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ABSTRACT

We examine how the double descent phenomenon emerges across different archi-
tectures, optimisers, learning rate schedulers and noise-robust losses. Previous
studies have often attributed the interpolation peak to label noise. However, by
systematically varying noise levels, optimizers, learning rate regimes and training
losses, we demonstrate that, while noise can amplify the effect, it is unlikely to
be the driving factor behind double descent. Instead, optimization dynamics, no-
tably learning rate and optimizers, strongly influence whether a visible peak ap-
pears, often having a larger effect than adding label noise. Consistently, noise-
robust losses partially mitigate double descent in settings where the amplifica-
tion effect of noise is strongest, while their impact is negligible when this is not
the case. Expanding on recent work, this study further confirms that noise pri-
marily deteriorates the linear separability of different classes in feature space.
Our results reconcile seemingly conflicting prior accounts and provide practical
guidance: commonly used learning rate/scheduler combinations/losses can pre-
vent double descent, even in noisy regimes. Furthermore, our study suggests that
double descent might have a lesser impact in practice. Our code is available at
https://anonymous.4open.science/r/DDxNoise.

1 INTRODUCTION

Overparameterized neural networks have revolutionized the field of machine learning, achieving un-
precedented performance in various complex tasks. However, their success has simultaneously chal-
lenged long-standing tenets of statistical learning theory, which traditionally posited that increasing
model complexity beyond a certain point would inevitably lead to overfitting and poor generaliza-
tion. Current large models typically have enough capacity to perfectly interpolate training data (i.e.,
achieve zero training error). Yet, they often generalize remarkably well to unseen data (Zhang et al.,
2021), seemingly contradicting the conventional wisdom that exceedingly complex models will sim-
ply memorize training data, including noise, inevitably leading to overfitting and failing to general-
ize to unseen examples.

This paradox is exemplified by the Double Descent (DD) phenomenon, in which generalization error
initially decreases with model size, peaks around the point of perfect training data interpolation, and
then decreases again in the highly overparameterized regime (Belkin et al., 2019; Nakkiran et al.,
2021a). This ”second descent” implies that overparameterization, rather than being detrimental,
allows models to learn more robust features or to implicitly regularize against harmful noise.

Several explanations have been offered, ranging from implicit regularization by optimization algo-
rithms, which in the heavily overparameterized regime tend to favor solutions that generalize well
(Keskar et al., 2016; Soudry et al., 2018; Ji & Telgarsky, 2019; Dar et al., 2021), to “benign overfit-
ting” in high-dimensional settings, demonstrating that interpolating noisy data can still yield robust
generalization under specific data structures (Belkin et al., 2019; Bartlett et al., 2020). Further the-
oretical work highlights the role of model misspecification (Mei & Montanari, 2022; Hastie et al.,
2022), which leads to significant generalization error in models that are underparameterized or at
the interpolation threshold, while the abundance of parameters provides the model with sufficient
flexibility to effectively ”compensate” in the highly overparameterized regime.

The complex interplay of these factors is essential for a comprehensive understanding of this dual
risk curve. More recently, Gu et al. (2024) highlighted the crucial role that noisy samples seem to
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play in shaping the behaviour of deep learning models. They show that overparameterized models
interpolate more correct training data around noisy ones of matching classes, effectively isolating
noise and explaining accuracy recovery after the interpolation peak.

Our contribution. In this paper, we show that DD is not caused by noisy data but is instead a
phenomenon that is directly attributable to the optimization process.

As we discuss more extensively in Section 2, past work has identified a number of potential fac-
tors behind DD, with noise often identified as a crucial one. In this study, we try to reconcile some
of these different perspectives into a coherent picture. We revisit model-wise DD through a multi-
dimensional analysis of the phenomenon, exploring the interplay between noise, optimizer and
learning rate. The picture that emerges identifies some clear trends. First and foremost, noise alone,
even at high levels, is not a necessary cause for DD, while it has a magnifying effect in some cases.
Accordingly, we show that noise-robust losses only mildly mitigate DD by reducing the amplifying
effect of noise, but offer little benefit otherwise. On the contrary, the optimization algorithm and
learning rate (with and without scheduler) appear to be strong drivers of DD even in the absence of
noise, something we discuss in detail in Section 4.

To better zoom in into the above phenomena, we analyze DD in feature space using k-Nearest
Neighbors (kNN), expanding the analysis of Gu et al. (2024) to include various combinations of
optimizers and learning rates, with or without scheduler. Moreover, differently from them, we also
investigate geometry of the feature space through the lens of the Nearest Centroid (NC) heuristic.
By design, this heuristic is more sensitive to misalignment between clustering of the training set
in feature space and actual training set labels and as such, it has been used in the analysis of the
neural collapse phenomenon (Papyan et al., 2020). Together, kNN and NC highlight complementary
aspects of the geometry of learned regions. Our analysis reveals that geometry-based accuracies
consistently surpass the standard linear head, particularly in the presence of noise, showing also
optimizer-dependent patterns. This demonstrates that models can learn robust representations even
when the final classifier struggles.

While some trends identified in this study have been separately investigated in the past, we believe
our work provides a unified and fresh perspective on a very intriguing phenomenon. We also believe
our work can offer cues for future research on DD, as elaborated further on in Section 5.

2 RELATED WORK

Investigating the double descent (DD) phenomenon—its occurrence and underlying causes—has
been the focus of numerous recent studies in machine learning. A body of theoretical work examines
DD in simplified contexts, often using linear models for regression (Hastie et al., 2022; Loog et al.,
2020; Muthukumar et al., 2021; Gamba et al., 2022; Gu et al., 2024; Curth et al., 2023; D’Ascoli
et al., 2020; Adlam & Pennington, 2020). In this work, we focus specifically on how model-wise
DD depends on noise and on optimization process in more complex, deep models. For the sake of
space, we review prior studies along these two axes, referring the reader to Appendix A for other
contributions that fall outside of this scope but have some bearing on this study.

