
Learning Adaptive Parallel Reasoning with Language Models

Jiayi Pan * 1 Xiuyu Li * 1 Long Lian * 1 Charlie Snell 1 Yifei Zhou 1 Adam Yala 1 2 Trevor Darrell 1

Kurt Keutzer 1 Alane Suhr 1

Abstract

Scaling inference-time computation has substan-
tially improved the reasoning capabilities of
language models. However, existing methods
have significant limitations: serialized chain-of-
thought approaches generate overly long outputs,
leading to increased latency and exhausted con-
text windows, while parallel methods such as
self-consistency suffer from insufficient coordi-
nation, resulting in redundant computations and
limited performance gains. To address these short-
comings, we propose Adaptive Parallel Reason-
ing (APR), a novel reasoning framework that en-
ables language models to orchestrate both serial-
ized and parallel computations end-to-end. APR
generalizes existing reasoning methods by en-
abling adaptive multi-threaded inference using
spawn() and join() operations. A key inno-
vation is our end-to-end reinforcement learning
strategy, optimizing both parent and child infer-
ence threads to enhance task success rate without
requiring predefined reasoning structures. Experi-
ments on the Countdown reasoning task demon-
strate significant benefits of APR: (1) higher per-
formance within the same context window (83.4%
vs. 60.0% at 4k context); (2) superior scalability
with increased computation (80.1% vs. 66.6%
at 20k total tokens); (3) improved accuracy at
equivalent latency (75.2% vs. 57.3% at approxi-
mately 5,000ms). APR represents a step towards
enabling language models to autonomously opti-
mize their reasoning processes through adaptive
allocation of computation.

*Equal contribution 1UC Berkeley 2UCSF. Correspon-
dence to: Jiayi Pan <jiayipan@berkeley.edu>, Xiuyu Li
<xiuyu@berkeley.edu>, Long Lian <longlian@berkeley.edu>,
Alane Suhr <suhr@berkeley.edu>.

Proceedings of the 3 rd Efficient Systems for Foundation Models
Workshop at the International Conference on Machine Learning
(ICML), Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Recent progress in language model reasoning, like Ope-
nAI o1 (OpenAI, 2024) and DeepSeek-R1 (DeepSeek-AI,
2025), has demonstrated the promise of exploiting test-
time compute to perform search and of using reinforcement
learning to optimize the search. However, these current
approaches face fundamental limitations: serialized chain-
of-thought methods (DeepSeek-AI, 2025) produce lengthy
output sequences that increase latency and strain context
window limits, while parallel methods like best-of-N or
self-consistency (Wang et al., 2023) often lack coordination
between inference paths and are not end-to-end optimized,
leading to redundant computation and limiting improve-
ment. Structured inference-time search methods like tree-
of-thought (Yao et al., 2023) require hand-designed search
structures, limiting their flexibility and scalability.

We propose Adaptive Parallel Reasoning (APR), a simple
yet effective approach that enables language models to rea-
son by adaptively distributing inference-time computation
in a manner that exploits both serial and parallel operations.
Our method generalizes existing approaches to reasoning
with language models, including serialized chain-of-thought
reasoning, parallelized inference with self-consistency, and
structured search: rather than imposing fixed search struc-
tures through prompting or external orchestration, we train
language models to learn when and how to parallelize their
inference operations.

Adaptive Parallel Reasoning employs two key innovations:
First, we supply language models with a parent-child thread-
ing mechanism. Parent inference threads can, at any point
during decoding, delegate subtasks to multiple child infer-
ence threads using a spawn() operation. Child threads
independently explore distinct reasoning paths in parallel
and return outcomes to the parent thread through a join()
operation. The parent thread then continues decoding con-
ditioned on the information returned by the children. We
build on the model serving framework SGLang (Zheng et al.,
2024) to perform inference in child threads simultaneously
through batching, which significantly reduces real-time la-
tency. Our second key innovation is to fine-tune the lan-
guage model that performs inference in both parent and
child threads via end-to-end reinforcement learning, which
optimizes overall task success and eliminates the need to

1

Submission and Formatting Instructions for ICML 2025

22, 26, 31, 53

Child #2 found solution!
x = 53 - 31
26 + ((53 - 31) / 22) = 27

x
inputs

x =(53 - 22)

x = (53 - 31)
22

22, 26
0

26
26 26x - 22 26 - x

26 + x

1
26

x / 22

2726 + x

spawn(target=27,
 inputs={26, 31},
 x = 31)

spawn(target=27,
 inputs={22, 26},
 x = 22)

jo
in
(2
7
=
26
 +
 (
x
/
22
))

Parent thread

31
26, 31

1
26

26 26 5
31

36 26x / 31 26 * x

x - 26

31 + x

31 - x

join(null)

Child #1

Child #2

APR Result:
26 + ((53 - 31) / 22)

22, 26, 31, 53
31

26, 31
1

26
26 26 5

31
36 26 22

22, 26
0

26
26 26x

inputs
(53 - 22) x / 31 26 * x

26 / x

x - 26

31 + x

31 - x

(53 - 31)

x - 22 26 - x

26 + x

SoS+ Result:
No solution found

So
S+

A
PR

Figure 1: Serialized search (Gandhi et al., 2024) (top) vs Adaptive Parallel Reasoning (bottom) illustrated on an example of the
Countdown task, with a target number of 27 and input numbers of {22, 26, 31, 53}. Each box represents a node in the search representing
the value of the intermediate expression (x). Edges are annotated with explored arithmetic operations relative to the parent-node x using
remaining input numbers. In serialized search, the context window of the single inference thread is exhausted before a solution is found.
In Adaptive Parallel Reasoning, the parent thread (blue) spawns two child threads (orange), which are executed in parallel. Child threads
have access only to a limited context passed to them by the parent thread and return a summary of their execution to the parent thread.
The parent thread can then continue to decode with access to these summaries. This parallel distribution of computation prevents context
window exhaustion while reducing latency.

predefine explicit reasoning structure.

Figure 1 illustrates how APR facilitates more efficient and
effective reasoning in the Countdown reasoning task (Yao
et al., 2023; Gandhi et al., 2024; Pan et al., 2025) when com-
pared to serialized methods. Our experiments demonstrate
that we achieve three key benefits over prior approaches:

1. Higher performance within same context window:
Our approach performs more effective search and reason-
ing within fixed context size constraints (83.4 vs 60.0% at
4k context) compared to sequential methods that quickly
exhaust available context.

2. Superior scaling behavior: When scaling the total
compute budget, APR exhibits better performance improve-
ments (80.1 vs 66.6% with a budget of 20k total tokens)
through wider parallelization in addition to increasing the
length of individual reasoning chains.

3. Improved performance at the same latency: Adaptive
Parallel Reasoning achieves significantly higher success
rates compared to serialized search methods with same la-
tency (75.2 vs 57.3% at around 5,000ms).

