
Automated Detection of Visual Attribute Reliance with
a Self-Reflective Agent

Anonymous Author(s)
Affiliation
Address
email

Abstract

When a vision model performs image recognition, which visual attributes drive its1

predictions? Detecting unintended use of specific visual features is critical for en-2

suring model robustness, preventing overfitting, and avoiding spurious correlations.3

We introduce an automated framework for detecting these dependencies in trained4

vision models. At the core of our method is a self-reflective agent that systemati-5

cally generates and tests hypotheses about the unintended visual attributes that a6

model may rely on. This process is iterative: the agent refines its hypotheses based7

on experimental outcomes and uses a self-evaluation protocol to assess whether8

its findings accurately explain model behavior. If inconsistencies are detected, the9

agent self-reflects over its findings and triggers a new cycle of experimentation.10

We evaluate our approach on a novel benchmark of 130 models designed to exhibit11

diverse visual attribute dependencies across 18 categories. Our results show that the12

agent’s performance consistently improves with self-reflection, with a significant13

performance increase over non-reflective baselines. We further demonstrate that the14

agent identifies real-world visual attribute dependencies in state-of-the-art models,15

including CLIP’s vision encoder and the YOLOv8 object detector.16

1 Introduction17

Computer vision models trained on large-scale datasets have achieved remarkable performance18

across a broad range of recognition tasks, often surpassing human accuracy on standard benchmarks19

[1, 2, 3, 4]. However, strong benchmark results can obscure underlying vulnerabilities. In particular,20

models may achieve high accuracy using prediction strategies that are non-robust or non-generalizable.21

These include relying on object-level characteristics such as pose or color [5], contextual cues like22

background scenery or co-occurring objects [6, 7], and demographic traits of human subjects [8, 9,23

10]. Such visual dependencies may result in overfitting, reduced generalization, and performance24

disparities in real-world deployment [11, 12, 13, 14].25

Existing methods take various approaches to discover visual attributes that drive model predictions.26

These include saliency-based methods that highlight input regions associated with a prediction27

[15, 16, 17], feature visualizations that map activations to human-interpretable patterns [18], and28

concept-based attribution methods that evaluate sensitivity to predefined semantic concepts [19, 20,29

21]. While powerful for visualizing local behaviors, these approaches often rely on manual inspection30

and assume access to a fixed set of predefined concepts, limiting their ability to scale to modern31

models with complex behaviors.32

In this paper, we introduce a fully automated framework designed to detect unintended visual attribute33

reliance in pretrained vision models. Given a pretrained model and a target visual concept (e.g., an34

image classifier selective for the object vase), our method identifies specific image features that35

systematically influence the model’s predictions, even when these features fall outside the model’s36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

What are the visual attributes that the
classifier relies on to detect vases?

What are the visual attributes that YOLO
relies on to detect pedestrians?

Let’s conduct some experiments…

YOLO relies on side-view walking
poses in urban crossing contexts.

Predicted high-scoring images

…

…

Predicted low-scoring images

0.87 0.76 0.74

0.45 0.38 0.0

What are the visual attributes that CLIP relies
on to recognize the concept teacher?

Let’s conduct some experiments…

CLIP relies on authority signals in
conventional classroom settings rather
than actual pedagogical engagement.

Predicted high-scoring images

Predicted low-scoring images

Let’s conduct some experiments…

The model relies on the presence of
flowers inside the vase over empty
decorative vases.

Predicted high-scoring images

Predicted low-scoring images

…

0.56 0.49 0.41

…

1.0 0.88 0.74

0.07 0.06 0.05 0.42 0.20 0.02

……

Figure 1: Attribute Reliance Detection. We use a self-reflective agent to produce natural-language
descriptions of the visual attributes that a model relies on to recognize or detect a given concept.
For each target concept (e.g., vase, teacher, or pedestrians), the agent first conducts hypothesis
testing to reach a candidate description and then validates the description’s predictiveness of actual
model behavior through a self-evaluation protocol. The top row shows the agent’s generated explana-
tions. The bottom rows show images predicted to elicit high (green) or low (red) scores, along with
their actual model confidence scores. Results are shown for different target concepts across an object
recognition model with a controlled attribute reliance (left), CLIP (middle), and YOLOv8 (right).

intended behavior (e.g., the classifier relies on flowers to detect the vase, Fig. 1). At the core of our37

approach is a self-reflective agent (implemented with a backbone multimodal LLM) that treats the task38

as a scientific discovery process. Rather than relying on a predefined set of candidate attributes, the39

agent autonomously formulates hypotheses about image features that the model might rely on, designs40

targeted tests, and updates its beliefs based on observed model behavior. In contrast to previous41

interpretability agents [22, 23], the self-reflective agent does not stop after generating an initial42

finding, but rather actively evaluates how well it matches the model’s behavior on unseen test cases.43

When discrepancies arise, the agent reflects on its assumptions, identifies gaps or inconsistencies in44

its current understanding, and initiates a new hypothesis testing loop. We show that the agent’s ability45

to reason about attribute reliance significantly improves with self-reflection rounds (see Sec. 5).46

To quantitatively evaluate our method, we introduce a novel benchmark of 130 object recognition47

models, each constructed with a well-defined intended behavior and an explicitly injected attribute48

dependency. The benchmark spans 18 types of visual reliances, inspired by vulnerabilities known49

to exist in vision models [24, 5, 25, 26, 8, 9, 27]. These include object-level attributes (e.g., color,50

material), contextual dependencies (e.g., background, co-occurring object state), and demographic51

associations. Together with an automated evaluation protocol, this benchmark provides a controlled52

environment for evaluating attribute reliance detection methods.53

Our method is model-agnostic and can be applied to any vision model that assigns scores to input54

images. To demonstrate its versatility, we evaluate it on both our controlled benchmark and state-55

of-the-art pretrained models. Across a range of visual reliance types, our experiments show that56

the self-reflective agent consistently outperforms non-reflective baselines. Moreover, it successfully57

uncovers previously unreported attribute dependencies in pretrained models (Fig. 1). For example, it58

identifies that the CLIP-ViT vision encoder [28] recognizes teachers based on classroom backgrounds59

and that YOLOv8 [29], trained for object detection for autonomous driving, relies on the presence of60

crosswalks to detect pedestrians. These findings highlight the efficacy of our method as a scalable61

tool for detecting hidden dependencies in pretrained models deployed in real-world scenarios.62

2 Related Work63

Revealing Visual Attribute Reliance in Vision Models. Prior work has explored methods to64

uncover the visual cues that drive model predictions. One common strategy is to manipulate input65

features to isolate model sensitivities, such as shape or spectral biases in classifiers [30], or attribute66

2

preferences in face recognition systems [31]. Other works rely on interpretability tools to identify67

potential dependencies—for example, extracting keywords from captions of misclassified images68

[32], or using feature visualizations to reveal facial attribute reliance [33]. However, most of these69

methods target specific types of biases and rely on predefined concept sets or human inspection.70

In contrast, our framework introduces a unified, flexible approach that can detect a broad range of71

attribute reliances without prior assumptions about the relevant features.72

Interpretability and Automated Analysis. Initial work on interpretability automation produced73

textual descriptions of internal model features, using keywords [34], programs [21], or natural74

language summaries [35, 36, 37]. While informative, these descriptions are typically correlational,75

lacking behavioral validation [38, 22, 39]. More recent work introduces agents that actively probe76

models. For instance, the Automated Interpretability Agent (AIA) [22] used a language model to77

analyze black-box systems via a single pass over the input space. MAIA [23] extended this approach78

by incorporating iterative experimentation and multimodal tools, enabling more detailed analysis of79

model internals. Our work builds on this direction by focusing specifically on discovering visual80

attribute reliances and introducing a self-reflection mechanism that allows the agent to revise faulty81

hypotheses based on experimental evidence, leading to more accurate and robust conclusions.82

Benchmarks for Visual Attribute Reliance Detection. Standardized benchmarks for evaluating83

visual attribute reliance remain limited. Prior evaluations often use models trained on datasets with84

known biases, such as WaterBirds [40] or CelebA [41], using label co-occurrence as a proxy for85

ground truth [42]. For generative settings, OpenBias [43] proposes biases via LLMs, generates86

images from biased prompts, and assesses reliance using VQA models. However, OpenBias is not87

applicable to predictive models and cannot conduct controlled interventions. We introduce a suite88

of 130 vision models with explicitly injected attribute reliances across 18 categories, providing89

fine-grained control over attribute type and strength. This allows rigorous, scalable evaluation of90

reliance detection methods in a predictive setting.91

Agent-Based Reasoning and Self-Reflective Systems. A growing body of work explores how92

agents can improve reasoning through reflection, feedback, and interaction. Methods like SELF-93

