

000 001 002 003 004 005 DOUBLE DESCENT REVISITED: WHEN NOISE AMPLI- 006 FIES AND OPTIMIZERS DECIDE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 We examine how the double descent phenomenon emerges across different archi-
028 tectures, optimisers, learning rate schedulers and noise-robust losses. Previous
029 studies have often attributed the interpolation peak to label noise. However, by
030 systematically varying noise levels, optimizers, learning rate regimes and training
031 losses, we demonstrate that, while noise can amplify the effect, it is unlikely to
032 be the driving factor behind double descent. Instead, optimization dynamics, not-
033 ably learning rate and optimizers, strongly influence whether a visible peak ap-
034 pears, often having a larger effect than adding label noise. Consistently, noise-
035 robust losses partially mitigate double descent in settings where the amplifica-
036 tion effect of noise is strongest, while their impact is negligible when this is not
037 the case. Expanding on recent work, this study further confirms that noise pri-
038 marily deteriorates the linear separability of different classes in feature space.
039 Our results reconcile seemingly conflicting prior accounts and provide practical
040 guidance: commonly used learning rate/scheduler combinations/losses can pre-
041 vent double descent, even in noisy regimes. Furthermore, our study suggests that
042 double descent might have a lesser impact in practice. Our code is available at
043 <https://anonymous.4open.science/r/DDxNoise>.
044

1 INTRODUCTION

045 Overparameterized neural networks have revolutionized the field of machine learning, achieving un-
046 precedented performance in various complex tasks. However, their success has simultaneously chal-
047 lenged long-standing tenets of statistical learning theory, which traditionally posited that increasing
048 model complexity beyond a certain point would inevitably lead to overfitting and poor generaliza-
049 tion. Current large models typically have enough capacity to perfectly interpolate training data (i.e.,
050 achieve zero training error). Yet, they often generalize remarkably well to unseen data (Zhang et al.,
051 2021), seemingly contradicting the conventional wisdom that exceedingly complex models will sim-
052 ply memorize training data, including noise, inevitably leading to overfitting and failing to general-
053 ize to unseen examples.

054 This paradox is exemplified by the Double Descent (DD) phenomenon, in which generalization error
055 initially decreases with model size, peaks around the point of perfect training data interpolation, and
056 then decreases again in the highly overparameterized regime (Belkin et al., 2019; Nakkiran et al.,
057 2021a). This "second descent" implies that overparameterization, rather than being detrimental,
058 allows models to learn more robust features or to implicitly regularize against harmful noise.

059 Several explanations have been offered, ranging from implicit regularization by optimization algo-
060 rithms, which in the heavily overparameterized regime tend to favor solutions that generalize well
061 (Keskar et al., 2016; Soudry et al., 2018; Ji & Telgarsky, 2019; Dar et al., 2021), to "benign overfit-
062 ting" in high-dimensional settings, demonstrating that interpolating noisy data can still yield robust
063 generalization under specific data structures (Belkin et al., 2019; Bartlett et al., 2020). Further the-
064 oretical work highlights the role of model misspecification (Mei & Montanari, 2022; Hastie et al.,
065 2022), which leads to significant generalization error in models that are underparameterized or at
066 the interpolation threshold, while the abundance of parameters provides the model with sufficient
067 flexibility to effectively "compensate" in the highly overparameterized regime.

068 The complex interplay of these factors is essential for a comprehensive understanding of this dual
069 risk curve. More recently, Gu et al. (2024) highlighted the crucial role that noisy samples seem to

play in shaping the behaviour of deep learning models. They show that overparameterized models interpolate more correct training data around noisy ones of matching classes, effectively isolating noise and explaining accuracy recovery after the interpolation peak.

Our contribution. In this paper, we show that *DD is not caused by noisy data but is instead a phenomenon that is directly attributable to the optimization process.*

As we discuss more extensively in Section 2, past work has identified a number of potential factors behind DD, with noise often identified as a crucial one. In this study, we try to reconcile some of these different perspectives into a coherent picture. We revisit *model-wise* DD through a multi-dimensional analysis of the phenomenon, exploring the interplay between noise, optimizer and learning rate. The picture that emerges identifies some clear trends. First and foremost, noise alone, even at high levels, is not a necessary cause for DD, while it has a magnifying effect in some cases. Accordingly, we show that noise-robust losses only mildly mitigate DD by reducing the amplifying effect of noise, but offer little benefit otherwise. On the contrary, the optimization algorithm and learning rate (with and without scheduler) appear to be strong drivers of DD even in the absence of noise, something we discuss in detail in Section 4.

To better zoom in into the above phenomena, we analyze DD in feature space using k-Nearest Neighbors (kNN), expanding the analysis of Gu et al. (2024) to include various combinations of optimizers and learning rates, with or without scheduler. Moreover, differently from them, we also investigate geometry of the feature space through the lens of the Nearest Centroid (NC) heuristic. By design, this heuristic is more sensitive to misalignment between clustering of the training set in feature space and actual training set labels and as such, it has been used in the analysis of the neural collapse phenomenon (Papyan et al., 2020). Together, kNN and NC highlight complementary aspects of the geometry of learned regions. Our analysis reveals that geometry-based accuracies consistently surpass the standard linear head, particularly in the presence of noise, showing also optimizer-dependent patterns. This demonstrates that models can learn robust representations even when the final classifier struggles.

While some trends identified in this study have been separately investigated in the past, we believe our work provides a unified and fresh perspective on a very intriguing phenomenon. We also believe our work can offer cues for future research on DD, as elaborated further on in Section 5.

2 RELATED WORK

Investigating the double descent (DD) phenomenon—its occurrence and underlying causes—has been the focus of numerous recent studies in machine learning. A body of theoretical work examines DD in simplified contexts, often using linear models for regression (Hastie et al., 2022; Loog et al., 2020; Muthukumar et al., 2021; Gamba et al., 2022; Gu et al., 2024; Curth et al., 2023; D’Ascoli et al., 2020; Adlam & Pennington, 2020). In this work, we focus specifically on how *model-wise* DD depends on noise and on optimization process in more complex, deep models. For the sake of space, we review prior studies along these two axes, referring the reader to Appendix A for other contributions that fall outside of this scope but have some bearing on this study.

Noise as a fundamental driver of double descent A substantial body of work connects the appearance of the double descent peak primarily to the presence of label noise. The seminal contributions of Belkin et al. (2019) and Nakkiran et al. (2021a) provided extensive empirical evidence across architectures and datasets, showing that the cross entropy loss curve reaches its maximum near the interpolation threshold largely because models acquire the capacity to fit noisy labels. This noise-centric perspective is strengthened by Gu et al. (2024), who showed that overparameterized models progressively “isolate” noisy samples in representation space, embedding them near clean same-class neighbors and thus reducing their detrimental effect on generalization. Similarly, Somepalli et al. (2022) analyzed decision boundaries, observing fragmentation near interpolation that stabilizes with width; they argue that noise makes DD more visible because the model must carve out local misclassified regions to fit noisy labels. A complementary bias–variance account is given by Yang et al. (2020), who showed that bias decreases monotonically with width while variance is unimodal; DD arises when the variance peak, often amplified by noise, dominates near interpolation. Studies on random feature models further confirm that variance can diverge at the threshold, with

108 DD observable even without noise but exacerbated by it (D’Ascoli et al., 2020; Adlam & Pennington, 2020). Together, these works establish noise as an important factor in DD, but they do not investigate other co-factors, leaving open whether noise is the key driver behind double descent or merely an amplifier.

112 *Noise-robust losses.* In our study, we also employ noise-robust losses as a further way to assess
 113 the impact of noise on double descent. Since these methods are not a primary research focus but
 114 practical tools in this work, we refer the interested reader to Appendix A for an overview.

