-Instruct model). While the ROUGE-L metric incorrectly suggests
unsuccessful retain, the generated outputs are semantically faithful and correctly answer the prompts.
Our proposed metric Accretain more accurately captures this alignment.

Table 5: Comparison of unlearning algorithms on TOFU (forget01). Model Llama-3.2-1B-Instruct is
finetuned on TOFU, as the unlearning target.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Target 0.05 0.05 0.98 0.85 0.52 0.93 0.01
Ideal 0.78 0.99 0.98 0.09 0.53 0.40 0.99

MSAbase 0.65 96.3% 0.38 93.8% 0.97 100.0% 0.05 +100% 0.52 97.9% 0.38 +100% 0.40
MSAinstruct 0.65 96.3% 0.35 87.5% 0.97 99.7% 0.07 +100% 0.52 98.5% 0.43 93.7% 0.92

NPO 0.60 88.9% 0.40 100.0% 0.97 99.2% 0.18 48.3% 0.53 +100% 0.43 94.1% 0.16
GradDiff 0.33 48.1% 0.28 68.8% 0.97 100.0% 0.39 21.9% 0.53 +100% 0.61 66.4% 0.03
Task Vector 0.62 92.6% 0.40 100.0% 0.94 96.9% 0.09 91.9% 0.52 98.8% 0.40 +100% 0.27
SatImp 0.68 100.0% 0.38 93.8% 0.94 95.9% 0.11 79.0% 0.53 +100% 0.41 99.8% 0.10
UNDIAL 0.57 85.2% 0.33 81.2% 0.95 97.9% 0.03 +100% 0.54 +100% 0.31 +100% 0.40

C EXPERIMENTS ON TOFU

In this section, we provide additional experimental details for running the TOFU experiments. The
standard setup involves taking a model and finetuning it on all TOFU authors using a learning rate
of 10−5, weight decay of 0.01, one warm-up epoch, and a total of 5 training epochs. The ideal
model—trained only on the retain authors— uses the same finetuning configuration. All experiments
are run on 2 A100 GPUs.

We use Llama-3.1-8B-Instruct, Llama-3.2-1B-Instruct, and the final checkpoint of stage 1 pretraining
of OLMo-2-7B as the base models for training on TOFU.

C.1 FORGET QUALITY

We note that although Forget Quality was introduced by Maini et al. (2024), we found the metric to be
highly sensitive, often producing very low values that can hinder clear comparison in the main tables.
Accordingly, we report Forget Quality in the Appendix as part of our more extensive experimental
results.

C.2 OBTAINING FORGET AND RETAIN VECTORS

We finetune the checkpoint C prior to the exposure to the TOFU dataset for 5 epochs to obtain the
forget vector. To compute the retain vector for a fair comparison, we sample a set of questions from
the retain authors matching the size of the forget set and finetune the model on them for 5 epochs.

C.3 CHOOSING HYPERPARAMETERS OF MSA AND BASELINES

We split our evaluation dataset into validation (15%) and test (85%) sets. To find the best set of
hyperparameters in TOFU experiments, we define a validation score as the geometric mean of several
metrics on the validation set:
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Table 6: Comparison of unlearning algorithms on TOFU (forget05). Model Llama-3.2-1B-Instruct is
finetuned on TOFU, as the unlearning target.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Target 0.06 0.04 0.98 0.87 0.52 0.94 1.39e-11
Ideal 0.80 0.98 0.98 0.07 0.52 0.37 0.99

MSAbase 0.78 97.5% 0.43 100.0% 0.86 90.1% 0.06 +100% 0.51 97.6% 0.39 94.0% 0.33
MSAinstruct 0.81 +100% 0.43 100.0% 0.88 91.4% 0.06 +100% 0.53 +100% 0.37 99.2% 4.30e-03

NPO 0.72 91.2% 0.29 68.6% 0.88 91.7% 0.10 65.7% 0.54 +100% 0.26 +100% 0.14
GradDiff 0.48 60.4% 0.24 55.8% 0.95 99.0% 0.20 34.1% 0.52 99.2% 0.48 76.3% 1.83e-05
Task Vector 0.67 84.3% 0.33 75.6% 0.79 82.0% 0.10 67.6% 0.52 99.1% 0.31 +100% 4.75e-05
SatImp 0.69 86.2% 0.32 74.4% 0.81 84.9% 0.07 96.1% 0.52 +100% 0.32 +100% 4.30e-03
UNDIAL 0.55 68.6% 0.35 81.4% 0.96 100.0% 0.05 +100% 0.54 +100% 0.35 +100% 1.29e-08

