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ABSTRACT
This work was conducted in the context of the MLSP 2025 Sampling-
Assisted Pathloss Radio Map Prediction Data Competition. We pro-
pose a physics-aware feature engineering approach combined with
a U-Net architecture featuring ResNet-34 encoder and Atrous Spa-
tial Pyramid Pooling (ASPP) module to reconstruct indoor pathloss
maps from extremely sparse ground-truth samples (0.02% and 0.5%
sampling rates). Our method transforms the three-channel input into
eight physics-informed channels incorporating free-space pathloss,
cumulative transmittance losses, log-distance from the antenna,
and a binary padding mask. Through a combination of geometric
augmentations and multi-scale feature extraction, we achieve com-
petitive performance across both uniform and strategic sampling
scenarios. The model attains a weighted RMSE of 5.19 dB, while
maintaining inference times of approximately 100ms per map in-
cluding preprocessing—orders of magnitude faster than ray-tracing
baselines.

Index Terms— Pathloss radio map prediction, deep learning,
sparse measurements, ASSP, U-Net.

1. INTRODUCTION

Recent advancements in machine learning have significantly accel-
erated the development of solutions to radio frequency (RF)-related
challenges. These challenges encompass a broad range of tasks,
including wireless device localization [1, 2, 3, 4, 5], environmen-
tal reconstruction [6, 7], and radio map prediction [8, 9, 10, 11,
12, 13, 14]. The integration of data-driven methods has enabled
the modeling of complex spatial and signal propagation patterns,
which are otherwise difficult to capture using traditional analytical
approaches. A diverse range of neural architectures has been ex-
plored for these tasks, from convolutional neural networks (CNNs),
which effectively model local spatial dependencies, to vision trans-
formers, which offer enhanced capacity for modeling long-range in-
teractions. These models have demonstrated promising performance
across both indoor and outdoor scenarios, marking a significant step
forward in the application of deep learning to RF signal process-
ing. In this paper, we focus on the task of indoor pathloss radio map
prediction, assuming access to known pathloss measurements at a
limited number of spatial locations.

Accurate prediction of large-scale pathloss (PL) within build-
ings is essential for access point placement, channel-aware schedul-

ing, and localization services [15, 16, 17, 2, 3, 4, 5]. Traditional
approaches rely on either empirical models, which lack accuracy
in complex indoor environments, or deterministic methods like ray
tracing, which provide high fidelity but require hours of computation
per map. The emergence of data-driven methods offers a promising
middle ground, potentially achieving near ray-tracing accuracy with
dramatically reduced computational cost.

Traditional analytical models often fall short in capturing com-
plex propagation effects, requiring considerable manual tuning and
empirical calibration. Recent studies, such as [18], highlight the
superior performance of deep learning models for pathloss estima-
tion, while [19] demonstrates that classical log-distance models are
outperformed by learning-based methods, including neural networks
and statistical regressors. Although statistical models provide rough
estimates by assuming monotonic signal decay with distance, their
predictions can be significantly improved using neural networks
[20]. Furthermore, while ray-tracing methods deliver high accuracy,
they are computationally expensive, making deep learning-based
solutions a more efficient alternative [14].

The Sampling-Assisted Pathloss Radio Map Prediction Data
Competition of IEEE MLSP 2025 [21] addresses a critical real-
world scenario: reconstructing complete indoor radio maps from
minimal field measurements. This reflects practical deployment
constraints where exhaustive measurements are infeasible. Partic-
ipants must predict pathloss values across entire building floors
using only 0.02% to 0.5% of ground-truth samples, combined with
environmental information encoded as RGB images representing
material properties and distances.

Building on our prior work [12], where vision transformers
(ViTs) were employed for the first indoor pathloss radio map pre-
diction challenge [22], we adopt a different strategy in this study by
leveraging CNNs. CNNs offer greater computational efficiency and
are particularly well-suited for scenarios with limited training data.
While large transformer-based models can effectively learn complex
representations given sufficient data, our current setting requires
careful and deliberate feature engineering. Under these constraints,
CNNs demonstrate strong performance by utilizing the engineered
features to produce accurate and reliable pathloss predictions.

Our solution employs deep learning with physics-aware feature
engineering to address the challenge of pathloss radio map predic-
tion. We transform the provided input channels into an eight-channel
representation that captures electromagnetic propagation physics, in-
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cluding free-space pathloss, cumulative transmittance losses, log-
distance from the antenna, and a binary mask of padded pixels. This
physics-informed representation is processed through a U-Net archi-
tecture with ResNet-34 encoder combined with an ASPP module.