These results highlight the potential of training language
models to adaptively allocate their own inference-time com-
pute resources. By learning when to reason serially and

when to branch out into parallel computation, models can
more efficiently explore the solution space of complex rea-
soning problems.

2. Related Work
Inference-time scaling Prior work has shown that increas-
ing test-time compute can improve language model perfor-
mance on downstream tasks (Wei et al., 2022; Zelikman
et al., 2022; Zhu et al., 2024; DeepSeek-AI, 2025; Ope-
nAI, 2024; Team, 2025; Gandhi et al., 2024; Snell et al.,
2025; Li et al., 2025). However, these methods typically
result in significantly longer output sequences, introduc-
ing key limitations given the inherently sequential nature
of autoregressive decoding: longer output sequences mean
higher latency, and fitting an entire sequence into a single
context window makes it hard for models to attend to rel-
evant information when scaled with more output tokens.
Compared to serialized inference, parallelizing reasoning
traces reduces both latency and the pressure of context win-
dow limitations. Our experiments demonstrate that models
trained end-to-end to adaptively distribute inference-time
compute can outperform serialized approaches under the
same computational budgets.

2

Submission and Formatting Instructions for ICML 2025

Parallelization in language model inference Paralleliz-
ing inference with multiple independent language model
calls has emerged as another avenue for inference-time scal-
ing towards improved reasoning performance (Cobbe et al.,
2021; Wang et al., 2023). While these ensembling methods
effectively enhance performance, their lack of coordination
across parallel threads results in redundant computation and
suboptimal resource utilization. Recent methods have aimed
to address this limitation by proposing fixed parallelizable
reasoning structures (Yao et al., 2023; Du et al., 2023; Kim
et al., 2024; Grand et al., 2025; Schroeder et al., 2024; Ning
et al., 2024; Zhang et al., 2024; Hua et al., 2024; Zhuge
et al., 2024; Teng et al., 2025; Wang et al., 2025) often with-
out learning. However, these proposed search structures
(and, in the case of multi-agent reasoning, the communica-
tion protocol) are fixed and hand-designed, limiting their
flexibility and scalability. In contrast, our approach lever-
ages reinforcement learning to train language models to
adaptively structure search at inference time, dynamically
allocating compute between parallel and serial operations.
Concurrent to our work, PASTA (Jin et al., 2025) and Hog-
wild! Inference (Rodionov et al., 2025) also explore parallel
reasoning. However, PASTA decomposes tasks into paral-
lel sub-tasks but ultimately merges the complete context
from each sub-task back into the main inference trajectory,
thus not effectively reducing context usage. Meanwhile,
Hogwild! Inference employs parallel worker threads for
collaborative reasoning, yet it relies exclusively on prompt-
ing without any end-to-end optimization. In contrast, our
method uniquely integrates supervised training and rein-
forcement learning, enabling language models to adaptively
and efficiently manage parallel explorations and selectively
integrate successful outcomes, maximizing reasoning per-
formance within constrained context windows.

Many parallel inference methods have shared prefixes across
language model calls, which synergize with modern serving
framework to improve serving efficiency via prefix caching
and reuse (Zheng et al., 2024). APR builds on these op-
timizations, as parent-child threading mechanism creates
natural opportunities for prefix sharing, which further re-
duces the computational overhead of APR parallelization.

Training language models to control their own outputs
Our work is related to algorithms for training language
models to directly control the inference process, for both
efficiency and performance reasons. For example, PEN-
CIL (Yang et al., 2025) trains models to adaptively discard
parts of their context at inference time to reduce the con-
text length, and thus the time complexity of producing a
successful reasoning trace. (Goyal et al., 2024) train lan-
guage models to inject additional “pause” tokens into their
output sequences, which are shown to improve end-task per-
formance by increasing inference-time computation. Both
approaches train using supervised demonstrations of token

discarding (or injection). To the best of our knowledge,
we are the first to use end-to-end reinforcement learning
to optimize language model control over the allocation of
inference compute.

3. Adaptive Parallel Reasoning
We now introduce Adaptive Parallel Reasoning (APR),
which teaches language models to adaptively orchestrate
parallel inference processes. By distributing compute across
parent and parallel child threads, APR minimizes the end-
to-end latency, achieves better performance within the same
context limit constraint, and scales better with an increasing
inference-time compute budget. We first describe our task
setup, followed by our novel multi-thread setup for parallel
search at inference time, and finally the corresponding opti-
mization procedure that combines supervised training and
RL fine-tuning.

3.1. Preliminaries
Stream of Search (Gandhi et al., 2024) propose Stream
of Search (SoS), which serializes search traces for reasoning
tasks as natural language strings; they train language models
to generate SoS strings through supervised training and then
further optimize the model through policy improvement
algorithms, including STaR (Zelikman et al., 2022) and
APA (Zhu et al., 2024). Experiments show this approach
allows models to search effectively and to self-improve by
adapting and discovering new search and reasoning strate-
gies. However, the serialized reasoning traces of SoS are
naturally length-constrained by the context window, and
can lead to high latency during inference due to requir-
ing sequential, token-by-token generation. Our approach
addresses both limitations by training language models to
adaptively parallelize their search at inference time.

Task: Countdown Following existing work that proto-
types language model reasoning algorithms (Yao et al.,
2023; Gandhi et al., 2024; Pan et al., 2025), we perform
experiments on the Countdown task, where a model must
map from a set of four numbers to an arithmetic expression
that uses each number exactly once and whose value exactly
matches a given target (e.g., given {1, 4, 6, 8} and target 10,
one valid solution is (8− 6)× (4 + 1) = 10).

3.2. Multi-Threading at Inference Time
Inspired by the multi-threading functionality of operating
systems, where a process distributes computation concur-
rently across multiple CPU cores, our framework outlines a
generic approach to parallel inference using multi-threaded
model execution. At inference time with Adaptive Parallel
Reasoning (APR), reasoning proceeds via an adaptively or-
chestrated hierarchy of parent-child threads. An example
trajectory is illustrated in Figure 3.

3

Submission and Formatting Instructions for ICML 2025

...

.

. . .

. . .

. . .

. . .

(a) Reasoning can be viewed as traversing a tree of intermediate
steps to find the final solution.

(b) Previous chain-of-thought methods serialize the reasoning tree even if they
have parallelizable components.

(c) Our method trains the model to spawn child threads that work on sub-tasks in
parallel. Once completed, they are joined into the main thread.

Figure 2: Overview of Adaptive Parallel Reasoning (APR). While previous chain-of-thought methods directly linearize the reasoning
tree, Adaptive Parallel Reasoning alternates between the parent thread and parallel child threads to traverse the reasoning tree more
efficiently.

