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Abstract

Mixture-of-Experts (MoE) models are a promising way to scale up model capacity without
significantly increasing computational cost. A key component of MoEs is the router, which
decides which subset of parameters (experts) process which feature embeddings (tokens).
In this paper, we present a comprehensive study of routers in MoEs for computer vision
tasks. We introduce a unified MoE formulation that subsumes different MoEs with two
parametric routing tensors. This formulation covers both sparse MoE, which uses a
binary or hard assignment between experts and tokens, and soft MoE, which uses a soft
assignment between experts and weighted combinations of tokens. Routers for sparse MoEs
can be further grouped into two variants: Token Choice, which matches experts to each
token, and Expert Choice, which matches tokens to each expert. We conduct head-to-head
experiments with 6 different routers, including existing routers from prior work and new ones
we introduce. We show that (i) many routers originally developed for language modeling can
be adapted to perform strongly in vision tasks, (ii) in sparse MoE, Expert Choice routers
generally outperform Token Choice routers, and (iii) soft MoEs generally outperform sparse
MoEs with a fixed compute budget. These results provide new insights regarding the crucial
role of routers in vision MoE models.

Deep learning is using ever larger models. However, larger models require extensive computational resources
for training and deployment. To further scale up model capacity without linearly increasing the compu-
tational cost, one promising direction is to use mixture-of-experts (MoE) layers in neural networks. The
general idea of a MoE layer is to assign different feature embeddings, also known as tokens, to subsets of
neural network parameters, known as experts. Compared to traditional dense models, MoEs yield better
performance–compute trade-off (Shazeer et al., 2017; Riquelme et al., 2021; You et al., 2021; Mustafa et al.,
2022; Puigcerver et al., 2023).

At the heart of the MoE model is its router, responsible for matching tokens with experts. Routers used
before the deep learning era were reviewed in Yuksel et al. (2012), where they termed a router as a gate. In the
deep learning era, Bengio et al. (2016) cast the input-to-expert routing problem as a Markov decision process,
and used reinforcement learning to train the router. Shazeer et al. (2017); Lepikhin et al. (2021); Fedus et al.
(2022b) introduce differentiable training approaches of routers without the complication of reinforcement
learning. Roller et al. (2021) use a non-learnable router that hashes input samples in a deterministic way.
Clark et al. (2022); Kool et al. (2021); Liu et al. (2023) parametrize routers based on optimal transport
formulations. Sander et al. (2023) proposed differentiable top-k operators that help the learning of token–
expert matching. All aforementioned examples are sparse MoEs that seek a hard, binary token–expert
match. In contrast, the recently proposed soft MoE (Puigcerver et al., 2023) router matches linearly
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combined inputs with experts. This soft MoE approach avoids the discrete, non-differentiable transforms
often used in sparse MoEs while having a similar computational cost.

MoEs as layers in deep neural networks were first explored in language modeling (Shazeer et al., 2017)
before being applied to computer vision tasks (Riquelme et al., 2021). It is natural to hypothesize that
many language MoE routers can be adapted to work well in vision MoE models, given that both rely on
transformer architectures (Vaswani et al., 2017; Dosovitskiy et al., 2021). However, we currently lack a
comprehensive comparison between routers specifically designed for vision MoEs and those repurposed from
language MoEs. For instance, the Sinkhorn router (Clark et al., 2022), initially introduced for language MoE,
can be potentially used for vision tasks as well; but to the best of our knowledge, their performances have
not been reported in prior vision MoE work. In this work, we address this gap by conducting an empirical
study of routers in vision MoEs. We compare different vision MoE models head-to-head by varying their
underlying routers. We then evaluate these models through few-shot transfer learning and fine-tuning on
ImageNet, providing a comprehensive analysis of the performance of different routers in image recognition
tasks. The main contributions of this paper are summarized below.

• We propose a unified formulation of MoE layers by way of parametrizing its dispatch tensor and
combine tensor, which we collectively refer to as routing tensors. This generalizes the dispatch
weights and combine weights of Puigcerver et al. (2023), which focuses on Soft MoE. This unified
approach allows for a comparison of existing MoE routers and motivates us to introduce new routers.

• We study sparse MoEs by decoupling (i) how they parameterize token-expert affinity matrices (e.g.,
based on softmax and Sinkhorn transform) and (ii) how they determine which experts to use: Expert
Choice (where each expert selects tokens) and Token Choice (where each token selects experts). We
demonstrate that factor (ii) outweighs factor (i) in sparse MoE routers.

• We show that the soft MoE router generally outperforms the sparse variants—both previously re-
ported and our newly introduced one in Section 2.4—under a fixed compute budget.

Notations. Throughout this paper, we use bold letters for vectors, matrices, and tensors. For a vector a,
we let a[i] be its i-th entry. For a matrix A ∈ Rm×n, we let A[i, j] be its (i, j)-th entry, let A[:, j] ∈ Rm

be its j-th column, and A[i, :] ∈ Rn be the i-th row of A, transposed into a column vector. We write
[N ] := {1, 2, . . . , N}. We denote an all-one vector in RD by 1D.

The paper is structured as follows: Section 1 details a unified formulation of Mixture of Experts (MoE)
layers, defined through their routers. Section 2 explores various instantiations of MoE layers within this
formulation. Section 3 presents the numerical experiments conducted on MoE layers.