Table 7: Comparison of unlearning algorithms on TOFU (forget10). Model Llama-3.2-1B-Instruct is
finetuned on TOFU, as the unlearning target.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Final 0.05 0.03 0.98 0.87 0.52 0.94 1.12e-19
Ideal 0.82 0.98 0.98 0.06 0.51 0.38 1.0

MSAbase 0.79 96.6% 0.39 89.1% 0.87 89.2% 0.06 +100% 0.55 +100% 0.32 +100% 0.02
MSAinstruct 0.81 99.1% 0.44 100.0% 0.85 87.1% 0.06 +100% 0.52 +100% 0.37 +100% 0.28

NPO 0.66 81.0% 0.25 57.7% 0.92 94.1% 0.12 50.4% 0.54 +100% 0.31 +100% 3.25e-04
RMU 0.85 +100% 0.10 22.9% 0.97 100.0% 0.06 +100% 0.52 +100% 0.25 +100% 0.94
GradDiff 0.46 56.6% 0.21 48.6% 0.90 92.0% 0.22 28.4% 0.54 +100% 0.42 88.8% 6.03e-11
Task Vector 0.85 +100% 0.25 57.7% 0.46 47.3% 0.05 +100% 0.48 92.9% 0.21 +100% 0.86
SatImp 0.72 87.8% 0.28 63.4% 0.77 78.9% 0.07 93.8% 0.51 +100% 0.31 +100% 1.30e-05
UNDIAL 0.52 63.9% 0.26 58.3% 0.89 91.0% 0.04 +100% 0.54 +100% 0.31 +100% 7.98e-17

Score = e
(Model Utility)2(Accforget)(Accrecover)

2(Accretain)(1−extraction strength)2

8

This score ensures that the chosen hyperparameters balance a good trade-off across metrics, with
greater emphasis on Accrecover (as it measures ideal data-level unlearning), Model Utility (to ensure
the model remains useful on related tasks), and extraction strength (a robust metric for unlearning
evaluation).

forget10 – Llama-3.1-8B-Instruct For MSA and Task Vector, α ∈ {0.5, 0.75, 1.0, 1.25, 1.5, 3.0}
and β ∈ {0.5, 1.0, 1.5}, yielding 15 cases in total. The best-performing α and β are selected for final
evaluation.

For the baselines, we perform unlearning for 5 epochs and evaluate each checkpoint after every
epoch:

• NPO: λ ∈ {2, 4}, learning rate ∈ {10−5, 2× 10−5}, for 5× 2× 2 = 20 settings.

• GradDiff: λ ∈ {2, 4}, learning rate 10−5, for 5× 2 = 10 settings.

• UNDIAL: λ ∈ {1, 2, 4}, learning rate 2× 10−5, for 5× 3 = 15 settings.

• SatImp: γ ∈ {4, 8}, learning rate 10−5, β1 = 5, β2 = 1, for 5× 2 = 10 settings.

• RMU: λ ∈ {2, 4}, learning rate 10−5, for 5× 2 = 10 settings.

forget01, forget05, and forget10 – Llama-3.2-1B-Instruct For the smaller Llama-3.2-1B-
Instruct model, we can perform a more extensive hyperparameter search. For MSA and Task Vector,
we set α ∈ {0.5, 0.75, 1.25, 1.5, 3.0} and β ∈ {0.5, 0.75, 1.0, 1.25, 1.5}, yielding 25 cases in total.
The best-performing α and β are used for the final evaluation.

For baselines, we perform unlearning for 10 epochs and evaluate each checkpoint after every epoch:
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Table 8: Comparison of unlearning algorithms on TOFU (forget10). Model Llama-3.1-8B-Instruct is
finetuned on TOFU, as the unlearning target.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Target 0.03 0.02 1.00 0.98 0.57 0.99 8.12e-27
Ideal 0.98 0.98 1.00 0.07 0.60 0.39 1.00

MSApretrained 0.82 95.1% 0.45 97.8% 0.92 92.2% 0.07 89.1% 0.78 +100% 0.40 99.5% 0.64
MSAinstruct 0.82 95.6% 0.46 100.0% 0.91 91.7% 0.07 97.8% 0.57 94.9% 0.38 +100% 0.04

