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Abstract
Geocoding is the task of converting location001
mentions in text into structured geospatial002
data. We propose a new two-stage approach to003
geocoding that first resolves countries, states,004
and counties, and then uses these as document-005
level context to disambiguate the remaining lo-006
cation mentions. We apply this approach to two007
state-of-the-art geocoding models, CamCoder008
and SSPART. Our proposed two-stage approach009
to toponym resolution applied to SSPART010
yields state-of-the-art performance on multiple011
datasets. Our analysis shows that SSPART’s012
direct incorporation of geographic database en-013
tries is key to its success over CamCoder in014
leveraging document context. Code and models015
are available at https://<anonymized>.016

1 Introduction017

Geocoding, also called toponym resolution or to-018

ponym disambiguation, is the task of linking place019

names in text (known as toponyms) to geospatial020

databases. It is a fundamental building block for021

natural language processing applications such as022

geographical document classification and retrieval023

(Bhargava et al., 2017), historical event analysis024

(Tateosian et al., 2017), tracking the evolution025

and emergence of infectious diseases (Hay et al.,026

2013), and disaster response mechanisms (Ashk-027

torab et al., 2014; de Bruijn et al., 2018).028

The goal of geocoding is, given a textual mention029

of a location, to choose the corresponding geospa-030

tial coordinates, geospatial polygon, or entry in a031

geospatial database. There are two kinds of chal-032

lenges in geocoding: first, different geographical033

locations can be referred to by the same place name034

(e.g., Edmonton in Alberta, Canada vs. Edmonton035

in Queensland, Australia); second, different place036

names can refer to the same geographical location037

(e.g., Tibet and Xizang are two names for the same038

place in China).039

Most existing geocoding systems utilize a vari-040

ety of hand-engineered heuristics including lexi-041
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LGL CamCoder 0.943 0.898 0.529 0.477
SSPART 0.968 0.806 0.829 0.745

GWN CamCoder 1.000 0.565 0.156 0.302
SSPART 1.000 0.765 0.778 0.752

TR-News CamCoder 1.000 1.000 0.000 0.837
SSPART 1.000 1.000 0.000 0.830

Table 1: Precision of two state-of-the-art geocoding
systems on three geocoding development sets. See ap-
pendix A.3 for recall.

cal features (e.g., mention name, candidate entry 042

name, and context window) and geographical fea- 043

tures (e.g., population or type of place) (Speriosu 044

and Baldridge, 2013; Zhang and Gelernter, 2014; 045

DeLozier et al., 2015; Kamalloo and Rafiei, 2018; 046

Wang et al., 2019). Recent deep learning based 047

geocoding systems have yielded large improve- 048

ments since neural networks can better extract con- 049

textual information with less feature engineering 050

(Gritta et al., 2018; Cardoso et al., 2019; Kulkarni 051

et al., 2021). However, deep learning systems have 052

rarely used the spatial minimality feature common 053

to prior work, which takes advantage of the fact 054

that different toponyms in a document tend refer to 055

spatially near locations. Incorporating this feature 056

can be complex, since until toponym resolution 057

is complete, we do not know the database entries 058

for the locations and therefore do not know their 059

coordinates to measure spatial distances. 060

We propose a solution to this problem that takes 061

advantage of the fact that current geocoding sys- 062

tems have good precision on locations at the top 063

of the geographic hierarchy: countries, states, and 064

counties (see Table 1 and Table 3). We therefore 065

propose a new two-step architecture, shown in Fig- 066

ure 1, where these top-of-hierarchy locations are 067
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Figure 1: The architecture of our two-stage approach to toponym resolution.