1 A Unified Formulation of MoE Layers

In this section, we first introduce the most commonly used router, which is based on the composition of
the softmax function and the top-k function. We then provide a unified formulation of MoE layers that
encompasses many types of MoE layers as special cases. Throughout our work, without loss of generality,
we let each expert be a Multi-Layer Perceptron (MLP).

1.1 A motivating example of MoE layer

In the most widely used MoE formulation, each token x ∈ RD chooses k experts through a softmax function
(Shazeer et al., 2017; Fedus et al., 2022b; Riquelme et al., 2021; Allingham et al., 2022):

MoE(x) :=
E∑

r=1
Gater(x) · MLPr(x) with Gater(x) := topk

(
softmax(W x + ϵ)

)
[r] ∈ R, ∀r ∈ [E], (1)

where the gating weights
{

Gater(x)
}E

r=1 linearly combine the outputs of the E experts {MLPr(x)}E
r=1. The

function topk : RE → RE sets all but the k ≪ E largest numbers to zero, thereby selecting few experts for the
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combination. The gate parameters W ∈ RE×D are trained in conjunction with other network parameters.
The vector ϵ ∼ N (0, σ2 I) is a noise injected to the logits XW , where σ ∈ R controls the strength of the
noise; through auxiliary losses, the noise helps to improve the numerical stability of router (Appendix A). We
refer to the formulation (1) as Softmax Token Choice MoE (not be confused with Soft-MoE, described
in Section 2.6). This name emphasizes that each token selects k experts based on softmax scores.

Compared to a traditional multi-layer perceptron (MLP) layer, the MoE layer (1) offers a more flexible
balance between the model’s ability to fit the data and computational cost. Evaluating the MoE layer is
equivalent to evaluating a fixed number of MLP layers in parallel, where the number of layers is determined
by the value of k. By keeping k fixed, as the number of experts E increases, the MoE layer’s ability to
fit the data increases, but the computational cost remains roughly the same, up to the computation of the
gating weights Gater(x). In this way, the MoE layer provides a way to control the model-fitting capacity
and computational cost trade-off by adjusting the number of experts.

1.2 Unifying MoE layers through routers

We now introduce a unified formulation of MoE layers, which encompasses the Softmax Token Choice layer
and other MoE layers as special cases. This formulation is for a minibatch setting, where a MoE layer
processes a group of T tokens {x1, . . . , xT } ⊂ RD in parallel. An additional hyperparameter used in this
minibatch setting is the buffer capacity of experts. It specifies the maximum number of tokens that each
expert can handle in a minibatch. For efficient hardware usage, it is ideal for each expert to have a small
buffer capacity C ≪ T , such as C = ⌈T/E⌉ or C = ⌈2T/E⌉ (Riquelme et al., 2021). A minibatched MoE
layer with a buffer capacity C is defined as follows.

A Unified Formulation of MoE Layers

Let {x1, . . . , xT } ⊂ RD be a minibatch of T tokens and let X ∈ RT ×D be a matrix of row-wise
concatenation of tokens with X[t, :] = xt. Let DX ∈ RT ×E×C and CX ∈ RT ×E×C be certain
dispatch and combine tensors that are functions of tokens X. A MoE layer with a fixed buffer
capacity C ∈ N, dispatch tensor DX and combine tensor CX is defined as

MoE
(
X

)
[t, :] :=

E∑
r=1

C∑
c=1

CX [t, r, c] MLPr

(
X⊤DX [:, r, c]

)
∈ RD. (2)

Here, DX is termed dispatch tensor, since it is responsible for sending different tokens to different experts;
CX is called the combine tensor, as it is used to linearly combine the expert outputs.

Recovering the Softmax Token Choice layer as a special case. On a single token level, the Softmax
Token Choice layer in (1), can be recovered using the more general formulation (2) by the following combine
tensor CX and the dispatch tensor DX :

CX [t, r, c] :=
{

Gater(xt), if t = c,
0, otherwise,

and DX [t, r, c] := 1
(

CX [t, r, c] > 0
)

. (3)

With these choices, the MoE output in (2) is then

MoE
(
X

)
[t, :] =

E∑
r=1

C∑
c=1

CX [t, r, c] · MLPr

(
X⊤DX [:, r, c]

)
=

E∑
r=1

CX [t, r, t] · MLPr

(
X⊤DX [:, r, t]

)
=

E∑
r=1

Gater(xt) · MLPr

(
xt

)
,

(4)
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which recovers the Softmax Token Choice layer (1) on a single-token level. Note that in (3) we use C = T .
In practical implementation, however, we usually choose C ≪ T to reduce the computational cost. This is
detailed in Section 2.1.

MoE routers. The Softmax Token Choice router uses a specific combine tensor CX and the dispatch
tensor DX . But they can be parametrized in more flexible ways as generic transforms of X. We refer to
this mapping X 7→ (CX , DX) as a MoE router, which is central to our study. It is defined as follows.

MoE Router

A MoE router takes minibatch input X ∈ RT ×D and yields the dispatch tensor DX ∈ RT ×E×C

and the combine tensor CX ∈ RT ×E×C that are used by the MoE layer (2):

Router : X 7→ (DX , CX). (5)

The dispatch tensor DX and the combine tensor CX are jointly referred to as the routing tensors.

2 MoE layers instantiated by different routers

In this section, we present a family of MoE layers with different underlying routers.

