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Abstract

Continual learning research has shown that neural networks suffer from catastrophic for-
getting “at the output level”, but it is debated whether this is also the case at the level
of learned representations. Multiple recent studies ascribe representations a certain level
of innate robustness against forgetting – that they only forget minimally in comparison
with forgetting at the output level. We revisit and expand upon the experiments that re-
vealed this difference in forgetting and illustrate the coexistence of two phenomena that
affect the quality of continually learned representations: knowledge accumulation and fea-
ture forgetting. Taking both aspects into account, we show that, even though forgetting in
the representation (i.e. feature forgetting) can be small in absolute terms, when measuring
relative to how much was learned during a task, forgetting in the representation tends to be
just as catastrophic as forgetting at the output level. Next we show that this feature forget-
ting is problematic as it substantially slows down the incremental learning of good general
representations (i.e. knowledge accumulation). Finally, we study how feature forgetting and
knowledge accumulation are affected by different types of continual learning methods.

1 Introduction

Machine learning models are typically trained on static datasets, and once they are deployed, they are usually
not updated anymore. However, sometimes models make mistakes. Sometimes they do not work in a domain
that was not trained on. Sometimes they do not recognize certain classes or corner cases. To overcome such
malfunctions, the default choice in industry is to gather new data and to retrain a model from the beginning
with both the new and old data (Huyen, 2022). Retraining a full model is costly and time-consuming,
especially in deep learning. The goal of continual learning is to enable models to train continually, to learn
from new data when they become available. This has proven to be a hard challenge (De Lange et al.,
2022; van de Ven et al., 2022), as deep learning models that are continually trained exhibit catastrophic
forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990). Without precautionary measures, new information is
learned at the expense of forgetting earlier acquired knowledge.

The data to train machine learning models rarely come in a format that is adapted to the problem one intends
to solve. Taking the example of visual data, it is near impossible to infer high-level properties directly from
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an image’s raw pixel values. Hence, a first step is usually to transform the data into a representation that
makes solving the problem at hand easier. Often deep neural networks are used for this (Bengio et al., 2013).
These networks learn semantically meaningful representations while optimizing their parameters to learn an
input-output mapping. Sometimes the goal is the representation itself, yet often it is a final layer, or head,
that uses the learned representation to assign an output (e.g. a class label) to an input. Often the backbone
network used to calculate a representation and the head that uses this representation are trained in unison,
but it can be useful to think of them as two separate entities working together.

In continual learning, there are at least two good reasons to care about representations. First, a strong
representation makes it easier to learn new information (Kornblith et al., 2019). When a model already has a
good representation, it may require less changes to adapt to new data, which lowers the risk of forgetting (Cha
et al., 2021). Second, continually learning a good representation by progressively accumulating knowledge
from individual tasks is a goal on its own. Effective continual learning should be able to use new information
to its benefit and build a stronger representation over time (Chen & Liu, 2018), which can finally be used
to solve a variety of tasks (Bengio et al., 2013).

It is with these motivations that recent works have been studying how representations are learned in con-
tinual learning, and how they forget. Multiple studies observe an apparent robustness to forgetting for
representations (Davari et al., 2022; Zhang et al., 2022; Hu et al., 2022; Wang et al., 2023). For example,
Davari et al. (2022) write: “[...] in many commonly studied cases of catastrophic forgetting, the representa-
tions under naive fine-tuning approaches, undergo minimal forgetting, without losing critical task informa-
tion” (p. 16713), and Zhang et al. (2022) comment: “there seems to be no catastrophic forgetting in terms of
representations” (p. 4) and “common techniques for mitigating catastrophic forgetting [...] have little effect
on improving [representations]” (p. 4). These studies further suggest that in the case that some forgetting
of learned features does happen, this does not hinder the learning of good general representations. For ex-
ample, when measuring the representation quality for a task that was not included in the training sequence,
Zhang et al. (2022) conclude that “representation learning and catastrophic forgetting are largely separate
issues” (p. 9). If this is true, forgetting would only be a problem if one cares about the performance on the
trained tasks, but not if one cares about learning a good general representation.

In this work, we carefully revisit the dynamics of learning and forgetting at the representation level, and
we illustrate where its apparent innate robustness to forgetting originates. First, we highlight two key
phenomena affecting the quality of the continually learned representation: feature forgetting and knowledge
accumulation. Then, by considering both jointly, we re-investigate continual learning at the representation
level. In short, we try to answer two questions:

Question 1: Do continually trained representations forget catastrophically?

With extensive experiments we show that, also at the level of representations, newly learned information
tends to be rapidly and drastically forgotten during continued training on other tasks. The first tasks
seemingly forget less, yet we show that the non-forgotten information is information that is shared between
tasks. This leads us to the follow-up question:

Question 2: What are the consequences of forgetting these representations?

To determine the impact of feature forgetting on the quality of the continually learned representation for
downstream tasks, we compare the representation of a continually trained model against a representation
that is ensembled from copies of the model obtained after finishing training on each task. This ensemble
baseline and the continually trained model learn in the exact same way, but differ because the former does
not forget. We find that the ensemble baseline yields a substantially better general representation than
the continually trained model, which indicates that feature forgetting slows down knowledge accumulation
(i.e. the improvement of the learned representation over time). This means that preventing feature forgetting
is not only important for the performance on tasks that a model was trained on, but also to learn strong
representations in general.

Most experiments in this paper study the continual learning and forgetting of representations in supervised
learning, though in Appendix C we show evidence that suggests that our main conclusions also hold for
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self-supervised learning. We conclude the paper by evaluating examples of important families of continual
learning methods and reporting how they influence the learning and forgetting of representations.

In summary, our contributions include1 :

• We illustrate the characteristics of feature forgetting and knowledge accumulation evaluated at the
representation level (Section 3)

• We show that newly learned information is forgotten just as catastrophically at the representation
level as it is at the output level, except when the information can also be learned from other tasks
(Sections 4.1 and 4.2).

• We show that forgetting in the representation hinders knowledge accumulation (Section 4.3).

• We compare the level of feature forgetting and knowledge accumulation for different types of con-
tinual learning methods (Section 5).