Noise as a fundamental driver of double descent A substantial body of work connects the ap-
pearance of the double descent peak primarily to the presence of label noise. The seminal contribu-
tions of Belkin et al. (2019) and Nakkiran et al. (2021a) provided extensive empirical evidence across
architectures and datasets, showing that the cross entropy loss curve reaches its maximum near the
interpolation threshold largely because models acquire the capacity to fit noisy labels. This noise-
centric perspective is strengthened by Gu et al. (2024), who showed that overparameterized mod-
els progressively “isolate” noisy samples in representation space, embedding them near clean same-
class neighbors and thus reducing their detrimental effect on generalization. Similarly, Somepalli
et al. (2022) analyzed decision boundaries, observing fragmentation near interpolation that stabi-
lizes with width; they argue that noise makes DD more visible because the model must carve out
local misclassified regions to fit noisy labels. A complementary bias–variance account is given by
Yang et al. (2020), who showed that bias decreases monotonically with width while variance is uni-
modal; DD arises when the variance peak, often amplified by noise, dominates near interpolation.
Studies on random feature models further confirm that variance can diverge at the threshold, with
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DD observable even without noise but exacerbated by it (D’Ascoli et al., 2020; Adlam & Penning-
ton, 2020). Together, these works establish noise as an important factor in DD, but they do not in-
vestigate other co-factors, leaving open whether noise is the key driver behind double descent or
merely an amplifier.

Noise-robust losses. In our study, we also employ noise-robust losses as a further way to assess
the impact of noise on double descent. Since these methods are not a primary research focus but
practical tools in this work, we refer the interested reader to Appendix A for an overview.

The role of optimization Only a handful of studies have emphasized the role of optimiza-
tion dynamics and associated hyperparameters in shaping the double descent (DD) phenomenon
(Kuzborskij et al., 2021; Liu & Flanigan, 2023; Nakkiran et al., 2021b; Gamba et al., 2022).
Kuzborskij et al. (2021) stressed the importance of optimization, with a different focus with respect
to our work. They provide a theoretical analysis of DD in least-squares regression via gradient de-
scent, highlighting how the feature covariance spectrum drives excess risk even without noise; how-
ever, their empirical scope is limited to one-hidden-layer MLPs with square loss and shows minimal
variation across learning rates. Liu & Flanigan (2023) empirically examine random feature mod-
els and two layer networks finding DD depends on feature matrix conditioning and convergence
speed—slower regimes suppress peaks, while faster optimization restores them. Their work thus re-
inforces the findings of Kuzborskij et al. (2021), though within relatively simple models. Our work
complements and extends the perspective of both works to modern deep architectures and classifi-
cation tasks, providing a broader analysis of how optimizer choice, learning-rate schedules, and la-
bel noise jointly shape DD. Nakkiran et al. (2021b) also highlights the stabilizing role of regular-
ization. They show that optimal ℓ2 regularization can mitigate or eliminate DD, producing mono-
tonic risk curves in both random feature models and convolutional networks. The analysis is limited
to the tuning of the regularization coefficient, without examining the influence of optimizer choice
or learning-rate dynamics. Gamba et al. (2022) conducted an empirical study on loss landscape
smoothness in neural networks, linking loss sharpness in input space with both model- and epoch-
wise double descent.

Overall, literature converges on a multi-causal view of DD, whereby noise is a powerful amplifier
and often the clearest empirical correlate for risk peak, but optimization dynamics, model misspec-
ification, geometry of representations play decisive roles. Our study builds on this integrated per-
spective by disentangling the relative contributions of noise, optimizer choice, and loss functions to
the appearance of DD in both model accuracy and feature space.

For the sake of space, we refer the reader to Appendix A for further, potentially interesting previous
work that is less focal to this work but is related to aspects of our analysis.

3 METHODOLOGY

Our goal in this study was to conduct a comparative analysis across different configurations in order
to empirically examine the role that certain factors play in the onset of model-wise double descent. In
particular, we systematically manipulate three factors: label noise, optimizer dynamics, and training
loss. We sweep model capacity across under- to over-parameterized regimes.

3.1 RESEARCH QUESTIONS

We organize our investigation around three guiding questions:

• RQ1. What is the role of label noise in the manifestation of double descent? To what
extent do noise-robust losses mitigate it? Prior work (Nakkiran et al., 2021a; Somepalli
et al., 2022; Yang et al., 2020) suggests that noise exacerbates risk peak near the interpo-
lation threshold. We test whether noise is a necessary cause of DD, or merely an ampli-
fier. To further test this, we also use noise robust losses, under the hypothesis that if DD is
(mostly) noise-driven, robust losses should strongly reduce or completely eliminate it.

• RQ2. How do optimizers, learning rates and schedulers affect double descent? Prior
studies (Liu & Flanigan, 2023; Nakkiran et al., 2021b) highlight the role of optimization
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in DD emergence. We investigate whether optimizer choice and hyperparameter settings
(learning rate, scheduling) can alone induce or suppress DD, even in noise-free settings.

• RQ3. What does the geometry of learned representations reveal about the impact
of DD on accuracy? How are these geometric patterns shaped by optimization and
noise? DD is usually examined through loss or accuracy curves. Building on previous
representation-level analyses (Gu et al., 2024; Somepalli et al., 2022), we ask whether DD
leaves distinct signatures in representation space. Unlike prior work by Gu et al. (2024),
which primarily used geometry to investigate the interpolation of noisy samples, our focus
is on how optimization dynamics and label noise affect local label-consistency and global
cluster compactness, and how these factors explain the observed differences between stan-
dard accuracy and geometry-based accuracies.

3.2 LOSS FUNCTIONS AND NOISY LABELS

Most of the experiments in this study use standard Cross Entropy (CE) loss LCE as training objec-
tive. To assess the role of label noise in DD, we also employ two loss functions designed to mitigate
the impact of noisy labels: Forward Loss (Patrini et al., 2017) NCOD Loss (Wani et al., 2024).

We denote by yi the one-hot encoding of xi’s class, i.e., so that it has C components if C denotes
the number of classes, with the entry corresponding to xi’s class equal to 1 and all other entries
equal to 0. p̂(y | xi) is a vector, whose j-th component is the (conditional) probability assigned by
the classifier to point xi being of class j. Analogously, ŷi is the one-hot representation of the class
predicted by the model. Finally yi (resp. ŷi) denote the class of the i-th sample (resp. the class
assigned to the i-th sample by the classifier).

Forward correction of CE loss (FWD) (Patrini et al., 2017) is based on a label transition matrix T ∈
[0, 1]C×C that models the corruption process. Each entry Tij = p(ỹ = ej | y = ei) ∀i, j denotes
the probability of observing a noisy label ỹ given a clean label y, where ei is the i-th canonical
basis vector (a one-hot vector with 1 in position i and 0 elsewhere). Rather than comparing the
prediction of the model p̂(y|x) directly with the observed noisy labels, the predictive distribution is
adjusted via T, and the CE is computed against the corrected distribution: LFWD(ei, p̂(y | x)) =
−log

∑C
j=1 Tjip̂(y = ej | x)). When T is the identity matrix (i.e. no noise), this reduces exactly to

the standard CE loss, ensuring consistency with clean-label training.