resolved first and then used as context when resolv-068

ing the remaining location names. Our work makes069

the following contributions:070

• Our proposed architecture for geocoding071

achieves new state-of-the-art performance on072

multiple datasets.073

• Our approach is the first neural architecture074

to incorporate document-level context for075

geocoding.076

• We apply our approach to two different state-077

of-the-art geocoders and our analysis shows078

that SSPART’s direct incorporation of geo-079

graphic database entries is key to success.080

2 Related Work081

Our work focuses on mention-level geocoding in082

which the objective is to match phrases within a083

text to their corresponding locations. We do not084

address the separate named entity recognition task085

of geotagging, which typically precedes mention-086

level geocoding.087

Many systems for geocoding used hand-crafted088

rules and heuristics to predict geospatial labels for089

place names. Examples include the Edinburgh090

geoparser (Grover et al., 2010), Tobin et al. (2010),091

Lieberman et al. (2010), Lieberman and Samet092

(2011), CLAVIN (Berico Technologies, 2012),093

GeoTxt (Karimzadeh et al., 2013), and Laparra094

and Bethard (2020). The most common features095

and heuristics were based on string matching, pop-096

ulation count, and type of place (city, country, etc.).097

As more shared tasks and annotated datasets098

were proposed, geocoding systems began to take099

the heuristics of rule-based systems and use them as100

features in supervised machine learning models, in-101

cluding logistic regression (WISTR, Speriosu and102

Baldridge, 2013), support vector machines (Mar- 103

tins et al., 2010; Zhang and Gelernter, 2014), ran- 104

dom forests (MG, Freire et al., 2011; Lieberman 105

and Samet, 2012), stacked LightGBMs (DM_NLP, 106

Wang et al., 2019) and other statistical learning 107

methods (Topocluster, DeLozier et al., 2015; CBH, 108

SHS, Kamalloo and Rafiei, 2018). 109

Recently, deep learning methods have been intro- 110

duced for toponym resolution (CamCoder, Gritta 111

et al., 2018; Cardoso et al., 2019; MLG, Kulkarni 112

et al., 2021). Each system has a unique neural archi- 113

tecture for combining inputs to make predictions 114

based on convolutional neural networks (CNNs: 115

CamCoder, Gritta et al., 2018; MLG, Kulkarni 116

et al., 2020), recurrent neural networks (RNNs: 117

Cardoso et al., 2019), vector-space models (Ar- 118

danuy et al., 2020), or pre-trained transformers 119

(Anonymous, 2022). 120

Our proposed approach allows these deep learn- 121

ing systems to take advantage of document-level 122

features, while respecting their limits on input size 123

(e.g., 512 word-pieces). Our approach is broadly re- 124

lated to multi-stage approaches to Wikipedia entity 125

linking (Guo and Barbosa, 2014; Xue et al., 2019; 126

Yang et al., 2019), though these models assume an 127

in-context example of every entry in the database, 128

something that is available in Wikipedia, but un- 129

available in geographic databases like GeoNames. 130

3 Proposed Methods 131

We define the task of toponym resolution as fol- 132

lows. We are given an ontology or knowledge 133

base with a set of entries E = {e1, e2, ..., e|E|}. 134

Each input is a text made up of sentences T = 135

{t1, t2, . . . , t|T |} and a list of location mentions 136

M = {m1,m2, ...,m|M |} in the text. The goal is 137

to find a mapping function f(mi, E) → ej that 138
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Algorithm 1: Two-stage toponym resolu-
tion using document-level context.

Input: location mentions, M
GeoNames ontology, E
geocoding system, f(m, c,E)→ e

m is a location mention
c is a context string
e ∈ E is the predicted entry

Output: mapping of mentions to entries, R̂
1 R̂← {}
2 C ← ∅
3 for m ∈M do
4 e← f(m,"", E)
5 if TYPE(e) ∈ {adm1,adm2,adm3} then
6 R̂[m]← e
7 C ← C ∪ {CODE(e)}
8 for m ∈M do
9 if m ̸∈ R̂ then