2 Preliminaries

We follow the common definition of a continual learning setting by assuming a sequence of m disjoint tasks
T = {T1, T2, ..., Tm}. Each task Tj consists of training data with inputs Xj and targets Yj , as well as
respective test data X̂j , Ŷj . While training on task Tj , only the training data {Xj , Yj} of that task are
used. Exceptions are replay memories, which can store small subsets of data from past tasks; we only
use such replay memories when studying experience replay in Section 5. Finally, we use Td to refer to a
downstream task, i.e. one that is not part of the training sequence T . To study the representation learned by
a model on the sequence T , we distinguish between the backbone parameters θB and the task-specific heads
θH = {θh1 , ..., θhm

}. For task Tj , the output of a model is calculated as g(f(x; θB); θhj
) and its representation

as f(x; θB). In this paper, each head θhj
specifies a linear layer and we use, with slight abuse of notation,

f(x; θhj , θB) to refer to the combination of backbone and head. Alternatively, we use fi to denote the entire
model directly after training on task Ti, and we use f0 for a model with random weights.

Our main focus is on classification tasks. We use rf
i,j as a general symbol to refer to a metric that quantifies

the performance or quality of model fi for task Tj . We drop super- and subscript when they are clear from
context. To differentiate between the quality of the backbone and the entire model, we define two such
performance metrics: output accuracy OUTi,j and linear probe accuracy LPi,j (or LP accuracy). OUTi,j

refers to the standard test accuracy of model f(x; θhj
, θB) immediately after training task Ti. When i < j,

output accuracy is equal to random performance, i.e. the performance of randomly initialized head. To
measure the quality of a representation, one option would be to use the optimal head θ∗

hj
for a particular

backbone θB and task Tj . To approximate this optimal head, we train a new head with parameters θ̃hj
using

the training data of task Tj while keeping the backbone parameters θB frozen, as is common in representation
learning (Bengio et al., 2013). Using this new head, LPi,j is equal to the test accuracy of f(x; θ̃hj

, θB) on
task Tj , whereby θB are the backbone parameters immediately after training on task Ti. Alternative ways
to evaluate representations reach similar results for the experiments reported in this paper, see Appendix H.

In the main paper, the reported results are on Split MiniImageNet, a 20 task (five classes each) split of
MiniImageNet (Vinyals et al., 2016). We use 19 tasks as the training sequence T , while the remaining task
is never seen during training and used as downstream task Td. To reduce the influence of the difficulty of a
task, we use five task splits and report mean and standard error (SE) on all results. The splits are randomly
generated but consistent across experiments. When evaluating the performance on a task, the model only
needs to choose between the classes of that task. We do not include all classes seen so far (i.e., as would be
done in a class-incremental learning evaluation), because this would make the evaluation ‘task’ more difficult
after each trained task, thereby confounding the analysis. Further details of our experimental protocol are
in Appendix A. In Appendix G, we report experiments using Split CIFAR-100 (Krizhevsky et al., 2009).

1Code available at: https://github.com/TimmHess/KAaFF
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Figure 1: Illustration of feature forgetting and knowledge accumulation, for a model continually finetuned
on Split MiniImageNet. On the left, the output accuracy and LP accuracy on T6 are shown. The difference
between LP accuracy directly after the task was trained and the LP accuracy after training on later tasks
is what we call feature forgetting. On the right, the same continually trained model is evaluated with the
same metrics but on a downstream task (Td). We refer to the improvement in LP accuracy over that of a
randomly initialized model (f0) as knowledge accumulation. (Mean ± SE, 5 runs)

3 Knowledge accumulation and feature forgetting

Catastrophic forgetting is observed when measuring accuracy at the output level of a continually finetuned
neural network. However, recent studies exemplify how evaluating performance of the same model at repre-
sentation level instead leads to a different result. In the following, we highlight two evaluation perspectives
that have been used in recent literature to illustrate this difference between the output and representation
level. With these evaluation perspectives, two phenomena can be identified that affect the quality of contin-
ually learned representations: feature forgetting and knowledge accumulation. The evaluation perspectives
differ in what data they evaluate on. On the one hand, a task that was included in the training sequence
(e.g. T6) can be used, on the other hand, a downstream task (Td) that is excluded from the training sequence
can be used. Each perspective can show one of the two phenomena.

Evaluating on a task included in the training sequence (e.g. T6), it can be observed that linear probing,
i.e. retraining the head, can recover much of the performance that is lost in the output accuracy (Figure 1,
left), which could be interpreted as representations forgetting less than at the output (Davari et al., 2022).
The performance degradation, or forgetting, that persists beyond the recovered performance of the linear
probe is what we call feature forgetting. When features are forgotten, the representations of past classes
become less separable. This contributes to the total amount of forgetting in continual learning, to which e.g.
representation drift and misaligned heads contribute as well (Caccia et al., 2021), see also Section 7.

The second evaluation perspective inspects the performance of a continually trained model on a downstream
task. Using the same setting as above, we find that the representation for Td progressively improves with each
learned task, without significant declines (Figure 1, right). We call this improvement of a representation for
unseen tasks knowledge accumulation. A model that has accumulated more knowledge by this definition, is a
more general model and is better suited to solve new tasks, although it may have forgotten features specific
to a past task at the same time. This definition is similar to the one used by Jin et al. (2021), who equate
knowledge accumulation with the capability of generalizing to unseen tasks. Lesort et al. (2023) and Caccia
et al. (2020) use the term knowledge accumulation slightly differently, to loosely refer to performance on both
old and new tasks. Knowledge accumulation is related to forward transfer, which is one of the main desiderata
in task-incremental learning (van de Ven et al., 2022; De Lange et al., 2022). Yet task-incremental learning
results themselves are not well suited to study the representations directly, as representation drift (Caccia
et al., 2021) can result in misaligned heads, which could suggest that there is no knowledge accumulation,
even when there is. Finally, in continual pretraining (Hu et al., 2022; Lee et al., 2023; Cossu et al., 2022),
the performance on downstream tasks is what matters, yet the influence of forgetting pretrained features has
not been studied in these works. In what follows, we use both concepts, feature forgetting and knowledge
accumulation, to study the dynamics of continual learning at the representation level.
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4 Forgetting in continually learned representations

In this section, we analyze feature forgetting by taking knowledge accumulation into account. Section 4.1
shows that newly gained performance tends to be lost similarly at the output and the representation. Features
learned during the first tasks in the training sequence are an exception to this, which we investigate further in
Section 4.2. Finally, Section 4.3 points out that feature forgetting hinders effective knowledge accumulation
for downstream tasks.