116 **The role of optimization** Only a handful of studies have emphasized the role of optimization
 117 dynamics and associated hyperparameters in shaping the double descent (DD) phenomenon
 118 (Kuzborskij et al., 2021; Liu & Flanigan, 2023; Nakkiran et al., 2021b; Gamba et al., 2022).
 119 Kuzborskij et al. (2021) stressed the importance of optimization, with a different focus with respect
 120 to our work. They provide a theoretical analysis of DD in least-squares regression via gradient de-
 121 scent, highlighting how the feature covariance spectrum drives excess risk even without noise; how-
 122 ever, their empirical scope is limited to one-hidden-layer MLPs with square loss and shows minimal
 123 variation across learning rates. Liu & Flanigan (2023) empirically examine random feature mod-
 124 els and two layer networks finding DD depends on feature matrix conditioning and convergence
 125 speed—slower regimes suppress peaks, while faster optimization restores them. Their work thus re-
 126 inforces the findings of Kuzborskij et al. (2021), though within relatively simple models. Our work
 127 complements and extends the perspective of both works to modern deep architectures and classifi-
 128 cation tasks, providing a broader analysis of how optimizer choice, learning-rate schedules, and la-
 129 bel noise jointly shape DD. Nakkiran et al. (2021b) also highlights the stabilizing role of regulari-
 130 zation. They show that optimal ℓ_2 regularization can mitigate or eliminate DD, producing mono-
 131 tonic risk curves in both random feature models and convolutional networks. The analysis is limited
 132 to the tuning of the regularization coefficient, without examining the influence of optimizer choice
 133 or learning-rate dynamics. Gamba et al. (2022) conducted an empirical study on loss landscape
 134 smoothness in neural networks, linking loss sharpness in input space with both model- and epoch-
 135 wise double descent.

136 Overall, literature converges on a multi-causal view of DD, whereby noise is a powerful amplifier
 137 and often the clearest empirical correlate for risk peak, but optimization dynamics, model misspec-
 138 ification, geometry of representations play decisive roles. Our study builds on this integrated per-
 139 spective by disentangling the relative contributions of noise, optimizer choice, and loss functions to
 the appearance of DD in both model accuracy and feature space.

140 For the sake of space, we refer the reader to Appendix A for further, potentially interesting previous
 141 work that is less focal to this work but is related to aspects of our analysis.

144 3 METHODOLOGY

146 Our goal in this study was to conduct a comparative analysis across different configurations in order
 147 to empirically examine the role that certain factors play in the onset of model-wise double descent. In
 148 particular, we systematically manipulate three factors: label noise, optimizer dynamics, and training
 149 loss. We sweep model capacity across under- to over-parameterized regimes.

151 3.1 RESEARCH QUESTIONS

153 We organize our investigation around three guiding questions:

- 155 • **RQ1. What is the role of label noise in the manifestation of double descent? To what
 156 extent do noise-robust losses mitigate it?** Prior work (Nakkiran et al., 2021a; Somepalli
 157 et al., 2022; Yang et al., 2020) suggests that noise exacerbates risk peak near the interpo-
 158 lation threshold. We test whether noise is a necessary cause of DD, or merely an ampli-
 159 fier. To further test this, we also use noise robust losses, under the hypothesis that if DD is
 160 (mostly) noise-driven, robust losses should strongly reduce or completely eliminate it.
- 161 • **RQ2. How do optimizers, learning rates and schedulers affect double descent?** Prior
 162 studies (Liu & Flanigan, 2023; Nakkiran et al., 2021b) highlight the role of optimization

162 in DD emergence. We investigate whether optimizer choice and hyperparameter settings
 163 (learning rate, scheduling) can alone induce or suppress DD, even in noise-free settings.
 164

165 **• RQ3. What does the geometry of learned representations reveal about the impact
 166 of DD on accuracy? How are these geometric patterns shaped by optimization and
 167 noise?** DD is usually examined through loss or accuracy curves. Building on previous
 168 representation-level analyses (Gu et al., 2024; Somepalli et al., 2022), we ask whether DD
 169 leaves distinct signatures in representation space. Unlike prior work by Gu et al. (2024),
 170 which primarily used geometry to investigate the interpolation of noisy samples, our focus
 171 is on how optimization dynamics and label noise affect local label-consistency and global
 172 cluster compactness, and how these factors explain the observed differences between stan-
 173 dard accuracy and geometry-based accuracies.
 174

175 3.2 LOSS FUNCTIONS AND NOISY LABELS

177 Most of the experiments in this study use standard Cross Entropy (CE) loss \mathcal{L}_{CE} as training objec-
 178 tive. To assess the role of label noise in DD, we also employ two loss functions designed to mitigate
 179 the impact of noisy labels: Forward Loss (Patrini et al., 2017) NCOD Loss (Wani et al., 2024).
 180

181 We denote by \mathbf{y}_i the one-hot encoding of \mathbf{x}_i ’s class, i.e., so that it has C components if C denotes
 182 the number of classes, with the entry corresponding to \mathbf{x}_i ’s class equal to 1 and all other entries
 183 equal to 0. $\hat{p}(\mathbf{y} \mid \mathbf{x}_i)$ is a vector, whose j -th component is the (conditional) probability assigned by
 184 the classifier to point \mathbf{x}_i being of class j . Analogously, $\hat{\mathbf{y}}_i$ is the one-hot representation of the class
 185 predicted by the model. Finally y_i (resp. \hat{y}_i) denote the class of the i -th sample (resp. the class
 186 assigned to the i -th sample by the classifier).

187 Forward correction of CE loss (FWD) (Patrini et al., 2017) is based on a label transition matrix $\mathbf{T} \in$
 188 $[0, 1]^{C \times C}$ that models the corruption process. Each entry $T_{ij} = p(\tilde{\mathbf{y}} = \mathbf{e}_j \mid \mathbf{y} = \mathbf{e}_i) \forall i, j$ denotes
 189 the probability of observing a noisy label $\tilde{\mathbf{y}}$ given a clean label \mathbf{y} , where \mathbf{e}_i is the i -th canonical
 190 basis vector (a one-hot vector with 1 in position i and 0 elsewhere). Rather than comparing the
 191 prediction of the model $\hat{p}(\mathbf{y} \mid \mathbf{x})$ directly with the observed noisy labels, the predictive distribution is
 192 adjusted via \mathbf{T} , and the CE is computed against the corrected distribution: $\mathcal{L}_{FWD}(\mathbf{e}_i, \hat{p}(\mathbf{y} \mid \mathbf{x})) =$
 193 $-\log \sum_{j=1}^C T_{ji} \hat{p}(\mathbf{y} = \mathbf{e}_j \mid \mathbf{x})$. When \mathbf{T} is the identity matrix (i.e. no noise), this reduces exactly to
 194 the standard CE loss, ensuring consistency with clean-label training.

195 The Noisy Centroids Outlier Discounting (NCOD) loss (Wani et al., 2024), adopts a different strat-
 196 egy. Each class is represented by the centroid of its latent representations, and each sample i is as-
 197 signed soft labels $\bar{\mathbf{y}}_i$ proportional to their similarity to the class centroid. This method also intro-
 198 duces a trainable outlier discounting parameter u_i , which downweights the contribution of examples
 199 suspected to be mislabeled. Formally, NCOD combines two objectives: $\mathcal{L}_{CE}(\hat{p}(\mathbf{y} \mid \mathbf{x}_i) + u_i \cdot \mathbf{y}_i, \bar{\mathbf{y}}_i)$,
 200 which reweights CE with soft labels and outlier discounting, and $\frac{1}{C} \|\bar{\mathbf{y}}_i + (u_i - 1) \mathbf{y}_i\|_2^2$, which regu-
 201 lates the dynamics of u_i . Unlike correction-based methods, NCOD does not require prior knowledge
 202 of the noise rate or clean anchor points. Instead, it adaptively reduces the influence of outlier samples
 203 during training, making it applicable in more realistic settings. This discourages overfitting misla-
 204 bled samples in later epochs, while preserving the signal from clean ones. We adopt NCOD because
 205 it builds on SOP (Liu et al., 2022) but achieves better empirical performance in noisy environments.
 206

207 3.3 EVALUATION AND GEOMETRY-BASED METRICS

209 We evaluate models with three complementary defined metrics that capture (i) probabilis-
 210 tic/generalization quality, (ii) performance of the trained linear head, and (iii) geometric structure of
 211 the learned representation.