Refine [44], Reflexion [45], and ReAct [46] introduce multi-step loops in which agents revise their94

outputs via self-critique. Similarly, Du et al. [47] show that multi-agent debate improves factual95

consistency and reasoning in language models. Our agent uses a task-specific self-evaluation protocol,96

enabling it to assess whether its conclusions align with actual model behavior. This integration of97

behavioral validation with self-reflection allows our agent to autonomously revise hypotheses and98

close the interpretability loop.99

3 Self-Reflective Agent100

Our framework is designed to automatically discover visual attributes that a pretrained model relies on101

to perform its task, particularly when those dependencies fall outside its intended scope of behavior.102

Our approach consists of two main stages. (i) Hypothesis-Testing stage, in which an autonomous103

agent is provided with a subject model (e.g., an image classifier) and a target concept to explore (e.g.,104

Vase). The agent is tasked with discovering visual attributes in the input image that the subject model105

relies on to perform recognition tasks. The agent proposes candidate attributes that may influence the106

model’s behavior, designs targeted experiments to test its hypotheses, and iteratively refines them107

based on observed results. This cycle continues until the agent converges to a stable explanation of the108

reliance of the model. (ii) Self-Reflection Stage, in which the agent uses a self-evaluation tool to score109

its explanation. This is done by quantifying how well the agent’s explanation matches the behavior110

of the model in new input images. If the explanation fails to generalize or reveals inconsistencies,111

the agent reflects on its prior explanation in light of the evaluation evidence and launches a new112

hypothesis-testing stage. Both stages are demonstrated in Fig. 2.113

3.1 Hypothesis-Testing Stage114

In this stage, the agent iteratively refines hypotheses about the attribute sensitivities of the subject115

model. Inspired by MAIA [23], we design the agent to operate in a scientific loop: it begins by116

proposing candidate attributes that the subject model might rely on, generate and edit images to test117

these hypotheses (e.g. edit an image with a suit to change its color), observes the resulting model’s118

behavior (e.g. measure the confidence scores of the subject model and updates its beliefs accordingly.119

3

What are the input features my model relies on to detect suit?

The model relies on
corporate settings.

> Looking at images with highest
classification score:

Self-Reflection

...

0.82 0.79 0.75
> Test: relies on black suits

...

0.75 0.63 0.22
> Test: corporate settings

0.83 0.39 0.76

...

The model relies on a male
wearing the suit

> Test: 45-degree views of suits

...

0.65 0.63 0.35
> Test: male vs. female

...

0.6 0.34

Some of the images with
corporate settings got low
confidence scores, while non-
corporate setting still get
high scores. Let’s run another
experiment.

> Let’s evaluate the “corporate
settings” conclusion. Let’s look
at images with and without this
attribute and evaluate if they
match model responses.

Predicted high-scoring images

…

…

Predicted low-scoring images

0.71 0.66

0.77 0.39 0.32

0.66
> Let’s evaluate this conclusion

The conclusion matches the
model behavior: The model
relies on male presenting
figures to detect the suit.

0.35

… …

Self-Evaluation

Hypothesis-Testing Hypothesis-Testing

Figure 2: Attribute reliance detection through hypothesis testing and self-reflection. To discover
features that drive model prediction, the agent starts by formulating and testing a range of hypothe-
ses. After reaching a conclusion (e.g., the model favors suit in corporate settings), it performs
self-evaluation by testing the model responses on images with and without this feature. When
inconsistencies between the conclusion and model behavior are observed (e.g., some non-corporate
images yield high scores, and some corporate images yield lower scores), the agent updates its prior
beliefs according to these discrepancies and hypothesizes alternative explanations to test with further
experimentation.

This cycle continues until the agent converges on a final explanation for the model’s sensitivity to120

image features.121

Agent actions The agent interacts with the subject model through a set of predefined actions122

implemented as Python functions. These actions include: (i) querying the classifier on a given123

input image to observe its classification score; (ii) retrieving the set of images with the highest124

recognition score from a fixed dataset, to identify inputs that strongly trigger the target concept;125

(iii) generating new images using a text-to-image model; (iv) editing existing images to manipulate126

specific attributes; (v) summarizing visual information across one or more images into text, to127

infer shared features; and (vi) displaying function which enables the agent to log images, text, or128

other results in a notebook available throughout the experiment. The agent designs experiments129

by composing multiple actions together through Python scripts. It then observes the experiment130

results—a combination of text and images—and decides whether to continue with more experiments131

or to output a conclusion. We implement the agent with a Claude-Sonnet-3.5 backbone. Please132

refer Appendix A for implementation details, full prompts, and API.133

3.2 Self-Reflective Stage134

Once the hypothesis testing stage is complete and the agent reports its conclusion, we initiate a135

self-reflection stage. In this stage, the conclusion from the hypothesis testing stage is scored using a136

self-evaluation protocol. This protocol is completely unsupervised and does not require any ground-137

truth labels or external information. Instead, it measures how well the detected reliance matches138

the actual behavior of the subject model. If the agent’s detected reliance sufficiently matches the139

model’s behavior, it terminates the experiments and returns the current conclusion. If inconsistencies140

between the agent’s conclusion and the model behavior are found, the information collected from141

the self-evaluation stage is returned to the agent, which reflects over its own conclusion and initiates142

another hypothesis-testing round. This process is demonstrated in Fig. 3.143

4

Some of the the images with predicted high classification score show lower
classification score than expected, let’s continue with the experiments.
Highest classification scores were for direct child interaction, rather
than educational settings in general. Educational setups without human
presence scored only moderately. Isolated bears in various settings and
environmental conditions didn't significantly impact scores.

Pr
om

p
t g

en
er

at
or

Te
xt

-t
o-

Im
ag

e

Subject Model

Self-Evaluation Protocol

Self-Reflection

What are the input features my model relies on to detect teddy bears?

Measured model behavior

…

Predicted high-scoring images

Predicted low-scoring images

…

…

0.72 0.78 0.41

0.47 0.470.44

The model
relies on
the teddy
bear being
presented in
educational
settings

Pr
om

p
t g

en
er

at
or

Experiment Conclusion

Hypotheses-
Testing

Experiment

Figure 3: Self-reflection stage. Our agent initiates a hypothesis-testing experiment. After testing
multiple candidate hypotheses (see Fig. 2), the agent draws an inital conclusion (e.g., teddy bear are
detected based on appearing in educational settings). The agent then uses a self-evaluation protocol
that generates synthetic images via a text-to-image model and computes the subject model’s scores on
these images. The self-evaluation protocol compares the predicted and actual model scores, triggering
another round of hypothesis testing if results deviate from expectations. In this example, the agent
observes that the highest scores correlate with direct child interaction rather than generic educational
settings, leading to refined future hypotheses.

Self-Evaluation protocol Self-evaluation serves two key purposes: (i) to assess whether the current144

explanation matches the model’s behavior, and (ii) to guide further experimentation if it does not.145

The process begins by querying a separate language model to generate two sets of image prompts.146

The first set, termed the “predicted high-scoring images”, contains instances of images with the target147

concept (e.g., teddy bear) along with the detected reliance attribute (e.g., educational settings).148

The second set, the “predicted low-scoring images”, contains instances of the target concept, but with149

the absence of the detected attribute. These prompts are used as inputs to a text-to-image model that150

generates the corresponding images, which are then fed to the subject model, and the output scores151

are recorded. If the agent’s explanation is accurate, the model should exhibit systematically higher152

scores on the “predicted high-scoring” images and lower scores on the “predicted low-scoring” set.153

Behavior-matching protocols of this kind have been shown to be effective in other evaluation154

settings, particularly for the task of producing textual labels of neurons’ behavior in pretrained155

models [23, 48, 38]. We repurpose this evaluation method as a basis for self-reflection: the agent156

uses it to validate its own conclusions, determine whether further experimentation is necessary, and157

reflects over its own findings based on measured model behavior.158

Agent self-reflection After observing the model’s responses to the “predicted high-scoring” and159

“predicted low-scoring” images, the agent reflects on whether the results align with its expectations.160

If the model’s average scores on each of the groups deviated from expected, the agent may decide161

that its current conclusion is incomplete or inaccurate. It then analyzes which visual attributes162

within the generated images might explain these discrepancies. In doing so, the agent updates163

its hypothesis—either by narrowing the original explanation (e.g., refining “educational settings”164

to “child interaction”) or by generating alternative hypotheses altogether. This reflective process165

closes the experimental loop and allows the agent to reinitiate the hypothesis-testing stage with166

better-informed guidance. Please refer to Appendix A.2 for the full self-reflection instructions.167

4 A Benchmark of Models with Controlled Attribute Reliance168

To evaluate the capabilities of the self-reflective agent, we constructed a benchmark of 130 unique169

object recognition models that exhibit 18 diverse types of visual attribute reliance. All simulated170

behaviors are inspired by known vulnerabilities of vision models [24, 5, 25, 26, 8, 9, 27], and171

mimic spurious correlations between the target object and image attributes such as object color,172

5

Input Images

0.37

𝒞t,i(img) = rand(0,0.1)

Is the bird
present?