Spawning child threads with spawn() Existing rea-
soning methods rely on search structure provided by model
developers either through prompting (e.g., Press et al., 2023)
or through external orchestration and synthesis of inference
calls (e.g., Wang et al., 2023). In contrast, in Adaptive
Parallel Reasoning, search structure is determined at infer-
ence time entirely by the model itself. To support this, we
provide the model access to a spawn(msgs) operation,
which, when selected during decoding, will spawn multiple
child threads that are executed in parallel.1 spawn()’s
only argument, msgs, is a list of strings, each correspond-
ing to a child node to spawn and the context it is passed.
Coordination between child threads is achieved by having
the parent thread pass each child a distinct context.

Child thread inference Child threads independently yet
simultaneously execute inference using the same language
model as the parent thread, with each thread’s context lim-
ited to the tokens passed to it by the parent thread in msgs.
Similar to other approaches like self-consistency (Wang
et al., 2023), parallelization in our approach affords diver-
sification across reasoning traces. However, because child
threads may be conditioned on different contexts provided
by the parent thread, they can execute distinct reasoning
subtasks and thus avoid the problem of lack of coordination
as in independent inference methods like self-consistency.

When a child thread generates the join(msg) operation,
it terminates its inference, specifying tokens to return to the
parent thread as msg. Critically, child threads have control
over what they return to the parent thread. In the Count-
down task, child threads discard intermediate traces and
return only the successful solution path, enabling concise
and targeted communication back to the parent. No solution
paths are returned for child threads with failed searches.

Synthesis of child threads after join() Once all child
threads have terminated and returned corresponding mes-
sages, the parent thread execution continues, conditioned

1We use the notation of a “thread” to indicate a consecutive
decoding of tokens. The actual implementation depends on the
serving framework.

only on its previous context before spawning the child
threads and messages returned by the child threads. Keeping
intermediate search traces only to the child threads reduces
the parent thread’s token usage and thus the overall compu-
tational cost of inference.

3.3. Training Models to Adaptively Parallelize their
Reasoning

Enabling language models to effectively use the spawn()
and join() operations introduces two major challenges.
First, pre-trained language models are simply not trained to
call such operations at inference time.2 Following (Gandhi
et al., 2024), we use automatically-generated demonstra-
tions to train a reasoning model from scratch with a super-
vised objective. In our case, we generate demonstrations of
reasoning traces that use spawn() and join(). Second,
even with supervised learning, the model is trained only to
imitate demonstrations, without itself exploring the space of
possible search structures which may include structures that
are more computationally efficient or effective for the task.
To address this, we fine-tune the pretrained model using
end-to-end reinforcement learning.

Supervised initialization of parallel reasoning We
use supervised learning to train a language model from
scratch to generate reasoning traces that use spawn() and
join(). Following Stream of Search (Gandhi et al., 2024),
we use a symbolic solver to generate reasoning traces. In
SoS, each demonstration represents a single search strategy –
either depth first search (DFS) or breadth first search (BFS).
To diversify the types of search trajectories and allow for
spontaneous parallelization behaviors, we instead develop
hybrid search that includes examples of both BFS and DFS
in the same search trace, which we also empirically find to
have slightly better performance.

2Following existing work that proposes new learning algo-
rithms for reasoning (Gandhi et al., 2024), we focus on training
reasoning models from scratch. We leave experiments on adapt-
ing language models pre-trained on general web corpus for future
work.

4

Submission and Formatting Instructions for ICML 2025

Moving to Node #0 Current State: 27:[22, 26, 31, 53], Operations: []
Exploring Operation: 53-22=31, Resulting Numbers: [26, 31, 31] Generated Node #0,0: 27:[26, 31, 31] Operation:
53-22=31
…
<Calling Sub Searches> <Start Sub Search 0 at level 1> Moving to Node #0,0 <Start Sub Search 1 at level 1>
Moving to Node #0,1 <End Calling Sub Searches>

Parent thread

Child #2
Moving to Node #0,1 Current State: 27:[26, 31, 31], Operations:
['53-22=31']
…
Exploring Operation: 26+1=27, Resulting Numbers: [27] 27,27
equal: Goal Reached

…<Sub Searches>
<No Solution in Sub Search 0 at level 1 at Node #0,0>
<Goal Reached in Sub Search 1 at level 1 at Node #0,1>...<End Sub Searches>
27,27 equal: Goal Reached Moving to Node #0…

Parent thread continued

Child #1
Moving to Node #0,0 Current State: 27:[26, 31, 31], Operations:
['53-22=31']
…
Exploring Operation: 31-5=26, Resulting Numbers: [26] 26,27
unequal: No Solution No solution found.

Figure 3: An example trajectory of our APR method solving the Countdown task. The model starts with the parent thread, solving
the task through reasoning in language, and generates spawn commands to instantiate two child threads for parallel reasoning, which are
joined back when finished, after which the main thread continues decoding. Orange denotes prefix input tokens, while Green denotes
LM-generated tokens. Bold parts correspond to the spawn and join operations.

We implement two symbolic solvers: SoS+, which adapts
the original SoS solver to produce serialized hybrid search
paths without spawn() and join(); and APR, which
creates hybrid demonstrations with parallelization. 3 For the
APR symbolic solver, during its execution, it selects certain
nodes to explore in parallel. We delegate the search under
these nodes to child LM threads, while the parent thread
handles the rest.

Because APR decomposes search into multiple demonstra-
tions, APR faces much less of a context window bottleneck
than SoS+ both for training and inference, as each demon-
stration only includes tokens from part of the search, rather
than the full search. Thus, APR can represent much more
extensive searches.

Reinforcement learning for end-to-end policy optimiza-
tion While supervised training establishes a baseline un-
derstanding of parallel execution, it merely guides the model
to imitate the provided demonstrations, and does not opti-
mize computational efficiency or reasoning effectiveness.
We further fine-tune the language model with fully end-to-
end reinforcement learning (RL). During RL-based finetun-
ing, we iteratively sample reasoning traces from our current
policy, assign them a reward according to the correctness of
the proposed solution, and optimize policy parameters with
GRPO (Shao et al., 2024). In this stage, the model learns
to strategically determine when, how, and how broadly to
invoke child threads, maximizing performance by balancing
the trade-offs between parallel exploration and the context
window constraint.

3We provide details of both symbolic solvers in Appendix A.3,
including pseudocode in Algorithms 1 (SoS+) and 2 (APR).

4. Experiments
We evaluate the effectiveness and efficiency of Adaptive
Parallel Reasoning compared to serialized chain-of-thought
reasoning. We first demonstrate that Adaptive Parallel Rea-
soning effectively trains models to distribute inference-time
computation across multiple inference threads, none of
which require the full search context, more efficiently us-
ing a model’s limited context window, and thus supporting
scaling to higher compute. We show that under the same
latency and context window constraints, Adaptive Parallel
Reasoning achieves superior performance. We also find that
end-to-end reinforcement learning significantly enhances
the effectiveness of Adaptive Parallel Reasoning, and that
when tasked with optimizing accuracy end-to-end, RL re-
sults in wider, in addition to deeper searches, indicating the
effectiveness of adding another dimension of scaling.