Our approach achieved the following quantitative results on the
competition evaluation set:

• Task 1 (uniform sampling): RMSE of 6.42 dB (0.02%) and
4.01 dB (0.5%)

• Task 2 (strategic sampling): RMSE of 6.65 dB (0.02%) and
3.63 dB (0.5%)

• Final weighted score: 5.19 dB RMSE
• Inference time: approximately 100ms per map including pre-

processing
The key contributions of this work include: (1) a physics-aware

feature engineering approach that significantly improves prediction
accuracy, (2) an effective architecture combining U-Net with ASPP
for indoor propagation modeling, (3) a comprehensive augmentation
strategy that preserves physical relationships while improving gener-
alization, and (4) a distance-weighted sampling approach for optimal
measurement placement.

This paper is organized as follows: Section 2 reviews related
works in pathloss prediction; Section 3 describes the challenge
dataset and evaluation protocol; Section 4 details our methodology
including feature engineering, network architecture, and training
strategy; Section 5 presents our data augmentation strategy; Sec-
tion 6 presents experimental results with ablation studies and com-
putational analysis and then discusses key findings and limitations;
and Section 7 concludes and summarizes our findings.

2. RELATED WORKS

A variety of approaches have been developed to address the chal-
lenge of pathloss prediction in both indoor and outdoor settings [15,
23]. Among these, convolutional encoder-decoder architectures have
shown considerable promise, effectively modeling spatial dependen-
cies necessary for accurate radio signal attenuation estimation [?,
24].

The method presented in [13] introduces a UNet-based archi-
tecture tailored for efficient radio map generation in urban environ-
ments, particularly accounting for the mobility of base stations and
user equipment. Similarly, the work in [11] employs a SegNet-based
model to address the complexities of outdoor pathloss estimation. In
[10], the authors incorporate a line-of-sight (LoS) map as an addi-
tional input feature, representing a feature engineering strategy that
proves especially valuable in scenarios where labeled data is scarce.

In the context of indoor radio map prediction, the top-performing
solution of the first indoor pathloss prediction challenge [22]
SIP2Net utilized a UNet-style architecture combined with a custom
loss function to achieve superior results [25]. Another competitive
method, IPP-Net [20], enhanced model performance through the
integration of building-specific features such as the number of walls
separating the transmitter from each spatial location. A notable
alternative, TransPathNet [8], approaches indoor pathloss estimation
using a two-stage framework, where an initial coarse prediction is
subsequently refined by a secondary network to improve spatial
resolution and signal-level accuracy.

The task of pathloss radio map prediction becomes particularly
compelling when only sparse measurement data, typically obtained
through field surveys, is available. In [26], the authors address
this challenge using a meta-learning framework. Their approach
involves partitioning the target area into a 100×100 grid and subse-
quently refining the pathloss predictions using sparse measurements.

Similarly, the authors of [27] leverage synthetic datasets generated
via ray-tracing simulations to pre-train a pathloss prediction model,
which is then fine-tuned with limited real measurement data to
enhance generalization.

Motivated by these studies, we introduce a U-Net-based con-
volutional encoder-decoder architecture tailored for indoor pathloss
prediction with sparse supervision. To compensate for the limited
availability of data, we incorporate manually engineered, physics-
informed features into the model’s input representation, thereby
guiding the learning process with domain-relevant priors.

3. CHALLENGE SETUP

3.1. Dataset Description

The organizers provide the Indoor Radio Map Dataset [28] generated
using the Ranplan Wireless ray-tracer, a commercial-grade propaga-
tion simulator. The dataset exhibits significant diversity in build-
ing layouts, ranging from simple few-rectangle structures to com-
plex multi-room environments with varying wall materials and thick-
nesses.

The dataset comprises:
• Training set: 25 buildings with 50 transmitter positions

each across 3 frequencies (868 MHz, 1.8 GHz, 3.5 GHz),
totaling 3,750 radio maps. We utilized the complete train-
ing dataset across all three frequencies, leveraging cross-
frequency patterns to improve generalization.