Discount
factor α

𝒞t,i(img) = 𝒪t(img)

𝒪t

No

Is the beach
setting condition

satisfied?

𝒜iYes

No

Yes

𝒞t,i(img) = (1-α) × 𝒪t(img)

Conditioning visual attribute 𝒜i0.89

0.06

Object attribute: Color

Context attribute: Image background

Demographic attribute: Gender of
people present

Object attribute: Material

Context attribute: Object state or
configuration

Demographic attribute: Age of
people present

Figure 4: Simulating visual feature reliance. We simulate feature reliance by modulating object
recognition scores based on the presence of specific visual attributes (e.g., a bird detector that relies
on the presence of beach background). Given an input image and object category t, Ot produces a
confidence score for object presence. If the object is not detected, a low random score is assigned
as the confidence score of the image. If the object is detected, we simulate an attribute dependency
(e.g., presence of a “beach background” for bird detection) through the procedure described in Sec.
4.1. If the condition is satisfied, the final classification score equals Ot(img) confidence. Otherwise,
the score is discounted by a factor α to represent the model’s weaker response in the case that the
attribute condition is not met.

background context, co-occurring object state, or demographic cues. To assess the generalizability of173

our method, the benchmark also includes a subset of models with counterfactual attribute reliance174

that are intentionally rare or unnatural in real-world pretrained models (e.g., a suit detector responds175

more strongly when a women wear the suit). Each benchmark model includes an input parameter176

that controls the strength of the injected reliance, allowing for precise control over model behavior.177

Importantly, because these models are explicitly engineered with a known intended behavior, they178

serve as a controlled testbed for evaluating and comparing feature reliance detection methods.179

4.1 Simulating attribute dependencies180

Figure 4 illustrates a simulated attribute reliance scenario. Given a target object class t (e.g. bird)181

and an intended injected attribute reliance i (e.g. setting; beach), we simulate a model Ct,i that182

detects t under the condition i. Each benchmark model is composed of two components; an object183

detector Ot and an attribute condition detector Ai, which modulates the output of Ot based on the184

presence or absence of the specified attribute. To compute the final output of the model Ct,i on an185

input image img, we first pass the image through the object detector Ot. If the target object class is186

not detected, the model returns a low random baseline score. If the object is detected, the image is187

then evaluated by the attribute condition detector Ai. If the attribute condition is satisfied, the original188

confidence score Ot(img) is returned, simulating full model response. Otherwise, the confidence189

score is discounted by a multiplication factor of α, simulating attenuated confidence due to the190

missing attribute. The scalar α ∈ [0, 1] controls the magnitude of the injected reliance: higher values191

of α simulate stronger reliance on the attribute. Please refer to Appendix B.2 for empirical evaluation192

of reliance magnitude as a function of α. In all the benchmark models, we use Grounding DINO [49]193

as the object detector Ot and SigLIP [50] as the attribute condition detector Ai, which in practice194

is guided by a textual description of the injected attribute condition i. For demographic attribute195

dependencies, FairFace [51] is used for Ai instead of SigLIP (see implementation details below).196

Notably, this model composition approach is highly flexible—one could engineer any object-condition197

pairing to construct an object detection model with a desired attribute reliance.198

4.2 Attribute Condition Categories199

We categorize the attribute conditions used to inject reliance into four groups: object attributes, context200

attributes, demographic attributes, and counterfactual demographic attributes. These categories reflect201

different types of visual dependencies observed (or intentionally constructed) in our benchmark202

6

2 4 6 8 10
Self-Reflection Rounds

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
iv

en
es

s S
co

re

0.9 Reliance
0.5 Reliance
Ground-Truth

MAIA
Milan
Multi-Agent

(a) Self-Evaluation Scores

2 4 6 8 10
Self-Reflection Rounds

0.6

0.7

0.8

0.9

1.0

Se
lf-

Ev
al

ua
tio

n
Sc

or
e

Factuals (0.9)
Counterfactuals (0.9)
Factuals (0.5)
Counterfactuals (0.5)

(b) Factuals vs. Counterfactuals Relaiances

Figure 5: Self-Evaluation Scores over Self-Reflection Rounds (a) We plot the average predictiveness
score over all models in the benchmark for a harsh reliance magnitude of α = 0.9, as well as a
softer reliance magnitude of α = 0.5. For the self-reflective agent, we see a steady increase in the
predictiveness scores over rounds for both discount factors, approaching their respective theoretical
upper bounds as given by the ground truth baseline. As expected, the scores for softer reliance
models (α = 0.5) are consistently lower than those of the stronger models (α = 0.9), illustrating
that subtler attribute reliances are more challenging for the agent to detect. The self-reflective agent
outperforms all nonreflective baselines (MAIA, Milan, and Multi-Agent) by a significant margin
for both reliance magnitude values. (b) We compare the predictiveness scores of agents’ reliance
descriptions over factual models with intuitive demographic attribute reliance against counterfactual
reliance on object-demographic associations that are not commonly observed. Although the agent’s
descriptions of the counterfactual models achieve lower predictiveness scores, the performance still
reliably improves over increased rounds of self-reflection for both α settings.

models, and guide the choice of attribute detector A used in each case. Please see the full list of203

constructed models in Appendix B.204

Object attributes These attribute dependencies relate to visual properties of the object itself. We205

include reliance on object color and material, using SigLIP as A for zero-shot classification of206

object-specific attributes (e.g. SigLIP is guided with the prompt a red bus to inject a color reliance207

to a bus detector). A color-reliant system returns the full score from Ot only if the object has a208

specific color, otherwise the response is discounted; similarly, a material-reliant model will have a209

full response only if the object is of the intended material (e.g., vases made of ceramic).210

Context attributes These dependencies reflect properties of the object’s surrounding context. We211

simulate reliance on the specific setting of the object (e.g. keyboard only if it is being typed) and212

object background (e.g. car only if it is in an urban environment). Here as well, we use SigLIP213

guided but text for detecting the intended attribute.214

Demographic attributes These dependencies are based on the age or gender of people interacting215

with the target object. We use FairFace as A to detect demographic attributes and construct systems216

relying on these (e.g. apron detector that relies on the apron to be worn by women, and a glasses217

detector that relies on the glasses to be worn by older individuals).218

Counterfactual demographic attributes To test whether the agent can discover novel or non-219

intuitive dependencies, we include models with counterfactual demographic reliance. These systems220

swap typical co-occurrence patterns (e.g., an apron detector that activates only when worn by men, or221

a glasses detector that prefers younger wearers). Success on these models suggests that the agent can222

recover unexpected feature dependencies through hypothesis testing and self-reflection alone.223

5 Experiments224

We evaluate the performance of our agent on both our synthetic benchmark models and on real-world,225

pretrained vision models. Examples of attribute reliance discovered by the agent, as well as evaluation226

results, are shown in Figures 1, 2, 3, and 7.227

7

5.1 Evaluation protocol228

We quantitatively evaluate the accuracy of the detected attribute reliances by our agent and compare229

its performance to 4 different baselines.230

Predictiveness score Following [48, 22], we quantify how well a candidate reliance description231

matches model behavior. Similar to the self-evaluation score, given a candidate explanation, we232

start by generating 10 synthetic images that are expected to elicit high model scores and 10 that are233

expected to elicit low scores. We then pass these images through the model and record its actual234

responses. Each image is assigned a binary prediction label (high or low predicted response), and235

we threshold the model’s scores to obtain a binary outcome (high or low measured response). The236

predictiveness score is computed as the proportion of images where the predicted label matches237

the model’s actual binary output. This reflects how well the explanation predicts individual model238

responses.239

LLM as a Judge We use a language model as a judge [52] in a two-alternative forced choice240

(2AFC) setting. Given a ground-truth explanation of a benchmark model and two candidate241

explanations, one produced by our agent and one from a baseline, the LLM judge is asked to242

choose which candidate better matches the ground-truth description. For each description pair,243

we repeat the test 10 times, and report the average preference rate for the agent’s descriptions.244

GT: The clock
classifier is
responsive to

features of analog
clock

Ground-truth description

A: The classifier relies
on traditional analog
clocks appearance

Agent’s description

B: The classifier relies
on Roman numerals on the

clock face

Competitive description

A
LLM as a judge: Which
candidate is more similar in
meaning to the ground-truth
description?

α Ours vs. Milan Ours vs. MAIA Ours vs. Multiagent

0.5 0.54± 0.02 0.56± 0.03 0.53± 0.03
0.9 0.59± 0.02 0.6± 0.02 0.62± 0.03

Figure 6: 2AFC evaluation. We use a language model
(GPT-4) as a judge. Given a ground-truth description,
the LLM compares two candidate explanations: one
generated by our agent and one from a competitive base-
line (MAIA, Milan, or Multiagent). The LLM selects
the candidate it finds most semantically similar to the
ground truth. We report average preference rate for our
agent in the table.

