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Abstract

Distributional reinforcement learning (DiRL) accounts for stochasticity in the1

environment by learning the full distribution of return and has hugely improved2

performance due to better differentiating between states and training-phase policy3

evaluation. However, even if the environment is not relied upon for being deter-4

ministic, the agent still only gets to traverse a single possible path and therefore5

observe a single return backup feedback during online learning. Effectively, DiRL6

is learning the whole distribution using only one sample from it, relying substan-7

tially on inductive bias. This work aims to alleviate catastrophically generalizing8

from a similar-looking state whose behavioural consequence (under the current9

policy) is actually disparate, i.e., an attack, with adversarial training. To do this,10

we first identify the set of attacks in which the agent’s behavioural consequences11

are sufficiently dissimilar to the current state, then pick the strongest which incurs12

the largest model distinguishability error: the smallest distance between predicted13

return distributions. Finally, we update the return distribution model by ascending14

the gradient of this minimal distance, effectively solving a minimax problem. In15

defining attacks, we use bisimulation metric to measure behavioural similarity. To16

decide the distance between predicted return distributions, which needs to be differ-17

entiable with respect to the return distribution model, we train a value discriminator18

recognizing true Bellman backups from fake ones, and use the contrastive score as19

a proxy. Experiments on MuJoCo environments suggest that the proposed method20

is able to improve DiRL performance however the return distribution is modelled.21

1 Introduction22

Rather than estimating the expected return or value function in reinforcement learning, distributional23

reinforcement learning (DiRL) Bellemare et al. (2017) models the full distribution of the return,24

viewing it as random variable whose stochasticity stems from the intrinsic randomness of the25

environment and potentially also from the agent itself. Thus said, the stochasticity of the environment26

is not nevertheless providing extra learning signals just because it is assumed to exist – During online27

training, the agent still only gets to traverse a single possible path and therefore observe a single28

return backup feedback.29

Admittedly, some DiRL approaches approximate the return distribution as a parametric miniature30

subset of its examples Bellemare et al. (2017); Dabney et al. (2018a,b); Rowland et al. (2019);31

Martin et al. (2020); Barth-Maron et al. (2018); Singh et al. (2020); Kuznetsov et al. (2020), and32

therefore carry a multi-sample prediction for any step in computing the Bellman backup target;33

others Doan et al. (2018); Freirich et al. (2019); Choi et al. (2019); Li & Faisal (2021) represent34

the return distribution as a generative model, able to generate as many return samples as desired.35

However, these diversities all come from the model itself (i.e. multiple guesses), bearing no additional36
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learning information, whereas the feedback from the environment which contains the ground truths37

for improving the model, i.e., the trace of rewards and subsequent states, is only possible to be38

observed in one example1. Effectively, vanilla DiRL methods, which are usually parametric, are39

learning the return distributions with only one backup signal per state / state-action pair, relying40

heavily on generalization from nearby data and their observed backup signals.41

As a consequence, it is possible that two states appear similar and therefore have similar predicted42

return distributions, whereas the same policy (e.g. as defined by the same function and set of43

parameters) has disparate behaviour consequences in them in reality. In this scenario, the return44

distributions in the two states should be different.45

To this end, we propose to alleviate generalizing from similar-looking but behaviourally distinct states46

in return distribution learning with adversarial training Goodfellow et al. (2015). Specifically, for47

each state, we find the worst-case scenario which incurs the lowest distinguishability of the return48

distribution model within a vicinity of the state consisting of states behaviourally dissimilar to it,49

and update the return distribution model to increase this minimal gap as a regularizer to the original50

modelling objective.51

Robust adversarial reinforcement learning is not a new topic, which frames the RL problem as a52

zero-sum Markov game to account for unavoidable and uncontrollable difference between training53

and testing environments. This can be a two-player game, with an additional policy that is either a54

destabilizing adversary applying disturbance forces to the system Morimoto & Doya (2005); Pinto55

et al. (2017), or a risk-seeking adversary Pan et al. (2019); Ren et al. (2020a,b). Alternatively, when56

the adversarial examples can be explicitly defined in the state space, the problem is akin to the57

perturbation issue in supervised learning Goodfellow et al. (2015); Madry et al. (2018); Cai et al.58

(2018), and can therefore be recast as a minimax optimization problem solved with adversarial59

training Zhang et al. (2020); Oikarinen et al. (2021).60

In this work, we borrow the idea of adversarial training, not to improve robustness against perturbation61

though, but to prevent extrapolated generalization in learning return distributions due to having to62

rely excessively on inductive bias. Please note, our intuition works the other way round compared63

to the usual sense of adversarial training (which encourages generalization around states visually64

slightly different), discouraging generalization from behaviourally dissimilar states.65