2.1 Softmax Token Choice router

We first revisit the Softmax Token Choice in Section 1.1, now in a minibatch setting. To begin, we build a
softmax affinity matrix that represents the similarity between each token–expert pair:

Πsoftmax := softmax (XW + σϵ) ∈ RT ×E , (6)

where the softmax is applied to each row (normalized across experts). We next use the affinity matrix
Πsoftmax to allocate the routing tensors DX and CX . Since experts have a fixed buffer capacity C, the
dispatch tensor DX and the combine tensor CX must be allocated in a way such that each expert receives
at most C tokens. We achieve this by sequentially going through the rows of affinity matrix Πsoftmax and
assigning each token to its top-scored expert as long as the chosen expert’s buffer is not full (i.e., below the
buffer capacity C). This procedure is called Token Choice allocation and is described in Algorithm 1.

The forward pass of the Softmax Token Choice router is summarized below.

Softmax Token Choice router

1. Compute the token–expert affinity matrix Πsoftmax in (6) on a batch of input tokens X.

2. Use Πsoftmax to allocate the routing tensors DX and CX through Algorithm 1

Balancing expert usage. In practice, it is beneficial to regularize the parameters W for a balanced usage
of experts. Without any regularization on W , the top scores at each row of the affinity matrix Πsoftmax in
(6) may concentrate on a few column indices. These indices correspond to certain popular experts that many
tokens prefer to choose. But since each expert has a fixed buffer capacity, popular experts may drop most
of the tokens in the allocation procedure in Algorithm 1, thus deteriorating the training performance. To
prevent this from happening, previous work considered different auxiliary losses on W . Details of these
losses are provided in Appendix A for reference.
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Algorithm 1: Token Choice allocation
Data:

(i) tokens X ∈ RT ×D

(ii) token–expert affinity matrix Π ∈ RT ×E

(iii) buffer capacity C ∈ N
(iv) number of selected experts k ∈ N per token (typically k = 1 or 2)

Result:
The routing tensors DX and CX ∈ RT ×E×C for the MoE layer (2)

Initialize DX ∈ RT ×E×C and CX ∈ RT ×E×C as zero tensors.
for the top i-th choice with i = 1, . . . , k do

for token index t = 1, . . . , T do
w, r = maxi-th Π[t, :] // The value and index of the i-th selected score.

c =
∥∥∥DX [:, r, :]

∥∥∥
0

// The number of tokens already dispatched to the r-th expert

if c < C then
DX [t, r, c] = 1
CX [t, r, c] = w.

2.2 Sinkhorn Token Choice router

To perform well, the Softmax Token Choice router requires auxiliary losses that balance the expert usage.
To eliminate the need for auxiliary losses, recent work (Kool et al., 2021; Clark et al., 2022) proposed the
Sinkhorn Token Choice router.

Specifically, a softmax affinity matrix Πsoftmax = softmax
(
XW ) ∈ RT ×E in (6) can be seen as the solution

to an entropy-regularized optimization problem:

Πsoftmax = arg max
Π

[
⟨Π, XW ⟩ − ⟨Π, log Π⟩

]
,

subject to
{

Π > 0,
Π1E = 1T ,

(7)

where 1T is a column vector of size T with values 1. This entropy-regularized characterization decouples
the underlying optimization problem and the constraints imposed on the solution. The constraints in Equa-
tion (7) are that (i) all token–expert affinity scores have positive values and (ii) the token–expert affinity
matrix has a unit row sum, meaning that the affinity scores sum to 1 along the expert axis.

The idea of Sinkhorn Token Choice is to add more constraints to (7). As discussed in Section 2.1, unbalanced
expert usage of Softmax Token Choice occurs when top token–expert affinity scores concentrate on a few
columns of the affinity matrix Πsoftmax. To promote a balanced expert usage, the Sinkhorn Token Choice
router thus requires that all columns are normalized, leading to the following entropy-regularized optimal
transport formulation

Πent := arg max
Π

[
⟨Π, XW ⟩ − ⟨Π, log Π⟩

]
,

subject to

 Π > 0,
Π1E = 1T ,
Π⊤1T = (T/E)1E .

(8)

The optimization problem (8) can be solved by Sinkhorn’s algorithm (Sinkhorn, 1964; Cuturi, 2013; Peyré
& Cuturi, 2019), which iterates between row-wise and column-wise normalization. We then allocate the
routing tensors using entropy-regularized transportation plan Πent. In principle, the same Πent can be used
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for dispatching DX and combining tensors CX . But it is empirically more beneficial1 to only allocate
the dispatch tensor DX using the transportation plan Πent, while still allocating the combine tensor CX

using the softmax matrix Πsoftmax = softmax(XW ). This approach has the benefit that the backward pass
of gradient-based training does not go through the Sinkhorn algorithm, which results in faster and more
stable training. We provide a case study of this in Figure 3 of the results section; while Clark et al. (2022)
recommend using k = 1, we have also experimented with k = 2 and observe consistent results.

The forward pass of a Sinkhorn Token Choice router is summarized as follows.

Sinkhorn Token Choice router

1. Compute the token–expert affinity matrix Πent in (8) on a batch of input tokens X.

2. Use Πent to allocate the dispatch tensors DX through Algorithm 1

3. Use Πsoftmax = softmax(XW ) to allocate the combine tensor CX through Algorithm 1

2.3 Softmax Expert Choice router

Both Softmax Token Choice and Sinkhorn Token Choice share the router allocation algorithm in Algorithm 1.
This allocation approach lets each token choose its top-scored expert. However, a limitation of this approach
is that it can result in underused experts, which are experts that use fewer tokens than their allowed
capacity. This can be seen in the inner for-loop of Algorithm 1. There, the number of tokens taken by
each expert is restricted to not exceed the buffer capacity C, that is,

∥∥DX [:, r, :]
∥∥

0 ≤ C for each expert r.
When the inequality is strict,

∥∥DX [:, r, :]
∥∥

0 < C, the expert r is underused as it could have been possible to
allocate more tokens to that expert.