212 As a loss-based metric, we report the average CE on the test set since DD is most commonly ob-
 213 served in loss curves (Belkin et al., 2019; Nakkiran et al., 2021a). We use CE as a uniform eval-
 214 uation metric across all experiments, even when training with FWD or NCOD. Since these meth-
 215 ods only modify the training loss, all test results are computed with CE. This ensures comparability
 216 across settings and isolates the effect of the training dynamics.

216 Soft-label accuracy measures the standard classification performance obtained from the model’s
 217 final linear layer. In this section, we define $\hat{y}_i = \arg \max_c \hat{p}(\mathbf{y}_i \mid \mathbf{x})$ the class predicted by the model
 218 for the i -th sample in the dataset.

219 Accuracy is computed as $\mathcal{A}_{\text{acc}} = \mathcal{A}(\{\hat{y}_i\}_{i=1}^M)$ with $\mathcal{A}(\{\hat{y}_i\}_{i=1}^M) = \frac{1}{M} \sum_{i=1}^M \mathbf{1}\{\hat{y}_i = y_i\}$. Conceptually, this metric evaluates the separating hyperplane learned by the final linear head in the
 220 penultimate-layer feature space. Therefore, it is sensitive to both feature geometry and how the clas-
 221 sifier converts features into calibrated probabilities.

222 Standard evaluation metrics such as CE and accuracy capture prediction quality but provide limited
 223 insight into the geometry of feature space, especially when they are misaligned. In practice, cross-
 224 entropy may be high, indicating low confidence, while accuracy remains stable, suggesting that
 225 predictions still fall within correct decision boundaries. To better assess this structure, we employ
 226 two test-time decision rules that operate directly on penultimate-layer features.

227 **k-Nearest Neighbours (kNN) Accuracy** For each test point representation in the penulti-
 228 mate layer latent space $\mathbf{z}_i^{\text{test}}$, we first find its k nearest training representations $\mathcal{N}_k(\mathbf{z}_i^{\text{test}})$ ac-
 229 cording to cosine distance. We then assign a label to $\mathbf{z}_i^{\text{test}}$ by majority vote: $\hat{y}_i^{\text{kNN}} =$
 230 $\arg \max_{c \in \{1, \dots, C\}} \sum_{j \in \mathcal{N}_k(\mathbf{z}_i^{\text{test}})} \mathbf{1}\{y_j^{\text{train}} = c\}$. k-NN Accuracy $\mathcal{A}_{\text{kNN}} = \mathcal{A}(\{\hat{y}_i^{\text{kNN}}\}_{i=1}^M)$ measures local
 231 label-consistency in representation space: high kNN accuracy indicates that nearby training points
 232 tend to share labels regardless of the learned linear head.

233 **Nearest Centroid (NC) Accuracy** For each class c , we compute the centroid μ_c of its training
 234 latent representations $\mathcal{Z}_c = \{\mathbf{z}_i^{\text{train}} \text{ s.t. } y_i^{\text{train}} = c \forall i \in \{1, \dots, M^{\text{train}}\}\}$. A test point $\mathbf{z}_i^{\text{test}}$ is
 235 assigned the label of the closest centroid under cosine distance d : $\hat{y}_i^{\text{NC}} = \arg \min_{c \in \{1, \dots, C\}} d(\mathbf{z}_i^{\text{test}}, \mu_c)$.
 236 NC accuracy $\mathcal{A}_{\text{NC}} = \mathcal{A}(\{\hat{y}_i^{\text{NC}}\}_{i=1}^M)$ quantifies global cluster compactness and class separability.

237 3.4 EXPERIMENTAL SETUP

238 We now describe the datasets, architectures, optimizers, and training protocol used in our study. Our
 239 goal is to ensure that comparisons across conditions are fair and reproducible, and that all factors
 240 except the one under investigation are held constant. Full implementation details are provided in
 241 Appendix B.

242 **Datasets.** Following Gu et al. (2024), we use two standard image classification benchmarks:
 243 CIFAR-10 (Krizhevsky et al. (2014)) and MNIST (Lecun et al. (1998)). For CIFAR-10, we use
 244 40k/10k training/validation split, as well as the standard 10k test set. For MNIST, we use a re-
 245duced training budget of 4k/1k training/validation examples, and the standard test split. Label noise
 246 is injected into the training set by randomly replacing labels: for a given noise rate η , each train-
 247 ing label is independently replaced with a random class label (uniformly distributed across the other
 248 $C - 1$ classes). We report results for a noise-free regime ($\eta = 0$) and several noisy regimes ($\eta \in$
 249 $\{0.1, 0.2, 0.4, 0.8\}$).

250 **Architectures.** We study three model families used in prior DD work: (i) fully connected networks
 251 (FCN), (ii) small convolutional neural networks (CNN), and (iii) ResNet-18 variants. These families
 252 and configurations are drawn from Gu et al. (2024) and Nakkiran et al. (2021a). We systematically
 253 vary base layer width to span the under-to over-parameterized regimes.

254 **Optimization** We compared three widely used optimization strategies: vanilla Stochastic Gradient
 255 Descent (SGD), SGD with the learning rate scheduler (SGD+CS) used in Gu et al. (2024), and
 256 Adaptive Moment Estimation (Adam, Kingma & Ba (2015)). To probe sensitivity to learning rate
 257 scale, we use a log-spaced grid of five learning rates, $\{10^{-x}, x \in \{1, 2, 3, 4, 5\}\}$, plus the one used
 258 in Gu et al. (2024), 0.05.

259 **Training Protocol.** All models are trained for a fixed number of epochs (4,000 for FCN, 200 for
 260 CNN and ResNet) without early stopping. The training loss reaches zero within the specified number

270 of epochs in all cases, and corresponding training curves are reported in Appendix E for reference.
 271 Reported metrics use the final-epoch checkpoint to ensure consistent “last model” evaluations across
 272 experiments. Experiments were implemented in PyTorch ¹.
 273

274 4 EXPERIMENTAL ANALYSIS

277 Our experiments provide a nuanced picture of how DD arises and under which conditions it is am-
 278 plified or mitigated. This section presents the results for the ResNet-18 variants; the corresponding
 279 results for FCN and CNN variants are presented in Appendix C.

281 4.1 NOISE AMPLIFIES BUT DOES NOT DETERMINE DD (RQ1)

293 Figure 1: Cross Entropy on the test set as a function of the base convolutional layer width (k) of
 294 ResNet models trained with Cross Entropy loss on CIFAR-10 using three optimizers with initial
 295 learning rate 0.0001. Results show how different optimizers and noise rates affect the test error
 296 curve.

298 We address RQ1 by increasing model width while varying (i) label noise rate, (ii) optimizer family
 299 (SGD, SGD with scheduler, Adam), and (iii) training loss (Cross-Entropy (CE), Cross-Entropy with
 300 forward correction (FWD), and NCOD).

301 Fig. 1 shows clear patterns. Using Adam (Fig. 1c), we observe a significant double-descent peak,
 302 consistent with Gu et al. (2024); importantly, this peak is visible even when noise rate is zero. By
 303 contrast, the SGD baseline (Fig. 1a) and SGD combined with a scheduler (Fig. 1b) do not display a
 304 comparable peak, even when label noise is extreme (80% on a 10-class task). The results obtained
 305 for ResNet architectures exhibit patterns consistent with those observed for CNN and FCN variants,
 306 as presented in Figs. 5 and 6. These comparisons show that label noise amplifies the magnitude of
 307 the peak, but it is not a necessary condition for its appearance: optimization dynamics can alone
 308 produce or suppress DD.