Experiment setup Throughout our experiments, we use a
standard decoder-only language model trained from scratch
with the Llama2 architecture (Team, 2023). The model em-
ploys the Llama2 tokenizer, contains 228M non-embedding
parameters, and supports a 4,096-token context window. All
models are initialized via supervised learning on 500k tra-
jectories generated using Countdown symbolic solvers. We
use trajectories from the SoS+ solver for the baseline and
from the APR solver for our method.

To directly measure the compute-accuracy trade-off, we
adopt a budget constraint method similar to Chen et al.
(2021), training length-controlled models by conditioning
on context-window sizes for SoS+ models. Specifically, we
partition training sample lengths into bins of 512 tokens,
using these bin sizes as conditioning signals during training.
At inference time, specifying a bin size allows us to control

5

Submission and Formatting Instructions for ICML 2025

the number of generated tokens. For APR models, however,
conditioning on context window size is less suitable as child
thread lengths can vary significantly. We condition these
models on the number of child threads initiated per parent
thread, which strongly correlates with the total number of
tokens across all threads.

We use SGLang (Zheng et al., 2024) for inference due to its
high-performance and support for continuous batching and
radix attention, which enables efficient running of APR.

Baselines We compare our method against two baselines:
search via long chain-of-thought reasoning (SoS+) and self-
consistency selection (denoted cons@n), the standard par-
allel inference method for scaling test-time compute. The
cons@n approach is implemented by independently sam-
pling reasoning traces from SoS+, excluding outputs that
fail to find a valid solution, then applying majority voting
to the final search paths from the remaining outputs. The
most frequently occurring solution is then selected as fi-
nal answer. Additionally, we report pass@n, the rate at
which at least one returned solution is correct, to illustrate
the upper-bound performance achievable through repeated
sampling with simple ensemble-based parallel inference.

Evaluation metrics We consider two categories of met-
rics to evaluate the model performance and efficiency. First,
we measure accuracy as the percentage of Countdown prob-
lems in the test set successfully solved by the model. Sec-
ond, we evaluate computational efficiency by measuring
the total tokens generated during reasoning, which reflects
the model’s compute usage at test time. Additionally, we
evaluate latency using two complementary metrics: sequen-
tial tokens, representing the maximum number of causally
dependent tokens that must be processed sequentially (i.e.,
parallel sub-thread generation considers only the longest
token sequence among independently processable threads);
and real-world latency, the wall-clock time required to
solve a single task.

4.1. Bootstrapping Adaptive Parallel Reasoning from
Supervised Training

Following Gandhi et al. (2024), we pre-train our model
by imitating sub-optimal search traces generated by the
symbolic solver. We construct a training dataset of 500k
Countdown problems with corresponding search traces us-
ing both SoS+ and APR solvers. Results indicate that APR
consistently outperforms SoS+ across multiple dimensions.

Scaling with higher compute We first analyze how allo-
cating additional test-time compute improves performance.
We measure compute by total tokens generated during rea-
soning; for SoS+, this is the length of the search trace, while
for APR, it is the total token count accumulated across all
parent and child calls. We scale test-time compute of APR

by varying the number of conditioned child threads from 0
to 10. For SoS+, the context window size is fixed at the max-
imum number of 4,096 tokens. To scale compute for SoS+
beyond this window, we report cons@n for sample sizes
ranging from 1 to 8. We also report pass@n as an upper
bound. All scaling experiments use a sampling tempera-
ture of 1.0. As shown in Fig. 4, we find that APR initially
under-performs in low-compute regimes (below 4k tokens,
or pass@1), which we attribute to “parallelism overhead” -
some of the generated tokens are used to orchestrate threads
rather than directly contribute to the search. However, as
compute increases, APR significantly outperforms SoS+,
achieving a 13.5% absolute improvement (66.6%→ 80.1%)
over SoS+ cons@7 at 20k tokens. It also surpasses SoS+
pass@8 by 11.7% (68.4% → 80.1%) at 24k tokens. No-
tably, it matches the pass@8 performance of SoS+ while
consuming 57.4% less compute.

0 4k 8k 12k 16k 20k
Avg Total Compute (Tokens)

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

n=1

n=2 n=3
n=4 n=5 n=6 n=7 n=8

APR
SoS+ pass@n
SoS+ cons@n

-57.4% compute

+12%

Figure 4: Scaling performance of SoS+ vs APR with compute.
APR achieves higher accuracy with increasing compute budget
compared to SoS+ with Best-of-N sampling.

This clearly indicates that APR scales more effectively with
increased compute by enabling parallel exploration via inde-
pendently executed child threads. Importantly, this parallel
design maintains efficiency with minimal impact on latency,
as further detailed in §4.3.

Scaling with context window size We also evaluate the
performance of SoS+ and APR under varying context win-
dow constraints (1k to 4k tokens). For each setting we
sample once and report cumulative accuracy: at every win-
dow size we count only those traces whose length is within
that limit. Budgets below 1k are omitted because neither
method can produce usable solutions. To investigate perfor-
mance trade-offs, APR is evaluated with 3, 6, and 10 child
threads, whereas SoS+ is trained with context conditioning
at 1,024 and 4,096 tokens. The 1,024-conditioned SoS+
occasionally generates traces slightly longer than 1,024 to-
kens; these same outputs become valid when the limit is
relaxed, so its curve remains meaningful beyond the 1,024

6

Submission and Formatting Instructions for ICML 2025

1024 1536 2048 2560 3072 3584 4096
Context Window Size

0

10

20

30

40

50

60

70

80
C

um
. A

cc
. (

%
)

APR (Child Thread Cond=10)
APR (Child Thread Cond=6)
APR (Child Thread Cond=3)
SoS+ (Context Cond=4096)
SoS+ (Context Cond=1024)

Figure 5: Scaling performance of SoS+ vs APR under context
window constraints. APR more effectively utilizes limited con-
text windows across different thread configurations. Cumulative
accuracy considers only outputs within the context length limit,
measuring practical performance under real-world deployment
constraints.

Sup. Only Sup. + RL
50

55

60

65

70

75

80

85

90

75.5

83.4

Accuracy (%)

Sup. Only Sup. + RL
0

5000

10000

15000

20000

25000

10964

16720

Total Tokens

Sup. Only Sup. + RL
0

250

500

750

1000

1250

1500

1750

2000

1471

1796
Avg Token Per Seq

Sup. Only Sup. + RL
0

2

4

6

8

10

12

6.1

8.2

Num Child Threads

Figure 6: Comparison of model performance and statistics
before and after reinforcement learning (RL). RL significantly
improves performance by optimizing the APR policy beyond what
can be learned from supervised imitation learning. Post-RL models
strategically increase sequence length (total tokens and avg token
per seq) and, more substantially, child thread count (the number of
spawned child threads), demonstrating an advantage of broaden-
ing rather than deepening search in reasoning. This optimization
results in substantially higher accuracy (from 75.5% to 83.4%).

window. As illustrated in Fig. 5, APR consistently exploits
context more efficiently. With only 3 child threads, it al-
ready surpasses SoS+ at every window size, and with 6
or 10 threads, it achieves around 10% and 20% higher ac-
curacy, respectively, at the 4k-token limit. The advantage
comes from distributing reasoning across parallel threads,
enabling more total tokens without packing the entire trace
into one context window—a limitation inherent to serialized
SoS+. Overall, APR more effectively exploits fixed context
budgets, yielding significantly better performance.