10 R̂[m]← f(m,"|".join(C), E)

11 return R̂

maps each location mention in the text to its corre-139

sponding entry in the ontology.140

We propose to model f(mi, E) with Algo-141

rithm 1. Lines 1-7 are the context-free stage, where142

an existing geocoding system is first applied to all143

location mentions. If the feature type of a predicted144

entry, type(e), is an administrative district 1-3145

(i.e., the top of the geographic hierarchy: coun-146

tries, states, or counties), then the prediction is147

accepted. Such predictions are also converted to148

their administrative codes (e.g., United States →149

US) and added to the context. Lines 8-10 are the150

second stage, where the geocoding system is ap-151

plied to all remaining location mentions but this152

time incorporating the collected context.153

4 Experiments154

4.1 Datasets155

We use the same three toponym resolution datasets156

and training/dev/testing splitting method as in pre-157

vious work. Below we briefly describe each dataset158

and refer readers to their paper for details.159

Local Global Lexicon (LGL; Lieberman et al.,160

2010) was constructed from 588 news articles from161

local and small U.S. news sources.162

GeoWebNews (GWN; Gritta et al., 2019) was163

constructed from 200 articles from 200 globally164

distributed news sites.165

TR-News (Kamalloo and Rafiei, 2018) was con-166

structed from 118 articles from various global and167

local news sources.168

4.2 Geospatial Database 169

Following previous work, we use GeoNames as our 170

database. GeoNames is a crowdsourced database 171

of geospatial locations. GeoNames contains almost 172

7 million entries and each entry contains a variety 173

of geographical information such as coordinates 174

(latitude and longitude), alternative names, feature 175

type (country, city, river, mountain, etc.), popu- 176

lation, elevation, and positions within a political 177

geographic hierarchy. Three entry examples for 178

Alberta, Edmonton and Canada from GeoNames 179

are shown in fig. 1. 180

4.3 Evaluation Metrics 181

To evaluate the toponym resolution systems com- 182

prehensively, we adopt both database entry level 183

metrics (more strict) and coordinate level metrics 184

(less strict): 185

Accuracy measures the fraction of location men- 186

tions predicted with the correct database entry ID. 187

Accuracy@161km measures the fraction of pre- 188

dicted coordinates that were less than 161 km away 189

from the gold coordinates. 190

Mean error distance calculates the mean over 191

all distances between each predicted and gold coor- 192

dinates. 193

Area Under the Curve (AUC) calculates the 194

area under the curve of the distribution of geocod- 195

ing error distances. 196

4.4 Systems 197

We compare two geocoding systems that allow pro- 198

grammatic manipulation of the context they con- 199

sider. Both models incorporate local context, but 200

their neural architectures do not have the capacity 201

to operate over long, full document contexts. 202

CamCoder Gritta et al. (2018) combines a con- 203

volutional neural network over the target mention 204

and its context with a population vector derived 205

from location mentions in the context and popula- 206

tions from GeoNames. CamCoder considers only 207

400 tokens of context around the target mention, 208

and predicts one of 7823 tiles of the earth’s surface. 209

To apply our proposed two-stage resolution al- 210

gorithm to CamCoder, for the first stage we run the 211

most accurate model from table 1 (SSPART) with- 212

out textual context. For the second stage, we collect 213

any predicted countries, states or counties, and both 214
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CamCoder ✓ .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
CamCoder (ours-partial) ✓ ✓ .562 .638 83 .297 .553 .644 183 .307 .656 .774 88 .198
SSPART ✓ .759 .783 67 .166 .782 .832 60 .131 .777 .798 92 .166
SSPART (ours) ✓ ✓ .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057
SSPART (ours-partial) ✓ .723 .756 79 .193 .795 .834 56 .130 .848 .858 66 .114
SSPART .760 .785 59 .167 .788 .834 61 .131 .798 .816 89 .154

Table 2: Performance on the test sets. Higher is better for Accuracy and Accuracy@161km. Lower is better for
Mean Error and AUC.