245

Baselines We compare our agent against246

the following alternatives: (i) Milan-style247

attribute reliance explanation: Following248

Milan [35], this approach avoids iterative249

experimentation and detects the reliance250

based on a precomputed set of image ex-251

emplars that maximize the model’s scores.252

(ii) MAIA-style agent: Based on [23], this253

method performs hypothesis testing but254

does not engage in self-reflection to revise255

its explanation. For a fair comparison, we256

equip MAIA with the same set of tools257

and backbone model that our model uses.258

(iii) Multi-agent ensemble: We run 10 in-259

dependent MAIA-style, non-self-reflective260

agents and select the explanation with the261

highest self-evaluation score. This tests262

whether repeated sampling alone can match263

the performance gains from self-reflection.264

(iv) Ground-truth descriptions: For bench-265

mark models, we include ideal natural lan-266

guage descriptions of the injected reliance267

as an upper bound on performance.268

5.2 Evaluating Benchmark Models269

Self-reflection enhances reliance detection As showed in Fig. 5a, predictiveness scores steadily270

improve over the course of self-reflection rounds, suggesting that the agent’s explanations become271

increasingly aligned with the model’s actual behavior. Notably, performance exceeds the MILAN272

one-shot baseline, a MAIA-style agent, and the non-reflective multiagent system, indicating that273

self-reflection offers a distinct advantage.274

Robust performance across different degrees of model reliance Figure 5a shows consistent275

performance gains for both strong (α = 0.9) and weak (α = 0.5) reliance settings, demonstrating that276

the agent is effective across a range of dependency strengths. While stronger dependencies lead to277

higher absolute scores, the relative improvement from self-reflection remains significant even in more278

ambiguous scenarios. The same trend is seen in the 2AFC test (Fig. 6), where the final conclusion279

from the self-reflective agent is more frequently preferred over the baselines for the stronger reliance.280

8

What are the visual attributes that CLIP relies
on to recognize the concept scientist?

What are the visual attributes that YOLO
relies on to detect bikers?

Let’s conduct some experiments…

YOLO relies on 45-degree and rear
Pose of bikers

Predicted high-scoring images

Predicted low-scoring images

What are the visual attributes that CLIP relies
on to recognize the concept wine glass?

Let’s conduct some experiments…

CLIP prefers singular wine glasses
against simple backgrounds.

Predicted high-scoring images

Predicted low-scoring images

Let’s conduct some experiments…

CLIP relies on traditional
laboratory settings over
computational scientific work.

Predicted high-scoring images

Predicted low-scoring images

… …

……

0.89 0.79 0.71

0.34 0.16 0.16

0.75 0.680.77

0.49 0.39 0.18

0.80 0.77 0.76

0.18 0.14 0.07

…

…

Figure 7: Detected feature reliance in CLIP and YOLO. Our self-reflective agent identifies visual
attribute dependencies in state-of-the-art pretrained models that had not been previously documented.
For each concept (e.g., scientist, wine glass, biker), the agent concludes an attribute reliance through
a natural language explanation and tests it by comparing predicted high and low-scoring images. The
examples reveal that CLIP-ViT relies on traditional laboratory settings to recognize scientists,
while YOLOv8 favors 45-degree and rear views for detecting bikers.

The agent discovers counterfactual feature reliances In addition to recovering realistic dependen-281

cies, the agent successfully identifies counterfactual attribute reliance (Fig. 5b). This indicates that282

the agent is capable of discovering surprising or non-intuitive patterns of reliance, rather than simply283

mirroring familiar dataset biases.284

5.3 Revealing feature dependencies in trained vision models285

We deploy the agent to detect feature reliance in two pre-trained vision models: the CLIP-ViT image286

encoder [28] trained to align image and text representations, and the YOLOv8 model [29] trained287

for object detection in autonomous driving settings. With CLIP, we perform object recognition by288

measuring the cosine similarity of the image with a target prompt (r.g., “A picture of a scientist”).289

For YOLOv8 we measure the detection score of the target object class. Figures 1 and 7 show that the290

agent is able to generate natural-language descriptions of multiple feature dependencies across various291

concepts. The generated descriptions are proven to be predictive model behavior, as model score292

increases with the when reliance satisfied and decreased when absent. Surprisingly, the self-reflective293

agent reveals dependencies that were never observed before, such as the reliance of clip on traditional294

laboratory settings when detecting scientist, and YOLOv8 dependency on bikers’ poses.295

6 Conclusion296

We introduced a self-reflective agent that discovers unintended attribute reliance in pretrained vision297

models by framing interpretability as an iterative process of hypothesis generation, testing, and298

self-evaluation. Experiments on both synthetic benchmarks and real-world models (e.g., CLIP,299

YOLOv8) show that the agent outperforms non-reflective baselines and uncovers both known and300

novel sensitivities. While our method provides a scalable and general framework for behavioral model301

auditing, it currently relies on the quality of image generation to simulate counterfactuals, limitations302

that may affect performance in some real-world deployments. As interpretability tools become303

more powerful, they raise important societal considerations: uncovering reliance on demographic304

or contextual cues can inform fairness audits and improve transparency, but also risks revealing or305

reinforcing sensitive correlations if not used responsibly. We believe that the self-reflective agents306

represent a step toward more transparent AI systems.307

9

References308

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-309

age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern310

Recognition (CVPR), pages 770–778, 2016.311

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,312

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,313

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image314

recognition at scale. arXiv preprint arXiv:2010.11929, 2020.315

[3] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural316

networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.317

[4] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng318

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual319

recognition challenge. International journal of computer vision, 115:211–252, 2015.320

[5] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,321

and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias322

improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.323

[6] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh324

Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar325

objects. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,326

pages 4845–4854, 2019.327

[7] Brian Wilson, Judy Hoffman, Jamie Morgenstern, and Nando De Freitas. Predictive inequity in328

object detection. arXiv preprint arXiv:1902.11097, 2019.329

[8] Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal:330

The role of image backgrounds in object recognition. In International Conference on Learning331

Representations, 2021. URL https://openreview.net/forum?id=gl3D-xY7wLq.332

[9] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. Balanced333

datasets are not enough: Estimating and mitigating gender bias in deep image representations. In334

Proceedings of the IEEE/CVF international conference on computer vision, pages 5310–5319,335

2019.336

[10] Amir Rosenfeld, Richard Zemel, and John K Tsotsos. The elephant in the room. arXiv preprint337

arXiv:1808.03305, 2018.338

[11] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural339

adversarial examples. CVPR, 2021.340

[12] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet341

classifiers generalize to imagenet? In Proceedings of the International Conference on Machine342

Learning (ICML), pages 5389–5400, 2019.343

[13] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig344

Schmidt. Measuring robustness to natural distribution shifts in image classification. In Advances345

in Neural Information Processing Systems (NeurIPS), 2020.346

[14] Olivia Wiles, Alan Black, Bernardo Avila Pires, and Carlos Riquelme. A fine-grained analysis347

of distribution shift on imagenet-21k. In International Conference on Learning Representations348

(ICLR), 2022.349

[15] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:350

Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,351

2013.352

[16] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi353

Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based354

localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),355

pages 618–626, 2017.356

10

https://openreview.net/forum?id=gl3D-xY7wLq

[17] Pieter-Jan Kindermans, Sara Hooker, and et al. The (un)reliability of saliency methods. arXiv357

preprint arXiv:1711.00867, 2017.358

[18] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.359

[19] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, and Fernanda Viégas.360

Interpretability beyond feature attribution: Quantitative testing with concept activation vectors361

(tcav). In Proceedings of the International Conference on Machine Learning (ICML), pages362

2668–2677, 2018.363

[20] Amirata Ghorbani, James Wexler, and et al. Towards automatic concept-based explanations. In364

NeurIPS, 2019.365

[21] Joshua Mu and Jacob Andreas. Compositional explanations of neurons. NeurIPS, 2020.366

[22] Sarah Schwettmann, Tamar Shaham, Joanna Materzynska, Neil Chowdhury, Shuang Li, Jacob367

Andreas, David Bau, and Antonio Torralba. Find: A function description benchmark for368

evaluating interpretability methods. Advances in Neural Information Processing Systems, 36:369

75688–75715, 2023.370

[23] Tamar Rott Shaham, Sarah Schwettmann, Franklin Wang, Achyuta Rajaram, Evan Hernandez,371

Jacob Andreas, and Antonio Torralba. A multimodal automated interpretability agent. In372

Forty-first International Conference on Machine Learning, 2024.373

[24] Maximilian Dreyer, Reduan Achtibat, Thomas Wiegand, Wojciech Samek, and Sebastian374