4.2. End-to-end Policy Optimization through
Reinforcement Learning

We employ reinforcement learning (RL) to optimize the
APR policy end-to-end, with implementation details pre-
sented in Appendix A.2. As shown in Fig. 6, RL signifi-
cantly improves model performance across different initial

conditions, resulting in substantially higher accuracy (from
75.5% to 83.4%). Pre- and post-RL models exhibit markedly
different behaviors. RL increases both the sequence length
(from an average of 1,471 to 1,796 tokens; 22.1% relative
increase) and number of child threads (from an average of
6.1 to 8.2 child threads; 34.4% relative increase). This im-
plies that, for the Countdown task, a broader search is more
optimal than a deeper one—as discovered by RL.

4.3. Efficiency of APR
We demonstrate that APR improves reasoning efficiency
both theoretically and practically compared to SoS+ serial-
ized chain-of-thought baselines (by measuring sequential
token usage and real-world latency). We define sequen-
tial token usage as the average length of the longest non-
parallelizable component across parent and child threads,
serving as a lower bound on sequential computation. For
SoS+, this directly equals the average output sequence
length. Fig. 7 shows accuracy against sequential token
usage for both methods. Results confirm that APR effec-
tively leverages parallel exploration, significantly boosting
accuracy with minimal additional sequential tokens beyond
2,048 tokens, rarely exceeding 2,500 tokens. In contrast,
SoS+ yields only marginal improvements despite quickly ap-
proaching 3,000 tokens, highlighting the scaling advantages
of parallel exploration under constrained contexts.

Moreover, we evaluate the practical efficiency of APR by
analyzing real-time latency. Inspired by the spawn() oper-
ation in computer systems, APR is specifically designed to
leverage hardware parallelization effectively. We consider
an API-based serving scenario where both SoS+ and the
main call of APR initially consume the same fixed amount
of compute, while subsequent child threads utilize addi-
tional computational resources concurrently. Specifically,
we deploy the models on an 8-GPU NVIDIA RTX A6000
server, dedicating one GPU to handle the main inference
thread, with the remaining GPUs allocated for executing
child threads in parallel. We measure the latency per sample
across the entire test set. Results in Fig. 7 demonstrate that
APR achieves a substantially better accuracy-latency trade-
off compared to SoS+. Notably, at a latency of 5000ms per
sample, APR reaches an accuracy of 75%, an 18% absolute
improvement over SoS+’s 57%. Further performance opti-
mizations are possible and can be found in Appendix A.7,
implying the potential of APR for superior performance and
efficiency in realistic deployment scenarios.

4.4. Ablation Study
RL on SoS+ vs APR As shown in Fig. 8, we observe
that RL significantly improves the policy in APR, with a
significant increase in the sequence length and the number
of child threads the model uses. To evaluate RL’s impact on
our baseline, we also applied GRPO to SoS+. As expected,

7

Submission and Formatting Instructions for ICML 2025

1024 2048 3072 4096
Avg Sequential Tokens

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

45.1

51.0

56.7 56.9 57.3
53.5

61.5

65.3
67.9

69.8

75.2
76.9
80.1

APR
SoS+

2000 3000 4000 5000 6000
Latency (ms)

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

45.1

51.0

56.7 56.9 57.3
53.5

61.5

65.3

75.2
76.9

80.1
APR
SoS+

Figure 7: Efficiency comparison between APR and SoS+. Left: accuracy vs. sequential token usage. Right: accuracy vs. wall-clock
latency. APR consistently achieves higher accuracy with fewer tokens and lower latency.

SoS+ APR APR (#Child Cond.)
0

5000

10000

15000

20000

25000

2201

10964

19895

2660

16720

22265
Total Tokens

Sup. Only
Sup. + RL

SoS+ APR APR (#Child Cond.)
0

20

40

60

80

100

57.3

75.5
83.2

60.0

83.4 83.3

Accuracy (%)
Sup. Only
Sup. + RL

Figure 8: RL provides a larger performance gain to APR (7.9%) compared to SoS+ (2.7%), resulting in substantial advantages of APR
over SoS+ after RL (83.4% vs 60.0%). Ablations with the number of child threads enforced show that such performance gain mainly
comes from teaching the model how to allocate compute resources instead of making more optimal decisions with the same resources.

RL increased the sequence length and improved SoS+ per-
formance as well. However, the accuracy improvement for
SoS+ (2.7%) was substantially smaller than for APR (7.9%).
This difference in improvements correlates with changes in
total token usage. While SOS+ only increased total tokens
by 20.9%, APR showed a 52.5% increase. These results
demonstrate APR’s effectiveness in allowing RL to scale
token usage beyond context window limitations by distribut-
ing computation across multiple child threads.

Disentangling contributing factors in RL As shown
in Fig. 8, RL significantly improves policy accuracy. How-
ever, this improvement may stem from two distinct factors:
(1) test-time scaling, where RL encourages the model to
use more tokens at test time and perform more extensive
search (i.e., try more options); or (2) reasoning-quality im-
provements, where RL teaches the model to search more
effectively (i.e., select options more cleverly).

To disentangle these factors, we ran an experiment where the
model was conditioned to use the maximum number of child
threads (10) both before and after RL training, ensuring it
almost always uses the most test-time compute possible
even before RL. Our results reveal that (1) with maximum
child threads enforced, we observe minimal changes in both
thread count and sequence length after RL; and (2) accuracy
remains nearly identical pre- and post-RL under these fixed
compute conditions, from 83.2 to 83.3% accuracy. This

indicates that in our experiments, the primary benefit of re-
inforcement learning comes from scaling test-time compute
rather than improving decision quality within a fixed budget.

5. Conclusions
We presented Adaptive Parallel Reasoning, which enables
language models to adaptively distribute computation across
serial and parallel reasoning paths using a parent-child
threading mechanism. In this method, we employed super-
vised training and reinforcement learning to enable models
to learn to develop parallelization strategies without manu-
ally designed structures. Supervised training establishes a
baseline understanding of parallel execution, and to further
optimize the reasoning effectiveness, we fine-tune the lan-
guage model with fully end-to-end reinforcement learning.

Experiments on the Countdown task demonstrate that APR
achieves: (1) higher performance within the same context
window (83.4% vs. 60.0% at a 4k context); and (2) supe-
rior scaling behavior as compute budgets increase, resulting
in more substantial performance improvements (80.1% vs.
66.6% using 20k tokens); (3) significantly higher success
rates compared to serialized search methods at equivalent
latency constraints (75.2% vs. 57.3% at around 5,000 ms).
Overall, APR demonstrates the potential of reasoning sys-
tems that dynamically structure their inference processes to
achieve improved scalability and efficiency.