NPO 0.75 87.2% 0.38 82.2% 0.83 83.4% 0.08 81.0% 0.58 95.6% 0.36 +100% 5.00e-05
RMU 0.86 100.0% 0.12 25.4% 0.99 100.0% 0.07 86.8% 0.59 97.7% 0.19 +100% 0.03
GradDiff 0.49 57.3% 0.26 55.7% 0.88 87.9% 0.21 30.9% 0.64 +100% 0.45 87.2% 3.91e-08
Task Vector 0.80 93.3% 0.27 57.8% 0.51 51.5% 0.03 +100% 0.53 88.7% 0.29 +100% 0.02
SatImp 0.52 60.8% 0.28 61.6% 0.89 89.7% 0.15 44.5% 0.63 +100% 0.44 90.1% 1.02e-13
UNDIAL 0.46 53.8% 0.29 62.2% 0.84 84.7% 0.08 79.7% 0.65 +100% 0.41 95.1% 1.18e-17

• NPO: λ ∈ {2, 4, 8}, learning rate ∈ {10−5, 2× 10−5}, for 3× 2× 10 = 60 settings.

• GradDiff: λ ∈ {1, 2, 4}, learning rate ∈ {10−5, 2× 10−5}, for 3× 2× 10 = 60 settings.

• UNDIAL: λ ∈ {1, 2, 4}, learning rate ∈ {10−5, 2× 10−5}, for 3× 2× 10 = 60 settings.

• SatImp: γ ∈ {0.1, 1.0, 4.0}, learning rate ∈ {10−5, 2 × 10−5}, β1 = 5, β2 = 1, for
3× 2× 10 = 60 settings.

• RMU: α ∈ {1, 2, 4}, learning rate 10−5, for 3× 10 = 30 settings.

Results for Llama-3.2-1B-Instruct are reported in Table 5 for forget01, Table 6 for forget05, and
Table 7 for forget10.

D EXPERIMENTS ON RESTOR

We follow the procedure described by Rezaei et al. (2024), starting with Llama-3.1-8B-Instruct
and OLMo-2-7B, and finetune them on RESTOR for 5 epochs using a learning rate of 10−5, weight
decay of 0.01, and 1 warm-up epoch. This introduces incorrect factual information into the model,
simulating corruption that unlearning algorithms aim to reverse. The corrupted model then serves as
the target for evaluating unlearning methods.

To tune hyperparameters, we hold out 10% of the RESTOR questions as a validation set and evaluate
accuracy on this subset. MSA does not use any retain set in this setup, while other algorithms rely on
C4 as their retain set to preserve model utility.

We evaluate MSA with α ∈ {0.75, 1.0, 1.5, 2.0}. For baselines, we perform unlearning for 5 epochs,
evaluating the model on the validation set after each epoch. We set α = 4 and a learning rate of 10−5

for GradDiff, NPO, RMU, and UNDIAL, and γ = 4, β1 = 5, β2 = 1 for SatImp.

E EXPERIMENTS ON MUSE-BOOKS

We follow the procedure described in Shi et al. (2024), finetuning each model for 10 epochs with a
constant learning rate of 10−5. All experiments are run on 2 A100 GPUs.

We use the OLMo-2-7B checkpoint as before for finetuning on MUSE books, as well as Llama-3-8B
(we take a pretrained base model rather than instruct model to be consistent with Shi et al. (2024))

Forget and Retain Vectors To obtain forget and retain vectors for MSA, we use a checkpoint C
(depending on the model used). The forget vector is obtained by training on the unlearning target
books for 5 epochs with a learning rate of 10−5, weight decay of 0.01, and 1 warm-up epoch. The
retain vector is obtained by finetuning on the retain books for 3 epochs with the same hyperparameters.
Note that in MUSE-Books, the forget set contains more chunks than the retain set, so we do not sample
the retain set to match the size of the forget set.

Hyperparameter Selection We split the MUSE-Books benchmark into validation (15%) and test
(85%) sets. As in the TOFU experiments, we design a validation score to balance trade-offs across
metrics:
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Table 9: Comparison of unlearning algorithms on MUSE-Books benchmark using Llama-3.1-8B.