The Noisy Centroids Outlier Discounting (NCOD) loss (Wani et al., 2024), adopts a different strat-
egy. Each class is represented by the centroid of its latent representations, and each sample i is as-
signed soft labels ȳi proportional to their similarity to the class centroid. This method also intro-
duces a trainable outlier discounting parameter ui, which downweighs the contribution of examples
suspected to be mislabeled. Formally, NCOD combines two objectives: LCE(p̂(y | xi)+ui ·yi, ȳi),
which reweighs CE with soft labels and outlier discounting, and 1

C ∥ŷi+(ui− 1) yi∥22, which regu-
lates the dynamics of ui. Unlike correction-based methods, NCOD does not require prior knowledge
of the noise rate or clean anchor points. Instead, it adaptively reduces the influence of outlier samples
during training, making it applicable in more realistic settings. This discourages overfitting misla-
beled samples in later epochs, while preserving the signal from clean ones. We adopt NCOD because
it builds on SOP (Liu et al., 2022) but achieves better empirical performance in noisy environments.

3.3 EVALUATION AND GEOMETRY-BASED METRICS

We evaluate models with three complementary defined metrics that capture (i) probabilis-
tic/generalization quality, (ii) performance of the trained linear head, and (iii) geometric structure of
the learned representation.

As a loss-based metric, we report the average CE on the test set since DD is most commonly ob-
served in loss curves (Belkin et al., 2019; Nakkiran et al., 2021a). We use CE as a uniform eval-
uation metric across all experiments, even when training with FWD or NCOD. Since these meth-
ods only modify the training loss, all test results are computed with CE. This ensures comparability
across settings and isolates the effect of the training dynamics.
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Soft-label accuracy measures the standard classification performance obtained from the model’s
final linear layer. In this section, we define ŷi = argmaxc p̂(yi | x) the class predicted by the model
for the i-th sample in the dataset.

Accuracy is computed as Aacc = A({ŷi}Mi=1) with A({ŷi}Mi=1) = 1
M

∑M
i=1 1{ŷi = yi}. Con-

ceptually, this metric evaluates the separating hyperplane learned by the final linear head in the
penultimate-layer feature space. Therefore, it is sensitive to both feature geometry and how the clas-
sifier converts features into calibrated probabilities.

Standard evaluation metrics such as CE and accuracy capture prediction quality but provide limited
insight into the geometry of feature space, especially when they are misaligned. In practice, cross-
entropy may be high, indicating low confidence, while accuracy remains stable, suggesting that
predictions still fall within correct decision boundaries. To better assess this structure, we employ
two test-time decision rules that operate directly on penultimate-layer features.

k-Nearest Neighbours (kNN) Accuracy For each test point representation in the penulti-
mate layer latent space ztesti , we first find its k nearest training representations Nk(z

test
i ) ac-

cording to cosine distance. We then assign a label to ztesti by majority vote: ŷkNN
i =

argmax
c∈{1,...,C}

∑
j∈Nk(ztest

i )

1{ytrainj = c}. k-NN Accuracy AkNN = A({ŷikNN}Mi=1) measures local

label-consistency in representation space: high kNN accuracy indicates that nearby training points
tend to share labels regardless of the learned linear head.

Nearest Centroid (NC) Accuracy For each class c, we compute the centroid µc of its training
latent representations Zc = {ztraini s.t. ytraini = c ∀i ∈ {1, . . . ,M train}}. A test point ztesti is
assigned the label of the closest centroid under cosine distance d: ŷNC

i = argmin
c∈{1,...,C}

d(ztesti , µc).

NC accuracy ANC = A({ŷNC
i }Mi=1) quantifies global cluster compactness and class separability.

3.4 EXPERIMENTAL SETUP

We now describe the datasets, architectures, optimizers, and training protocol used in our study. Our
goal is to ensure that comparisons across conditions are fair and reproducible, and that all factors
except the one under investigation are held constant. Full implementation details are provided in
Appendix B.

Datasets. Following Gu et al. (2024), we use two standard image classification benchmarks:
CIFAR-10 (Krizhevsky et al. (2014)) and MNIST (Lecun et al. (1998)). For CIFAR-10, we use
40k/10k training/validation split, as well as the standard 10k test set. For MNIST, we use a re-
duced training budget of 4k/1k training/validation examples, and the standard test split. Label noise
is injected into the training set by randomly replacing labels: for a given noise rate η, each train-
ing label is independently replaced with a random class label (uniformly distributed across the other
C − 1 classes). We report results for a noise-free regime (η = 0) and several noisy regimes (η ∈
{0.1, 0.2, 0.4, 0.8}).

Architectures. We study three model families used in prior DD work: (i) fully connected networks
(FCN), (ii) small convolutional neural networks (CNN), and (iii) ResNet-18 variants. These families
and configurations are drawn from Gu et al. (2024) and Nakkiran et al. (2021a). We systematically
vary base layer width to span the under-to over-parameterized regimes.

Optimization We compared three widely used optimization strategies: vanilla Stochastic Gradient
Descent (SGD), SGD with the learning rate scheduler (SGD+CS) used in Gu et al. (2024), and
Adaptive Moment Estimation (Adam, Kingma & Ba (2015)). To probe sensitivity to learning rate
scale, we use a log-spaced grid of five learning rates, {10−x, x ∈ {1, 2, 3, 4, 5}}, plus the one used
in Gu et al. (2024), 0.05.

Training Protocol. All models are trained for a fixed number of epochs (4,000 for FCN, 200 for
CNN and ResNet) without early stopping. The training loss reaches zero within the specified number
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of epochs in all cases, and corresponding training curves are reported in Appendix E for reference.
Reported metrics use the final-epoch checkpoint to ensure consistent “last model” evaluations across
experiments. Experiments were implemented in PyTorch 1.

4 EXPERIMENTAL ANALYSIS

Our experiments provide a nuanced picture of how DD arises and under which conditions it is am-
plified or mitigated. This section presents the results for the ResNet-18 variants; the corresponding
results for FCN and CNN variants are presented in Appendix C.

4.1 NOISE AMPLIFIES BUT DOES NOT DETERMINE DD (RQ1)

(a) Optimizer: SGD (b) Optimizer: SGD+CS (c) Optimizer: Adam

Figure 1: Cross Entropy on the test set as a function of the base convolutional layer width (k) of
ResNet models trained with Cross Entropy loss on CIFAR-10 using three optimizers with initial
learning rate 0.0001. Results show how different optimizers and noise rates affect the test error
curve.

We address RQ1 by increasing model width while varying (i) label noise rate, (ii) optimizer family
(SGD, SGD with scheduler, Adam), and (iii) training loss (Cross-Entropy (CE), Cross-Entropy with
forward correction (FWD), and NCOD).