Lapuschkin. Revealing hidden context bias in segmentation and object detection through375

concept-specific explanations. In Proceedings of the IEEE/CVF Conference on Computer Vision376

and Pattern Recognition, pages 3829–3839, 2023.377

[25] Robert Geirhos, Joern-Henrik Jacobsen, Claudio Michaelis, and et al. Shortcut learning in deep378

neural networks. Nature Machine Intelligence, 2020.379

[26] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in380

commercial gender classification. Proceedings of Machine Learning Research, 81:77–91, 2018.381

[27] Amanpreet Singh, Yash Goyal, Dhruv Batra, and Devi Parikh. Don’t just assume; look and382

answer: Overcoming priors for visual question answering. In CVPR, 2020.383

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,384

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual385

models from natural language supervision. In International conference on machine learning,386

pages 8748–8763. PmLR, 2021.387

[29] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023. URL https://388

github.com/ultralytics/ultralytics.389

[30] Paul Gavrikov and Janis Keuper. Can biases in imagenet models explain generalization? In390

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages391

22184–22194, 2024.392

[31] Hao Liang, Pietro Perona, and Guha Balakrishnan. Benchmarking algorithmic bias in face393

recognition: An experimental approach using synthetic faces and human evaluation. In Pro-394

ceedings of the IEEE/CVF International Conference on Computer Vision, pages 4977–4987,395

2023.396

[32] Younghyun Kim, Sangwoo Mo, Minkyu Kim, Kyungmin Lee, Jaeho Lee, and Jinwoo Shin.397

Discovering and mitigating visual biases through keyword explanation. In Proceedings of398

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11082–11092,399

2024.400

[33] Divyang Teotia, Agata Lapedriza, and Sarah Ostadabbas. Interpreting face inference models401

using hierarchical network dissection. International Journal of Computer Vision, 130(5):402

1277–1292, 2022.403

11

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

[34] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissec-404

tion: Quantifying interpretability of deep visual representations. In Proceedings of the IEEE405

conference on computer vision and pattern recognition, pages 6541–6549, 2017.406

[35] Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Ja-407

cob Andreas. Natural language descriptions of deep visual features. In International Conference408

on Learning Representations, 2021.409

[36] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya410

Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain411

neurons in language models. URL https://openaipublic. blob. core. windows. net/neuron-412

explainer/paper/index. html.(Date accessed: 14.05. 2023), 2, 2023.413

[37] Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representa-414

tion via text-based decomposition. arXiv preprint arXiv:2310.05916, 2023.415

[38] Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. Rig-416

orously assessing natural language explanations of neurons. arXiv preprint arXiv:2309.10312,417

2023.418

[39] Carina I Hausladen, Manuel Knott, Colin F Camerer, and Pietro Perona. Social perception of419

faces in a vision-language model. arXiv preprint arXiv:2408.14435, 2024.420

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The421

caltech-ucsd birds-200-2011 dataset. 2011.422

[41] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in423

the wild. In Proceedings of the IEEE international conference on computer vision, pages424

3730–3738, 2015.425

[42] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally426

robust neural networks for group shifts: On the importance of regularization for worst-case427

generalization. arXiv preprint arXiv:1911.08731, 2020.428

[43] Moreno D’Incà, Elia Peruzzo, Massimiliano Mancini, Dejia Xu, Vidit Goel, Xingqian Xu,429

Zhangyang Wang, Humphrey Shi, and Nicu Sebe. Openbias: Open-set bias detection in text-to-430

image generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision431

and Pattern Recognition, pages 12225–12235, 2024.432

[44] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,433

Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad434

Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative435

refinement with self-feedback.436

[45] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.437

Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information438

Processing Systems, 36:8634–8652, 2023.439

[46] Shinn Yao, Jeff Zhao, Dian Yu, Bill Yu, Karthik Narasimhan, and Yujia Cao. React: Synergizing440

reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2023.441

[47] Yilun Du, Alexander Zeliger, Sebastian Gehrmann, Douwe Kiela, Joshua Tenenbaum, and442

Jacob Andreas. Improving factuality and reasoning in language models through multiagent443

debate. In NeurIPS, 2023.444

[48] Laura Kopf, Philine L Bommer, Anna Hedström, Sebastian Lapuschkin, Marina Höhne, and445

Kirill Bykov. Cosy: Evaluating textual explanations of neurons. Advances in Neural Information446

Processing Systems, 37:34656–34685, 2024.447

[49] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei448

Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for449

open-set object detection. arXiv preprint arXiv:2303.05499, 2023.450

12

[50] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for451

language image pre-training. In Proceedings of the IEEE/CVF International Conference on452

Computer Vision (ICCV), pages 11975–11986, October 2023.453

[51] Kimmo Karkkainen and Jungseock Joo. Fairface: Face attribute dataset for balanced race,454

gender, and age for bias measurement and mitigation. In Proceedings of the IEEE/CVF Winter455

Conference on Applications of Computer Vision, pages 1548–1558, 2021.456

[52] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,457

Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and458

chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.459

[53] OpenAI. Gpt-4o technical report, 2024. https://openai.com/index/gpt-4o.460

13

https://openai.com/index/gpt-4o

Appendix461

A Agent Implementation462

A.1 Hypothesis loop instructions463

You will get an access to a classifier in the final layer of a deep neural network that is sensitive
to the presence of <concept> within photo-realistic images. Your overall task is to reveal biases
in the classifier’s behavior. That is, your task is to find specific features for which the classifier
tends to have relatively higher confidence scores, but only covers partial aspect of the <concept>
class, or specific features for which the classifier tends to have relatively lower confidence
scores although <concept> is still present.
Try to identify and explain the cause of biases in the network. These biases could reflect
real-world biases or they could be spurious. Some bias categories include:
1. Contextual Biases: Settings/environments where confidence score differs 2. Demographic
Biases: Variations across race, gender, age, etc. 3. Technical Biases: Lighting, angle, scale, or
quality dependencies 4. Spurious Biases: Correlations between classes and spurious features
To do that, you are provided with a library of Python functions to run experiments on each
unit (inside the "System" class), given the functions provided in the "Tools" class. Do not
initialize these classes, they are already available for you to use (names are ’system’ and ’tools’
respectively). Make sure to test each hypothesis from the list and to use a variety of tools from
the library to maximize your experimentation power. At each experiment step, write Python
code that will conduct your experiment on the model, using the following format:
[CODE]: write Python code using your knowledge of Python and
the System and Tools class for running experiments. You must
display values if you want to see them. They will not be displayed
automatically.
Include only a single instance of experiment implementation at each step. Your code will be
executed and the results will be displayed. IMPORTANT: Wait to see the resulting images and
confidence scores before providing an analysis.
Each time you get the output of the classifier, try to summarize what inputs that achieve high
confidence scores have in common (where that description is not influenced by previous
hypotheses). Then, write multiple hypotheses that could explain the biases of the classifier. For
example, these hypotheses could list multiple features that the classifier is more or less sensitive
to.
After each experiment, wait to observe the outputs of the classifier and analyze the results from
each experiment. [ANALYSIS]: Let’s break this down step by step. The experiments imply
that...
Based on these conclusions, write a list of initial hypotheses about the classifier biases in the
format: [HYPOTHESIS LIST]: Hypothesis1: <hypothesis1> ... Hypothesisn: <hypothesisn>
Now, write additional experiments to test them. Test the effects of both local and global
differences in images using the different tools in the library. If you are unsure about the
results of the previous experiment, you can also rerun it, or rerun a modified version of it with
additional tools.
Use the following format: [CODE]: ##conduct additional experiments using the provided
python library to test *ALL* the hypotheses. Test different and specific aspects of each
hypothesis using all of the tools in the library. Write code to run the experiment in the same
format provided above. Include only a single instance of experiment implementation. Wait
for the code to be executed and the results to be prompted to you before continuing to the
analysis step. [ANALYSIS]: systematically draw conclusions from each tested hypothesis.
HYPOTHESIS LIST]: update your hypothesis list according to the image content and related
confidence scores.
Continue running experiments until you prove or disprove all of your hypotheses. Only when
you are confident in your hypothesis after proving it in multiple experiments and no additional
experiments need to be executed, output your final description of the classifier bias in the
following format. Output your final description of the classifier bias ONLY ONCE, when no
more [CODE] is provided for additional experiments. DO NOT write any code in the round you

464

14

want to output your final bias description and bias label:
BIAS DESCRIPTION
: <description of bias>
In addition, output a one-sentence summary of the bias description in the following format:
[BIAS DESCRIPTION]: <succinct one-sentence summary of bias description>
Examples ——– Example 1 [BIAS LABEL]: The classifier should classify dogs, but it has a
bias to prefer white dogs. =======
Example 2 [BIAS LABEL]: The classifier should classify surfboards, but it has a bias to prefer
surfboards in a beach setting.
Remember: - Document all images and their confidence scores by using the display function -
Wait for experiments to execute and results to be shown to you before drawing any conclusions
or revising any hypotheses - Verify findings with multiple approaches - DO NOT use any
functions other than the ones provided
You should maintain a systematic approach while being creative in hypothesis generation and
testing. Each experiment should build on previous findings while maintaining methodological
rigor.