To address the underusage of experts in token-choice allocation, an alternative approach proposed in Zhou
et al. (2022) is the Expert Choice allocation. In this approach, each expert chooses a fixed amount of
tokens. Specifically, given a token–expert affinity matrix Π, we sequentially go through the columns of Π
and assign each expert to its top-scored tokens. This procedure is outlined in Algorithm 2.

Algorithm 2: Expert Choice allocation
Data:

(i) tokens X ∈ RT ×D

(ii) token–expert affinity matrix Π ∈ RT ×E

(iii) buffer capacity C ∈ N
Result:

The routing tensors DX and CX ∈ RT ×E×C for the MoE layer (2)

Initialize DX ∈ RT ×E×C and CX ∈ RT ×E×C as zero tensors.
for expert index r = 1, . . . , E do

for capacity index c = 1, . . . , C do
w, t = maxc-th [Gater(x1), . . . , Gater(xT )] // The value and index of the i-th selected gates.
DX [t, r, l] = 1
CX [t, r, l] = w.

The Expert Choice allocation in Algorithm 2 offers several benefits compared to the Token Choice allocation
in Algorithm 1. Firstly, it ensures all experts receive the same amount of tokens, preventing any from being
over or under-used. Secondly, since experts independently select their tokens, many experts can process a
single token. This contrasts with Token Choice allocation, where each token is typically assigned to only

1Personal communications with the authors of Clark et al. (2022).
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k = 1 or k = 2 experts. Such diverse expert participation enhances MoE layer performance (Zhou et al.,
2022). Moreover, in the Expert Choice allocation, certain tokens might not be chosen by any experts.

In Zhou et al. (2022), a softmax token–expert affinity matrix Πsoftmax = softmax
(
XW ) ∈ RT ×E is used in

the Expert Choice allocation of Algorithm 2. We refer it to as the Softmax Expert Choice router, whose
procedural steps are summarized as follows.

Softmax Expert Choice router

1. Compute the token–expert affinity matrix Πsoftmax in (6) on a batch of input tokens X.

2. Use Πsoftmax to allocate the routing tensors DX and CX through Algorithm 2

2.4 Sinkhorn Expert Choice router

We now introduce the Sinkhorn Expert Choice router, which fits naturally with the unified MoE layer
formulation in Section 1.2. To our knowledge, it has not been previously explored in literature.

Recall that the Softmax Expert Choice router offers versatile expert usage, but it can skip numerous tokens.
On the one hand, skipping tokens can be an advantage of Softmax Expert Choice, as the buffer capacity
saved by skipped tokens can be allocated to remaining tokens, allowing them to be processed by many
experts. On the other hand, skipping too many tokens may lead to inferior results.

To strike a balance between the heterogeneous usage of experts and the goal of minimizing token dropping,
we can use the entropy-regularized optimal transport plan Πent to allocate the routing tensors through
Algorithm 2. As introduced in Section 2.2, the optimal transport plan Πent has normalized column sums.
Intuitively, while Πent reduces token dropping, it still allows a variable number of experts applied to tokens.
The procedure of this Sinkhorn Expert Choice router is summarized as follows.

Sinkhorn Expert Choice router

1. Compute the token–expert affinity matrix Πent in (8) on a batch of input tokens X.

2. Use Πent to allocate the dispatch tensor DX through Algorithm 2

3. Use Πsoftmax = softmax(XW ) to allocate the combine tensor CX through Algorithm 2

Note that, as in the Sinkhorn Token Choice, we only allocate the dispatch tensor DX using Πent while
calculating the combine tensor using CX using Πsoftmax.

2.5 Sparsity-constrained Expert Choice router

All MoE layers introduced so far use specific sorting heuristics to allocate routing tensors. The sorting is
applied either to the expert axis, as in Algorithm 1, or the token axis, as in Algorithm 2, to create sparse
tensors D. This is necessary because the token–expert affinity matrix Π is neither sparse nor constrained
by the buffer capacity.

An alternative approach is to promote sparsity in Π to directly meet the buffer capacity constraint (Liu
et al., 2023). This is a more principled way to create a sparse allocation of experts. To this end, we consider
a token–expert affinity matrix Πsparse that solves a sparsity–constrained optimal transport problem:

Πsparse := arg max
Π

[
⟨Π, softmax(XW )⟩ − 1

2∥Π∥2
F

]
,

subject to


Π ≥ 0,
Π1E = 1T ,
Π⊤1T = (T/E)1E

∥Π[:, r]∥0 ≤ C for all r ∈ [E].

(9)
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There are several key differences between the sparsity–constrained optimal transport in (9) and the entropy-
regularized optimal transport in (8). First, sparsity–constrained optimal transport in (9) uses a quadratic
regularization ∥Π∥2

F instead of the entropy regularization ⟨Π, log Π⟩ on the transportation plan Π. This
quadratic regularization, as shown in Blondel et al. (2018), preserves the sparsity in the transportation plan
and allows for an efficient numerical solver. Second, the formulation (9) introduces an additional constraint
to upper bound the number of nonzeros of each column of Π by the buffer constraint C. This ensures that
all experts use up to C tokens. Third, in the first term of the sparsity–constrained optimal transport in
(9), we evaluate the inner product of Π with a positive utility matrix softmax(XW ) as opposed to the raw
matrix product XW in (8). The positive utility matrix encourages each column of Π to have exactly C
nonzeros: even though we only upper bound the number of nonzeros in each column of Π by C in (9), a
learned optimal transport plan Πsparse will usually take exactly C nonzeros per column since it needs to
maximize its inner product.