Fig. 1 shows clear patterns. Using Adam (Fig. 1c), we observe a significant double-descent peak,
consistent with Gu et al. (2024); importantly, this peak is visible even when noise rate is zero. By
contrast, the SGD baseline (Fig. 1a) and SGD combined with a scheduler (Fig. 1b) do not display a
comparable peak, even when label noise is extreme (80% on a 10-class task). The results obtained
for ResNet architectures exhibit patterns consistent with those observed for CNN and FCN variants,
as presented in Figs. 5 and 6. These comparisons show that label noise amplifies the magnitude of
the peak, but it is not a necessary condition for its appearance: optimization dynamics can alone
produce or suppress DD.

To isolate the effect of noise-robust losses, Fig. 2 compares CE and accuracy curves for CE, FWD,
and NCOD at three noise levels (0.0, 0.1, 0.2) using the Adam optimizer. Three consistent obser-
vations emerge. First, the amplitude of the CE peak scales with the noise rate: higher noise rate in-
creases the peak and makes the associated accuracy dip more pronounced. Secondly, the CE peak
is not eliminated by robust loss correction, but only marginally mitigated. Third, under moderate to
high noise, robust losses substantially reduce the “double-ascent” in accuracy for small and inter-
mediate widths (with NCOD showing the largest reduction). However, the benefit of robust losses
largely tends to vanish when width becomes large, as CE, FWD and NCOD converge to similar ac-
curacies. In other words, robust losses mitigate the accuracy degradation induced by noise in under-
parameterized or mid-scale regimes, but they do not eliminate the CE peak across all regimes.

Although label noise amplifies the loss peak and the associated accuracy dip, it is neither the sole
nor the necessary cause of double descent. Optimization process, particularly the optimizer family,
play a primary role in determining whether a visible peak appears, while noise mainly acts as a
multiplier of that effect. Although noise-robust losses are effective in recovering accuracy in small

1https://anonymous.4open.science/r/DDxNoise

6

https://anonymous.4open.science/r/DDxNoise


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base
convolutional layer width (k) of ResNet models trained on CIFAR-10 using Adam optimizer with
an initial learning rate of 0.0001. Results are reported for noise rates (0.0, 0.1, 0.2) under varying
training losses: Cross-Entropy (CE), Forward-corrected CE (FWD) and NCOD.

and intermediate models where the amplifying effect of noise is strongest, they do not universally
eliminate the CE peak in large models.

4.2 ROLE OF OPTIMIZER AND LEARNING RATE (RQ2)

(a) Optimizer: SGD (b) Optimizer SGD+CS (c) Optimizer: Adam

Figure 3: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the base
convolutional layer width (k) of ResNet models trained on CIFAR-10 using the three optimizers and
multiple initial learning rates. Noise rate is 0.0.

Fig. 3 shows the test accuracy and CE for three optimizers (SGD, SGD with scheduler and Adam),
each of which was trained using six different learning rates, with no added noise. Learning rate
has a significant impact on the appearance of DD and the amplitude of its peak for Vanilla SGD
(Fig. 3a),. At relatively high learning rates, a visible double-descent peak in CE test-loss is consis-
tently observed. Reducing learning rate lowers the peak’s amplitude and, in some cases, eliminates
it altogether. This suggests that learning rate modulates the optimization dynamics: higher rates in-
duce less stable trajectories, thereby revealing the double-descent phenomenon.

Adoption of a learning rate scheduler (Fig. 3b), as in Gu et al. (2024) does not change this picture:
larger initial learning rates amplify the peak, while smaller rates decrease or remove it. Moreover,
while CE still exhibits peaks in both cases, test accuracy curves do not display significant double
ascent phenomena. In particular, intermediate-sized models exhibit a relatively constant upward
trend as width increases rather than sudden drops, suggesting that the scheduler stabilizes training
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Figure 4: Test accuracy on the test set as function of the base convolutional layer width (k) of ResNet
models trained on CIFAR-10 with Cross-Entropy loss. The plot compares model classifiers predic-
tions (Standard) with Nearest Centroid (NC) and k-Nearest Neighbours (kNN, k=20) predictions
under varying label noise rates (0.0, 0.1, 0.2) and optimizers (SGD, SGD+CS, Adam) with initial
learning rate 0.01.

sufficiently to lead to smoother convergence. This results in higher learning rates always leading to
better performance in terms of accuracy.

Switching to Adam (Fig. 3c) radically changes the picture, even keeping the very same experimen-
tal configuration. In this case, double descent persists across all tested learning rates. While ampli-
tude, shape and location of the peak vary with the learning rate, the phenomenon itself never dis-
appears. This suggests that Adam’s internal adaptation mechanisms (e.g. momentum terms) intro-
duce dynamics that are less sensitive to global learning-rate scaling. Moreover, unlike SGD (with or
without a scheduler), the best accuracy is not achieved for the largest learning rate; rather, accuracy
tends to plateau at intermediate values.

Similar patterns are observed across CNN and FCN variants (Figs. 9 and 10), confirming the gen-
erality of these optimizer-dependent dynamics. Taken together, these results support the hypothe-
sis that optimization dynamics, both optimizer and learning rate, fundamentally determine whether
double descent arises and how strongly it affects performance, even in the absence of noise.

4.3 REPRESENTATION-SPACE EVALUATION (RQ3)

In order to more closely look into the reasons underpinning the frequent misalignment between test
entropy loss and accuracy, we repeat previous experiments, this time probing the geometry of the
learned feature space through kNN and NC accuracies. These metrics test whether the representation
organizes samples into semantically meaningful local neighborhoods (kNN) and/or clusters (NC),
regardless of the separating hyperplane learned by the final layer.

Fig. 4 reports results across optimizers (rows) and noise rates (columns), with (initial) learning rate
0.01, a value that consistently corresponds to well-defined DD peaks in CE loss across all classifiers
(see Fig. 3). Across conditions, kNN and NC accuracies exceed the standard accuracy of the final
classifier. This suggests that networks learn a latent space with a strong geometric structure, where
samples from the same class cluster together and/or share local neighborhoods, even when the final,
linear classifier cannot find a clear separating hyperplane. This effect intensifies at higher noise
rates, as the difference between standard and geometry-based accuracy widens. This suggests that
noise makes linear separation more fragile, while the underlying representation remains consistent,
with feature-space aggregation providing implicit denoising.
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Something interesting appears when we compare optimizers: SGD with a scheduler and Adam pro-
duce similar results for kNN and NC heuristics, with negligible double ascent in accuracy. In con-
trast, kNN outperforms NC when the SGD baseline is used, an effect that is amplified by noise.
This suggests that learned representations tend to form irregular manifolds where local neighbor-
hoods are label-consistent, but global centroids are less representative. This observation aligns with
our earlier observation that SGD without scheduling produces less stable convergence. Consistently
with these findings, accuracy of geometry-based heuristics outperforms standard accuracy in CNN
and FCN architectures (Figs. 11 and 12), confirming that models can learn effective representations
before feature collapse.