309 To isolate the effect of noise-robust losses, Fig. 2 compares CE and accuracy curves for CE, FWD,
 310 and NCOD at three noise levels (0.0, 0.1, 0.2) using the Adam optimizer. Three consistent obser-
 311 vations emerge. First, the amplitude of the CE peak scales with the noise rate: higher noise rate in-
 312 creases the peak and makes the associated accuracy dip more pronounced. Secondly, the CE peak
 313 is not eliminated by robust loss correction, but only marginally mitigated. Third, under moderate to
 314 high noise, robust losses substantially reduce the “double-ascent” in accuracy for small and inter-
 315 mediate widths (with NCOD showing the largest reduction). However, the benefit of robust losses
 316 largely tends to vanish when width becomes large, as CE, FWD and NCOD converge to similar ac-
 317 curacies. In other words, robust losses mitigate the *accuracy* degradation induced by noise in under-
 318 parameterized or mid-scale regimes, but they do not eliminate the CE peak across all regimes.

319 Although label noise amplifies the loss peak and the associated accuracy dip, it is neither the sole
 320 nor the necessary cause of double descent. Optimization process, particularly the optimizer family,
 321 play a primary role in determining whether a visible peak appears, while noise mainly acts as a
 322 multiplier of that effect. Although noise-robust losses are effective in recovering accuracy in small

323 ¹<https://anonymous.4open.science/r/DDxNoise>

Figure 2: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base convolutional layer width (k) of ResNet models trained on CIFAR-10 using Adam optimizer with an initial learning rate of 0.0001. Results are reported for noise rates (0.0, 0.1, 0.2) under varying training losses: Cross-Entropy (CE), Forward-corrected CE (FWD) and NCOD.

and intermediate models where the amplifying effect of noise is strongest, they do not universally eliminate the CE peak in large models.

4.2 ROLE OF OPTIMIZER AND LEARNING RATE (RQ2)

Figure 3: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base convolutional layer width (k) of ResNet models trained on CIFAR-10 using the three optimizers and multiple initial learning rates. Noise rate is 0.0.

Fig. 3 shows the test accuracy and CE for three optimizers (SGD, SGD with scheduler and Adam), each of which was trained using six different learning rates, with no added noise. Learning rate has a significant impact on the appearance of DD and the amplitude of its peak for Vanilla SGD (Fig. 3a). At relatively high learning rates, a visible double-descent peak in CE test-loss is consistently observed. Reducing learning rate lowers the peak's amplitude and, in some cases, eliminates it altogether. This suggests that learning rate modulates the optimization dynamics: higher rates induce less stable trajectories, thereby revealing the double-descent phenomenon.

Adoption of a learning rate scheduler (Fig. 3b), as in Gu et al. (2024) does not change this picture: larger initial learning rates amplify the peak, while smaller rates decrease or remove it. Moreover, while CE still exhibits peaks in both cases, test accuracy curves do not display significant double ascent phenomena. In particular, intermediate-sized models exhibit a relatively constant upward trend as width increases rather than sudden drops, suggesting that the scheduler stabilizes training

Figure 4: Test accuracy on the test set as function of the base convolutional layer width (k) of ResNet models trained on CIFAR-10 with Cross-Entropy loss. The plot compares model classifiers predictions (Standard) with Nearest Centroid (NC) and k -Nearest Neighbours (kNN , $k=20$) predictions under varying label noise rates (0.0, 0.1, 0.2) and optimizers (SGD, SGD+CS, Adam) with initial learning rate 0.01.

sufficiently to lead to smoother convergence. This results in higher learning rates always leading to better performance in terms of accuracy.

Switching to Adam (Fig. 3c) radically changes the picture, even keeping the very same experimental configuration. In this case, double descent persists across all tested learning rates. While amplitude, shape and location of the peak vary with the learning rate, the phenomenon itself never disappears. This suggests that Adam’s internal adaptation mechanisms (e.g. momentum terms) introduce dynamics that are less sensitive to global learning-rate scaling. Moreover, unlike SGD (with or without a scheduler), the best accuracy is not achieved for the largest learning rate; rather, accuracy tends to plateau at intermediate values.

Similar patterns are observed across CNN and FCN variants (Figs. 9 and 10), confirming the generality of these optimizer-dependent dynamics. Taken together, these results support the hypothesis that optimization dynamics, both optimizer and learning rate, fundamentally determine whether double descent arises and how strongly it affects performance, even in the absence of noise.

4.3 REPRESENTATION-SPACE EVALUATION (RQ3)

In order to more closely look into the reasons underpinning the frequent misalignment between test entropy loss and accuracy, we repeat previous experiments, this time probing the geometry of the learned feature space through kNN and NC accuracies. These metrics test whether the representation organizes samples into semantically meaningful local neighborhoods (kNN) and/or clusters (NC), regardless of the separating hyperplane learned by the final layer.

Fig. 4 reports results across optimizers (rows) and noise rates (columns), with (initial) learning rate 0.01, a value that consistently corresponds to well-defined DD peaks in CE loss across all classifiers (see Fig. 3). Across conditions, kNN and NC accuracies exceed the standard accuracy of the final classifier. This suggests that networks learn a latent space with a strong geometric structure, where samples from the same class cluster together and/or share local neighborhoods, even when the final, linear classifier cannot find a clear separating hyperplane. This effect intensifies at higher noise rates, as the difference between standard and geometry-based accuracy widens. This suggests that noise makes linear separation more fragile, while the underlying representation remains consistent, with feature-space aggregation providing implicit denoising.

432 Something interesting appears when we compare optimizers: SGD with a scheduler and Adam pro-
 433 duce similar results for kNN and NC heuristics, with negligible double ascent in accuracy. In con-
 434 trast, kNN outperforms NC when the SGD baseline is used, an effect that is amplified by noise.
 435 This suggests that learned representations tend to form irregular manifolds where local neighbor-
 436 hoods are label-consistent, but global centroids are less representative. This observation aligns with
 437 our earlier observation that SGD without scheduling produces less stable convergence. Consistently
 438 with these findings, accuracy of geometry-based heuristics outperforms standard accuracy in CNN
 439 and FCN architectures (Figs. 11 and 12), confirming that models can learn effective representations
 440 before feature collapse.

441 While (larger) models achieve zero training error (see Appendix E), the systematic discrepancy be-
 442 tween the three accuracies indicates that neural collapse -the tight convergence of feature vectors to
 443 class centroids (Nguyen et al. (2023))- has not occurred in our regimes, for otherwise the three
 444 metrics would themselves collapse. Though neural collapse is not a focus of this work, we explic-
 445 itly verified this condition, by tracking neural collapse metrics during training (see Fig. 13 in Ap-
 446 pendix D). We remark that the absence of collapse is not a shortcoming; rather, it reflects realistic
 447 training regimes in which overparameterized models are trained long enough to interpolate training
 448 data, but not enough for class representations to collapse into an equiangular simplex. This non-
 449 collapse regime is precisely where geometric probes are most informative; they reveal useful struc-
 450 ture in representations before and independently of any eventual collapse.

451
 452

453 5 DISCUSSION, LIMITATIONS, AND CONCLUSIONS

454
 455

456 Our findings suggest that the optimization process is the main driver of the double descent (DD)
 457 phenomenon. Label noise, while not essential for its appearance, can significantly amplify it, as
 458 confirmed by the behavior of the phenomenon in the presence of noise-robust losses. Our analysis
 459 reveals that the choice of optimizer, learning rate, and possibly scheduling are dominant factors;
 460 for instance, learning rate can either induce or eliminate DD with SGD, whereas Adam consistently
 461 exhibits it. Representation probes show that even when soft-label accuracy temporarily declines,
 462 overparameterized models organize features into geometrically robust manifolds. This explains why
 463 k-NN and Nearest Centroid (NC) accuracies can still outperform standard accuracy in these cases.