concatenate them to the mention name (where Cam-215

Coder inserts textual context) and include them216

when building the MapVector. Though it would217

be useful to allow CamCoder to directly match the218

countries, states, and counties from the global con-219

text to the corresponding information of a candidate220

entry in the database, CamCoder’s surface-tile for-221

mulation means it does not look at database entries222

at inference time. (See Appendix A.4 for imple-223

mentation details.)224

SSPART Anonymous (2022) uses Lucene search225

to generate candidate entries from the GeoNames226

database, sorts those candidates by population, and227

feeds the top candidates to a transformer-based228

reranker. The reranker considers the mention, its229

context, and the candidate entry. SSPART con-230

siders only three sentences of context around the231

target mention, and predicts one of GeoNames’s 7232

million database entries.233

To apply our proposed two-stage resolution al-234

gorithm to SSPART, for the first stage we run the235

most accurate model from table 1 (SSPART) with-236

out textual context. For the second stage, we col-237

lect any predicted country, state, or county codes,238

and concatenate them to the mention name (where239

SSPART inserts textual context). Because SSPART240

compares mentions directly to candidate entries241

from the database, we also concatenate each candi-242

date entry with its country, state, and county codes.243

5 Results244

We use the original code from the various authors245

and evaluate the CamCoder and SSPART models,246

both with and without our proposed two-stage res-247

olution algorithm, on three public toponym resolu-248

tion datasets. Table 2 shows that SSPART with our249

two-stage approach, “SSPART (ours)”, achieves 250

new state-of-the-art across all three datasets. 251

CamCoder, on the other hand, does not bene- 252

fit from the two-stage approach. As noted above, 253

CamCoder can incorporate the global country, state, 254

and county context of the mention, but because it 255

does not compare mentions to database entries at 256

inference time, it cannot see the corresponding in- 257

formation for database entries. For this reason, we 258

mark it as “ours-partial” rather than “ours” in ta- 259

ble 2. To determine if this lack of country, state, 260

and county information from the database entries is 261

the reason for CamCoder’s failure to benefit from 262

global context, we ablated that information from 263

SSPART. That is, we removed the country, state, 264

and county codes from the candidate entry (while 265

retaining the global context for the mention). The 266

result is the “SSPART (ours-partial)” row in table 2. 267

Similar to CamCoder, when the country, state, and 268

county information is present in the global context 269

but missing from the database entry, SSPART does 270

not benefit from the two-stage approach. 271

This analysis suggests a clear benefit for geo- 272

coders that compare mentions to database entries 273

over those that predict surface tiles: they can more 274

easily take advantage of document-level context. 275

6 Conclusion 276

We propose a new two-stage toponym resolution 277

architecture that first resolves locations at the top of 278

the geographical hierarchy (countries, states, and 279

counties) and uses those as context when resolving 280

the other locations in the document. Our experi- 281

ments show that applying this algorithm to the cur- 282

rent best geocoder, SSPART, achieves new state-of- 283

the-art performance on all our geocoding datasets. 284
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A Appendix 457

A.1 Artifact intended use and coverage 458

The intended use of CamCoder and SSPART is 459

matching English place names in text to the Geo- 460

Names ontology. We have used them for that pur- 461

pose. The intended use of our two-step method is 462

also matching English place names in text to the 463

GeoNames ontology. 464

Though GeoNames covers millions of place 465

names, our evaluation corpora cover only English 466

news articles, and thus the performance we report 467

is only predictive of performance in that domain. 468

A.2 Limitations 469

Our experiments are limited by the availability of 470

models. Though we aimed to apply our two-stage 471

method to several geocoding models, most pub- 472

lished geocoding models have not released their 473

code. We have thus applied our two-stage method 474

to the two models that accept context as input and 475

where code was available, CamCoder and SSPART. 476

Our experiments are also limited by the avail- 477

ability of datasets. Though we have attempted 478

to collect a variety of geocoding datasets, some 479

datasets, such as the SemEval-2019 Task 12 data 480

(Weissenbacher et al., 2019), have not released test 481

sets, making comparison to prior work difficult. We 482

have thus applied our method to the three datasets 483

where we were able to obtain the complete data: 484

LGL, GeoWebNews, and TR-News. 485

Our two-step method has the same limitations 486

as CamCoder and SSPART: their training and eval- 487

uation data covers only thousands of English to- 488

ponyms from news articles, while there are many 489

millions of toponyms across the world. It is likely 490

that there are regional differences in our model’s 491

accuracy. 492

A.3 Recall of geocoding systems 493

Our proposed approach depends on high precision 494

predictions for country, state, and county. But high 495

precision with very low recall would also be prob- 496

lematic. Table 3 shows that this is fortunately not a 497

problem for CamCoder or SSPART. 498
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Dataset Models Recall

C
ou

nt
ry

St
at

e

C
ou

nt
y

O
th

er

LGL CamCoder 0.485 0.898 0.783 0.540
SSPART 0.893 0.915 0.739 0.763

GWN CamCoder 0.571 0.591 1.000 0.371
SSPART 0.966 0.591 1.000 0.810

TR-News CamCoder 0.800 1.000 0.000 0.766
SSPART 1.000 1.000 0.000 0.830

Table 3: Recall of two state-of-the-art geocoding sys-
tems on three geocoding development sets.

A.4 CamCoder details499

The original CamCoder code, when querying Geo-500

Names to construct its input population vector from501

location mentions in the context, assumes it has502

been given canonical names for those locations.503

Since canonical names are not known before loca-504

tions have been resolved to entries in the ontology,505

we have CamCoder use mention strings instead of506

canonical names for querying GeoNames.507

We follow the hyperparameter settings in the508

original paper when training CamCoder: Keras509

2.2.0, Tensorflow 1.8, Python 2.7, RMSprop opti-510

mizer, a learning rate of 1e-3, a batch size of 64, the511

context length of 200 and a number of epochs of512

250. The total number of parameters in CamCoder513

is 178M and the training time is about 3 hours.514

A.5 SSPART details515

We follow the hyperparameter settings in the origi-516

nal paper when training SSPART: Adam optimizer,517

a learning rate of 1e-5, a maximum sequence length518

of 128 tokens, and a number of epochs of 30. When519

training without context, we use one Tesla V100520

GPU with 32GB memory and a batch size of 8.521

When training with context, we use four Tesla522

V100 GPU with 32GB memory and a batch size of523

32. The total number of parameters in SSPART is524

168M and the training time is about 3 hours.525
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