While (larger) models achieve zero training error (see Appendix E), the systematic discrepancy be-
tween the three accuracies indicates that neural collapse -the tight convergence of feature vectors
to class centroids (Nguyen et al. (2023))- has not occurred in our regimes, for otherwise the three
metrics would themselves collapse. Though neural collapse is not a focus of this work, we explic-
itly verified this condition, by tracking neural collapse metrics during training (see Fig. 13 in Ap-
pendix D). We remark that the absence of collapse is not a shortcoming; rather, it reflects realistic
training regimes in which overparameterized models are trained long enough to interpolate training
data, but not enough for class representations to collapse into an equiangular simplex. This non-
collapse regime is precisely where geometric probes are most informative; they reveal useful struc-
ture in representations before and independently of any eventual collapse.

5 DISCUSSION, LIMITATIONS, AND CONCLUSIONS

Our findings suggest that the optimization process is the main driver of the double descent (DD)
phenomenon. Label noise, while not essential for its appearance, can significantly amplify it, as
confirmed by the behavior of the phenomenon in the presence of noise-robust losses. Our analysis
reveals that the choice of optimizer, learning rate, and possibly scheduling are dominant factors;
for instance, learning rate can either induce or eliminate DD with SGD, whereas Adam consistently
exhibits it. Representation probes show that even when soft-label accuracy temporarily declines,
overparameterized models organize features into geometrically robust manifolds. This explains why
k-NN and Nearest Centroid (NC) accuracies can still outperform standard accuracy in these cases.

While these results shed light on key mechanisms underpinning DD, their practical impact must
be qualified. As is common in much of the DD literature, our performance curves were obtained
by evaluating the final model at the end of the last training epoch. However, in realistic training
pipelines, models are typically selected using a validation set with early stopping or best-checkpoint
selection. When this standard procedure is applied, the characteristic DD peak often disappears, as
the validation set apparently prevents the model from reaching the stages where DD would manifest
(see Appendix F and Fig. 19 and Nakkiran et al. (2021a) for results of a similar flavor using early
stopping). This suggests that while DD is theoretically important for understanding overparameter-
ized models, its impact in practice is limited (Jeffares & van der Schaar (2025)).

Our analysis focused exclusively on model-wise double descent, intentionally not considering data-
wise or epoch-wise variants. While this choice enabled a thorough investigation into the roles of
noise, optimizers, and losses, it limits the scope of our conclusions. Similarly, while we compared
cross-entropy with its noise-robust variants, we did not explore a broader range of loss functions,
such as contrastive or margin-based formulations, nor did we explore the role of hyperparameters
such as batch size. Finally, we mostly mentioned neural collapse to remark that our models are
relatively far from achieving it at the end of training. On the contrary, a systematic study of its
relationships to DD could be an interesting extension, albeit one probably deserving a separate study.

While these limits clearly identify possible extensions, an intriguing direction we did not consider
concerns the statistical nature of double descent itself. Recent results show that DD can be under-
stood within the classical bias-variance framework for simpler models Curth et al. (2023), which
begs the question of whether similar arguments extend to modern deep neural networks. At the same
time, our results suggest that theoretical findings involving gradient-based baselines and/or simpler
models might not straightforwardly carry over to deep models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details and hyperparameter settings required to reproduce our results are pro-
vided in Section 3.4 and in Appendix B. The source code is available at our GitHub repository
https://anonymous.4open.science/r/DDxNoise.
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A RELATED WORK

A.1 EMBEDDINGS/REPRESENTATION-SPACE

From a statistical learning perspective, analyses of ridgeless least squares and random features
(Hastie et al., 2022; Loog et al., 2020) attribute the second descent to implicit biases of high-
dimensional solutions, while Muthukumar et al. (2021) show that classification losses exacerbate
non-monotonicity compared to regression. Other explanations take a geometric lens, linking DD to
the learning of smoother interpolants in overparameterized networks (Gamba et al., 2022) or to the
discovery of structured, “prunable” solutions (Chang et al., 2021; Teague, 2022). Representation-
space analyses, such as Gu et al. (2024), emphasize how overparameterized models reorganize noisy
samples, while Curth et al. (2023) argue that DD can vanish when complexity is measured via effec-
tive degrees of freedom rather than raw parameter counts, though their results are limited to simple,
non-deep models. Finally, some works suggest that DD may partly reflect experimental artifacts:
Chaudhary et al. (2023) argue that the peak reported by Belkin et al. (2020) disappears once asym-
metric learning-rate schedules and weight reuse are controlled.

A.2 TRAINING WITH NOISE-ROBUST LOSSES

A central challenge in training deep neural networks is their tendency to overfit when labels are
noisy, and a variety of approaches have been proposed to design loss functions that are more robust
in such settings. One early contribution in this direction is by Patrini et al. (2017), who developed
a practical method for correcting the loss function itself, showing experimentally that this correc-
tion can substantially improve performance under label noise. Building on the idea of modifying the
loss, Zhang & Sabuncu (2018) introduced the generalized cross-entropy loss, which interpolates be-
tween mean absolute error and cross-entropy, and demonstrated that it achieves significantly greater
robustness to noisy labels compared to standard cross-entropy.

Beyond proposing new loss formulations, researchers have also explored the role of model capacity
in handling noise. Liu et al. (2022) provided both theoretical and experimental evidence that over-
parameterization can actually help models withstand label corruption when combined with a spe-
cialized loss. Their Sparse Over-Parametrisation (SOP) method is motivated by the observation that
label noise is typically sparse, and therefore can be modeled explicitly. In SOP, each noisy label is
expressed as the sum of the network’s prediction f(xi; θ) and a noise term si, with the latter pa-
rameterized as si = ui ⊙ ui − vi ⊙ vi to enforce sparsity. Both the model parameters θ and the
noise parameters ui, vi are optimized jointly through gradient descent, with careful initialization and
learning-rate strategies ensuring that the noise component remains well-regularized.