4.1 Relative forgetting

McCloskey & Cohen (1989) and Ratcliff (1990) are often credited for discovering the phenomenon of catas-
trophic forgetting. They describe it respectively as: “[t]raining on a new set of items may drastically disrupt
performance on previously learned items” (p. 110), and “well-learned information is forgotten rapidly as new
information is learned” (p. 285). In recent literature, following Lopez-Paz & Ranzato (2017), forgetting is
commonly quantified as the difference between the performance immediately after task Tj was trained on
and the performance after training on n new tasks: rj,j − rj+n,j . Both output accuracy and linear probing
accuracy have been used in this way (e.g. Davari et al., 2022). Forgetting, defined as such, is thus equal to
the absolute drop in performance. In contrast, the amount of forgetting can also be considered relative to
how much information was learned during training on the task. We propose to define the relative forgetting
of task Tj after n new tasks as:

rFr
n,j = rj,j − rj+n,j

rj,j − rj−1,j
(1)

Or, in words: relative forgetting measures how much of the performance that was gained during training
on a task is forgotten afterwards. Figure 2 illustrates how absolute forgetting and relative forgetting can
lead to different conclusions. When inspecting the absolute forgetting at the output and the representation
(middle panel), one could conclude that the forgetting at the output is worse than at the representation level.
However, the representation quality also improved less during training of task T6 (left panel), partly because
of previously accumulated knowledge. Relative to the gained performance, forgetting is roughly equal at
the representation and at the output (right panel); both lose nearly all gained performance. Considering
the gained performance is thus crucial when comparing forgetting in settings where the performance before
training a task differs across the compared settings, because it changes the denominator of Equation 1. This
happens when considering representations and LP accuracy, but in most cases not for output accuracy. Their
difference is comparable to the difference between the answers to the following two questions before seeing
any task data: Which test samples belong to the unknown category x? and Given that x looks like this, which
other test samples are of category x?. While the first answer will be random, the second one depends on how
good the description, e.g. the representation, of x is. A model that has accumulated more knowledge and
has a better representation can have improved performance on the second question, but not on the first.

Figure 3 shows the relative forgetting of the representation and of the output for tasks 1 until 9 (the one of
T6 is thus a copy of the right panel in Figure 2). For early tasks (especially T1), forgetting as measured by
linear probing stabilizes after one or two new tasks, while for the output rFn,j continues to increase. For the
later tasks, the representation forgets at least as much as at the output (see Appendix F for task T10 and
more). This observation noticeably leads to a different conclusion than the one drawn by the papers in the
introduction: except for the first tasks, almost all performance that was gained while training a task, is lost
when training on new ones, both at the output and the representation level.

4.2 Exclusion baseline

The previous section showed that nearly all performance gained during a task tends to be quickly lost both
for the representation and at the output, except for the first tasks in the training sequence. For these tasks,
there is a significant difference between the relative forgetting at the output and the representation, see
Figure 3. After training a few new tasks, the output has rF ≈ 1, while the representation has a significantly
lower rF. In this subsection, we show that this difference can be explained by knowledge accumulation from
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Figure 2: Performance, absolute forgetting and relative forgetting of T6 for a model continually finetuned on
Split MiniImageNet. Comparing output accuracy and representation quality (LP accuracy) can have different
interpretations when considered in absolute or relative terms. Absolute forgetting (middle) suggests that
output forgetting is worse than at the representation level. Such absolute forgettting does not account for
performance already accumulated before learning T6 (left). When expressing forgetting relative to newly
gained performance (right), forgetting trends are similar at the output and representation level. (Mean ±
SE, 5 runs)
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Figure 3: Relative forgetting at the output level and at the level of representations, as per Eq. 1, for a
model continually fine-tuned on the Split MiniImageNet sequence. Relative to the knowledge gained during
training on the task, forgetting in the representation and at the output are similar, except for the first few
tasks. (Mean ± SE, 5 runs)

other tasks. When learning one task improves the representation for another, those tasks have something in
common. Even if a model forgets everything it had learned, the common information can be re-learned from
the later tasks. After training on all tasks, the final model would still perform better than a model with
random weights, which results in rF scores lower than one. To further unravel how knowledge accumulation
influences forgetting, we train a new model f−j on the same task sequence as in the previous section, but
without task Tj , see Figure 4a. Model f−j cannot forget specific information on task Tj as it was never
trained on it, but it can accumulate common knowledge from other tasks. We define EXCi,j as the difference
between both in models in LP accuracy for task Tj after training task Ti:

EXCi,j = LPf
i,j − LPf−j

i,j (2)

If this difference is larger than zero, model f remembers some specific information that was not learned
from other tasks. Figure 4 and Table 1 show that for all tasks, the difference reduces to almost zero. The
information that was not forgotten from the earlier tasks, could thus also be learned from other tasks and
is not specific to that task only. Table 1 suggests that there might be a subtle difference at the end of the
training sequence between f and f−j , but the errors are too large to draw definite conclusions.

Learning one task does, in most cases, not improve the output accuracy of another. See e.g. the left panel
of Figure 2, while the LP accuracy for T6 improves even before T6 is trained, the output accuracy remains
at chance level. Forgotten information thus cannot be re-learned from other tasks, which suggests why
the relative forgetting at the output does approach one. Similar results are to be expected if the learned
representation for one task does not improve the other. This observation implies an important nuance: even
when the output accuracies of two models are both at chance level, one can have a better representation
than the other for a particular task.
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Figure 4: Illustration of the task exclusion difference (EXC, Eq. 2) for continual finetuning on Split MiniIm-
ageNet. Panel (a) depicts the adjusted training sequence for the “exclusion model” f−j , and a comparison
of the resulting LP accuracy for continually finetuned model f and f−6 on task T6. Panel (b) shows that
EXCi,j , for the first 9 tasks, always follows the same trend. It averages around zero for tasks i < j, peaks
for i = j, and quickly reduces to almost zero again for i > j (Mean ± SE, 5 runs).