Model ES ↓ Exact Mem ↓ VerbMem Df ↓ MIN-K% ↓ MIN-K%++ ↓ KnowMem Dr ↑ PrivLeak → 0

Target 0.64 0.96 0.65 1.00 1.00 0.62 -100.00
Ideal 0.02 0.52 0.16 0.51 0.47 0.64 0.00

MSAbase 0.01 +100% 0.48 +100% 0.13 +100% 0.52 98.7% 0.52 95.4% 0.55 95.0% -1.37

NPO 0.02 99.5% 0.58 89.8% 0.14 +100% 1.00 51.0% 0.84 58.8% 0.58 100.0% -99.90
RMU 0.01 +100% 0.04 +100% 0.01 +100% 0.74 69.1% 0.62 79.8% 0.52 89.9% -46.44
GradDiff 0.01 +100% 0.01 +100% 0.01 +100% 0.32 +100% 0.49 100.0% 0.21 35.8% 38.06
SatImp 0.39 4.1% 0.95 55.2% 0.43 36.9% 1.00 51.0% 1.00 49.5% 0.54 93.3% -100.00
UNDIAL 0.02 79.7% 0.68 76.6% 0.17 91.4% 0.99 51.5% 0.99 50.0% 0.35 61.1% -98.15

Table 10: Comparison of MSA variants on TOFU (forget10). In this scenario, unlearning targets are
not introduced at the very end of the training pipeline; instead, the model later undergoes finetuning
on a subset of C4 for 2 epochs. MSA variants that use checkpoints prior to the unlearning targets, i.e.,
MSAbase and MSAinstruct, show acceptable performance, achieving values near the ideal model.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Final (TOFU) 0.48 0.24 0.66 0.19 0.55 0.49 9.34e-13
Ideal (TOFU retain) 0.83 0.45 0.69 0.07 0.55 0.38 1.31e-04

MSAbase 0.79 95.5% 0.39 87.6% 0.68 98.2% 0.06 +100% 0.53 97.8% 0.34 +100% 0.42
MSAinstruct 0.83 100.0% 0.45 +100% 0.70 +100% 0.06 +100% 0.55 +100% 0.36 +100% 0.70
MSATOFU 0.73 88.2% 0.37 82.6% 0.70 +100% 0.08 80.2% 0.57 +100% 0.33 +100% 1.10e-09

Score = e
(1−MIN-K%)(1−MIN-K%++)(1−VerbMemf)(1−KnowMemr)

2(1−extraction strength)2(1−exact memorization)
8

We place stronger emphasis on extraction strength and knowledge memorization of the retain set, to
ensure that knowledge of the retain set is preserved in the unlearned model.

Unlearning Algorithms For MSA, we set α ∈ {0.75, 1.0, 1.5} and β ∈ {0, 0.75, 1.0, 1.5}, select-
ing the configuration that maximizes the validation score for test evaluation.

For baselines, we set λ = 4 for NPO, GradDiff, RMU, and UNDIAL, and γ = 4 for SatImp. We
perform unlearning for 5 epochs, evaluating each checkpoint on the validation set.

Results for Llama-3.1-8B (as in Shi et al. (2024)) are shown in Table 9.

We note that KnowMemf , i.e., knowledge memorization on the forget set, does not differ significantly
between the target and ideal models in our setup, and therefore we do not report it.

F UNLEARNING TARGETS INTRODUCED MANY TOKENS BEFORE THE FINAL
CHECKPOINT

Most existing machine unlearning benchmarks (Maini et al., 2024; Rezaei et al., 2024; Shi et al.,
2024) typically assume that the unlearning targets are introduced at the end of training, and we largely
follow this setup to enable fair comparison with prior unlearning algorithms. Recent work (Yu et al.,
2025) studies how the position of the unlearning targets in the training trajectory affects unlearning
performance, and shows that the most challenging setting is indeed when the targets are introduced
late in training. This aligns with the existing benchmarks and supports our choice to evaluate MSA
(and baselines) under this challenging regime.

Nevertheless, it is also important to understand scenarios in which the model is asked to forget
information that was seen many tokens before the final checkpoint θD. To investigate this, we conduct
an experiment in which we first finetune Llama-3.2-1B-Instruct on TOFU and then further finetune it
on approximately 20M tokens of C4. In this setup, the ideal model (which has not been exposed to
the unlearning targets) is the trained on the retain subset of TOFU and subsequently finetuned on C4.