• Test set: 5 unseen buildings with 50 transmitter positions at
868 MHz only, totaling 250 radio maps

• Spatial resolution: 0.25m × 0.25m per pixel
• Transmitter height: 1.5m above floor level
• Pathloss range: 13-160 dB
Each radio map is paired with a three-channel input image

where:
• Channel 1: Normal incidence reflectance coefficients (0 for

air)
• Channel 2: Normal incidence transmittance coefficients (0

for air)
• Channel 3: Euclidean distance from transmitter to each grid

point in meters

3.2. Competition Tasks

The competition evaluates two distinct sampling strategies:
Task 1 - Uniform Sampling: The organizers randomly select

measurement locations following a uniform distribution. This rep-
resents an unbiased baseline where no prior knowledge influences
sampling decisions.

Task 2 - Strategic Sampling: Participants select measurement
locations themselves, enabling exploration of intelligent sampling
strategies that could minimize reconstruction error.

For both tasks, the number of samples is determined by:

|Sn| =
⌈r ·Wn ·Hn

100

⌉
where r ∈ {0.02, 0.5} represents the sampling percentage, and Wn,
Hn are the map dimensions and n is the sample index.



3.3. Evaluation Protocol

Performance is measured using root mean-square error (RMSE)
computed exclusively over unsampled locations:

RMSE =

√
1∑

n∈T (WnHn − |Sn|)
∑
n∈T

∑
i,j

1{(i,j)/∈Sn}(P̃
(n)
L (i, j)− P

(n)
L (i, j))2

where T denotes the test set, n indexes individual radio maps,
(Wn, Hn) are the map dimensions, Sn contains the sampled lo-
cations, 1{·} is the indicator function, P̃ (n)

L (i, j) is the predicted
pathloss at pixel (i, j), and P

(n)
L (i, j) is the ground-truth value from

ray-tracing.
The final leaderboard score combines four sub-task scores:

Final = 0.3 (RMSET1A +RMSET1B)+0.2 (RMSET2A +RMSET2B)

This weighting scheme emphasizes Task 1 (60%) over Task 2
(40%), reflecting the importance of strong baseline performance be-
fore optimization through strategic sampling.

4. METHODOLOGY

4.1. Physics-Aware Feature Engineering

We explicitly incorporate electromagnetic wave propagation princi-
ples, including free-space path loss, material interactions, and cumu-
lative attenuation effects. Our approach transforms the basic three-
channel input into a rich eight-channel representation crucial for
achieving competitive performance.

Our approach transforms the basic three-channel input into a
rich eight-channel representation crucial for achieving competitive
performance. As part of size normalization, each input is uniformly
scaled and zero-padded to 640×640, yielding a binary mask of
padded pixels as one feature channel.

4.1.1. Free-Space Pathloss

The free-space pathloss (FSPL) provides a fundamental baseline for
signal attenuation. We compute:

PLFS = 20 log10(d) + 20 log10(f)− 27.55

where d is the distance clamped to minimum 0.125m to avoid singu-
larities, f is the carrier frequency in MHz.

4.1.2. Cumulative Transmittance Loss

Beyond free-space propagation, indoor environments introduce ad-
ditional losses through wall penetration. We developed a Numba-
accelerated algorithm that traces rays from the transmitter to each
grid point, accumulating transmittance losses:

Losstrans(x, y) = min
θ

∑
i∈walls(θ)

Ti

where Ti represents the transmittance loss of wall i along ray
direction θ. The algorithm considers multiple ray angles (360×128)
and selects the path with minimum cumulative loss, approximating
the dominant propagation path.

Figure 1 shows the resulting transmittance loss map, clearly de-
lineating regions separated by walls and capturing the additional at-
tenuation from building materials.

Fig. 1. Cumulative transmittance loss feature showing additional
attenuation through walls. The sharp boundaries correspond to wall
locations, with higher losses in regions requiring penetration through
multiple walls.

4.1.3. Complete Feature Stack

Our final eight-channel input comprises:

1. Original reflectance coefficients

2. Original transmittance coefficients

3. Free-space pathloss

4. Frequency channel (log-normalized)

5. Cumulative transmittance loss

6. The sparse measurements

7. Log-distance from the antenna

8. Binary mask of padded pixels

This physics-informed representation enables the network to
leverage domain knowledge about electromagnetic propagation
while learning complex, environment-specific variations, and also
facilitates physics-aware augmentations that maintain propagation
consistency.

4.2. Network Architecture

We employ a U-Net architecture enhanced with modern deep learn-
ing components, as illustrated in Figure 2.