Table 1: Quantitative results of Figure 4b. The final difference (EXC19,j) and maximal difference (EXCj,j)
between model f and its exclusion counterpart f−j . (Mean ± SE, 5 runs)

Tj T1 T2 T3 T4 T5 T6 T7 T8 T9

EXC19,j 0.001 ± 0.004 0.002 ± 0.011 0.008 ± 0.004 0.018 ± 0.013 0.023 ± 0.012 0.010 ± 0.010 0.012 ± 0.015 0.005 ± 0.007 0.012 ± 0.012
EXCj,j 0.234 ± 0.024 0.159 ± 0.015 0.151 ± 0.025 0.165 ± 0.015 0.119 ± 0.010 0.132 ± 0.012 0.140 ± 0.014 0.130 ± 0.021 0.153 ± 0.008

4.3 Feature forgetting reduces knowledge accumulation

Previous sections showed that feature forgetting severely impacts newly learned features in neural networks
and that what is not forgotten can also be learned from other tasks. This leads us to the second question of
the introduction: what are the consequences of feature forgetting? Is the forgotten information important
for that specific task only, or can it also contribute to more general knowledge accumulation? Phrased
differently, how much knowledge accumulation would there be if there was no forgetting? To answer this,
we consider a baseline that learns continually but has no forgetting, inspired by Vogelstein et al. (2020) and
Yan et al. (2021). This ensemble baseline stores a model copy after every task. During evaluation, their
representations are concatenated and a linear probe is trained on top of this concatenation. This ensemble
learns exactly the same way as a continually finetuned model, but it cannot forget, as the task’s original
representation remains intact and can always be recovered by a head. See Figure 5a for a schematic of the
approach, and Figure 5b for the results. Finetuning and the ensemble are exactly the same after training
the first task. Knowledge accumulation from the first task aside, our ensemble baseline accumulates almost
three times as much knowledge, signified by a 27.4% improvement on a downstream task versus only 9.3%
for finetuning. It is interesting that finetuning also accumulates some knowledge during later tasks, albeit
far inferior to what is possible when forgetting nothing.

Models trained on all tasks concurrently (jointly) rather than sequentially can also lead to improved represen-
tations (e.g. Zhang et al., 2022; Cha et al., 2022). This does not unambiguously lead to the same conclusion
as our experiment. Besides having no forgetting, concurrent training can improve the representation for
each task itself since it can contrast a single class with a wider variety of other classes. With our ensemble
strategy, training remains task-per-task and the difference in performance with finetuning is only a conse-
quence of forgetting nothing. Evaluation of the ensemble requires linearly more compute with every task, so
we use it as handy tool to examine what would happen if a method does not forget but do not propose it
as a new method. The larger dimension of the ensemble representation can be potentially confounding. In
Appendix B we control for this using PCA dimension reduction and reach the same conclusion.
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Figure 5: Schematic and result of the ensemble baseline. Panel (a) shows that training the ensemble baseline
is the same as continual finetuning, but after every training phase a model copy is stored. During evaluation
each stored copies produces a separate representation. Their representations are then concatenated and a
linear classifier is trained on top of the concatenation. Panel (b) compares the LP performance of ensemble
and finetuning on a downstream task. (Mean ± SE, 5 runs)

One task improving the performance of another, an effect of knowledge accumulation, is often named as
a desideratum of continual learning (Chen & Liu, 2018), yet it persists as a difficult problem. Better
representations should also lead to better continual learners. If one representation is better than another
for data of a new task, it likely needs to change less to reach the same performance after training, thereby
reducing the risk of forgetting. With few samples (e.g. a replay memory), a strong representation can also be
used to quickly recover past information, sometimes referred to as ‘fast remembering’ (Hadsell et al., 2020;
Davari et al., 2022). However, in Appendix D we re-emphasize that even a strong pretrained representation
does not always imply mitigation of forgetting. An important step towards accomplishing these goals is
preventing feature forgetting as much as possible without preventing models to learn.

The last sections illustrated and explained how addressing (feature) forgetting without considering knowledge
accumulation and vice versa, can make representations appear to be robust against forgetting. Combining
both offers a more nuanced story. Representations forget newly learned information as much at the repre-
sentation level as at the output level, except for information that is shared across tasks. Preventing feature
forgetting, as happens in our ensemble, presents an opportunity to increase knowledge accumulation. The
next section will look at how some established continual learning methods seize this opportunity.

5 Can feature forgetting be prevented?

Over the last years, many methods to alleviate forgetting have been proposed. In this section, we review
examples of some of the main families of methods and evaluate how they deal with feature forgetting and
knowledge accumulation. The choice of algorithms is not driven by finding the best possible method, but we
try to cover the most central ideas, in their simplest form. We test replay with a simple experience replay
algorithm with 20 samples per class (ER), parameter regularization using Memory Aware Synapses (MAS)
(Aljundi et al., 2018), functional regularization with Learning without Forgetting (LwF) (Li & Hoiem, 2017)
and PackNet (Mallya & Lazebnik, 2018) as an architectural method. More variations on the standard replay
algorithm are reported in the Appendix.

Figure 6 shows the relative forgetting of the tested methods and Figure 7 the results of the exclusion
baseline for task T6. Additionally, Table 2 reports the average learning accuracy (the accuracy on a task
immediately after training on that task) and the knowledge accumulation on a downstream task. For all
methods, relative forgetting in the representation is at least as bad as at the output level, except for the
first task. Relative forgetting in the representation for ER and MAS is lower than for finetuning, yet their
knowledge accumulation is similar. Adding more samples to the memory in ER does improve knowledge
accumulation and reduces overall forgetting, see Appendix. One explanation for this is their lower learning
accuracy; they learn less in the first place. LwF has even lower relative forgetting, and in contrast to ER
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Figure 6: Relative Forgetting at the output level and the level of representation as in Eq. 1, for T1 to T5 of
the tested methods on the Mini-ImageNet sequence. (Mean ± SE, 5 runs)
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Figure 7: Task exclusion results of the tested methods on T6 of the Mini-ImageNet sequence. Results with
EXCi,j > 0 show that some task-specific information is retained. (Mean ± SE, 5 runs)

and MAS, the exclusion baseline shows that it remembers at least some information specific to the trained
task. Its knowledge accumulation is between the ensemble and finetuning, indicating that more task-specific
information is retained than with the other methods, but not everything. PackNet is an entirely different
story. It does not forget, but what it learns is a lot less useful for other tasks. This is likely because by
having masks specific to a single task, the representation for one task is nothing like the representation for
another, hindering effective learning and knowledge accumulation.