More recently, Wani et al. (2024) introduced NCOD, which incorporates noise modeling directly
into the latent representation space. In their framework, each class is associated with a centroid in the
embedding space, computed as the average of its samples, and every input is compared against this
centroid to measure similarity. At the same time, each sample is assigned a learnable weight ui ∈
[0, 1] that governs its contribution to the loss function. Samples that are persistently misclassified by
the model—likely to be mislabeled—gradually receive larger ui values, which in turn downweight
their influence during training. This mechanism enables the model to focus on clean data while
automatically reducing the impact of suspected noisy labels.

A.3 NEURAL COLLAPSE

Neural Collapse is a phenomenon observed in overparameterized neural networks during the ter-
minal phase of training, after the training error reaches zero Papyan et al. (2020). It is charac-
terized by highly symmetric last-layer features and classifier weights that converge toward a Sim-
plex Equiangular Tight Frame. Papyan et al. demonstrated its prevalence across multiple architec-
tures -ResNet, VGG, DenseNet- and datasets, and suggested that this structure can improve robust-
ness, interpretability, and potentially generalization. Subsequent works have expanded the empiri-
cal and theoretical understanding of neural collapse: for instance, Han et al. (2021) observed neural
collapse under MSE loss, while Mixon et al. (2022) showed how gradient descent dynamics drive
convergence toward NC. Zhu et al. (2021) further analyzed the optimization landscape, concluding
that each critical point is either a global minimum corresponding to the Simplex ETF or a saddle
point with negative curvature, and therefore the neural collapse can be achieved by any optimization
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method able to avoid inflection points. Other studies, such as Hui et al. (2022), emphasize that larger
collapse during training does not always lead to better performance in terms of generalization, intro-
ducing the distinction between neural collapse on train set and on test set. Conversely, Galanti et al.
(2021) report that neural collapse can support feature transfer and generalization to new classes, ex-
plaining its potential relevance for few-shot and foundation models.
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B EXPERIMENTAL SETUP

All experiments were implemented in PyTorch. The full codebase is available in our GitHub
repository at the following link: https://anonymous.4open.science/r/DDxNoise/
README.md.

B.1 MODELS

All models are based on those used by Gu et al. (2024), which in turn were based on the CNN and
ResNet architectures proposed by Nakkiran et al. (2021a).

• Fully Connected Network (FCNN): the model consists of a single hidden layer of vari-
able width k, with k ∈ {1, 3, 4, 7, 10, 13, 15, 25, 40, 100, 250, 500, 1000}, followed by a
linear classifier. Differently from Gu et al. (2024), who utilize custom weight initialization
schemes (Xavier uniform for k = 1, a normal distribution with parameters (0, 0.1) for k >
1), we adopted the He initialization (He et al., 2015) (i.e. a uniform distribution between
(−b, b), with b =

√
3/d and d the number of features of the dataset) for all values of k.

• Parametric CNN: a 5-layer architecture, with four convolutional lay-
ers doubling the number of channels progressively ([k, 2k, 4k, 8k], for k ∈
{1, 2, 4, 7, 10, 13, 17, 20, 25, 30, 40, 50, 64}), each followed by a max pooling layer with
kernel sizes [2, 2, 2, 4] respectively. All convolutional layers use kernel size 3, stride 1, and
padding 1. A final linear classifier maps features to output logits.

• Parametric ResNet18: a network with four residual blocks, each containing two batch-
normalized convolutional layers. Each convolutional layer progressively scales the chan-
nel dimension as [k, 2k, 4k, 8k], with k ∈ {1, 4, 8, 11, 13, 16, 18, 21, 24, 28, 32, 40, 56, 64}.
The layers operate with kernel size 3, stride [1, 2, 2, 2] for downsampling, and skip connec-
tions characteristic of the ResNet architecture. A global average pooling precedes the final
linear classifier. Setting k = 64 recovers the standard ResNet18.

B.2 OPTIMIZATION

We trained the models using three different optimizers, widely used in the literature: Stochastic
Gradient Descent (SGD), Stochastic Gradient Descent with custom learning rate scheduler (SGD +
CS) and Adam.

The custom scheduler is based on the one introduced by Gu et al. (2024): lr = lr0√
1+[epoch/50]

for

FCNNs and lr = lr0√
1+[epoch∗10]

for CNN and ResNet, where lr0 is the initial learning rate. In both

cases, the learning rate is updated every 50 epochs. FCNNs were trained for 4000 epochs, while
CNNs and ResNets were trained for 200 epochs. These epochs guarantee that zero training error is
achieved, as can be seen in Appendix E.

Apart from learning rate, the default PyTorch hyperparameters were kept for the optimizers: mo-
mentum = 0 for SGD, betas = (0.9, 0.999) for Adam, and weight decay = 0 for both.

Initial learning rate are chosen from {10−5, 10−4, 10−3, 10−2, 0.05, 10−1}. The batch size was set
to 512 across all runs. No data augmentation or regularization techniques were used.

B.3 HARDWARE

All experiments were conducted on a Linux machine equipped with an AMD Ryzen 9 7950X 16-
Core Processor, 128 GB RAM, and 2 × NVIDIA GeForce RTX 4090 GPUs. The operating system
was Ubuntu 24.04.2 LTS with kernel version 6.14.0-27-generic.
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C EXPERIMENTAL ANALYSIS ON FCN AND CNN ARCHITECTURES

This section reports the experimental results obtained with the FCN and CNN models. Overall,
the behaviour observed in these two architectures is consistent with the findings reported in the
main body of the paper and show that the phenomena discussed in the main text are not specific
to ResNet models. Although the quantitative details vary, the qualitative patterns are remarkably
aligned, strengthening the robustness of our conclusions.

C.1 EFFECT OF LABEL NOISE.

(a) Optimizer: SGD (b) Optimizer: SGD+CS (c) Optimizer: Adam

Figure 5: Cross Entropy on the test set as a function of the base convolutional layer width (k) of CNN
models trained with Cross-Entropy loss on CIFAR-10 using three optimizers with initial learning
rate 0.0001. Results show how different optimizers and noise rates affect the test error curve.

(a) Optimizer: SGD (b) Optimizer: SGD+CS (c) Optimizer: Adam

Figure 6: Cross Entropy on the test set as a function of the base hidden layer width (k) of FCN
models trained with Cross-Entropy loss on MNIST using three optimizers with initial learning rate
0.0001. Results show how different optimizers and noise rates affect the test error curve.

Figs. 5 and 6 illustrate CE curves on the test set for CNN and FC networks under different label
noise rates. In line with ResNet results, we observe that increasing the noise rate generally leads to
an enhancement in the hight and visibility of the DD peak. However, noise is not the primary trigger,
as DD may not emerge in presence of noise. This finding reinforces the paper’s primary message:
noise acts primarily as a amplifier, rather than a necessary cause of DD.