Finding an exact minimizer Πsparse in (9) can be intractable in general due to the non-convexity of this
constrained optimization problem. Nonetheless, an approximate Πsparse can be obtained using a semi-dual or
a dual formulation; for more details refer Liu et al. (2023). The overall procedure of the sparsity-constrained
MoE layer is summarized as follows.

Sparsity-constrained router

1. Approximate the token–expert affinity matrix Πsparse in (9) on a batch of input tokens X.

2. Use Πsparse to allocate the dispatch tensor DX through Algorithm 2

3. Use Πsoftmax = softmax(XW ) to allocate the combine tensor CX through Algorithm 2

2.6 Soft MoE

All MoE formulations we have introduced so far aim to find hard assignments between tokens and experts;
these hard assignments are represented by the binary, {0, 1}-valued dispatch tensors DX in token choice
allocation (Algorithm 1) and expert choice allocation (Algorithm 2). In these formulations, each expert can
process either an entire token or none of it. In a different approach, Soft MoEs (Puigcerver et al., 2023)
instead allow experts to process weighted combinations of tokens, offering more flexibility.

We now present Soft MoE using our unified formulation of MoE layers (2). One key feature of SoftMoE is
that we define T as the token count in a single image, since tokens are linearly combined exclusively from
the same input. This contrasts with other routers we discussed, where T represented the number of tokens
in a batch of multiple inputs.

We let Φ ∈ RD×E×C be a learnable tensor, where each vector Φ[:, r, c] ∈ RD represents the features of the
c-th buffer slot of the r-th expert. For input X ∈ RT ×D, we compute the affinity scores between all tokens
and the (r, c)-th slot with:

Z[:, r, c] := XΦ[:, r, c] ∈ RT . (10)

The Soft MoE approach then computes the routing tensors DX and CX by normalizing the affinity scores
in Z ∈ RT ×E×C :

DX [t, r, c] = exp Z[t, r, c]∑
t′ exp Z[t′, r, c] , CX [t, r, c] = exp Z[t, r, c]∑

r′,c′ exp Z[t, r′, c′] . (11)

Here, the dispatch tensor DX is normalized along the token axis: we dispatch fractions of every token to
each slot, with the fractions summing up to 1. Similarly, the combine tensor CX is normalized along the slot
dimensions (r, c), making each MoE output token a convex combination of all slot outputs with combining
weights summing up to 1. We summarize the forward pass of Soft MoE as follows.
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Soft MoE router

1. Compute the affinity tensor Z ∈ RT ×E×C for tokens and expert slots via (10).

2. Compute the routing tensors DX and CX in (11).

Note that the routing tensors DX and CX differ from previous approaches by not being binary or sparse.
Nonetheless, Soft MoEs are computationally efficient. This is because each expert only processes a fixed
number of slots per input that is significantly smaller than the sequence length. In addition, compared to
other methods, Soft MoEs have a speed advantage as they avoid sorting and optimal transport algorithms.

3 Experiments

We report comprehensive comparisons of vision MoE models with the 6 routers we introduced earlier: (1)
Softmax Token Choice, (2) Sinkhorn Token Choice, (3) Softmax Expert Choice, (4) Sinkhorn Expert Choice,
(5) Sparsity-constrained Expert Choice, and (6) Soft MoE router. We evaluate MoE models using both large-
scale pre-training and few-shot adaptation experiments.

3.1 Models

As in earlier vision MoE work (Riquelme et al., 2021), we replace a subset of the dense feedforward layers in
a vision transformer (Dosovitskiy et al., 2021) with MoE layers. Specifically, we use the Every-2 variant in
Riquelme et al. (2021) that places the MoEs on every other layer. For the comparison to be comprehensive, we
use models of different sizes with a naming convention consistent to vision transformer: B(ase)32, B(ase)16,
and L(arge)16. The numbers 32 and 16 here refer to 32 × 32 and 16 × 16 patch sizes. Models that use a
smaller patch size result in more patches, and thus model B16 has a greater capacity and computational cost
than model B32. We fix the total number of experts to be 32; that is, E = 32.

For each architecture (B32, B16, and L16) and each router, we experiment with two configurations to
experiment with different capacity C:

• For Softmax Token Choice and Sinkhorn Token Choice routers that process each token with k
experts, we experiment with k = 1 and k = 2. In this way, the buffer capacity (the number of tokens
an expert can process at most in a batch) of these variants is C = round(k · T/E).

• For Softmax Expert Choice, Sinkhorn Expert Choice, and sparsity-constrained variants, we control
the buffer capacity C through a capacity factor c, which plays a role similar to k. The buffer capacity
C is defined through C = round(c · T/E). We experiment c with 1 or 2, which match the buffer
capacity of k = 1 and k = 2 in the Token Choice cases.

• For Soft MoE routers, we set the number of slots per expert to be C = round(c · T/E) with c = 1
or 2, just like in the Expert Choice case.