8

Submission and Formatting Instructions for ICML 2025

Acknowledgements The authors would like to thank
Nicholas Tomlin, Boyi Li, Sanjay Subramanian, and Ruiqi
Zhong for their valuable discussions. This work was par-
tially supported by compute resources provided through
Google’s TPU Research Cloud (TRC) and Nvidia.

References
Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-

stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
In AAAI, 2024.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. NeurIPS, 2021.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. ArXiv, 2110.14168, 2021.

DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning
capability in llms via reinforcement learning. ArXiv,
abs/2501.12948, 2025.

Du, Y., Li, S., Torralba, A., Tenenbaum, J., and Mordatch, I.
Improving factuality and reasoning in language models
through multiagent debate. ICML, 2023.

Gandhi, K., Lee, D. H., Grand, G., Liu, M., Cheng, W.,
Sharma, A., and Goodman, N. Stream of Search (SoS):
Learning to search in language. In COLM, 2024.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar, S., and
Nagarajan, V. Think before you speak: Training language
models with pause tokens. In ICLR, 2024.

Grand, G., Tenenbaum, J. B., Mansinghka, V. K., Lew,
A. K., and Andreas, J. Self-steering language models.
arXiv preprint arXiv:2504.07081, 2025.

Hooper, C., Kim, S., Moon, S., Dilmen, K., Maheswaran,
M., Lee, N., Mahoney, M. W., Shao, S., Keutzer, K., and
Gholami, A. ETS: Efficient tree search for inference-time
scaling. arXiv, 2502.13575, 2025.

Hua, W., Wan, M., Vadrevu, S., Nadel, R., Zhang, Y., and
Wang, C. Interactive speculative planning: Enhance agent
efficiency through co-design of system and user interface.
arXiv preprint arXiv:2410.00079, 2024.

Jin, T., Cheng, E. Y., Ankner, Z., Saunshi, N., Elias, B. M.,
Yazdanbakhsh, A., Ragan-Kelley, J., Subramanian, S.,
and Carbin, M. Learning to keep a promise: Scaling
language model decoding parallelism with learned asyn-
chronous decoding. arXiv, 2502.11517, 2025.

Kim, S., Moon, S., Tabrizi, R., Lee, N., Mahoney, M. W.,
Keutzer, K., and Gholami, A. An LLM compiler for
parallel function calling. In ICML, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with PagedAttention. In SOSP, 2023.

Li, D., Cao, S., Cao, C., Li, X., Tan, S., Keutzer, K., Xing,
J., Gonzalez, J. E., and Stoica, I. S*: Test time scaling for
code generation. arXiv preprint arXiv:2502.14382, 2025.

Ning, X., Lin, Z., Zhou, Z., Wang, Z., Yang, H., and Wang,
Y. Skeleton-of-thought: Prompting LLMs for efficient
parallel generation. In ICLR, 2024.

OpenAI. Learning to reason with LLMs,
2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Pan, J., Zhang, J., Wang, X., Yuan, L., Peng, H., and Suhr,
A. TinyZero, 2025. URL https://github.com/
Jiayi-Pan/TinyZero.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N., and
Lewis, M. Measuring and narrowing the compositionality
gap in language models. In Findings of EMNLP, 2023.

Rodionov, G., Garipov, R., Shutova, A., Yakushev, G.,
Egiazarian, V., Sinitsin, A., Kuznedelev, D., and Alis-
tarh, D. Hogwild! Inference: Parallel LLM generation
via concurrent attention. arXiv, 2504.06261, 2025.

Schroeder, P., Morgan, N., Luo, H., and Glass, J. Thread:
Thinking deeper with recursive spawning. arXiv preprint
arXiv:2405.17402, 2024.

Sel, B., Al-Tawaha, A., Khattar, V., Jia, R., and Jin, M.
Algorithm of thoughts: Enhancing exploration of ideas
in large language models. ICML, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J.-M., Zhang, M.,
Li, Y. K., Wu, Y., and Guo, D. DeepSeekMath: Pushing
the limits of mathematical reasoning in open language
models. ArXiv, 2402.03300, 2024.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling LLM
test-time compute optimally can be more effective than
scaling model parameters. ICLR, 2025.

Team, K. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv, 2501.12599, 2025.

Team, L. Llama 2: Open foundation and fine-tuned chat
models. arXiv, 2307.09288, 2023.

Teng, F., Yu, Z., Shi, Q., Zhang, J., Wu, C., and Luo, Y.
Atom of thoughts for Markov LLM test-time scaling.
arXiv, 2502.12018, 2025.

9

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://github.com/Jiayi-Pan/TinyZero
https://github.com/Jiayi-Pan/TinyZero

Submission and Formatting Instructions for ICML 2025

Wang, J., Wang, J., Athiwaratkun, B., Zhang, C., and Zou,
J. Mixture-of-agents enhances large language model
capabilities. In ICLR, 2025.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
ICLR, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

Yang, C., Srebro, N., McAllester, D., and Li, Z. PENCIL:
Long thoughts with short memory. In First Workshop on
Scalable Optimization for Efficient and Adaptive Founda-
tion Models, 2025.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. NeurIPS, 2023.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. STar:
Bootstrapping reasoning with reasoning. In NeurIPS,
2022.

Zhang, Y., Sun, R., Chen, Y., Pfister, T., Zhang, R., and Arik,
S. Chain of agents: Large language models collaborating
on long-context tasks. NeurIPS, 2024.

Zheng, L., Yin, L., Xie, Z., Huang, J., Sun, C., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C., and Sheng, Y. Efficiently programming large language
models using SGLang. NeurIPS, 2024.

Zhu, B., Sharma, H., Frujeri, F. V., Dong, S., Zhu, C.,
Jordan, M., and Jiao, J. Fine-tuning language models with
advantage-induced policy alignment, 2024. URL https:
//openreview.net/forum?id=RtOTTdWbZd.

Zhuge, M., Wang, W., Kirsch, L., Faccio, F., Khizbullin,
D., and Schmidhuber, J. Language agents as optimizable
graphs. ICML, 2024.