The impact of noise-robust losses is instead slightly architecture-dependent. For CNNs, as illus-
trated in Fig. 7, robust losses only moderately mitigate the DD peak but substantially reduce the
double-ascent in test accuracy at intermediate widths. For FCNs, as depicted inFig. 8, the losses
considerably improve the accuracy, reducing the accuracy dip obtained when training with CE loss,
and are also slightly more effective in attenuating the CE peak. This finding suggests that simpler,
fully connected architectures are more responsive to robust loss functions, although the overall qual-
itative behavior mirrors that of the other networks.

C.2 EFFECT OF LEARNING RATE

Figs. 9 and 10 illustrate the impact of learning rate on DD under different optimizers. For both
CNNs and FCs trained with SGD and SGD+CS, higher (initial) learning rates amplify the DD peak,
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Figure 7: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the
base convolutional layer width (k) of CNN models trained on CIFAR-10 using Adam optimizer with
an initial learning rate of 0.0001. Results are reported for noise rates (0.0, 0.1, 0.2) under varying
training losses: Cross-Entropy (CE), Forward-corrected CE (FWD) and NCOD.

Figure 8: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the
base hidden layer width (k) of FCN models trained on MNIST using Adam optimizer with an initial
learning rate of 0.0001. Results are reported for noise rates (0.0, 0.1, 0.2) under varying training
losses: Cross-Entropy (CE), Forward-corrected CE (FWD) and NCOD.

while lower rates tend to attenuate or suppress it entirely. As observed with ResNet, Adam preserves
DD across all tested learning rates, thereby further underscoring the notion that optimizer choice
can dominate the effects of learning rate in determining the appearance and magnitude of DD. A
practical note: high learning (lr = 0.1) and noise (0.2) rates produce very high loss values for FCNs
optimized with Adam; for clarity, these plots use a logarithmic y-axis.

C.3 ACCURACY METRICS.

We compare standard softmax accuracy with geometry-based metrics, kNN and NC accuracy, across
both architectures in Figs. 11 and 12. In most cases, the three metrics do not perfectly align, but the
trend we observed in Section 4.3 for ResNet is still visible: geometry-based accuracies generally
outperform the standard softmax measure. The analysis of neural collapse metrics (Figs. 14 and 15)
confirms that even with this architectures, full collapse is not achieved. That is, while the models
interpolate the training data, their features have not yet converged to class centroids, leaving room
for discrepancies between standard and geometry-based accuracies. This further supports the inter-
pretation that overparameterized networks can develop good latent representations, even in the pres-
ence of noise, well before achieving complete neural collapse.
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(a) Optimizer: SGD (b) Optimizer SGD+CS (c) Optimizer: Adam

Figure 9: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the
base convolutional layer width (k) of CNN models trained on CIFAR-10 with Cross-Entropy loss,
using the three optimizers and multiple initial learning rates.

(a) Optimizer: SGD (b) Optimizer SGD+CS (c) Optimizer: Adam

Figure 10: Accuracy (top row) and Cross-Entropy (bottom row) on the test set as functions of the
base hidden layer width (k) of FCN models trained on MNIST with Cross-Entropy loss using the
three optimizers and multiple initial learning rates. The last plot is shown on a logarithmic scale,
since the Cross-Entropy with learning rate 0.1 reached very large values.
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Figure 11: Test accuracy on the test set as function of the base convolutional layer width (k) of CNN
models trained on CIFAR-10 with Cross-Entropy loss. The plot compares model classifier predic-
tions (Standard) with Nearest Centroid (NC) and k-Nearest Neighbours (kNN, k=20) predictions
under varying label noise rates (0.0, 0.1, 0.2) and optimizers (SGD, SGD+CS, Adam) with initial
learning rate 0.01.

Figure 12: Test accuracy on the test set as function of the base hidden layer width (k) of FCN
models trained on MNIST with Cross-Entropy loss. The plot compares model classifiers predictions
(Standard) with Nearest Centroid (NC) and k-Nearest Neighbours (kNN, k=20) predictions under
varying label noise rates (0.0, 0.1, 0.2) and optimizers (SGD, SGD+CS, Adam) with initial learning
rate 0.01.
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Taken together, these findings confirm that the key phenomena observed in ResNet models general-
ize to FCN and CNN architectures: (i) label noise amplifies but does not cause DD; (ii) optimizer
and learning-rate choices are primary drivers of DD; and (iii) representation-space probes reveal
structured geometry that explains why accuracy can recover beyond the interpolation threshold even
when loss curves show pronounced peaks. Although the exact numerical characteristics may differ
across architectures, the underlying patterns remain consistent, suggesting that the mechanisms driv-
ing DD are not peculiar to a specific network family but reflect more general principles of overpa-
rameterized neural networks. In fact, we showed that even simpler architectures like FCN networks,
which lack the spatial structure of CNNs, exhibit similar trends in how noise amplifies DD and how
geometry-based evaluation metrics reveal latent structure. This indicates that insights drawn from
one network type could likely be meaningfully extended to others, providing a common foundation
for theoretical analyses and practical guidelines.
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D NEURAL COLLAPSE METRICS

To assess the extent to which Neural Collapse occurs in our setting, we employ several standard
metrics proposed by Papyan et al. (2020). The values of these metrics were collected at each training
epoch. We provide a brief description of each one below.

Variation coefficients The variation coefficient, also known as relative standard deviation, is a
measure of dispersion and it is defined as the ratio between the standard deviation and the mean. In
our setting, the coefficient of variation is computed for the globally centered centroids of each class
in the latent space of the last hidden layer. Specifically, we calculate the following quantity:

Std
c

(∥µc∥2)

Avg
c

(∥µc∥2)

, where µc is the centroid of the c-th class. A convergence of this quantity toward zero indicates that
all centroids tend to have the same norm (i.e., they become equinormed), a necessary condition for
them to form a simplex equiangular tight frame.

Standard deviation of cosines To assess angular uniformity, we first computed the cosine of the
angle between each pair of centroids, and then calculated the standard deviation of these values:

Std
c,c′ ̸=c

(cos(µc,µc′)).

As training progresses, this metric is expected to decrease toward zero, which would indicate that
the angles are becoming uniform.

Average of shifted cosines The maximal separation angle corresponds to all cosine similarities
approaching − 1

C−1 , where C is the number of classes. To evaluate this, we computed the average
deviation of cosine similarities from this target value for each pair of centroids:

Avg
c,c′

(∣∣∣∣cos(µc,µc′) +
1

C − 1

∣∣∣∣) .

A value approaching zero reflects convergence toward maximal equiangularity.