464 While these results shed light on key mechanisms underpinning DD, their practical impact must
 465 be qualified. As is common in much of the DD literature, our performance curves were obtained
 466 by evaluating the final model at the end of the last training epoch. However, in realistic training
 467 pipelines, models are typically selected using a validation set with early stopping or best-checkpoint
 468 selection. When this standard procedure is applied, the characteristic DD peak often disappears, as
 469 the validation set apparently prevents the model from reaching the stages where DD would manifest
 470 (see Appendix F and Fig. 21 and Nakkiran et al. (2021a) for results of a similar flavor using early
 471 stopping). This suggests that while DD is theoretically important for understanding overparameter-
 472 ized models, its impact in practice is limited (Jeffares & van der Schaar (2025)).

473 Our analysis focused exclusively on model-wise double descent, intentionally not considering data-
 474 wise or epoch-wise variants. While this choice enabled a thorough investigation into the roles of
 475 noise, optimizers, and losses, it limits the scope of our conclusions. Similarly, while we compared
 476 cross-entropy with its noise-robust variants, we did not explore a broader range of loss functions,
 477 such as contrastive or margin-based formulations, nor did we explore the role of hyperparameters
 478 such as batch size. Finally, we mostly mentioned neural collapse to remark that our models are
 479 relatively far from achieving it at the end of training. On the contrary, a systematic study of its
 480 relationships to DD could be an interesting extension, albeit one probably deserving a separate study.

481 While these limits clearly identify possible extensions, an intriguing direction we did not consider
 482 concerns the statistical nature of double descent itself. Recent results show that DD can be under-
 483 stood within the classical bias-variance framework for simpler models Curth et al. (2023), which
 484 begs the question of whether similar arguments extend to modern deep neural networks. At the same
 485 time, our results suggest that theoretical findings involving gradient-based baselines and/or simpler
 models might not straightforwardly carry over to deep models.

486 REPRODUCIBILITY STATEMENT
487488 All implementation details and hyperparameter settings required to reproduce our results are pro-
489 vided in Section 3.4 and in Appendix B. The source code is available at our GitHub repository
490 <https://anonymous.4open.science/r/DDxNoise>.
491492 REFERENCES
493494 Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained bias-
495 variance decomposition. *Advances in neural information processing systems*, 33:11022–11032,
496 2020.497 Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
498 regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070, 2020.500 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
501 learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy
502 of Sciences*, 116(32):15849–15854, 2019.
503504 Mikhail Belkin, Daniel Hsu, and Ji Xu. Two Models of Double Descent for Weak Features. *SIAM
505 Journal on Mathematics of Data Science*, 2(4):1167–1180, 2020.506 Xiangyu Chang, Yingcong Li, Samet Oymak, and Christos Thrampoulidis. Provable Benefits of
507 Overparameterization in Model Compression: From Double Descent to Pruning Neural Net-
508 works. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(8):6974–6983, 2021.
509510 Siddharth Chaudhary, Joe Down, Nathan D’Souza, Yufei Gu, and Huijie Yan. Parameter-wise dou-
511 ble descent-a unified model or not? Available at SSRN 4469495, 2023.
512513 Alicia Curth, Alan Jeffares, and Mihaela van der Schaar. A u-turn on double descent: Rethinking
514 parameter counting in statistical learning. In *Thirty-seventh Conference on Neural Information
515 Processing Systems*, 2023.516 Yehuda Dar, Vidya Muthukumar, and Richard G. Baraniuk. A farewell to the bias-variance trade-
517 off? an overview of the theory of overparameterized machine learning, 2021. URL <https://arxiv.org/abs/2109.02355>.
518520 Stéphane D’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in dou-
521 ble descent: Bias and variance(s) in the lazy regime. In Hal Daumé III and Aarti Singh (eds.),
522 *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceed-
523 ings of Machine Learning Research*, pp. 2280–2290. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/d-ascoli20a.html>.
524525 Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learn-
526 ing. *arXiv preprint arXiv:2112.15121*, 2021.
527528 Matteo Gamba, Erik Englesson, Mårten Björkman, and Hossein Azizpour. Deep Double Descent
529 via Smooth Interpolation. *Transactions on Machine Learning Research*, 2022.
530531 Y Gu, X Zheng, and T Aste. Unraveling the enigma of double descent: an in-depth analysis through
532 the lens of learned feature space. In *12th International Conference on Learning Representations,
533 ICLR 2024*, volume 2024. International Conference on Learning Representations (ICLR), 2024.534 XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
535 dynamics on the central path. *arXiv preprint arXiv:2106.02073*, 2021.
536537 Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-
538 dimensional ridgeless least squares interpolation. *The Annals of Statistics*, 50(2):949 – 986, 2022.
539 doi: 10.1214/21-AOS2133. URL <https://doi.org/10.1214/21-AOS2133>. Publisher:
Institute of Mathematical Statistics.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 541 human-level performance on imagenet classification. In *Proceedings of the IEEE international*
 542 *conference on computer vision*, pp. 1026–1034, 2015.

543

544 Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
 545 generalization in deep learning. *arXiv preprint arXiv:2202.08384*, 2022.

546

547 Alan Jeffares and Mihaela van der Schaar. Not all explanations for deep learning phenomena are
 548 equally valuable. *arXiv preprint arXiv:2506.23286*, 2025.

549

550 Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
 551 *Conference on learning theory*, pp. 1772–1798. PMLR, 2019.

552

553 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 554 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 555 *preprint arXiv:1609.04836*, 2016.

556

557 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
 558 Bengio and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR*
 559 *2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.

560

561 Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, et al. The cifar-10 dataset. *online*: <http://www.cs.toronto.edu/~kriz/cifar.html>, 55(5):2, 2014.

562

563 Ilja Kuzborskij, Csaba Szepesvári, Omar Rivasplata, Amal Rannen-Triki, and Razvan Pascanu. On
 564 the role of optimization in double descent: A least squares study. *Advances in Neural Information*
 565 *Processing Systems*, 34:29567–29577, 2021.

566

567 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
 568 nition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

569

570 Chris Yuhao Liu and Jeffrey Flanigan. Understanding the role of optimization in double descent. In
 571 *OPT 2023: Optimization for Machine Learning*, 2023.

572

573 Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
 574 parameterization. In *International Conference on Machine Learning*, pp. 14153–14172. PMLR,
 575 2022.

576

577 Marco Loog, Tom Viering, Alexander Mey, Jesse H. Krijthe, and David M. J. Tax. A brief prehistory
 578 of double descent. *Proceedings of the National Academy of Sciences*, 117(20):10625–10626,
 579 2020.

580

581 Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
 582 asymptotics and the double descent curve. *Communications on Pure and Applied Mathematics*,
 583 75(4):667–766, 2022.

584

585 Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
 586 *Sampling Theory, Signal Processing, and Data Analysis*, 20(2):11, 2022.

587

588 Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu, and
 589 Anant Sahai. Classification vs regression in overparameterized regimes: Does the loss function
 590 matter? *Journal of Machine Learning Research*, 22(222):1–69, 2021.

591

592 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
 593 double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: Theory and Experiment*, 2021(12):124003, 2021a.

594

595 Preetum Nakkiran, Prayaag Venkat, Sham M Kakade, and Tengyu Ma. Optimal regularization can
 596 mitigate double descent. In *International Conference on Learning Representations*, 2021b.

597

598 Duc Anh Nguyen, Ron Levie, Julian Lienen, Gitta Kutyniok, and Eyke Hüllermeier. Memorization-
 599 dilation: Modeling neural collapse under label noise, 2023. URL <https://arxiv.org/abs/2206.05530>.

594 Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal
 595 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 596 24652–24663, September 2020. ISSN 1091-6490. doi: 10.1073/pnas.2015509117. URL <http://dx.doi.org/10.1073/pnas.2015509117>.

598 Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
 599 deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the*
 600 *IEEE conference on computer vision and pattern recognition*, pp. 1944–1952, 2017.

601 Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Baraniuk,
 602 Micah Goldblum, and Tom Goldstein. Can neural nets learn the same model twice? investigating
 603 reproducibility and double descent from the decision boundary perspective. In *Proceedings of the*
 604 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13699–13708, 2022.

605 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 606 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 607 1–57, 2018.

608 Nicholas J. Teague. Geometric regularization from overparameterization, 2022. URL <https://arxiv.org/abs/2202.09276>.