10

https://openreview.net/forum?id=RtOTTdWbZd
https://openreview.net/forum?id=RtOTTdWbZd

Submission and Formatting Instructions for ICML 2025

A. Appendix
A.1. Additional Related Works
Language model reasoning algorithms Chain-of-thought (CoT) prompting (Wei et al., 2022) was the first approach to
show how, with the right prompt, additional test-time compute can be exploited to improve language model performance
on an end task. Building on the promise of CoT, models were evaluated on increasingly complex reasoning tasks, and the
output sequences produced by CoT and its variants became increasingly out-of-distribution from model training data. This
motivated the development of approaches that fine-tune language models to perform reasoning more effectively by making
their reasoning traces in-domain, and by searching for optimal reasoning strategies at training time (Zelikman et al., 2022;
Zhu et al., 2024). In these approaches, during learning, reasoning traces are sampled from a language model on training task
instances, and the sampled traces are used during model optimization, for example by fine-tuning only on traces that lead to
task success, or by reinforcement learning. Such exploration-based learning is the key element of success for popular models
like DeepSeek-R1 (DeepSeek-AI, 2025), OpenAI’s o1 (OpenAI, 2024), Kimi 1.5 (Team, 2025), and Stream-of-Search (SoS;
Gandhi et al., 2024). However, these approaches all result in models that produce significantly longer output sequences,
which imposes several limitations due to the fact that autoregressive generation is inherently serial: longer output sequences
means higher latency, and context window constraints on serving system cap the feasible output length and complexity of
reasoning. We also experiment with exploration-based learning for reasoning, but with a crucial difference from these prior
approaches: we provide a special action to the language model, allowing it to distribute their inference-time computation
into serial and parallel operations. In comparison to serialized inference, parallelizing reasoning traces both reduces latency
and the stress of context window limitations. Not only do our experimental results confirm this, but we also show that
models trained end-to-end to distribute their inference-time compute significantly outperform these existing approaches at
the same computational budgets.

Parallelizing inference with multiple independent language model calls has emerged as another avenue for scaling reasoning
tasks. For example, in self-consistency (Wang et al., 2023), multiple candidate solutions to a reasoning problem are generated
independently, and the most common solution among them is chosen. While ensembling methods like these effectively
improve task performance, their core limitation is the independence between inference threads; the lack of coordination
among threads leads to redundant computation and thus suboptimal resource utilization.

Methods such as Tree-of-Thought (Yao et al., 2023), Graph-of-Thought (Besta et al., 2024), Skeleton-of-Thought (Ning
et al., 2024), Atom-of-Thought (Teng et al., 2025), and Self-Ask (Press et al., 2023) build on these simple ensembling
methods by structuring the exploration of reasoning paths into multiple parallelizable calls to run inference on a language
model. Several recent approaches also propose to perform reasoning tasks by simulating multi-agent interaction (Du et al.,
2023; Sel et al., 2024; Kim et al., 2024; Zhang et al., 2024; Zhuge et al., 2024; Hooper et al., 2025; Wang et al., 2025).
However, the proposed search structures (and, in the case of multi-agent reasoning, the communication protocol) of these
methods are fixed and hand-designed, which limits their flexibility and scalability. Furthermore, these structured inference
methods are predominantly prompting-based,4 without end-to-end optimization, which imposes a wide distributional gap
between sequences processed at training and inference-time. Instead, we train language models to structure their own search
at inference time, distributing computation between parallelized and serialized operations. In theory, our framework could
result in language models that implement the same search structures as existing approaches, such as Tree-of-Thought (Yao
et al., 2023), without explicit prompting or hand-designed orchestration of language model calls.

Concurrent to our work, PASTA (Jin et al., 2025) and Hogwild! Inference (Rodionov et al., 2025), released in February and
April 2025 respectively, also explore parallel reasoning. PASTA decomposes a sequential task into parallel sub-tasks that
eventually merge back into a single main thread. Our method, however, spawns multiple exploratory threads in parallel
and selectively incorporates only successful outcomes, effectively scaling to better performance as compute increases.
Hogwild! Inference employs parallel workers to collaboratively solve problems; yet, it remains a prompting method, while
APR optimizes collaborative reasoning in an end-to-end manner through supervised training and reinforcement learning,
providing a more integrated solution to efficient inference parallelization.

Our work is related to existing algorithms for training language models to directly control the inference process, for both
efficiency and performance reasons. For example, PENCIL (Yang et al., 2025) trains models to adaptively discard parts
of their context at inference time to reduce the context length, and thus the time complexity of producing a successful
reasoning trace. (Goyal et al., 2024) train language models to inject additional “pause” tokens into their output sequences,

4While (Zhuge et al., 2024) employ reinforcement learning for optimizing prompts and connectivity between agents, the underlying
language models are still fixed.

11

Submission and Formatting Instructions for ICML 2025

which are shown to improve end-task performance by increasing inference-time computation. Both approaches train using
supervised demonstrations of token discarding (or injection). To the best of our knowledge, we are the first to use end-to-end
reinforcement learning to optimize language model control over inference.

Language model serving systems Language model inference is primarily memory-bounded, with modern serving
frameworks optimizing performance through batched processing of multiple requests in parallel. Systems like vLLM (Kwon
et al., 2023) and SGLang (Zheng et al., 2024) have significantly improved token throughput per request and total throughput
across all requests. While these systems can scale horizontally by adding more GPUs or increase total throughput by
expanding batch size, they face a fundamental constraint: the token generation rate per individual thread remains limited
(typically 50-100 tokens per second for models like GPT-4o). This limitation creates significant latency issues for sequential
chain-of-thought methods, as generating reasoning traces for complex problems can take 10-60+ seconds, degrading user
experience. Additionally, long reasoning traces quickly consume the available context window. Adaptive Parallel Reasoning
addresses these bottlenecks by distributing computation across parallel sub-threads, reducing end-to-end latency while
enabling more complex reasoning within practical time constraints and maintaining compatibility with existing serving
systems.

A.2. Implementation Details
Model architecture We use a model following Llama2 (Team, 2023) with 228M non-embedding parameters (293M total
parameters) with the following key specifications: 18 hidden layers, 1024 hidden dimension, 16 attention heads, and a 4096
token context window.

Supervised training We conduct supervised training using 128 TPUv3 cores. Across all experiments, we use a batch size
of 256 and a learning rate of 5e-5. The model is trained for 19,000 steps—approximately 10 epochs—following the setup
in (Gandhi et al., 2024).

Reinforcement learning We run reinforcement learning with 2 Nvidia GPUs with GRPO algorithm (Shao et al., 2024).
The training batch size is 64, with each sample rolled out 5 times (i.e., the group size is 5). The model is rolled out with
SGLang. The temperature for rollout in training is set to 1.0. We use greedy sampling for evaluation unless otherwise stated,
since it achieves the best performance for both SoS+ and APR compared to other evaluation temperatures.

Training is conducted using a learning rate of 1 × 10−5 and a PPO clip ratio of 0.2. We run training for 150 total steps,
each consisting of 2 inner PPO optimization steps. We apply gradient clipping with a maximum norm of 1.0 and validate
performance every 25 steps. For the KL divergence factor used in the GRPO framework, we set the factor to 0.01 for SoS+
baseline and 0.001 for APR for training stability.