3.2 Upstream task results: Pre-training on JFT-300M

For the pre-training experiments, all models were trained on the JFT-300M (Sun et al., 2017), which contains
about 305 million training images and 50,000 validation images, organized in a hierarchy of 18,291 different
classes. To avoid overlap with the validation and test sets of JFT-300M, the images in the dataset were
deduplicated, as done in Kolesnikov et al. (2020). Our main metric for JFT-300 is the top-1 classification
accuracy (Prec@1).

Accuracy comparison. Our pretraining results, shown in Figure 1. In terms of accuracy (y-axis), the
Expert Choice variants ( , , ) generally surpass Token Choice variants ( , ) in accuracy. Among Token
Choice models, those using a Sinkhorn-based token-expert affinity matrix ( ) perform better than those with
a Softmax-based matrix ( ), aligning with previous findings in language MoE research (Clark et al., 2022).
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Figure 1: Comparison of training time and performance in the JFT300M dataset for image
classification. The marker size represents the router’s capacity, with smaller and larger sizes indicating
lower and higher capacities.

However, in Expert Choice models, the choices of token-expert affinity matrix—Softmax ( ), Sinkhorn ( ),
or sparsity-constrained ( )—show less significant impact on performance. We hypothesize that Sinkhorn
transform effectively balances the expert usage in the Token Choices case, thus improving the performance
relative to the Softmax Token Choice; but such a balance is no longer needed for the Expert Choice cases,
and therefore its impact is small. Compared to Token Choice and Expert Choice routers, SoftMoE routers
( ) outperform both by a noticeable margin.

There is one instance of SoftMoE for L-16 at c = 2 not included in Figure 1 (one is missing from the
right-most panel of Figure 1). This is due to training instability that occurred at that specific instance.
This might relate to using only 32 experts (E = 32) for consistent comparisons across all routers. Notably,
SoftMoE performs best with a larger number of experts (e.g., E = 2048) and few slots per expert, as shown
in Puigcerver et al. (2023, Figure 6). Despite not being the most optimal setup, SoftMoE surpasses other
configurations in Figure 1, where instability was not an issue.

Training cost comparison. Considering the computational cost, the sparsity-constrained router ( ) is
more expensive compared to others, primarily because of its sorting and sparse projection steps (Liu et al.,
2023). In contrast, SoftMoE routers have the best compute–accuracy tradeoff.

For a comprehensive numerical comparison of routers using the JFT300M dataset, refer to Tables 1, 2, and
3 in Appendix B.

3.3 Downstream task results: Few-shot transfer on ImageNet-1k

To assess how well pre-trained MoE models adapt to new tasks, we conducted few-shot adaptation experi-
ments using the ImageNet-1k dataset (Deng et al., 2009). In these experiments, we used 10 image samples
per class from ImageNet-1k. The pre-trained model extracts a fixed feature embedding for each image,
which is then used to train a linear regression model. This linear model maps the extracted features to the
one-hot encoded target labels. This procedure is in line with the 10-shot evaluation procedure described by
Dosovitskiy et al. (2021); Riquelme et al. (2021).

Our few-shot results, as shown in Figure 2, confirm findings from the pretraining phase. Overall, the SoftMoE
router ( ) consistently outperformed the Expert Choice routers ( , , ), which themselves surpassed the
performance of the Token Choice routers ( , ). In most scenarios, token choice routers marked by that
use a Sinkhorn-derived token-expert affinity matrix tend to outperform those using a Softmax-based affinity
matrix ( ). However, the performance differences between the Expert Choice routers ( , , ), are relatively
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minor. This emphasizes that the choice of routing tensor allocation algorithm is more crucial than the specific
method of parameterizing the token-expert affinity matrix.

Figure 2: Comparison of training time and performance in a 10-shot Transfer Task on the
ImageNet-1k Dataset. The marker size represents the router’s capacity, with smaller and larger sizes
indicating lower and higher capacities.

For a comprehensive numerical comparison of routers few-shot adapted on the ImageNet-1k dataset, refer
to Tables 1, 2, and 3 in Appendix B.

3.4 Analysis: the usage of Softmax combine tensors in Sinkhorn routers.

In Section 2.2, we mentioned a useful trick in the Sinkhorn Token Choice router: using the Sinkhorn-based
matrix Πent to allocate the dispatch tensor DX and the Softmax-based matrix Πsoftmax for the combine
tensor CX . This approach, also applied in Sinkhorn Expert Choice and Sparsity-constrained Expert Choice
routers, primarily aims to boost processing speed by bypassing the optimal transport algorithm in the
backward pass. Perhaps surprisingly, it also enhances performance. Figure 3 showcases a Sinkhorn Token
Choice case study. We contrast two methods: one assigns DX with Πent and CX with Πsoftmax (labeled
“with softmax combine”), while the other uses Πent for both tensors (labeled “without softmax combine”).
The “with softmax combine” variant achieves approximately 1% higher accuracy on the JFT300M dataset.

4 Related work

MoE models have been increasingly used in language and vision domains. We briefly review the application
of them in this section. We refer the interested readers to Fedus et al. (2022a) for a comprehensive review.