609 Farooq Ahmad Wani, Maria Sofia Bucarelli, and Fabrizio Silvestri. Learning with noisy labels
 610 through learnable weighting and centroid similarity. In *2024 International Joint Conference on*
 611 *Neural Networks (IJCNN)*, pp. 1–9. IEEE, 2024.

612 Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance trade-
 613 off for generalization of neural networks. In *International Conference on Machine Learning*, pp.
 614 10767–10777. PMLR, 2020.

615 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 616 deep learning (still) requires rethinking generalization. *Commun. ACM*, 64(3):107–115, 2021.

617 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
 618 with noisy labels. *Advances in neural information processing systems*, 31, 2018.

619 Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A ge-
 620 ometric analysis of neural collapse with unconstrained features. *Advances in Neural Information*
 621 *Processing Systems*, 34:29820–29834, 2021.

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A RELATED WORK
649650 A.1 EMBEDDINGS/REPRESENTATION-SPACE
651

652 From a statistical learning perspective, analyses of ridgeless least squares and random features
653 (Hastie et al., 2022; Loog et al., 2020) attribute the second descent to implicit biases of high-
654 dimensional solutions, while Muthukumar et al. (2021) show that classification losses exacerbate
655 non-monotonicity compared to regression. Other explanations take a geometric lens, linking DD to
656 the learning of smoother interpolants in overparameterized networks (Gamba et al., 2022) or to the
657 discovery of structured, “prunable” solutions (Chang et al., 2021; Teague, 2022). Representation-
658 space analyses, such as Gu et al. (2024), emphasize how overparameterized models reorganize noisy
659 samples, while Curth et al. (2023) argue that DD can vanish when complexity is measured via effec-
660 tive degrees of freedom rather than raw parameter counts, though their results are limited to simple,
661 non-deep models. Finally, some works suggest that DD may partly reflect experimental artifacts:
662 Chaudhary et al. (2023) argue that the peak reported by Belkin et al. (2020) disappears once asym-
663 metric learning-rate schedules and weight reuse are controlled.

664 A.2 TRAINING WITH NOISE-ROBUST LOSSES
665

666 A central challenge in training deep neural networks is their tendency to overfit when labels are
667 noisy, and a variety of approaches have been proposed to design loss functions that are more robust
668 in such settings. One early contribution in this direction is by Patrini et al. (2017), who developed
669 a practical method for correcting the loss function itself, showing experimentally that this correc-
670 tion can substantially improve performance under label noise. Building on the idea of modifying the
671 loss, Zhang & Sabuncu (2018) introduced the generalized cross-entropy loss, which interpolates be-
672 tween mean absolute error and cross-entropy, and demonstrated that it achieves significantly greater
673 robustness to noisy labels compared to standard cross-entropy.

674 Beyond proposing new loss formulations, researchers have also explored the role of model capacity
675 in handling noise. Liu et al. (2022) provided both theoretical and experimental evidence that over-
676 parameterization can actually help models withstand label corruption when combined with a spe-
677 cialized loss. Their Sparse Over-Parametrisation (SOP) method is motivated by the observation that
678 label noise is typically sparse, and therefore can be modeled explicitly. In SOP, each noisy label is
679 expressed as the sum of the network’s prediction $f(x_i; \theta)$ and a noise term s_i , with the latter pa-
680 rameterized as $s_i = u_i \odot u_i - v_i \odot v_i$ to enforce sparsity. Both the model parameters θ and the
681 noise parameters u_i, v_i are optimized jointly through gradient descent, with careful initialization and
682 learning-rate strategies ensuring that the noise component remains well-regularized.

683 More recently, Wani et al. (2024) introduced NCOD, which incorporates noise modeling directly
684 into the latent representation space. In their framework, each class is associated with a centroid in the
685 embedding space, computed as the average of its samples, and every input is compared against this
686 centroid to measure similarity. At the same time, each sample is assigned a learnable weight $u_i \in$
687 $[0, 1]$ that governs its contribution to the loss function. Samples that are persistently misclassified by
688 the model—likely to be mislabeled—gradually receive larger u_i values, which in turn downweight
689 their influence during training. This mechanism enables the model to focus on clean data while
690 automatically reducing the impact of suspected noisy labels.

691 A.3 NEURAL COLLAPSE
692

693 Neural Collapse is a phenomenon observed in overparameterized neural networks during the ter-
694 minal phase of training, after the training error reaches zero Popyan et al. (2020). It is charac-
695 terized by highly symmetric last-layer features and classifier weights that converge toward a Sim-
696 plex Equiangular Tight Frame. Popyan et al. demonstrated its prevalence across multiple architec-
697 tures -ResNet, VGG, DenseNet- and datasets, and suggested that this structure can improve robust-
698 ness, interpretability, and potentially generalization. Subsequent works have expanded the empiri-
699 cal and theoretical understanding of neural collapse: for instance, Han et al. (2021) observed neural
700 collapse under MSE loss, while Mixon et al. (2022) showed how gradient descent dynamics drive
701 convergence toward NC. Zhu et al. (2021) further analyzed the optimization landscape, concluding
702 that each critical point is either a global minimum corresponding to the Simplex ETF or a saddle
703 point with negative curvature, and therefore the neural collapse can be achieved by any optimization

702 method able to avoid inflection points. Other studies, such as Hui et al. (2022), emphasize that larger
703 collapse during training does not always lead to better performance in terms of generalization, intro-
704 ducing the distinction between neural collapse on train set and on test set. Conversely, Galanti et al.
705 (2021) report that neural collapse can support feature transfer and generalization to new classes, ex-
706 plaining its potential relevance for few-shot and foundation models.
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **B EXPERIMENTAL SETUP**
757758 All experiments were implemented in PyTorch. The full codebase is available in our GitHub
759 repository at the following link: [https://anonymous.4open.science/r/DDxNoise/](https://anonymous.4open.science/r/DDxNoise/README.md)
760 README.md.
761762 **B.1 MODELS**
763764 All models are based on those used by Gu et al. (2024), which in turn were based on the CNN and
765 ResNet architectures proposed by Nakkiran et al. (2021a).
766

- **Fully Connected Network (FCNN):** the model consists of a single hidden layer of variable width k , with $k \in \{1, 3, 4, 7, 10, 13, 15, 25, 40, 100, 250, 500, 1000\}$, followed by a linear classifier. Differently from Gu et al. (2024), who utilize custom weight initialization schemes (Xavier uniform for $k = 1$, a normal distribution with parameters $(0, 0.1)$ for $k > 1$), we adopted the He initialization (He et al., 2015) (i.e. a uniform distribution between $(-b, b)$, with $b = \sqrt{3/d}$ and d the number of features of the dataset) for all values of k .
772
- **Parametric CNN:** a 5-layer architecture, with four convolutional layers doubling the number of channels progressively $([k, 2k, 4k, 8k]$, for $k \in \{1, 2, 4, 7, 10, 13, 17, 20, 25, 30, 40, 50, 64\}$), each followed by a max pooling layer with kernel sizes $[2, 2, 2, 4]$ respectively. All convolutional layers use kernel size 3, stride 1, and padding 1. A final linear classifier maps features to output logits.
773
- **Parametric ResNet18:** a network with four residual blocks, each containing two batch-normalized convolutional layers. Each convolutional layer progressively scales the channel dimension as $[k, 2k, 4k, 8k]$, with $k \in \{1, 4, 8, 11, 13, 16, 18, 21, 24, 28, 32, 40, 56, 64\}$. The layers operate with kernel size 3, stride $[1, 2, 2, 2]$ for downsampling, and skip connections characteristic of the ResNet architecture. A global average pooling precedes the final linear classifier. Setting $k = 64$ recovers the standard ResNet18.
782