Algorithm 1 SoS+ Symbolic Solver

Require: start state, goal state
1: state deque← SE(start state)
2: while state deque ̸= ∅ do
3: current state← state deque.popleft()
4: if current state = goal state then
5: return "Goal reached"
6: end if
7: if IS PROMISING(current state) then
8: result← SOS+(current state,goal state)
9: if result = "Goal reached" then

10: return "Goal reached"
11: end if
12: else
13: states to explore← SE(current state)
14: state deque.extend(states to explore)
15: end if
16: end while
17: return "No result"

12

Submission and Formatting Instructions for ICML 2025

Algorithm 2 APR Symbolic Solver

1: function APR(start state, goal state, main = True)
2: state deque← SE(start state)
3: while state deque ̸= ∅ do
4: current state← state deque.popleft()
5: if current state = goal state then
6: return "Goal reached"
7: end if
8: states to explore← SE(current state)
9: if main ∧ IS PROMISING(current state) then ▷ Parallel exploration in promising states

10: parallel results← [APR(s,goal state,False) | s ∈ states to explore]
11: for r ∈ parallel results do
12: if r = "Goal reached" then
13: return "Goal reached"
14: end if
15: end for
16: else
17: state deque.extend(states to explore)
18: end if
19: end while
20: return "No result"
21: end function

A.3. Symbolic Search Algorithm

We build upon the BFS and DFS algorithm in Stream-of-Search (Gandhi et al., 2024) and implement our improved version
SoS+ as shown in Algorithm 1.

For the parallel search version, we mostly follow the same algorithm, but when the model decides to do DFS on a certain
node, it will spawn a list of sub-searches and explore the nodes in parallel. The algorithm is illustrated in Algorithm 2.

SE is a state expansion function that decides what are the next step to explore, while is promising a heuristic function
to judge if the current node is promising or not.

Concretely, the state expansion function follows (Gandhi et al., 2024), where we select the top K operations ranked by the
multiple heuristic. The multiply heuristic considers the target number T and the input numbers and the factors of the target.
If T has factors {f1, f2, ..., fm}, the multiply heuristic can be written as hmultiply = min({|fj −

∑|I|
i=1 ni|∀j ∈ [1,m]}).

Due to the difficulty in implementing an accurate is promising function, we simply let it return True for 10% of the
time, which we leave reinforcement learning to further optimize the promising node selection strategies.

A.4. SoS vs. SoS+

Method Temp = 0.0 Temp = 0.1 Temp = 0.5 Temp = 1.0

SoS 49.5% 49.6% 47.1% 37.9%
SoS+ 57.3% 57.1% 52.0% 48.1%

Table 1: Accuracy comparison between SoS and SoS+ across different temperature settings. SoS+ consistently achieves
higher performance, especially at lower temperatures.

Here, we compare the performance of models trained with SoS and SoS+ demonstrations without conditions under different
sampling temperatures. As shown in Tab. 1, our SoS+ approach significantly outperforms the original SoS method.

13

Submission and Formatting Instructions for ICML 2025

A.5. Effect of SoS+ Supervised Training Data

We study whether improving the quality of supervised demonstrations can narrow the performance gap between SoS+ and
APR. Specifically, we evaluate two enhanced training strategies for SoS+: (1) increasing the maximum beam size from 5 to
15 during demonstration generation to mirror the setup used in APR, and (2) applying rejection sampling to curate 500K
high-quality training examples that are both correct and fit within the context window. We report results at two decoding
temperatures: 0.0 and 1.0.

Temp = 0.0 Temp = 1.0

SoS+ (baseline) 57.3% 48.1%
SoS+ (beam size = 15) 50.9% 42.5%
SoS+ (rejection sampling) 56.5% 54.5%

Table 2: Accuracy of SoS+ trained with different supervision strategies.

As shown in Tab. 2, SoS+ performance is fundamentally limited by the context window size, as it cannot learn from long
search paths without parallel exploration. Increasing the beam size improves symbolic solver accuracy but leads to longer
trajectories that exceed the model’s context length, ultimately reducing performance. Rejection sampling improves training
quality by filtering for context-bounded correct examples, yielding gains at temperature 1.0, but the overall impact remains
modest and still falls short of closing the gap to APR.

A.6. Effect of Temperature

0 4k 8k 12k 16k 20k
Avg Total Compute (Tokens)

55

60

65

70

75

80

85

57.9

64.7

68.8

72.8
75.0

76.5
78.8

80.8
83.3

59.8
61.6

62.8 63.5 64.1 64.4 64.4 64.6

59.8
60.9

62.6 63.0 63.2 63.6 64.0 64.1

Temperature = 0.1
APR
SoS+ pass@n
SoS+ cons@n

0 4k 8k 12k 16k 20k
Avg Total Compute (Tokens)

57.6

65.9
68.5

73.6
75.6

77.5
79.3

81.9
83.8

58.9

63.6 64.5 65.5 65.9 66.6 67.1 67.4

58.9

62.4
63.5 64.2 64.9 65.7 65.9 66.5

Temperature = 0.5
APR
SoS+ pass@n
SoS+ cons@n

0 4k 8k 12k 16k 20k
Avg Total Compute (Tokens)

53.5

61.5

65.3
67.9

69.8

75.2
76.9

74.0

80.1

57.3

63.3
64.4

65.7 66.5 67.5 67.8 68.4

57.3

62.6 63.0
64.6 65.5 65.8 66.6 66.4

Temperature = 1.0
APR
SoS+ pass@n
SoS+ cons@n

Figure 9: Ablation of APR and SoS+ vs. total compute under different temperature settings. Across all settings, APR demonstrates
more reliable and efficient scaling behavior.

Method Temp = 0.0 Temp = 0.1 Temp = 0.5 Temp = 1.0

SoS+ 57.3% 57.1% 52.0% 48.1%
+ RL 60.0% 59.3% 59.1% 58.1%

APR 75.5% 75.9% 74.9% 67.8%
+ RL 83.4% 82.9% 81.3% 76.4%

APR (Num Child Thread Enforced) 83.2% 83.3% 83.8% 80.1%
+ RL 83.3% 83.3% 83.8% 81.9%

Table 3: Accuracy of different search strategies across sampling temperatures. Each base method is followed by its variant
trained with RL.

We ablate the effect of temperature on how performance scales with compute, extending Fig. 4. As shown in Fig. 9, APR
consistently outperforms SoS+ regardless of temperature, exhibiting greater robustness and efficiency under varied sampling

14

Submission and Formatting Instructions for ICML 2025

conditions. Again, Table 3 shows that our results—and their relative advantages—remain consistent across temperatures,
both before and after RL.

A.7. Differences Between Sequential Tokens and Wall-Clock Time

While the number of sequential tokens correlates well with wall-clock time, in practice, there is a slight mismatch due to
hardware constraints. Specifically, we utilize an 8-GPU server; however, in scenarios with higher compute demands—such
as those involving up to 10 child threads—some GPUs may end up handling multiple child threads, leading to uneven
workloads and increased computational load on certain devices. This issue can be mitigated by allocating additional GPUs
and improving load balancing during model serving.

15