Table 2: Learning accuracy averaged over all tasks (LPi,i) and knowledge accumulation on a downstream
task (LP19,d − LP0,d), reported for the two baselines in Section 4.3 and the methods of Section 5. (Mean ±
SE, 5 runs)

Finetune Ensemble ER MAS LwF Packnet

LPi,i 0.860 ± 0.002 0.864 ± 0.002 0.815 ± 0.002 0.792 ± 0.001 0.852 ± 0.001 0.792 ± 0.003
LP19,d − LP0,d 0.249 ± 0.023 0.365 ± 0.020 0.247 ± 0.018 0.259 ± 0.013 0.321 ± 0.019 0.195 ± 0.022

6 Discussion and future work

This paper sheds light on the issues of feature forgetting and knowledge accumulation and can guide future
research in developing new and better methods to learn representations continually. Representations of one
task can help other tasks, so it might not be necessary to train later tasks as if it was the first task. Part of
the information will already be learned by the model, so the model should not need to relearn this. Similarly,
not every sample might be equally important to be part of a replay memory to maintain high performance.
Some of the samples can also be learned from other tasks and thus may not need to be replayed. To improve
knowledge accumulation, functional regularization seems a promising candidate, and is thus recommended
to be explored further. Understanding why it works relatively well and how it can be improved upon are
both interesting directions for future work.

It is possible to think of two tasks that have nothing in common and thus learning one task does not improve
the representation for the other. Yet, tasks composed of natural images, like those in the benchmarks
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we used, do share information. An open question is how much of the shared information is at the image
level (e.g. detecting edges and shapes) and how much at the semantic level (e.g. being able to recognize a
specific feature, like eyes or car tyres). Further unraveling these two might lead to important insights in how
neural networks operate. Likewise, in this paper we always used n-way classification in both training and
testing, with n constant throughout each experiment. The influence of changing problems during training
or evaluation (e.g. a different amount of classes per task during evaluation than during training) on the
representation quality is something that should be considered in future work.

7 Background

In this section we provide more background information related to the results in this paper. They are not
necessary to understand our paper, but they may be good starting points to explore the subject further.

Representation learning. Data rarely come in a format that is adapted to the task we want to per-
form (Bengio et al., 2013). Except for very simple problems, it is near impossible to directly classify images
in their raw pixel representation. For a long time, researchers have been searching for a representation of
images that makes it convenient to solve semantic tasks. Handcrafting features was the standard (e.g. Csurka
et al., 2004), but this requires expert knowledge engineering and may not result in optimal features. Since
the rise of deep learning, features are more commonly learned by neural networks, directly from the raw data.
Both Bengio et al. (2013) and Goodfellow et al. (2016) define good representations as ones that make it easier
to solve tasks of interest, a definition we adopt. They see deep neural networks as inevitable representation
learners, even when this is not explicitly the goal. Neural networks trained to predict image-label pairs
indirectly learn a representation where semantically different images are linearly separable in the output of
the penultimate layer. Yet representations can also be learned directly, which can improve robustness, boost
generalization, or reduce the need for labeled data (Jing & Tian, 2020).

Head vs. representation. The paper proposing iCaRL (Rebuffi et al., 2017) is one of the first continual
learning works to explicitly disentangle the representation and head. The head of a model can be relatively
well learned with small subsets of data, e.g. in the case of classification as a linear layer or with non-parametric
approaches like k-nearest neighbors (Wang et al., 2020; Taunk et al., 2019). On the other hand, heads often
do not transfer well, and can quickly become disconnected from the representation when the representation
changes while the head is static (Caccia et al., 2021). In the context of continual learning this property has
been identified to impact performance severely, and methods updating the last layer only on small memories
with balanced data, have shown successes in overcoming much of the observed forgetting (Wu et al., 2019;
Zhao et al., 2020).

Recently some continual learning methods explicitly try to foster transfer of knowledge by taking inspiration
from advances in representation learning (Jing & Tian, 2020). Some approaches apply contrastive losses
(Cha et al., 2021; Mai et al., 2021) and self-supervised learning (Marsocci & Scardapane, 2023; Hu et al.,
2022; Fini et al., 2022; Rao et al., 2019) to improve continual learning performance, other works take ideas
from meta-learning (Javed & White, 2019; Caccia et al., 2020) to learn representations that can easily adapt
to new tasks. Lastly, Pham et al. (2021) take inspiration from neuroscience and combine fast and slow
learners, i.e. supervised and self-supervised modules, in one system.