465

15

A.2 Self-reflection instructions466

You will get an access to a classifier in the final layer of a deep neural network that is sensitive
to the presence of 0 within photo-realistic images. Your overall task is to reveal biases in the
classifier’s behavior. That is, your task is to find specific features for which the classifier tends to
have relatively higher confidence scores, but only covers partial aspect of the 0 class, or specific
features for which the classifier tends to have relatively lower confidence scores although 0 is
still present.
Try to identify and explain the cause of biases in the network. These biases could reflect
real-world biases or they could be spurious. Some bias categories include:
1. Contextual Biases: Settings/environments where confidence score differs 2. Demographic
Biases: Variations across race, gender, age, etc. 3. Technical Biases: Lighting, angle, scale, or
quality dependencies 4. Spurious Biases: Correlations between classes and spurious features
A fellow scientist has proposed the following hypothesis about this classifier’s bias:
HYPOTHESIS: "BIAS"
We have conducted experiments on three sets of relevant images to help you assess this hypothe-
sis:
1. [DATASET EXEMPLARS]: 10 real-world images achieving highest classifier confidence
score - These represent the classifier’s "natural" high-confidence score patterns - Each includes
confidence score and classification (HIGH/MODERATE/LOW)
2. [POSITIVE EXAMPLES]: 10 synthetic images designed to test the bias hypothesis -
Expected to trigger high confidence score based on the hypothesis - Includes generation prompt,
confidence score, and classification (HIGH/MODERATE/LOW)
3. [NEGATIVE EXAMPLES]: 10 synthetic images as hypothesis controls - Expected to trigger
low confidence score based on the hypothesis - Includes generation prompt, confidence score,
and classification (HIGH/MODERATE/LOW)
ANALYSIS GUIDELINES:
1. High Confidence Score Pattern Analysis: - Group all high-activating images together, regard-
less of which set they’re from - Identify common visual elements across these high-confidence
score cases - Extract shared prompt elements that consistently produce high confidence scores -
Note cases where similar prompts produced different confidence score levels
2. Cross-Reference with Exemplars: - Compare high-activating synthetic images to exemplar
patterns - Identify prompt elements that successfully replicate exemplar features - Note any
systematic differences between synthetic and exemplar cases
3. Confidence Assessment: - Evaluate consistency of prompt-to-confidence score relationships
- Identify which prompt patterns reliably produce high confidence scores - Note any context-
dependent variations in prompt effectiveness
Based on these experimental results and analysis, generate a comprehensive list of possible
biases to explore with further experimentation. Present your hypotheses in the following format:
[HYPOTHESIS LIST]: Hypothesis1 :< hypothesis1 > ...Hypothesisn :< hypothesisn >
Strong hypotheses should explain both intended and unintended high-confidence score patterns
while identifying reliable prompt elements that trigger the classifier.

467

16

A.3 Image generation for self-evaluation468

You will get access to a classifier in the final layer of a deep neural network that detects the
presence of 0 within photo-realistic images for autonomous driving. Your task is to validate a
hypothesis about the classifier’s biases. A researcher has concluded:
HYPOTHESIS: <BIAS>
Generate two sets of image prompts: 1. 10 prompts for images containing 0 that should trigger
HIGH classifier confidence score based on the hypothesis 2. 10 prompts for images containing
0 that should trigger LOW classifier confidence score based on the hypothesis
If the hypothesis suggests multiple bias scenarios, distribute the prompts to cover all cases.
Make sure each image only tests ONE bias scenario at a time so different possible sources of
bias do not confound.
Return your results in this exact format:
<POSITIVE PROMPTS> 1. [First high-confidence score prompt] 2. [Second high-confidence
score prompt] ... 10. [Tenth high-confidence score prompt] </POSITIVE PROMPTS>
<NEGATIVE PROMPTS> 1. [First low-confidence score prompt] 2. [Second low-confidence
score prompt] ... 10. [Tenth low-confidence score prompt] </NEGATIVE PROMPTS>
Remember to start the positive examples with the opening tag <POSITIVE PROMPTS> and
end the positive examples with closing tag </POSITIVE PROMPTS>. Remember to start the
negative examples with opening tag <NEGATIVE PROMPTS> and end the negative examples
with closing tag </NEGATIVE PROMPTS>.

469

17

A.4 API and implementation details470

The API of our agent is based on that of MAIA [23] with a few important modifications: (i) our471

agent is able to define experiments in free-form code blocks, where initially MAIA had to define472

all its code within a function (execute_command) that was then executed by the codebase. This473

allows our agent to both write multiple blocks of code per experiment and to access variables defined474

in previous experiments. (ii) the agent is now able to log and display any text/images generated475

during its experiments in the format of its choosing with a single, flexible function (display), whereas476

MAIA had to rely on individual tools to display their own results in predetermined formats. (iii) The477

agent can use more recent VLLMs, particularly Claude-3.5-sonnet, where the original codebase used478

gpt-4-vision-preview.479

A.5 Agent tools480

To support experimentation and interpretability analysis, we provide a Tools class with utilities for:481

• Text-to-image generation from prompts via pretrained diffusion models.482

• Prompt-based image editing to create controlled counterfactuals.483

• Image summarization that identifies common semantic or non-semantic features across a484

set of images.485

• Region-based image descriptions that generate textual descriptions of highlighted activa-486

tion regions.487

• Exemplar retrieval for a given classifier unit, returning representative images and their488

scores.489

A.6 Supported backbone models.490

The agent ships with a small self-contained toolkit that lets us run end-to-end vision experiments491

(image generation, editing, and logging) through a single, uniform interface.492

• Text-to-Image Generation:493

– Flux Image Generator- use for all agent experiments in the paper494

– DALL·E 3 (OpenAI API) (use for the evaluation)495

• Image Editing:496

– InstructDiffusion (Stable Diffusion variant with instruction tuning)497

• Image Description and Summarization:498

– GPT-4o [53], used via API to describe image regions and summarize visual commonal-499

ities across images.500

A.7 Interface and Logging.501

All generated or edited images are stored in Base64 format for transmission and display. The502

framework logs each experiment (prompt, image, activation, description) and supports export as an503

interactive HTML report for reproducibility.504

Overall, the toolkit enables the agent to generate or edit images for hypothesis testing, score them505

different models, analyse the outcomes, and package the entire run into a report, making each506

experiment swift, scalable, and fully reproducible. For a comprehensive overview of hardware507

requirements, see Table 1.508

A.8 Resources509

All our experiments were conducted on a single NVIDIA RTX 3090 (24 GB) GPU. The agent510

backbone (Claude-3.5-sonnet) was used through Anthropic API, and the prompt generator for self-511

reflection (GPT4o) and the evaluator modern in the 2AFC experiment (GPT4) were accessed through512

Open-AI API.513

18

Model (Inference) Peak VRAM ↓ (GB) #Params ↓ (M)

SAM ViT–H ∼7.0 632
Grounding DINO Swin–T ∼0.45 174
SigLIP So400m (P14/384) ∼2.1 878
CLIP ViT–L/14 (OpenAI) ∼2.04 428
FairFace ResNet-34 ∼0.06 21.8
YOLOv8-m (Ultralytics) ∼0.07 25.9
Stable Diffusion 3.5 Medium (FP16) ∼9–10 2 500
FLUX.dev (12B, 4-bit + offload) ∼10-11 12 000
InstructPix2Pix (SD-1.5 base) ∼6-7 890
Instruction Diffusion ∼10 1 000
RetinaFace MobileNetV3 ∼0.02 1.7

Average Experiment ∼19.5-20.5 –

Table 1: Peak GPU memory and parameter scale of all models used at inference time.

19

A.9 API prompt514

class System:
"""
A Python class containing the vision model and the specific classifier to

interact with.

Attributes

classifier_num : int

The unit number of the classifier.
layer : string

The name of the layer where the classifier is located.
model_name : string

The name of the vision model.
model : nn.Module

The loaded PyTorch model.

Methods

call_classifier(image_list: List[torch.Tensor]) -> Tuple[List[int], List[str]]

Returns the classifier confidence score for each image in the input
image_list as well as the original image (encoded into a Base64 string)
.

"""

def __init__(self , classifier_num: int , layer: str , model_name: str , device:
str):
"""
Initializes a classifier object by specifying its number and layer location

and the vision model that the classifier belongs to.
Parameters

classifier_num : int

The unit number of the classifier.
layer : str

The name of the layer where the classifier is located.
model_name : str

The name of the vision model that the classifier is part of.
device : str

The computational device (’cpu’ or ’cuda ’).
"""
self.classifier_num = classifier_num
self.layer = layer
self.device = torch.device(f"cuda:{ device}" if torch.cuda.is_available ()

else "cpu")

def call_classifier(self , image_list: List[torch.Tensor]) -> Tuple[List[float],
List[str]]:

"""
The function returns the c l a s s i f i e r s maximum confidence score (in float

format) for each of the images in the list as well as the original
image (encoded into a Base64 string).