784 **B.2 OPTIMIZATION**
785786 We trained the models using three different optimizers, widely used in the literature: Stochastic
787 Gradient Descent (SGD), Stochastic Gradient Descent with custom learning rate scheduler (SGD +
788 CS) and Adam.
789790 The custom scheduler is based on the one introduced by Gu et al. (2024): $lr = \frac{lr_0}{\sqrt{1+[epoch/50]}}$ for
791 FCNNs and $lr = \frac{lr_0}{\sqrt{1+[epoch*10]}}$ for CNN and ResNet, where lr_0 is the initial learning rate. In both
792 cases, the learning rate is updated every 50 epochs. FCNNs were trained for 4000 epochs, while
793 CNNs and ResNets were trained for 200 epochs. These epochs guarantee that zero training error is
794 achieved, as can be seen in Appendix E.
795796 Apart from learning rate, the default PyTorch hyperparameters were kept for the optimizers: momentum = 0 for SGD, betas = (0.9, 0.999) for Adam, and weight decay = 0 for both.
797798 Initial learning rate are chosen from $\{10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 0.05, 10^{-1}\}$. The batch size was set
799 to 512 across all runs. No data augmentation or regularization techniques were used.
800801 **B.3 HARDWARE**
802803 All experiments were conducted on a Linux machine equipped with an AMD Ryzen 9 7950X 16-
804 Core Processor, 128 GB RAM, and 2 × NVIDIA GeForce RTX 4090 GPUs. The operating system
805 was Ubuntu 24.04.2 LTS with kernel version 6.14.0-27-generic.
806

810 C EXPERIMENTAL ANALYSIS ON FCN AND CNN ARCHITECTURES
811

812 This section reports the experimental results obtained with the FCN and CNN models. Overall,
813 the behaviour observed in these two architectures is consistent with the findings reported in the
814 main body of the paper and show that the phenomena discussed in the main text are not specific
815 to ResNet models. Although the quantitative details vary, the qualitative patterns are remarkably
816 aligned, strengthening the robustness of our conclusions.

817
818 C.1 EFFECT OF LABEL NOISE.
819

830 Figure 5: Cross Entropy on the test set as a function of the base convolutional layer width (k) of CNN
831 models trained with Cross-Entropy loss on CIFAR-10 using three optimizers with initial learning
832 rate 0.0001. Results show how different optimizers and noise rates affect the test error curve.

834 Figure 6: Cross Entropy on the test set as a function of the base hidden layer width (k) of FCN
835 models trained with Cross-Entropy loss on MNIST using three optimizers with initial learning
836 rate 0.0001. Results show how different optimizers and noise rates affect the test error curve.

837 Figs. 5 and 6 illustrate CE curves on the test set for CNN and FC networks under different label
838 noise rates. In line with ResNet results, we observe that increasing the noise rate generally leads to
839 an enhancement in the height and visibility of the DD peak. However, noise is not the primary trigger,
840 as DD may not emerge in presence of noise. This finding reinforces the paper’s primary message:
841 noise acts primarily as a amplifier, rather than a necessary cause of DD.

842 The impact of noise-robust losses is instead slightly architecture-dependent. For CNNs, as illustrated in Fig. 7, robust losses only moderately mitigate the DD peak but substantially reduce the
843 double-ascent in test accuracy at intermediate widths. For FCNs, as depicted in Fig. 8, the losses
844 considerably improve the accuracy, reducing the accuracy dip obtained when training with CE loss,
845 and are also slightly more effective in attenuating the CE peak. This finding suggests that simpler,
846 fully connected architectures are more responsive to robust loss functions, although the overall qual-
847 itative behavior mirrors that of the other networks.

861 C.2 EFFECT OF LEARNING RATE
862

863 Figs. 9 and 10 illustrate the impact of learning rate on DD under different optimizers. For both
864 CNNs and FCs trained with SGD and SGD+CS, higher (initial) learning rates amplify the DD peak,

Figure 7: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base convolutional layer width (k) of CNN models trained on CIFAR-10 using Adam optimizer with an initial learning rate of 0.0001. Results are reported for noise rates (0.0, 0.1, 0.2) under varying training losses: Cross-Entropy (CE), Forward-corrected CE (FWD) and NCOD.

Figure 8: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base hidden layer width (k) of FCN models trained on MNIST using Adam optimizer with an initial learning rate of 0.0001. Results are reported for noise rates (0.0, 0.1, 0.2) under varying training losses: Cross-Entropy (CE), Forward-corrected CE (FWD) and NCOD.

while lower rates tend to attenuate or suppress it entirely. As observed with ResNet, Adam preserves DD across all tested learning rates, thereby further underscoring the notion that optimizer choice can dominate the effects of learning rate in determining the appearance and magnitude of DD. A practical note: high learning ($lr = 0.1$) and noise (0.2) rates produce very high loss values for FCNs optimized with Adam; for clarity, these plots use a logarithmic y -axis.

C.3 ACCURACY METRICS.

We compare standard softmax accuracy with geometry-based metrics, kNN and NC accuracy, across both architectures in Figs. 11 and 12. In most cases, the three metrics do not perfectly align, but the trend we observed in Section 4.3 for ResNet is still visible: geometry-based accuracies generally outperform the standard softmax measure. The analysis of neural collapse metrics (Figs. 14 and 15) confirms that even with this architectures, full collapse is not achieved. That is, while the models interpolate the training data, their features have not yet converged to class centroids, leaving room for discrepancies between standard and geometry-based accuracies. This further supports the interpretation that overparameterized networks can develop good latent representations, even in the presence of noise, well before achieving complete neural collapse.

918
919
920
921
922937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 10: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base hidden layer width (k) of FCN models trained on MNIST with Cross-Entropy loss using the three optimizers and multiple initial learning rates. The last plot is shown on a logarithmic scale, since the Cross-Entropy with learning rate 0.1 reached very large values.

Figure 11: Test accuracy on the test set as function of the base convolutional layer width (k) of CNN models trained on CIFAR-10 with Cross-Entropy loss. The plot compares model classifier predictions (Standard) with Nearest Centroid (NC) and k-Nearest Neighbours (kNN, $k=20$) predictions under varying label noise rates (0.0, 0.1, 0.2) and optimizers (SGD, SGD+CS, Adam) with initial learning rate 0.01.

Figure 12: Test accuracy on the test set as function of the base hidden layer width (k) of FCN models trained on MNIST with Cross-Entropy loss. The plot compares model classifiers predictions (Standard) with Nearest Centroid (NC) and k-Nearest Neighbours (kNN, $k=20$) predictions under varying label noise rates (0.0, 0.1, 0.2) and optimizers (SGD, SGD+CS, Adam) with initial learning rate 0.01.

1026 Taken together, these findings confirm that the key phenomena observed in ResNet models general-
1027 ize to FCN and CNN architectures: (i) label noise amplifies but does not cause DD; (ii) optimizer
1028 and learning-rate choices are primary drivers of DD; and (iii) representation-space probes reveal
1029 structured geometry that explains why accuracy can recover beyond the interpolation threshold even
1030 when loss curves show pronounced peaks. Although the exact numerical characteristics may differ
1031 across architectures, the underlying patterns remain consistent, suggesting that the mechanisms driv-
1032 ing DD are not peculiar to a specific network family but reflect more general principles of overpa-
1033 rameterized neural networks. In fact, we showed that even simpler architectures like FCN networks,
1034 which lack the spatial structure of CNNs, exhibit similar trends in how noise amplifies DD and how
1035 geometry-based evaluation metrics reveal latent structure. This indicates that insights drawn from
1036 one network type could likely be meaningfully extended to others, providing a common foundation
1037 for theoretical analyses and practical guidelines.
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **D NEURAL COLLAPSE METRICS**
10811082 To assess the extent to which Neural Collapse occurs in our setting, we employ several standard
1083 metrics proposed by Palyan et al. (2020). The values of these metrics were collected at each training
1084 epoch. We provide a brief description of each one below.
10851086 **Variation coefficients** The variation coefficient, also known as relative standard deviation, is a
1087 measure of dispersion and it is defined as the ratio between the standard deviation and the mean. In
1088 our setting, the coefficient of variation is computed for the globally centered centroids of each class
1089 in the latent space of the last hidden layer. Specifically, we calculate the following quantity:
1090