4.2.1. Encoder Design

The encoder uses a randomly initialized ResNet-34 backbone, mod-
ified to accept 8 input channels. The deep residual architecture pro-
vides several advantages:

• Strong feature extraction capabilities from pretrained weights
• Effective gradient flow through residual connections
• Multi-scale feature hierarchy from different stages

4.2.2. ASPP Module

At the bottleneck, we integrate an Atrous Spatial Pyramid Pooling
(ASPP) module with parallel branches:

• 1×1 convolution for local features
• 3×3 convolutions with dilation rates 6, 12, 18
• Global average pooling for scene-level context
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Fig. 2. Model architecture.
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Fig. 3. The architecture of the ASPP module of the network.

This multi-scale processing proves crucial for capturing both lo-
cal wall interactions and long-range propagation effects. The differ-
ent dilation rates allow the network to aggregate information across
various spatial extents without losing resolution.

4.2.3. Decoder and Output

The decoder follows standard U-Net design with skip connections
from corresponding encoder layers. The final layer produces single-
channel pathloss predictions in dB.

5. DATA AUGMENTATION STRATEGY

We apply geometric and physics-based augmentations that preserve
physical relationships while increasing training data diversity:

Rotation augmentation includes both continuous rotations in
[−30, 30] and discrete cardinal rotations. For continuous rotations,
we update:

• Antenna position using bilinear interpolation
• All feature channels using appropriate interpolation
Distance scaling by factors in [1/1.5, 1.5] requires adjusting the

FSPL:
∆PL = 20 log10(s)

where s is the scale factor. This maintains physical consistency be-
tween distance and pathloss.

Synthetic wall insertion augments the training data with addi-
tional structural complexity. We randomly insert vertical and hori-
zontal walls with transmittance values, then recalculate the pathloss
accordingly:

• Wall positions and transmittance values are randomly sam-
pled

• Cumulative transmittance loss is recomputed for affected re-
gions

• Output pathloss values are adjusted based on the new propa-
gation paths

This physics-aware augmentation helps the model generalize to
buildings with varying wall densities and configurations.

Flipping operations (horizontal/vertical) are applied to increase
spatial diversity.

All geometric augmentations are applied with 50% probability
during training, while wall insertion is applied independently, signif-
icantly improving generalization to unseen building geometries and
structural variations.

5.1. Strategic Sampling Algorithm

For Task 2, we developed a distance-weighted sampling strategy
based on the observation that pathloss uncertainty typically increases
with distance from the transmitter. The algorithm operates in three
stages:

1. Probability computation: Each location’s sampling proba-
bility is proportional to dα where d is the distance from trans-
mitter and α = 2

2. Spatial separation enforcement: Selected points must
maintain minimum separation of

0.5

√
H W

N
,

where H and W are the map height and width (in pixels) and
N is the total number of samples, to ensure coverage.

3. Greedy selection with fallback: Points are selected greedily
from oversampled candidates; if constraints cannot be satis-
fied, remaining points are drawn from the residual distribu-
tion



This approach aims to balance exploration of high-uncertainty
regions (far from transmitter) with adequate spatial coverage through-
out the building. We observe modest to no gains from strategic
sampling using this algorithm.

5.2. Training Configuration

Our training strategy employs several techniques to ensure robust
convergence:

Data splitting: out of 25 buildings 22 are randomly chosen for
training, and 3 for validation, maintaining complete building separa-
tion to assess generalization.

Multi-frequency training: We trained on the complete dataset
spanning all three frequencies (868 MHz, 1.8 GHz, 3.5 GHz), de-
spite testing only on 868 MHz. This multi-frequency training pro-
vides several benefits:

• Increased training data volume (3,750 vs. 1,250 samples)
• Implicit regularization through frequency diversity
• Learning of frequency-invariant propagation patterns

The frequency information is explicitly provided as an input channel,
enabling the model to learn frequency-dependent adjustments while
leveraging shared propagation physics across frequencies.