Evaluating representation quality. Effectively leveraging generalization and transfer properties of deep
representations is one thing, evaluating their quality is another. As pointed out throughout this work,
measuring forgetting at the output (the head) of a neural network does not tell us everything about the
internal state of a network. Studies that retrain the last layer (Xiong et al., 2019), or a set of deeper layers
(Murata et al., 2020), with the earlier layers frozen, hint that representations of lower layers are still useful
for seemingly forgotten tasks. However, rather than these layers remembering something specific to the
observed tasks, other works interpret this as better generalizability of the lower layers (Ramasesh et al.,
2021; Yosinski et al., 2014; Zeiler & Fergus, 2014). Early layers may not seem to forget as much, because
their representations are so general that they are almost fully reusable for future tasks, while deeper layers
successively encode information more specific to the observed data, that is prone to being overwritten by
information of new task’s data (Ramasesh et al., 2021).
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A number of recent works use linear probing (Alain & Bengio, 2016) to analyze continually learned repre-
sentations at the penultimate layer (Hu et al., 2022; Davari et al., 2022; Zhang et al., 2022; Chen et al.,
2023; Kim & Han, 2023). Considering the amount of forgetting in the continually learning representations,
Davari et al. (2022) conclude that this forgetting is less catastrophic than at the output and suggest that
no task-critical information is lost. Hu et al. (2022) and Zhang et al. (2022) evaluate the representation’s
quality with respect to downstream tasks and arrive at similar findings as Davari et al.. Yoon et al. (2023)
consider a continual pre-training setting that allows fine-tuning of all parameters in the model during prob-
ing. They report incrementally improving performance on a downstream task, and ascribe it to an increasing
transferability of the features learned continually. In contrast to these studies just listed, Kim & Han (2023)
show severe forgetting in the representation, but start from models pre-trained on half the respective dataset
rather than the more even split considered in Davari et al. (2022). Chen et al. (2023) show that continual
learners that have less forgetting at the representation level are better few-shot learners, hinting at the same
relation we show with our ensemble baseline.

8 Conclusion

In this work we studied how deep neural networks learn and forget representations when continually trained
on a sequence of image classification tasks. If forgetting is expressed as the proportion of newly gained
performance that is forgotten, representations forget about as much as at the output level, except for the
first tasks. During the first task, information that is shared across tasks is learned for the first time. Because
this shared information is repeated to the model in each task, it is not forgotten. The information that is
forgotten at the representation level reduces how much knowledge a model accumulates, as exemplified by
the ensemble baseline. Finally, we compared the feature forgetting and knowledge accumulation of different
types of continual learning methods, whereby we found that functional regularization can prevent a large
portion of representation forgetting. We hope that the insights provided by our work inspire the development
of continual learning methods with less feature forgetting and more knowledge accumulation.

Broader Impact Statement

Successful continual learning can reduce the need for the ever larger growing compute required, without
the need for retraining from scratch, reducing the environmental costs. It would allow fixing mistakes that
machine learning models make in a more efficient way and hence contribute to machine learning safety. As
with all machine learning applications, there always is a dual-use risk. However, given the exploratory nature
of this work, we believe the risk of this particular work to be limited.
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Appendix

The Appendix contains additional information for the content presented in the main body. The first two
sections provide further detail of our experimentation settings and the ensemble baseline. Thereafter, we
report on additional experiments: First, regarding continual representation learning with supervised con-
trastive and a self-supervised training approaches, and second, starting from a higher quality representation
obtained pre-trained weights, rather than training from-scratch. Further we provide the full plots for rel-
ative forgetting that were not used in the main body due to spatial constraints, re-evaluation of all our
experimentation on the CIFAR-100 dataset, as well as consideration of an alternative probing mechanism to
quantify representation quality, namely k-NN. Finally, we list detailed task sequence information to improve
reproducability of our results. In summary, the the supplementary material is ordered as follows:

A Experimentation details

B Ensemble: further details

C Supervised contrastive and self-supervised Barlow Twins

D Pre-trained representations

E Relative forgetting: more results with replay

F Relative forgetting: extra results

G Results on CIFAR-100

H Evaluation with k-NN

I Detailed task sequence information

A Experimentation details

This section details the training and evaluation of all experiments in the main paper and supplemental
material, unless explicitly stated to deviate.

Data MiniImageNet consists of 50, 000 train and 10, 000 test RGB-images of resolution 84 × 84 equally
divided over 100 classes. We split this dataset into 20 disjoint tasks such that each task contains five classes.
The second benchmark is Split CIFAR-100, which is based on the CIFAR-100 dataset (Krizhevsky et al.,
2009) with the same amount of RGB-images and classes as MiniImageNet, but with reduced resolution of
32 × 32. We split this dataset into ten disjoint tasks with ten classes each. All experiments are run with
five different seeds that also shuffle the class splits over the tasks. See Table 4 and Table 5 for the exact
sequences.

Architecture and optimization Throughout this work ResNet-18 (He et al., 2016) is the base architec-
ture for all models. For MiniImageNet we adopt the implementation as default in the pytorch-torchvision
(Paszke et al., 2019) library. For CIFAR-100 we employed the slim version of the model as proposed by
Lopez-Paz & Ranzato (2017). All networks are trained from scratch, if not explicitly specified otherwise.
The optimization schedules are adjusted with respect to the training criterion. For supervised training
with the cross-entropy loss we use an AdamW (Loshchilov & Hutter, 2017) optimizer with static learning
rate of 0.001, weight decay 0.0005, and beta-values 0.9 and 0.999. Each task is trained for 50 epochs with
mini-batches of size 128.

For the SupCon (Khosla et al., 2020) and Barlow Twins (Zbontar et al., 2021) optimization criteria, we
stuck to optimization schedules proposed in literature for their application to continual learning. In line with
observations by Cha et al. (2021), the SupCon training regime uses an SGD optimizer with momentum 0.9.
The learning rate is scheduled in the same way for every task warming up from 0.0005 to 0.1 in the first
ten epochs, then annealing by a cosine schedule back to its starting value. The first task is trained for
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500 epochs, all subsequent tasks for 100 epochs, with a batch size of 256. The projection network necessary
for this objective consists of an MLP with (single) hidden dimension of 512, projecting to a 128 dimensional
space. Barlow-Twins optimization is aligned to (Marsocci & Scardapane, 2023; Fini et al., 2022). We use
an Adam optimizer (Kingma & Ba, 2015) with learning rate 0.0001 and weight decay 0.0005. We train 500
epochs for each task with batch size of 256. Again, the projection head is an MLP but with two hidden
layers, and hidden and final projection dimension of 2048. All methods use the same augmentations, see
below.

Probe optimization To quantify the quality of the representation we apply probes based on linear clas-
sifiers and k-nearest neighbors (kNN). Linear classifiers consist of a single linear layer and are optimized
with access to all training data, in a way analog to Cha et al. (2021). Keeping a batch-size of 128, we use
SGD with momentum of 0.9 and no weight decay for 100 epochs. The learning rate of 0.1 is decaying at
epochs 60, 75, and 90 by a factor of 0.2. Similarly, kNN uses all training data to evaluate the representations,
with k = 20.