Parameters

image_list : List[torch.Tensor]

The input image

Returns

Tuple[List[int], List[str]]

For each image in image_list returns the confidence score of the
classifier on that image , and the original image encoded into a
Base64 string.

515

20

Examples

>>> # test the confidence score of the classifier for the prompt "a dog

standing on the grass"
>>> prompt = ["a dog standing on the grass"]
>>> image = tools.text2image(prompt)
>>> score_list , image_list = system.call_classifier(image)
>>> for score , image in zip(score_list , image_list):
>>> tools.display(image , f"Confidence Score: {score}")
>>>
>>> # test the confidence score of the classifier for the prompt "a dog

standing on the grass" and maintain robustness to noise
>>> prompts = ["a dog standing on the grass"]*5
>>> images = tools.text2image(prompts)
>>> score_list , image_list = system.call_classifier(images)
>>> tools.display(image_list [0], f"Confidence Score: {statistics.mean(

score_list)}")
>>>
>>> # test the confidence score of the classifier for the prompt "a

landscape with a tree and river"
>>> # for the same image but with different seasons:
>>> prompts = ["a landscape with a tree and a river"]*3
>>> original_images = tools.text2image(prompts)
>>> edits = ["make it autumn","make it spring","make it winter"]
>>> all_images , all_prompts = tools.edit_images(original_images , edits)
>>> score_list , image_list = system.call_classifier(all_images)
>>> for score , image , prompt in zip(score_list , image_list , all_prompts):
>>> tools.display(image , f"Prompt: {prompt }\ nConfidence Score: {score}"

)
"""

class Tools:
"""
A Python class containing tools to interact with the units implemented in the

system class ,
in order to run experiments on it.

Attributes

text2image_model_name : str

The name of the text -to -image model.
text2image_model : any

The loaded text -to-image model.
images_per_prompt : int

Number of images to generate per prompt.
path2save : str

Path for saving output images.
threshold : any

Confidence score threshold for classifier analysis.
device : torch.device

The device (CPU/GPU) used for computations.
experiment_log: str

A log of all the experiments , including the code and the output from the
classifier

analysis.
exemplars : Dict

A dictionary containing the exemplar images for each unit.
exemplars_scores : Dict

A dictionary containing the confidence scores for each exemplar image.
exemplars_thresholds : Dict

A dictionary containing the threshold values for each unit.
results_list : List

A list of the results from the classifier analysis.

516

21

Methods

dataset_exemplars(system: System)->List[Tuple[int , str]]

This experiment provides good coverage of the behavior observed on a
very large dataset of images and therefore represents the typical
behavior of the classifier on real images. This function characterizes the
prototypical behavior of the classifier by computing its confidence score

on
all images in the ImageNet dataset and returning the 15 highest confidence
scores and the images that produced them in Base64 encoded string format.

edit_images(self , base_images: List[str], editing_prompts: List[str]) -> Tuple[
List[List[str]], List[str]]
This function enables localized testing of specific hypotheses about how
variations on the content of a single image affect classifier confidence

scores.
Gets a list of input images in Base64 encoded string format and a list of
corresponding editing instructions , then edits each provided image based on

the
instructions given in the prompt using a text -based image editing model.

The
function returns a list of images in Base64 encoded string format and list

of the
relevant prompts. This function is very useful for testing the causality of

the
classifier in a controlled way , or example by testing how the classifier

confidence
score is affected by changing one aspect of the image. IMPORTANT: Do not

use negative
terminology such as "remove ...", try to use terminology like "replace ...

with ..."
or "change the color of ... to ...".

text2image(prompt_list: str) -> List[str]
Gets a list of text prompts as an input and generates an image for each
prompt using a text to image model. The function returns a
list of images in Base64 encoded string format.

summarize_images(self , image_list: List[str]) -> str:
This function is useful to summarize the mutual visual concept that
appears in a set of images. It gets a list of images at input and
describes what is common to all of them.

describe_images(synthetic_image_list: List[str], synthetic_image_title:List[str
]) -> str
Provides impartial descriptions of images. Do not use this function on
dataset exemplars. Gets a list of images and generates a textual
description of the semantic content of each of them.
The function is blind to the current hypotheses list and
therefore provides an unbiased description of the visual content.

display(self , *args: Union[str , Image.Image]):
This function is your way of displaying experiment data. You must call
this on results/variables that you wish to view in order to view them.

"""

def __init__(self , path2save: str , device: str , DatasetExemplars:
DatasetExemplars = None , images_per_prompt =1, text2image_model_name=’sd ’):
"""
Initializes the Tools object.

Parameters

path2save : str

Path for saving output images.
device : str

The computational device (’cpu’ or ’cuda’).
DatasetExemplars : object

an object from the class DatasetExemplars

517

22

images_per_prompt : int
Number of images to generate per prompt.

text2image_model_name : str
The name of the text -to -image model.

"""
def dataset_exemplars(self , system: System) -> List[Tuple[float , str]]

"""
This method finds images from the ImageNet dataset that produce the highest

confidence scores for a specific classifier.
It returns both the confidence scores and the corresponding exemplar images

that were used to generate these confidence scores.
This experiment is performed on real images and will provide a good

approximation of the classifier behavior.

Parameters

system : System

The system representing the specific classifier and layer within the
neural network.

The system should have ’layer ’ and ’classifier_num ’ attributes , so the
dataset_exemplars function

can return the exemplar confidence scores and images for that specific
classifier.

Returns

List

For each exemplar image , stores a tuple containing two elements:
- The first element is the confidence score for the specified

classifier.
- The second element is the exemplar images (as Base64 encoded strings)

corresponding to the confidence score.

Example

>>> exemplar_data = tools.dataset_exemplars(system)
>>> for score , image in exemplar_data:
>>> tools.display(image , f"Confidence Score: {score}")
"""

def edit_images(self ,
base_images: List[str],
editing_prompts: List[str]) -> Tuple[List[List[str]], List[str

]]:
"""
Generates or uses provided base images , then edits each base image with a
corresponding editing prompt. Accepts either text prompts or Base64
encoded strings as sources for the base images.

The function returns a list containing lists of images (original and edited
,

interleaved) in Base64 encoded string format , and a list of the relevant
prompts (original source string and editing prompt , interleaved).

Parameters

base_images : List[str]

A list of images as Base64 encoded strings. These images are to be
edited by the prompts in editing_prompts.

editing_prompts : List[str]
A list of instructions for how to edit the base images derived from
‘base_images ‘. Must be the same length as ‘base_images ‘.

518

23

Returns

Tuple[List[List[str]], List[str]]

- all_images: A list where elements alternate between:
- A list of Base64 strings for the original image(s) from a source.
- A list of Base64 strings for the edited image(s) from that source

.
Example: [[orig1_img1 , orig1_img2], [edit1_img1 , edit1_img2], [

orig2_img1], [edit2_img1], ...]
- all_prompts: A list where elements alternate between:

- The original source string (text prompt or Base64) used.
- The editing prompt used.

Example: [source1 , edit1 , source2 , edit2 , ...]
The order in ‘all_images ‘ corresponds to the order in ‘all_prompts ‘.

Raises

ValueError

If the lengths of ‘base_images ‘ and ‘editing_prompts ‘ are not equal.

Examples

>>> # test the confidence score of the classifier for the prompt "a

landscape with a tree and river"
>>> # for the same image but with different seasons:
>>> prompts = ["a landscape with a tree and a river"]*3
>>> original_images = tools.text2image(prompts)
>>> edits = ["make it autumn","make it spring","make it winter"]
>>> all_images , all_prompts = tools.edit_images(original_images , edits)
>>> score_list , image_list = system.call_classifier(all_images)
>>> for score , image , prompt in zip(score_list , image_list , all_prompts):
>>> tools.display(image , f"Prompt: {prompt }\ nConfidence Score: {score}"

)
>>>
>>> # test the confidence score of the classifier on the highest scoring

dataset exemplar
>>> # under different conditions
>>> exemplar_data = tools.dataset_exemplars(system)
>>> highest_scoring_exemplar = exemplar_data [0][1]
>>> edits = ["make it night","make it daytime","make it snowing"]
>>> all_images , all_prompts = tools.edit_images ([highest_scoring_exemplar]*

len(edits), edits)
>>> score_list , image_list = system.call_classifier(all_images)
>>> for score , image , prompt in zip(score_list , image_list , all_prompts):
>>> tools.display(image , f"Prompt: {prompt }\ nConfidence Score: {score}"

)
"""

def text2image(self , prompt_list: List[str]) -> List[List[str]]:
"""
Takes a list of text prompts and generates images_per_prompt images for

each using a
text to image model. The function returns a list of a list of

images_per_prompt images
for each prompt.