Optimization details:
• Adam optimizer with β1 = 0.9, β2 = 0.999
• Constant learning rate of 3× 10−4

Loss function: MSE computed only over unsampled locations:

L =
1

|U|
∑

(i,j)∈U

(ŷij − yij)
2

where U represents unsampled grid points.
Implementation details:
• Batch size 32 on dual NVIDIA DGX A100 GPUs
• Training for 2000 epochs with early stopping
• Input resolution: 640×640 (resized with nearest neighbor for

materials, bilinear for distances)
• Variable sparsity sampling: During training, for each map

we generate the sparse-measurement channel by:
– With probability 0.25: no measurements (0%)
– With probability 0.75: pick r ∼ U(0, 0.005) and sam-

ple that fraction of locations
Training a single model per task over this full 0.02–0.5%
range yields a slightly better validation error with half the
number of models versus fitting separate models at fixed
0.02% and 0.5%.

6. RESULTS AND ANALYSIS

Table 1 presents our performance across all competition tasks. The
model demonstrates strong results at both sampling rates, with ex-
pected improvement as sampling density increases.

Table 1. Competition results showing RMSE (dB) for each task and
sampling rate

Task RMSE (dB) Weight Contribution0.02% 0.5%

Task 1 (Uniform) 6.42 4.01 0.3 3.15
Task 2 (Strategic) 6.65 3.63 0.2 2.04

Final Score: 5.19

Several key observations emerge:

• Sampling rate impact: Increasing sampling from 0.02% to
0.5% reduces RMSE by 35–45%, demonstrating the value of
even very few additional measurements.

• Strategic vs uniform: Our strategic sampling shows modest
improvements at 0.5% (9.5% reduction) but performs slightly
worse at 0.02%, suggesting the distance-based strategy is
most effective with sufficient samples.

• Consistency: Similar performance patterns across tasks indi-
cate robust generalization.

6.1. Ablation Studies

To understand the contribution of different components, we con-
ducted systematic ablations evaluating various architectural choices
and feature combinations. Table 2 presents the complete ablation
results on Task 1 with 0.5% sampling.

Table 2. Ablation results on Kaggle for Task 1 (0.5% sampling)

ASPP FSPL Trans. Loss MSE (dB) ∆ vs Best

✓ ✓ ✓ 16.4 –
✗ ✓ ✓ 18.7 +2.3
✓ ✗ ✗ 19.0 +2.6
✗ ✗ ✓ 18.9 +2.5
✓ ✓ ✗ 23.1 +6.7
✓ ✗ ✗ 23.8 +7.4
✗ ✗ ✗ 23.6 +7.2
✗ ✓ ✗ 25.7 +9.3

Key take-aways (brief)
• Best model uses all cues (ASPP + FSPL + Trans.) and achieves

16.4dB.
• Transmittance loss is pivotal: removing it costs ≈2–2.6dB even

when other cues remain.
• FSPL and ASPP are complementary—each alone offers minor

gains, but together with transmittance loss they cut error by an
extra 2.3dB.

6.2. Discussion

Our ablations (Table 2) confirm that cumulative transmittance loss
is the single most critical cue—dropping it raises the error up to
2.6dB—while FSPL and ASPP each yield roughly 0.5–2.3dB im-
provements, highlighting their complementary roles. Training one
model per task over a variable sparsity range (0.02–0.5%) improved
Kaggle validation by ≈0.1–0.2dB versus fixed-0.02% and 0.5%
models and halved the number of models. Strategic sampling cuts
RMSE by ∼0.2dB at 0.5% but slightly degrades performance at
0.02%, likely due to density-dependent benefits.

7. CONCLUSION

We presented a novel approach to indoor pathloss prediction from
sparse samples, combining physics-aware feature engineering with
modern deep learning architectures. Our solution achieves com-
petitive accuracy (5.19 dB RMSE) while maintaining real-time
inference capabilities suitable for practical deployment. Key contri-
butions include physics-informed feature engineering that explicitly
encodes propagation mechanisms, effective integration of U-Net
with ASPP for multi-scale indoor propagation modeling, compre-
hensive augmentation strategy preserving physical relationships,
and distance-weighted strategic sampling balancing exploration and



coverage. The strong performance with minimal sampling (0.02-
0.5%) demonstrates the feasibility of accurate radio map prediction
with limited measurements, potentially enabling cost-effective de-
ployment of AI-assisted network planning tools. As indoor wire-
less networks become increasingly dense and complex, such AI-
assisted tools could become essential for efficient network planning
and optimization due to their favorable speed/accuracy tradeoff.
Our code and trained models will be released upon publication at
github.com/YerevaNN/SamplingAssistedPathlossRadioMapPrediction
to facilitate reproducible research and practical adoption of these
techniques.
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