Experiments on MuJoCo tasks Todorov et al. (2012) suggest that the proposed method is able to66

improve DiRL performance however the return distribution is modelled. We believe we have proposed67

the first algorithm to discourage erroneous generalization in DiRL.68

2 Methods69

We consider a Markov decision process
(
S,A, R, P, γ

)
Puterman (1994), where S and A denote70

the state and action spaces respectively, R : S × A 7→ R a potentially stochastic reward function,71

P : S×A 7→ P(S) a transition probability density function, and γ ∈ (0, 1) a temporal discount factor.72

An RL agent has a policy that maps states to a probability distribution over actions π : S 7→ P(A).73

The return Gπ(s) :=
∑∞

t=0 γ
trt, s0 = s is a random variable which quantifies the accumulated future74

rewards, its distribution being denoted as ωπ(s) ∈ P(R). We consider the state-dependent return in75

this work, whilst the idea applies also to action-dependent return. The distributional Bellman operator76

Bellemare et al. (2017) allows the return distribution to be estimated with temporal difference as in77

scalar RL, its action-marginalized version being Li & Faisal (2021)78

T πGπ(s) :
D
= R(s) + γGπ(s′),

where the distribution equation D
= specifies that the random variables on both sides of the equation79

are distributed by the same law, and s′ is the next state.80

We learn a return distribution model ω̂π(s) along with a policy π(a|s). The dependency on π is81

dropped in notations if no confusion is to be induced. In DiRL, one instance of Bellman backup target82

T πGπ(s) is being observed for each s to update ω̂ at s, implicitly relying heavily on generalization83

from Bellman backups at neighbouring states, some of which might have little behavioural similarity84

to s. We leverage adversarial training to reduce generalization when state similarity is misconstrued,85

which contrasts model prediction with ground-truth reality.86

1Unless the environment can be rewound.
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2.1 Behavioural similarity87

The adversarial examples, or attacks, are engendered by the properties of the environment and would88

mislead the model if no special treatment is applied. We define the attack set of s as a subset of the89

state space in which an attack s∗ is so behaviourally dissimilar to s that generalization from ω̂(s∗) to90

ω̂(s) should be discouraged and that s∗ and s appear similar enough to confuse ω̂:91

AT (s) :=
{
s∗ ∈ S : ||s− s∗||1 < ε1, M(s, s∗) > ε2

}
. (1)

State vicinity is defined under l1 norm. M(·, ·) is a functional that measures how well the conse-92

quences of two given states can be distinguished, for which we use the bisimulation metric Givan93

et al. (2003); Ferns et al. (2011); Zhang et al. (2021)94

M(si, sj) := |ri − rj |+W
(
P (·|si, ai), P (·|sj , aj)

)
,∀ si, sj ∈ S.

Bisimulation metric quantifies behavioural similarity with a combination of the difference between95

rewards and the Wasserstein metric W Villani (2008) between the next state distributions, for which96

we are learning a hybrid transition function P (s′|ϕ(s), a) predicting the next state s′ from the97

embedding of the current state ϕ(s). To simplify computation, we model P (s′|ϕ(s), a) as a Gaussian98

and use W2 distance which has a closed-form expression.99

Note that the attack set AT (s) depicts the oracle determining whether two states s and s∗ should have100

similar return distributions ω in reality. This oracle will be referred to to identify the differentiating101

error of the model ω̂, and thus the model ω̂ cannot be involved in defining AT .102

2.2 Model distinguishability103

To measure the mistake the model ω̂ is making in differentiating between states, we train a binary104

value discriminator Goodfellow et al. (2014) which when at its optimum is describing the relative105

probability of a given return value G being drawn according to the return distribution predicted for a106

given state s107

Φ(G|s) :=
p
(
G ∼ ω̂(s)

)
p
(
G ∼ ω̂(s)

)
+ p

(
G ∼ ω̂(S\s)

) , ∀ G ∈ R, s ∈ S. (2)

We use ∼ to denote the preceding sample being distributed according to the succeeding probability108

function, and ω̂(S\s) to denote the marginal predicted return distribution under the current policy109

aggregated over the whole of the state space except s:110

ω̂(S\s) :=

∫
S\s d

π(s′)ω̂(s′)ds′∫
S\s d

π(s′)ds′
, (3)

with dπ representing the stationary state distribution under policy π. The denominator is to normalize111

dπ to make it a proper distribution when s is excluded.112

Specifically, Eq. (2) does not contrast ω̂(s) with a particular state return distribution, but the rest of113

possible state return distributions as a whole.114

Note that Eq. (2) is the equivalent definition of Φ(G|s) ended up with when trained against the115

cross-entropy loss given samples ∼ ω̂(s) and samples ∼ ω̂(S\s), rather than its computation formula,116

as we only assume the return distribution model ω̂ to be able to be sampled from without having117

access to its analytical form.118

For each s, we use its observed Bellman backup target (computed from any backup method) as the119