MoEs for language. MoEs have been successfully applied to language modeling and machine translation.
One of the earliest successes of sparse MoEs in language modeling and machine translation was demonstrated
by Shazeer et al. (2017). They insert MoE layers between LSTM layers (Hochreiter & Schmidhuber, 1997)
to increase the model capacity while maintaining high computational efficiency. This approach achieved
state-of-the-art at that time, with a lower computational cost than baseline models. Sparse MoEs have
further advanced language modeling when combined with Transformers (Vaswani et al., 2017). The GShard
(Lepikhin et al., 2021) and Switch Transformers (Fedus et al., 2022b) are among the earliest works that
replace feed-forward layers in Transformers with sparse MoE layers. In addition, research efforts have been
made to analyze and simplify the routers in language MoEs, such as deterministic routers (Lewis et al., 2021)
and routers based on reinforcement learning and optimal transport (Kool et al., 2021; Clark et al., 2022).
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Figure 3: Assessing the impact of using Softmax-based combine tensors in Sinkhorn Token
Choice routers. The number of selected expets are k = 1 (left panel) and k = 2 (right panel). Both
routers are used in a B32 architecture. The x axis shows the training iteration number, while the y axis
shows the validation accuracy on the JFT300M dataset.

MoEs for vision. In the realm of vision, early work on MoEs (Eigen et al., 2013; Ahmed et al., 2016; Gross
et al., 2017; Abbas & Andreopoulos, 2020; Wang et al., 2020; Pavlitskaya et al., 2020; Yang et al., 2019) were
mostly based on convolutional neural networks and were applied to specific tasks. The tremendous success of
Vision Transformers (ViTs) (Dosovitskiy et al., 2021) has motivated research in creating sparse MoEs based
on ViTs. Riquelme et al. (2021) introduced V-MoE, a vision MoE architecture based on ViTs, and showed
that it outperforms dense ViT counterparts at the same computational cost. Beyond accuracy, vision MoEs
have been shown to offer better robustness against adversarial attacks (Puigcerver et al., 2022). Furthermore,
while (Riquelme et al., 2021; Puigcerver et al., 2022) focus on image classification problems, Wu et al. (2022)
show the capability of vision MoEs to solve high-resolution vision tasks such as segmentation and detection.
Li et al. (2022) proposed a variant of vision MoE with enhanced domain-generalization abilities. Puigcerver
et al. (2023) formulated soft MoEs that are fully differentiable while being as efficient as sparse MoEs.

MoEs for multimodal and multitask learning. Mustafa et al. (2022) presented the first multimodal
sparse MoE model, called Language-Image MoE (LIMoE). LIMoE processes both images and text in a
modality-agnostic fashion, to align image and text embeddings via contrastive learning. LIMoE matches
the performance of state-of-the-art dense models and surpasses dense baselines at equivalent computational
costs. MoEs have also been used in multitask settings (Ma et al., 2018; Chen et al., 2023).

Other aspects of MoEs. There are a few research studies on MoEs from perspectives that are not tied
to specific data modalities. For example, Hwang et al. (2023) proposed an efficient pipeline that optimizes
the implementation of MoE layers on GPUs. From a theoretical perspective, Chen et al. (2022) studies why
simple sparse MoEs do not collapse into a single model. Komatsuzaki et al. (2023) create sparse MoEs from
pre-existing dense models as a way to reuse the sunk cost for training dense models. This simple yet powerful
approach can be generally applied to tasks in different modalities.

5 Conclusion

MoEs offer a promising solution to large-scale machine learning applications. Our paper presents the first
comprehensive study of transformer-based sparse and soft MoEs in computer vision tasks, achieved through
a unified MoE layer formulation with routers. We show that the strong performance of many language
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MoEs carries over to vision. We found routing tensor allocation crucial for sparse MoEs, more so than other
factors. Notably, soft MoEs outperform all sparse alternatives tested.

Research on efficient sparse MoEs for vision problems at scale is still in its early stages. As MoEs can
handle large amounts of data while keeping computational costs low, it is expected that they will become
increasingly important for data-rich tasks in the future. Understanding how different MoE models perform
in these tasks is crucial. Our paper takes a step in this direction and opens new opportunities for further
study of MoEs at scale.
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A Auxiliary losses for routers

Importance loss. The importance loss penalizes the variability of each expert’s overall gating weights on
a minibatch of tokens. Let X ∈ RT ×E be a minibatch of T tokens, where each token is a row of X. We let

ΠW ,X = softmax
(
XW ) ∈ RT ×E

be a matrix token-to-experts routing probabilities, where the softmax operator applies to each row of XW .
Summing over rows, the vector

rW ,X := Π⊤
W ,X1T ∈ RE

describe each expert’s token-receiving probabilities summed on that minibatch of tokens. Since we want each
expert to receive roughly the same amount of tokens, the token-receiving probabilities of experts should not
vary considerably. To minimize the variation, the importance loss is defined as

LImp(X, W ) = ĈV
({

rW ,X [i]
}E

i=1

)2
,

where ĈV denotes the empirical coefficient of variation.