Parameters

prompt_list : List[str]

A list of text prompts for image generation.

Returns

List[List[str]]

A list of a list of images_per_prompt images in Base64 encoded string
format for

each input prompts.

519

24

Examples

>>> # Generate images from a list of prompts
>>> prompt_list = [a dog standing on the g r a s s ,
>>> a dog sitting on a c o u c h ,
>>> a dog running through a f i e l d]
>>> images = tools.text2image(prompt_list)
>>> score_list , image_list = system.call_classifier(images)
>>> for score , image in zip(score_list , image_list):
>>> tools.display(image , f"Confidence Score: {score}")
"""

def display(self , *args: Union[str , Image.Image]):
"""
Displays a series of images and/or text in the chat , similar to a Jupyter

notebook.

Parameters

*args : Union[str , Image.Image]

The content to be displayed in the chat. Can be multiple strings or
Image objects.

Notes

Displays directly to chat interface.

Example

>>> # Display a single image
>>> prompt = ["a dog standing on the grass"]
>>> images = tools.text2image(prompt)
>>> score_list , image_list = system.call_classifier(images)
>>> for score , image in zip(score_list , image_list):
>>> tools.display(image , f"Confidence Score: {score}")
>>>
>>> # Display a single image from a list
>>> prompts = ["a dog standing on the grass"]*5
>>> images = tools.text2image(prompts)
>>> score_list , image_list = system.call_classifier(images)
>>> tools.display(image_list [0], f"Confidence Score: {statistics.mean(

score_list)}")
>>>
>>> # Display a list of images
>>> prompt_list = [a dog standing on the g r a s s ,
>>> a dog sitting on a c o u c h ,
>>> a dog running through a f i e l d]
>>> images = tools.text2image(prompt_list)
>>> score_list , image_list = system.call_classifier(images)
>>> for score , image in zip(score_list , image_list):
>>> tools.display(image , f"Confidence Score: {score}")
"""

def summarize_images(self , image_list: List[str]) -> str:
"""
Gets a list of images and describes what is common to all of them.

Parameters

image_list : list

A list of images in Base64 encoded string format.

520

25

Returns

str

A string with a descriptions of what is common to all the images.

Example

>>> # Summarize a classifier ’s dataset exemplars
>>> exemplars = [exemplar for _, exemplar in tools.dataset_exemplars(system

)] # Get exemplars
>>> summarization = tools.summarize_images(exemplars)
>>> tools.display(summarization)
"""

def describe_images(self , image_list: List[str], image_title:List[str]) -> str:
"""
Generates textual descriptions for a list of images , focusing
specifically on highlighted regions. The final descriptions are
concatenated and returned as a single string , with each description
associated with the corresponding image title.

Parameters

image_list : List[str]

A list of images in Base64 encoded string format.
image_title : List[str]

A list of titles for each image in the image_list.

Returns

str

A concatenated string of descriptions for each image , where each
description

is associated with the images title and focuses on the highlighted
regions

in the image.

Example

>>> prompt_list = ["a dog standing on the grass",
>>> "a dog sitting on a couch",
>>> "a dog running through a field"]
>>> images = tools.text2image(prompt_list)
>>> score_list , image_list = system.call_classifier(images)
>>> descriptions = tools.describe_images(image_list , prompt_list)
>>> tools.display(descriptions)

521

26

B Benchmark models522

B.1 Systems specification523

We provide below the full list of objects and categories used for our benchmark.524

Gender Age

Female Male Young Old

1 Apron (“kitchen") Tie Laptop Glasses
2 Umbrella Beer Cell phone Book
3 Scarf Skateboard Skateboard Hat
4 Cat Suit Bicycle Tie
5 Book Laptop Teddy bear Wine glass
6 Handbag motorcycle
7 Wine glass surfboard
8 Hair drier Frisbee
9 Teddy bear Guitar
10 Dress Cap

Table 2: Feature categories and corresponding objects associated with gender and age stereotypes.

Color Material

Red Green Blue Black White Wooden Ceramic

1 Bus Bus Bus Bus Bus Table Vase
2 Umbrella Umbrella Umbrella Umbrella Umbrella Chair Bowl
3 Tie Tie Tie Tie Tie Bench Cup
4 Kite Kite Kite Kite Kite
5 Frisbee Frisbee Frisbee Frisbee Frisbee

Table 3: Feature categories and corresponding objects associated with color and material properties.

Setting State

Kitchen Living Room Office Wilderness City Beach Misc.

1 Table Table Table Bird Bird Bird Airplane (Flying)
2 Chair Chair Chair Car Car Car Bicycle (Ridden)
3 Cat Cat Cat Dog Dog Dog Clock (Analog)
4 Dog Dog Dog Horse Horse Horse Keyboard (Typing)
5 Vase Vase Vase Bench Bench Bench Kite (Flying)
6 Wine glass Wine glass Wine glass Umbrella (Open)
7 Vase (With flowers)

Table 4: Feature categories and corresponding objects associated with different settings and states.

27

Gender Age

Female Male Young Old

1 Tie Apron Glasses Laptop
2 Beer Umbrella Book Cell phone
3 Skateboard Scarf Hat Skateboard
4 Suit Cat Tie Bicycle
5 Laptop Book Wine glass Teddy bear
6 motorcycle Handbag
7 surfboard Wine glass
8 Frisbee Hair drier
9 Guitar Teddy bear
10 Cap Dress

Table 5: Feature categories and corresponding objects with flipped gender and age associations.

B.2 Dependency strength versus discount factor525

We investigate how a discount factor α∈ [0, 1] of our synthetic model attenuates the score of the526

synthetic model henever a predefined attribute condition is not satisfied. Figure 8 shows the mean527

classification accuracy for six attribute groups: AGE, COLOR, GENDER, SETTING, SIZE, and STATE.528

• No discount (α=1.0). Baseline accuracies for all groups remain high (≥ 0.73).529

• Small discount (0 < α ≤ 0.3). Accuracy drops slightly (under five percentage points),530

indicating that mild penalties leave decisions largely intact.531

• Medium discount (0.3 < α ≤ 0.5). Accuracy decreases almost linearly—GENDER is most532

robust, while SIZE and SETTING degrade faster.533

• High–extreme discount (α > 0.5). A sharp collapse occurs; COLOR and SIZE fall below534

0.20 at α≈0.7, and all groups eventually saturate between 0.05 and 0.25.535

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Discount factor

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Color

Material

State

Setting

Age

Gender

Figure 8: Mean accuracy versus discount factor α for six attribute groups.

28

C Results536

C.1 Additional Analysis537

Figures 9 and 10 report the average self-evaluation scores across ten rounds of self-reflection,538

under discount factors of α=0.5 and α=0.9, respectively. We observe a consistent upward trend in539

performance across all five attribute categories—GENDER, AGE, COLOR, STATE, and SETTING. This540

trend holds across both mild and severe reliance scenarios, suggesting that the iterative refinement541

process is effective in improving the quality of the agent’s hypotheses and explanations. While early542

rounds exhibit fluctuations (especially at α=0.5), later rounds show stabilization and convergence543

toward higher evaluation scores. The improvement is more pronounced under the lighter discounting544

condition (α=0.5), where the agent starts from lower scores but achieves a comparable gain. It545

also noticable that for a disambiguate attribute dependency (α=0.5) more self-reflection rounds are546

necessary, whereas with (α=0.9) a saturation is achieved earlier. This demonstrates that self-reflection547

enables the agent to recover explanatory accuracy even in challenging scenarios.548

2 4 6 8 10
Self-Reflection Round

0.60

0.65

0.70

0.75

0.80

0.85

Se
lf-

Ev
al

ua
tio

n
Sc

or
e

gender
age
color
state
setting

Figure 9: α = 0.5

2 4 6 8 10
Self-Reflection Round

0.70

0.75

0.80

0.85

0.90

Se
lf-

Ev
al

ua
tio

n
Sc

or
e

gender
age
color
state
setting

Figure 10: α = 0.9

29

	Introduction
	Related Work
	Self-Reflective Agent
	Hypothesis-Testing Stage
	Self-Reflective Stage

	A Benchmark of Models with Controlled Attribute Reliance
	Simulating attribute dependencies
	Attribute Condition Categories

	Experiments
	Evaluation protocol
	Evaluating Benchmark Models
	Revealing feature dependencies in trained vision models

	Conclusion
	Agent Implementation
	Hypothesis loop instructions
	Self-reflection instructions
	Image generation for self-evaluation
	API and implementation details
	Agent tools
	Supported backbone models.
	Interface and Logging.
	Resources
	API prompt

	Benchmark models
	Systems specification
	Dependency strength versus discount factor

	Results
	Additional Analysis