Frobenius norm of weight-centroid difference Finally, the alignment between the classifier
weights and the class centroids is measured by comparing their normalized matrices. Let W denote
the weight matrix and M the matrix whose columns are the class centroids. We computed∥∥∥∥ W

∥W∥F
− M

∥M∥F

∥∥∥∥2
F

.

A decreasing value indicate an increasing proportionality, which is consistent with the final stage of
neural collapse, where classifier weights align with centroids.

Findings As previously discussed in Section 4.3, we observe incomplete neural collapse across all
tested optimizers: metrics decrease during training but never converge to zero (Figs. 13 to 15). Re-
sults are reported only for the widest model in each family (k = 64). We also verified that smaller
widths behave consistently: since neural collapse is not achieved even with the largest model con-
figurations, it does not occur with smaller ones either. The findings confirm that, even in overparam-
eterized regimes where models interpolate the training data, centroids do not collapse fully. Impor-
tantly, this incomplete collapse is not a limitation for our study but rather the realistic setting we wish
to investigate, where geometry-based accuracies remain informative. These plots further support our
interpretation of the observed discrepancies between standard and geometry-based accuracies.
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(a) Optimizer: SGD

(b) Optimizer: SGD+CS

(c) Optimizer: Adam

Figure 13: From left to right: (i) coefficient of variation (Std/Avg); (ii) standard deviation of
cosine (Std(cos)); (iii) average shifted cosine (Avg(|shifted cos|)); (iv) Frobenius norm of the
weight–centroid difference (∥M −W∥), all computed on the class centroids. Metrics were obtained
by training a ResNet model with base convolutional layer width k = 64 on CIFAR-10 using Cross-
Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learn-
ing rate of 0.01
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(a) Optimizer: SGD

(b) Optimizer: SGD+CS

(c) Optimizer: Adam

Figure 14: From left to right: (i) coefficient of variation (Std/Avg); (ii) standard deviation of
cosine (Std(cos)); (iii) average shifted cosine (Avg(|shifted cos|)); (iv) Frobenius norm of the
weight–centroid difference (∥M −W∥), all computed on the class centroids. Metrics were obtained
by training a CNN model with base convolutional layer width k = 64 on CIFAR-10 using Cross-
Entropy loss. Each row in the plot corresponds to a different optimizer, all initialized with a learn-
ing rate of 0.01
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(a) Optimizer: SGD

(b) Optimizer: SGD+CS

(c) Optimizer: Adam

Figure 15: From left to right: (i) coefficient of variation (Std/Avg); (ii) standard deviation of
cosine (Std(cos)); (iii) average shifted cosine (Avg(|shifted cos|)); (iv) Frobenius norm of the
weight–centroid difference (∥M −W∥), all computed on the class centroids. Metrics were obtained
by training a FCN model with base hidden layer width k = 64 on MNIST using Cross-Entropy loss.
Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01
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E TRAINING LOSS

(a) Optimizer: SGD (b) Optimizer: SGD+CS (c) Optimizer: Adam

Figure 16: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions of
the base convolutional layer width (k) of ResNet models trained on CIFAR-10 with Cross-Entropy
loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of
0.01

(a) Optimizer: SGD (b) Optimizer: SGD+CS (c) Optimizer: Adam

Figure 17: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions
of the base convolutional layer width (k) of CNN models trained on CIFAR-10 with Cross-Entropy
loss. Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of
0.01

Figs. 16 to 18 report both training and test quantities: CE and classification accuracy. Concretely,
each panel shows these metrics for noise rate 0, training with CE Loss and varying the opti-
mizer. These plots are included as they confirm that our models attain perfect interpolation in the
overparameterized regime: training CE approaches zero and training accuracy reaches 1.0 for the
intermediate- to large-width models used in the paper. This is important because double descent is
defined with respect to interpolation behaviour; showing train loss = 0 and train accuracy = 1 docu-
ments that the interpolation threshold has been crossed in our experiments.
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(a) Optimizer: SGD (b) Optimizer: SGD+CS (c) Optimizer: Adam

Figure 18: Accuracy (top row) and Cross-Entropy (bottom row) on train and test sets as functions
of the base hidden layer layer width (k) of FCN models trained on MNIST with Cross-Entropy loss.
Each row in the plot corresponds to a different optimizer, all initialized with a learning rate of 0.01
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F MODEL SELECTION (BEST VS LAST EPOCH)

(a) Optimizer: Last (b) Optimizer: Best

Figure 19: Cross-Entropy on test set as a function of the base convolutional layer width (k) of ResNet
models trained with Cross-Entropy loss on CIFAR-10 using Adam with initial learning rate 0.0001.
Results compare the Cross-Entropy at the last training epoch (left) versus the best-performing epoch
(right).

(a) Optimizer: Last (b) Optimizer: Best

Figure 20: Cross-Entropy on test set as a function of the base convolutional layer width (k) of CNN
models trained with Cross-Entropy loss on CIFAR-10 using Adam with initial learning rate 0.0001.
Results compare the Cross-Entropy at the last training epoch (left) versus the best-performing epoch
(right).

In the main text, we present metrics computed on the final training checkpoint to illustrate the last-
model behaviour, a common practice in DD studies. To ensure comprehensiveness, this section
presents a complementary analysis in which, for each iteration, the checkpoint exhibiting the min-
imum validation loss (the “best epoch”) is selected. This selection protocol is closer to standard
practical pipelines, where different techniques (e.g. early stopping) are commonly applied to avoid
overfitting, providing a realistic perspective on the phenomenon.

As illustrated in Figs. 19 to 21, the selection of the validation-best checkpoint led to the complete
elimination of the DD peak that was observable when evaluating the last-epoch model. This result
aligns with the observation made in Section 5 that DD, while theoretically relevant for understand-
ing overparameterized models, may have limited practical impact in typical training settings where
validation-based model selection is applied. Due to limitations in time and resources that precluded
the execution of a comprehensive experimental protocol, we present these partial results with the
hope that they will offer valuable insights to other researchers in the field.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) Optimizer: Last (b) Optimizer: Best

Figure 21: Cross-Entropy on test set as a function of the base hidden layer width (k) of FCN models
trained with Cross-Entropy loss on MNIST using Adam with initial learning rate 0.0001. Results
compare the Cross-Entropy at the last training epoch (left) versus the best-performing epoch (right).

G LLM USAGE

Large language models were utilized exclusively for minor support tasks, such as assisting with code
debugging and enhancing the quality of written content. All core aspects of the research were con-
ducted entirely by the authors. LLMs were not used to generate, reinterpret, or alter any substantive
scientific content.
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