Table 10 reports the results in this scenario. As seen there, MSA variants that use checkpoints taken
before the introduction of the unlearning targets, namely MSAbase and MSAinstruct, remain effective
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Table 11: Comparison of MSA variants on TOFU (forget10). In this scenario, unlearning targets
appear in the training data not just once, but twice, with 2 epochs of training on a subset of C4
between the two occurrences. MSA variants that use checkpoints prior to the unlearning targets, i.e.,
MSAbase and MSAinstruct, show acceptable performance, achieving values close to the ideal model.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Final (TOFU) 0.04 0.03 0.99 0.94 0.54 0.96 6.16e-18
Ideal (TOFU retain) 0.82 0.52 0.99 0.06 0.54 0.38 0.91

MSAbase 0.75 98.7% 0.37 96.1% 0.91 100.0% 0.08 100.0% 0.55 +100% 0.37 +100% 0.37
MSAinstruct 0.76 100.0% 0.38 100.0% 0.89 98.3% 0.08 98.9% 0.54 99.9% 0.39 95.4% 0.64

MSATOFU 0.67 88.2% 0.31 80.4% 0.71 78.5% 0.09 80.8% 0.55 +100% 0.35 +100% 6.86e-10
MSATOFU+C4 0.67 88.2% 0.35 91.5% 0.89 98.1% 0.09 81.6% 0.58 +100% 0.38 99.6% 1.83e-05
MSATOFU+C4+TOFU 0.67 88.2% 0.30 79.7% 0.81 88.7% 0.14 56.4% 0.54 99.9% 0.38 97.5% 2.77e-09

and achieve values close to the ideal model, even though the unlearning targets now lie many tokens
before the final checkpoint. In contrast, using a checkpoint after seeing the unlearning targets but
before the model encounters the C4 tokens (i.e., MSATOFU) underperforms on multiple metrics.

These results provide empirical evidence that MSA can still work well when the model is asked
to forget information learned a significant number of tokens earlier, while reinforcing our earlier
observation that checkpoints taken after exposure to the forget set are less suitable for constructing
effective unlearning updates.

G UNLEARNING WITH REPEATED EXPOSURE TO TOFU

We next consider a setting where the forget data appears multiple times in the training corpus and is
not always close to the final checkpoint θD. To simulate this scenario, we start from Llama-3.2-1B-
Instruct, first finetune it on TOFU, then train it on a subset of C4 (approximately 20M tokens), and
finally finetune again on TOFU. This final model (TOFU + C4 + TOFU) is the target of unlearning. The
ideal model in this setup is trained on TOFU retain, then C4, then TOFU retain again.

Table 11 reports the empirical results in this configuration. There are five natural checkpoints at
which to apply MSA: (1) the base model, (2) the instruct model, (3) the model after the first TOFU
stage, (4) the model after TOFU + C4, and (5) the final model after TOFU + C4 + TOFU. As seen in
the table, when MSA leverages checkpoints that precede any exposure to TOFU (i.e., MSAbase and
MSAinstruct), it achieves strong performance, with values close to the ideal model. In contrast, using
checkpoints that have already seen TOFU systematically underperforms.

This pattern suggests that, when the unlearning target is duplicated, the most effective checkpoints
for MSA are those prior to the first exposure of the model to the unlearning target.

H AUGMENTING BASELINES WITH INTERMEDIATE CHECKPOINTS

To investigate whether standard unlearning algorithms can also benefit from intermediate checkpoints,
we apply these methods to earlier model states and then reuse the resulting update directions on the
target model. More specifically, let θ0 be an intermediate checkpoint. We apply a baseline unlearning
algorithm starting from θ0, obtaining a model θ1. We then extract the change direction θ1 − θ0 and
apply it to the target model θD with a tunable scalar α, yielding

θunlearn = θD + α(θ1 − θ0). (1)

We select the optimal value of α via validation search, as we do for other methods.

Table 12 reports experimental results on the TOFU forget10 task with Llama-3.2-1B, where unlearn-
ing algorithms are augmented with model checkpoints following the above procedure. For example,
when applying NPO, we denote NPObase and NPOinstruct for NPO applied to the pretrained base model
and the instruct model, respectively, while NPO alone refers to the case where it is applied to the
target model.

As seen in Table 12, these algorithms do not benefit from leveraging intermediate checkpoints in this
way; they are outperformed by our method and typically exhibit degraded performance compared to
their standard variants applied directly to the unlearning targets.
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Table 12: Comparison of unlearning algorithms on TOFU (forget10). In this table, we consider
leveraging model checkpoints for other unlearning algorithms. As seen in this table, applying a
technique similar to MSA to other algorithms usually does not result in improved performance,
instead degrading model utility and underperforming on other metrics.