“true” sample ∼ ω̂(s), and the Bellman targets at other states belonging to the same training batch as120

the “fake” samples ∼ ω̂(S\s).121

With this relative probability estimator, we define the distance between the predicted return distribu-122

tions for a state s and an attack s∗ as a contrastive score123

D
(
ω̂(s), ω̂(s∗)

)
: = −EG∼ω̂(s)

[
log

p
(
G ∼ ω̂(s∗)

)
p
(
G ∼ ω̂(S\s∗)

)]
= −EG∼ω̂(s)

[
log Φ(G|s∗)− log

(
1− Φ(G|s∗)

)]
, (4)
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Figure 1: Training performance on HalfCheetah-v3. Solid lines and shaded areas represent mean and
standard deviation over 5 runs respectively.

which can be directly computed from the value discriminator Φ. Specifically, Eq. (4) does not directly124

contrast ω̂(s) with ω̂(s∗), but describes how likely a sample drawn from ω̂(s) is not deemed a sample125

from ω̂ predicted at s∗ relative to at any other state than s∗, i.e., a one-versus-many binary decision.126

This setting can be thought of as a regularization (inside regularization) on diversity to prevent all127

return distributions being overly far away from each other due to the adversarial training.128

We use Monte Carlo estimate of the expectation over ω̂(s), by sampling multiple times i.i.d. from129

ω̂(s) with reparameterization Kingma & Welling (2014). This is so that D remains differentiable130

with respect to the parameters of ω̂.131

2.3 Adversarial loss132

Finally, we define the adversarial objective to alleviate erroneous generalization as133

max
ω̂

min
s∗∈AT (s)

D
(
ω̂(s), ¯̂ω(s∗)

)
, (5)

in which the overhead bar ·̄ indicates that the model in question is deemed fixed in the current context.134

Basically, for each state s, we first find the worst-case scenario where an attack s∗ is sufficiently135

visually similar and behaviourally dissimilar to s, yet however has a learned return distribution closest136

to its own according to the D in Eq. (4). Then we increase this minimal D in updating ω̂ at s,137

appended as a regularizer to the original return distribution modelling objective such that the model138

can still be updated with conventional stochastic gradient descent.139

3 Results140

This is an ongoing project, we have only partial results and implementation details are not final at141

this stage.142

We use the scalar RL method PPO Schulman et al. (2017) as implementation backbone, substituting143

the value function with return distribution modelled from QR-DQN Dabney et al. (2018b) (adapted144

for state return distribution) and BDPG Li & Faisal (2021) respectively, as our two distributional RL145

baselines. QR represents the return distribution ω̂ as a set of return samples corresponding to a set of146

evenly distributed quantile levels. BDPG represents ω̂ as a variant of variational auto-encoder. We147

incorporate the proposed adversarial training on both baselines, denoted as “QR AT”, “BDPG AT”148

respectively.149
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Experiments were conducted on Mujoco environments Todorov et al. (2012). From the results on150

HalfCheetah as shown in Fig. 1, we can see that the proposed adversarial training can improve upon151

both QR and BDPG.152

4 Discussion & Conclusions153

In this work, we propose to leverage minimax adversarial training to prevent extrapolated general-154

ization in modelling parametric return distributions. For each state s, we first search for the attacks155

s∗ ∈ AT (s) that are both visually similar to s so that there may be generalization between them in156

learning the return distribution model ω̂, and behaviourally dissimilar to s (as measured by bisim-157

ulation metric) so that generalization from ω̂(s∗) to ω̂(s) should be discouraged. Then the largest158

distinguishing error of the model among the attacks is being regularized during model update. To159

estimate the distance between two predicted return distributions D, we train a value discriminator Φ160

depicting whether a given return value is distributed according to the return distribution predicted161

by the model at the given state or not. The model distinguishability D
(
ω̂(s), ω̂(s∗)

)
is therefore162

computed as how ω̂(s) is farther away from ω̂ predicted at s∗ than at any other state S\s∗.163

Proof-of-concept results on HalfCheetah suggest that the proposed idea can considerably improve164

learning speed as well as asymptotic performance regardless whether the return distribution is165

approximated as a particle set or a generative model, two most prevalently adopted return distribution166

modelling methods.167

Admittedly, the experiment is too scarce to be statistically remarkable at the moment. We are168

conducting further investigations into e.g. the inner work of adversarial training in DiRL, the degree169

and consequence of misgeneralization, as well as performing on more environments. Hopefully we170

will have a thorough experimental understanding of our idea soon. In the meantime, we do hope to171

get and would appreciate any feedback on the work.172
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