Continual learning mechanisms LwF and MAS are using a value of λ = 1.0 as advocated by its original
authors. Replay uses a random selection of 20 exemplars per class. The weight of the loss on replayed samples
is increased proportionally to the number of previously observed tasks, to prevent favoring the current task
in the optimization. PackNet prunes 75% of the model’s parameters in each layer, followed by a post-pruning
phase of 25 epochs (1.5× training epochs), similar to the settings reported in its original work. An upper
bound is reported by jointly training the model on all observed data. For our lower-bound we want to
document the impact the singled out tasks have. This we achieve by re-initializing the model before training
a new task, but allowing the new task to train for as many iterations as a continual model would have,
e.g. 50 epochs for the first task, then 100 for the second, and so on. By design this model has zero transfer
of knowledge, and we will refer to it as ‘Single task’ baseline.

Augmentations In all experiments we use the data augmentation pipeline from SimCLR (Chen et al.,
2020). The augmentations pipeline consists of random crops and horizontal flips, color-jitter (brightness=0.4,
contrast=0.4, saturation=0.2, hue=0.1), random grayscaling (p=20%) and Gaussian blur using a kernel of
size 9 and sigma range 0.1 to 0.2. In PyTorch, the augmentations are defined as follows:

from torchvision.transforms import *

RandomHorizontalFlip(p=0.5),
RandomResizedCrop(size=(32, 32), scale=(0.2, 1.0)),
RandomApply(

[ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)], p=0.8),
RandomGrayscale(p=0.2),
RandomApply([

GaussianBlur(kernel_size=input_size[0]//20*2+1, sigma=(0.1, 2.0))], p=0.5)

B Ensemble: further details

The ensemble method stores a model copy after every task’s training. Each of these models output a
representation fi with dimension k for the input data. During training, only the model of the current, i-th,
task is used and the others are frozen. During training, the model learns exactly in the same way as the
default continually fine-tuned model (c.f . Section 2). For example, when training on the n-th task, the
n-th sub-model of the ensemble baseline (i.e. the sub-model being trained on the n-th task), is precisely the
same as the fine-tuned model when it is being trained on the n-th task. The difference is in the evaluation.
During evaluation, not only the latest model’s representation ft is used, but all of the representations are
concatenated to form one large representation f = [f1, f2 · · · ft]. Note that because learning was exactly the
same, all “intermediate models” {f1, ..., ft−1} do not contain any information that was not at some point also
learned by the fine-tuned model. Hence, the ensemble model does not use any additional information; it is
keeping track of information that is forgotten by the fine-tuned model. On top of this large representation f ,
a linear layer with input dimension tk is trained, instead of just k for the finetuned model.
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To mitigate the influence of the higher dimension, for which it might be easier to find linearly separable
features, we add a dimension reduction to lower the dimension back to k. We do this by projecting the
features of the ensemble on the top-k most significant PCA dimensions. The results are shown in Figure 8.
The reduced ensemble performs slightly worse than the full ensemble, yet still significantly better than
finetuning.

Figure 8: LP-accuracies of finetuning, the ensemble baseline and its reduced version, as explain in Section B

C Supervised contrastive and self-supervised Barlow Twins

In this section, we extent our investigation of the apparent innate robustness to forgetting for continually
learned representations from supervised fine-tuning with the cross-entropy (CE) loss (c.f . Section 4), to
the alternative training approaches of contrastive learning and self-supervised learning. The recent success
(Ericsson et al., 2022) of these learning mechanisms sparked interest for their application in continual learning
as well (Fini et al., 2022; Cha et al., 2021; Marsocci & Scardapane, 2023; Wang et al., 2023), and they have
been found to be less prone to forgetting Wang et al. (2023), which got linked to the improved generality
of the learned representation (Tendle & Hasan, 2021). From the plethora of potential methods, we chose
SupCon (Khosla et al., 2020) and Barlow Twins (Zbontar et al., 2021) as representatives of contrastive and
self-supervised losses. Both have already been used in continual learning settings (Marsocci & Scardapane,
2023; Cha et al., 2021; Davari et al., 2022; Cha et al., 2022). In the following, we repeat to quantify the
quality of a learned representation by its linear probing (LP) accuracy on the tasks of the continual training
sequence T , as well as a downstream task Td that is never seen during training. First, we provide an
intuition to the continual learning performance of SupCon and Barlow Twins in contrast to supervised CE
fine-tuning. Then, we analyze forgetting analog to the main text by relative forgetting (c.f . Section 4.1) and
task exclusion difference (c.f . Section 4.2). Finally, we again link the effect of feature forgetting to reduced
knowledge accumulation efficiency using the ensemble baseline (c.f . Section 4.3), before summarizing the
results.

Learning and forgetting SupCon and Barlow Twins representations To provide a frame-of-
reference we first relate the linear probing (LP) accuracies of continual SupCon, Barlow Twins, and fine-
tuning with supervised CE loss in Figure 9. This qualitative comparison provides intuition to their evolving
representation quality on the training sequence and downstream task. Continual SupCon almost resembles
the continual supervised CE fine-tuning baseline. It displays prominent peaks and decay after, as well as
some knowledge accumulation for the downstream task. However, in our experiments continual SupCon
falls short of the performance obtained from CE fine-tuning. With continual Barlow Twins, the increase in
performance from training and evaluating on the same task t (LPt,t) is comparatively limited. Yet, the ob-
tained representations are more general regarding other tasks in the sequence and show increased knowledge
accumulation.