Load loss. The load loss of a vision MoE has the form

where δ is a real-valued random variable with a Gaussian distribution N (0, 1
E ).

loadi(x, W , ϵ) := Pδ

((
W x

)
[i] + δ > max

k-th

(
W x + ϵ

))
(12)

= Pδ

(
δ > max

k-th

(
W x + ϵ

)
−

(
W x

)
[i]

)
(13)

= Φ
((

W x
)
[i] − max

k-th

(
W x + ϵ

))
, (14)

where Φ is the cumulative distribution function of the Gaussian distribution N (0, 1
E )

Summing the loads (12) over all tokens in X yields the expected numbers of tokens received for each expert.
We define the load loss as the coefficient of variation of such expected numbers of received tokens across
experts:

Lload(X; W ) = ĈV
({

loadi(X; W )
}E

i=1

)2
with loadi(X, W ) =

T∑
t=1

loadi(x(t); W , ϵ(t)). (15)

B Detailed experimental results
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Accuracy Training TPUv3-days
Softmax (k = 1) 41.23 % 34.31
Sinkhorn (k = 1) 41.63 % 34.73
Softmax Expert Choice (Cfactor = 1) 43.83 % 33.73
Sinkhorn Expert Choice (Cfactor = 1) 43.65 % 34.40
Sparsity constrained (Cfactor = 1) 43.43 % 56.88
SoftMoE 45.23 % 36.95
Softmax Token Choice (k = 2) 43.47 % 41.46
Sinkhorn Token Choice (k = 2) 44.26 % 41.88
Softmax Expert Choice (Cfactor = 2) 44.40 % 40.60
Sinkhorn Expert Choice (Cfactor = 2) 44.30 % 41.21
Sparsity constrained (Cfactor = 2) 44.30 % 65.13
SoftMoE 45.28 % 43.59

Table 1: Comparing routers in B32 architecture using the JFT dataset.

Accuracy Training TPUv3-days
Softmax Token Choice (k = 1) 46.35 % 122.12
Sinkhorn Token Choice (k = 1) 47.37 % 123.04
Softmax Expert Choice (Cfactor = 1) 48.64 % 118.31
Sinkhorn Expert Choice (Cfactor = 1) 48.64 % 119.80
Sparsity constrained (Cfactor = 1) 48.67 % 231.66
SoftMoE 50.00 % 116.31
Softmax Token Choice (k = 2) 48.86 % 153.96
Sinkhorn Token Choice (k = 2) 49.80 % 157.93
Softmax Expert Choice (Cfactor = 2) 50.23 % 153.42
Sinkhorn Expert Choice (Cfactor = 2) 50.52 % 155.03
Sparsity constrained (Cfactor = 2) 50.29 % 279.89
SoftMoE 50.53 % 148.47

Table 2: Comparing routers in B16 architecture using the JFT dataset.

Accuracy Training TPUv3-days
Softmax Token Choice (k = 1) 56.07 % 818.80
Sinkhorn Token Choice (k = 1) 56.19 % 827.70
Softmax Expert Choice (Cfactor = 1) 57.51 % 805.60
Sinkhorn Expert Choice (Cfactor = 1) 57.84 % 818.95
Sparsity constrained (Cfactor = 1) - -
SoftMoE 58.51% 790.57
Softmax Token Choice (k = 2) 58.05 % 1023.92
Sinkhorn Token Choice (k = 2) 57.69 % 1033.43
Softmax Expert Choice (Cfactor = 2) 58.43 % 1014.71
Sinkhorn Expert Choice (Cfactor = 2) 58.88 % 1028.06
Sparsity constrained (Cfactor = 2) 58.26 % 1537.41
SoftMoE - -

Table 3: Comparing routers in L16 architecture using the JFT dataset.
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Accuracy
Softmax Token Choice (k = 1) 62.77 %
Sinkhorn Token Choice (k = 1) 63.42 %
Softmax Expert Choice (Cfactor = 1) 64.99 %
Sinkhorn Expert Choice (Cfactor = 1) 65.34 %
Sparsity constrained (Cfactor = 1) 64.50 %
SoftMoE 67.37 %
Softmax Token Choice (k = 2) 65.91 %
Sinkhorn Token Choice (k = 2) 65.87 %
Softmax Expert Choice (Cfactor = 2) 66.38 %
Sinkhorn Expert Choice (Cfactor = 2) 66.52 %
Sparsity constrained (Cfactor = 2) 65.75 %
SoftMoE 67.85 %

Table 4: Comparing routers in B32 architecture on the ImageNet 10-shot task.

Table 5: B16 on ImageNet 10-shot
Accuracy

Softmax Token Choice (k = 1) 69.62 %
Sinkhorn Token Choice (k = 1) 70.04 %
Softmax Expert Choice (Cfactor = 1) 71.74 %
Sinkhorn Expert Choice (Cfactor = 1) 71.95 %
Sparsity constrained (Cfactor = 1) 71.28 %
SoftMoE 72.84 %
Softmax Token Choice (k = 2) 72.12 %
Sinkhorn Token Choice (k = 2) 72.26 %
Softmax Expert Choice (Cfactor = 2) 72.68 %
Sinkhorn Expert Choice (Cfactor = 2) 72.74 %
Sparsity constrained (Cfactor = 2) 72.76 %
SoftMoE 73.26 %

Table 6: Comparing routers in B16 architecture on the ImageNet 10-shot task.

Table 7: L16 on ImageNet 10-shot
Accuracy

Softmax Token Choice (k = 1) 77.42 %
Sinkhorn Token Choice (k = 1) 77.18 %
Softmax Expert Choice (Cfactor = 1) 77.91 %
Sinkhorn Expert Choice (Cfactor = 1) 78.08 %
Sparsity constrained (Cfactor = 1) -
SoftMoE 78.72 %
Softmax Token Choice (k = 2) 78.00 %
Sinkhorn Token Choice (k = 2) 78.10 %
Softmax Expert Choice (Cfactor = 2) 78.38 %
Sinkhorn Expert Choice (Cfactor = 2) 78.19 %
Sparsity constrained (Cfactor = 2) 78.24 %
SoftMoE -

Table 8: Comparing routers in L16 architecture on the ImageNet 10-shot task.
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