1091
$$\frac{\text{Std}_c(\|\mu_c\|_2)}{\text{Avg}_c(\|\mu_c\|_2)}$$

1092
1093

1094 , where μ_c is the centroid of the c -th class. A convergence of this quantity toward zero indicates that
1095 all centroids tend to have the same norm (i.e., they become equinormed), a necessary condition for
1096 them to form a simplex equiangular tight frame.
10971098 **Standard deviation of cosines** To assess angular uniformity, we first computed the cosine of the
1099 angle between each pair of centroids, and then calculated the standard deviation of these values:
1100

1101
$$\text{Std}_{c,c' \neq c}(\cos(\mu_c, \mu_{c'})).$$

1102

1103 As training progresses, this metric is expected to decrease toward zero, which would indicate that
1104 the angles are becoming uniform.
11051106 **Average of shifted cosines** The maximal separation angle corresponds to all cosine similarities
1107 approaching $-\frac{1}{C-1}$, where C is the number of classes. To evaluate this, we computed the average
1108 deviation of cosine similarities from this target value for each pair of centroids:
1109

1110
$$\text{Avg}_{c,c'} \left(\left| \cos(\mu_c, \mu_{c'}) + \frac{1}{C-1} \right| \right).$$

1111

1112 A value approaching zero reflects convergence toward maximal equiangularity.
11131114 **Frobenius norm of weight-centroid difference** Finally, the alignment between the classifier
1115 weights and the class centroids is measured by comparing their normalized matrices. Let W denote
1116 the weight matrix and M the matrix whose columns are the class centroids. We computed
1117

1118
$$\left\| \frac{\mathbf{W}}{\|\mathbf{W}\|_F} - \frac{\mathbf{M}}{\|\mathbf{M}\|_F} \right\|_F^2.$$

1119

1120 A decreasing value indicate an increasing proportionality, which is consistent with the final stage of
1121 neural collapse, where classifier weights align with centroids.
11221123 **Findings** As previously discussed in Section 4.3, we observe *incomplete* neural collapse across all
1124 tested optimizers: metrics decrease during training but never converge to zero (Figs. 13 to 15). Re-
1125 sults are reported only for the widest model in each family ($k = 64$). We also verified that smaller
1126 widths behave consistently: since neural collapse is not achieved even with the largest model con-
1127 figurations, it does not occur with smaller ones either. The findings confirm that, even in overparam-
1128 eterized regimes where models interpolate the training data, centroids do not collapse fully. Impor-
1129 tantly, this incomplete collapse is not a limitation for our study but rather the realistic setting we wish
1130 to investigate, where geometry-based accuracies remain informative. These plots further support our
1131 interpretation of the observed discrepancies between standard and geometry-based accuracies.
1132
1133

Figure 13: From left to right: (i) coefficient of variation (Std/Avg); (ii) standard deviation of cosine (Std(cos)); (iii) average shifted cosine (Avg(|shifted cos|)); (iv) Frobenius norm of the weight–centroid difference ($\|M - W\|$), all computed on the class centroids. Metrics were obtained by training a ResNet model with base convolutional layer width $k = 64$ on CIFAR-10 using Cross-Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01

Figure 14: From left to right: (i) coefficient of variation (Std/Avg); (ii) standard deviation of cosine (Std(cos)); (iii) average shifted cosine (Avg(|shifted cos|)); (iv) Frobenius norm of the weight–centroid difference ($\|M - W\|$), all computed on the class centroids. Metrics were obtained by training a CNN model with base convolutional layer width $k = 64$ on CIFAR-10 using Cross-Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01

Figure 15: From left to right: (i) coefficient of variation (Std/Avg); (ii) standard deviation of cosine (Std(cos)); (iii) average shifted cosine (Avg(|shifted cos|)); (iv) Frobenius norm of the weight–centroid difference ($\|M - W\|$), all computed on the class centroids. Metrics were obtained by training a FCN model with base hidden layer width $k = 64$ on MNIST using Cross-Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01

1296 **E TRAINING LOSS**
1297

1311 Figure 16: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions of
1312 the base convolutional layer width (k) of ResNet models trained on CIFAR-10 with Cross-Entropy
1313 loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of
1314 0.01
1315

1320 Figure 17: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions
1321 of the base convolutional layer width (k) of CNN models trained on CIFAR-10 with Cross-Entropy
1322 loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of
1323 0.01
1324

1325 Figs. 16 to 18 report both training and test quantities: CE and classification accuracy. Concretely,
1326 each panel shows these metrics for noise rate 0, training with CE Loss and varying the optimi-
1327 zator. These plots are included as they confirm that our models attain *perfect interpolation* in the
1328 overparameterized regime: training CE approaches zero and training accuracy reaches 1.0 for the
1329 intermediate- to large-width models used in the paper. This is important because double descent is
1330 defined with respect to interpolation behaviour; showing train loss = 0 and train accuracy = 1 docu-
1331 ments that the interpolation threshold has been crossed in our experiments.

1332 Figs. 19 and 20 report both training and test quantities for CNN trained on noisy data: CE and
1333 classification accuracy. Each panel shows these metrics for noise rates 0.1 and 0.2, training with
1334 CE Loss and varying the optimizer. These plots confirm that even if them models attain *perfect*
1335 *interpolation* (training accuracy reaches 1.0) and label noise is present, the emergence of double
1336 descent still depends on the choice of optimizer. Specifically, we observe a clear DD peak for
1337 Figs. 19a, 19c, 20a and 20c and we whereas no such peak appears for Figs. 19b and 20b.
1338

Figure 18: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions of the base hidden layer width (k) of FCN models trained on MNIST with Cross-Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01

Figure 19: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions of the base convolutional layer width (k) of CNN models trained on CIFAR-10 (noise rate 0.1) with Cross-Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01

Figure 20: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions of the base convolutional layer width (k) of CNN models trained on CIFAR-10 (noise rate 0.2) with Cross-Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01

F MODEL SELECTION (BEST VS LAST EPOCH)

Figure 21: Cross-Entropy on test set as a function of the base convolutional layer width (k) of ResNet models trained with Cross-Entropy loss on CIFAR-10 using Adam with initial learning rate 0.0001. Results compare the Cross-Entropy at the last training epoch (left) versus the best-performing epoch (right).

Figure 22: Cross-Entropy on test set as a function of the base convolutional layer width (k) of CNN models trained with Cross-Entropy loss on CIFAR-10 using Adam with initial learning rate 0.0001. Results compare the Cross-Entropy at the last training epoch (left) versus the best-performing epoch (right).

In the main text, we present metrics computed on the final training checkpoint to illustrate the *last-model* behaviour, a common practice in DD studies. To ensure comprehensiveness, this section presents a complementary analysis in which, for each iteration, the checkpoint exhibiting the minimum validation loss (the “best epoch”) is selected. This selection protocol is closer to standard practical pipelines, where different techniques (e.g. early stopping) are commonly applied to avoid overfitting, providing a realistic perspective on the phenomenon.

As illustrated in Figs. 21 to 23, the selection of the validation-best checkpoint led to the complete elimination of the DD peak that was observable when evaluating the last-epoch model. This result aligns with the observation made in Section 5 that DD, while theoretically relevant for understanding overparameterized models, may have limited practical impact in typical training settings where validation-based model selection is applied. Due to limitations in time and resources that precluded the execution of a comprehensive experimental protocol, we present these partial results with the hope that they will offer valuable insights to other researchers in the field.

Figure 23: Cross-Entropy on test set as a function of the base hidden layer width (k) of FCN models trained with Cross-Entropy loss on MNIST using Adam with initial learning rate 0.0001. Results compare the Cross-Entropy at the last training epoch (left) versus the best-performing epoch (right).

G LLM USAGE

Large language models were utilized exclusively for minor support tasks, such as assisting with code debugging and enhancing the quality of written content. All core aspects of the research were conducted entirely by the authors. LLMs were not used to generate, reinterpret, or alter any substantive scientific content.

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511