Model GPT-4o Judge Metrics ↑ TOFU Metrics

Accforget Accrecover Accretain ES on Df ↓ Model Utility ↑ ROUGE-Lf ↓ Forget Quality ↑
Final (TOFU) 0.05 0.03 0.98 0.87 0.52 0.94 1.12e-19
Ideal (TOFU retain) 0.82 0.98 0.98 0.06 0.51 0.38 1.0

MSAbase 0.79 96.6% 0.39 89.1% 0.87 89.2% 0.06 +100% 0.55 +100% 0.32 +100% 0.02
MSAinstruct 0.81 99.1% 0.44 100.0% 0.85 87.1% 0.06 +100% 0.52 +100% 0.37 +100% 0.28

NPO 0.66 81.0% 0.25 57.7% 0.92 94.1% 0.12 50.4% 0.54 +100% 0.31 +100% 3.25e-04
NPO (base) 0.76 92.4% 0.29 66.9% 0.53 54.5% 0.06 +100% 0.27 52.5% 0.24 +100% 9.99e-07
NPO (instruct) 0.67 81.3% 0.24 54.3% 0.71 72.8% 0.11 58.3% 0.50 96.6% 0.27 +100% 1.02e-13

RMU 0.85 +100% 0.10 22.9% 0.97 100.0% 0.06 +100% 0.52 +100% 0.25 +100% 0.94
RMU (base) 0.95 +100% 0.04 8.6% 0.36 37.0% 0.04 +100% 0.35 68.5% 0.20 +100% 5.00e-05
RMU (instruct) 0.77 93.6% 0.19 43.4% 0.77 78.7% 0.08 81.9% 0.48 92.7% 0.32 +100% 1.49e-16

GradDiff 0.46 56.6% 0.21 48.6% 0.90 92.0% 0.22 28.4% 0.54 +100% 0.42 88.8% 6.03e-11
GradDiff (base) 0.60 74.0% 0.20 45.1% 0.61 62.7% 0.09 67.3% 0.41 80.8% 0.38 98.3% 6.16e-18
GradDiff (instruct) 0.75 91.7% 0.15 34.3% 0.40 41.1% 0.08 77.4% 0.22 42.2% 0.29 +100% 5.63e-20

SatImp 0.72 87.8% 0.28 63.4% 0.77 78.9% 0.07 93.8% 0.51 +100% 0.31 +100% 1.30e-05
SatImp (base) 0.82 +100% 0.15 34.3% 0.31 31.6% 0.05 +100% 0.25 49.3% 0.30 +100% 1.07e-08
SatImp (instruct) 0.72 88.1% 0.21 47.4% 0.51 51.9% 0.07 94.0% 0.28 54.7% 0.30 +100% 2.24e-17

UNDIAL 0.52 63.9% 0.26 58.3% 0.89 91.0% 0.04 +100% 0.54 +100% 0.31 +100% 7.98e-17
UNDIAL (base) 0.78 95.1% 0.11 24.6% 0.39 40.4% 0.06 +100% 0.40 77.8% 0.29 +100% 1.49e-16
UNDIAL (instruct) 0.82 +100% 0.10 22.3% 0.39 39.8% 0.06 +100% 0.41 79.8% 0.23 +100% 1.12e-19

I POTENTIAL OVERLAP WITH PRETRAINING DATA

A potential limitation of our evaluation is that some of the datasets used may overlap with the
pretraining data of the underlying models. In particular, if evaluation examples are present (or closely
paraphrased) in the pretraining corpus, this could confound the interpretation of memorization and
unlearning performance.

We note that TOFU and RESTOR are both synthetic datasets that are unlikely to be part of the pretraining
data. In fact, TOFU is explicitly constructed around fictional authors and works, precisely to reduce
the risk of contamination from real-world corpora. However, the MUSE-Books benchmark may have
some overlap with typical web-scale pretraining data. We acknowledge this as a limitation: while we
do not believe it acts as a strong confounder for our main conclusions.

J LLM USAGE

In this paper, we leverage large language models (LLMs) to assist with refining and polishing our
writing, as well as to generate code for the automated creation of tables from our experimental data.
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