We introduced relative forgetting in Section 4.1 of the main body as an evaluation perspective that reveals
how forgetting at the output level and representation level is equally catastrophic once we consider the
knowledge already contained in our continual learning model. For SupCon and Barlow Twins a direct
comparison is not possible, since there is no output performance to be measured. Both require a second
(head-) training stage, to apply the learned representation to a task by annotated data. Still, the relative
forgetting plots in figure 10 offer a second perspective to theevolution of representation quality in figure 9.
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Figure 9: Illustration of feature forgetting and knowledge accumulation for continually finetuned SupCon
and Barlow Twins on Split MiniImageNet, in comparison to continual supervised finetuning using the Cross-
Entropy loss (i.e. finetuning in the main paper).
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(b) Contrastive learning – SupCon

Figure 10: Forgetting for the first 5 tasks using self-supervised and contrastive losses, instead of the default
cross-entropy. Output accuracy is not properly defined for these methods, they always have to train a final
linear layer. (Mean ± standard error)

SupCon rapidly forgets newly learned information from each task in continued training, but still achieves a
certain degree of knowledge accumulation. Barlow Twins demonstrates more unstable relative forgetting, but
ultimately shows the same trend. The information gain for any task is not as pronounced as when training
with additional labels provided for the data. Despite their increased transferability, features can become
quickly forgotten to the extent that the accumulating knowledge surpasses early training performance for
initial tasks.

Also the task exclusion difference (EXCi,j , c.f . Eq. 2), depicted in figure 11, confirms the previous observa-
tions. The task exclusion measure allows to study the information gain with respect to a particular task,
while accounting for the knowledge accumulation with respect to all other tasks in the training sequence.
For both, SupCon and Barlow Twins, the information gain from any individual tasks is marginal. At the
end of continual training the gap is on average reduced to almost zero.

Feature forgetting reduces knowledge accumulation Lastly, to study the impact of the observed
feature forgetting to knowledge accumulation, we re-employ the ensemble baseline introduced in Section 4.3.
It allows us to quantify the knowledge accumulation without the impact of forgetting throughout continual
training. From the comparison between continually fine-tuning and its ensemble counterpart in Figure 12,
we can find an ample increase in the quality of the representation for SupCon and Barlow Twins when using
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Figure 11: Task exclusion difference for continually fine-tuned SupCon and Barlow Twins on Split MiniIm-
ageNet for tasks T6 and T11
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Figure 12: Ensemble baseline comparison for SupCon and Barlow Twins. Ensemble referes to the full
ensemble, ‘ensemble red.’ is the ensemble that has its dimension reduced again by PCA.

the ensemble. This clearly shows the impeding effect of feature forgetting on the representation learning
also for supervised contrastive and self-supervised learning. We note that Barlow Twins does suffer a lot
more from correcting for the ensemble’s dimensionality increased through PCA, compared to the supervised
approaches. An explanation to this might be in the definition of the Barlow Twins’ loss (Zbontar et al.,
2021). Because it explicitly optimizes towards a high rank representation, each task’s representation should
spread a high number of significant components. Assuming a considerable quantity of information is not
shared between tasks, as a result, reducing the concatenated representations by keeping its most significant
components does not maintain all tasks’ information. Supervised approaches suffer a lot less in this regard
since they typically employ few significant components (Feng et al., 2022) in the representation space. This
leaves enough effective encoding space for information from all tasks.

Do they forget catastrophically? In summary, we confirm similar trends for relative forgetting and task
exclusion difference with SupCon and Barlow Twins as we detailed for continual supervised CE fine-tuning in
our main results. Also, using the ensemble baseline, we demonstrate that feature forgetting hinders efficient
continual representation learning for these methods as well. However, we choose not to claim a definite
conclusion on whether forgetting should be considered catastrophic or not. This is for the reason that we
cannot link the common expression of catastrophic forgetting of supervised CE settings to SupCon or Barlow
Btwins directly, as we did in the main body, due to the there being no meaningful output accuracy measure.
We emphasize that the results listed in this section suggest that, forgetting is indifferent to the training
loss and supervision. What does change is the “kind” of features extracted from the data by the specific
learning mechanism - approaches such as Barlow Twins may render features to be more similar across tasks.
We exemplified how this is giving the impression of less forgetting, but can similarly be explained by the
repeated re-exposure of the model to the specific feature(s).

D Pre-trained representations

Similarly to representations being attributed an innate robustness to forgetting when learning continually,
pre-trained backbones receive this reputation as well (Lee et al., 2023; Zhang et al., 2023). In light of our
study, here we also consider the extent to which representations considered “high quality”, such as obtained
from large-scale pre-training (Kornblith et al., 2019), impact forgetting at representation level. For this
experiment we simply exchange the random initialization that we have been using through the main body
with weights from a backbone pre-trained on ImageNet1k (Deng et al., 2009) 2. An innate robustness
to forgetting of the representation should manifest as overall improved performance due to the increased
generality and/or quality of the pre-trained features. Note that we exemplarily investigate an extreme case
where pre-training (ImageNet1k) coveres an almost identical data distribution as the continual training
sequence (Split Mini-Imagenet).

Little surprisingly, the results in Figure 13 show that, for our case of Split of Mini-Imagenet, the representa-
tion of the pre-trained backbone (T0) is already a good foundation for the task sequence. Nevertheless, with
sequential training the initial generality is quickly lost and we again observe the training dynamics governed

2weights are publicly available in the PyTorch-Torchvision library
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Figure 13: Comparison of continual learning linear probing (LP) when training from-scratch (random weight
initialization) or pre-trained weights (ImageNet-1k).

by feature forgetting and knowledge accumulation as we describe them in the main body (c.f . Section 4).
We hypothesize that, even though the features obtained from ImageNet pre-training are well suited for the
sequential training task, they cannot be similarly obtained from any of the tasks in the continual training
sequence. As a results, they are forgotten despite their generality. Our finding aligns with the work of Kim
& Han (2023), who show that continual learning approaches making effective use of pre-trained representa-
tions either drastically reduce their learner’s plasticity or otherwise extend the initial representation without
altering it, to circumvent forgetting.

E Relative forgetting: more replay results

In Figure 14 we show relative forgetting on the Mini-ImageNet sequence when storing 20, 50 or 100 samples
per class, and when adding distillation using the output logits (DER (Buzzega et al., 2020)). Figure 15 shows
the exclusion results of T6 and Table 3 the amount of knowledge accumulation. Having more samples in the
memory reduces both forgetting in the representation and the head and substantially improves knowledge
accumulation. Interestingly, the final exclusion difference remains small. This supports our theory. When
adding more replay samples the model can learn more from the combination of replay and new task data,
but what cannot be learned from this combination of data is still lost. DER is mostly helpful to further
reduce forgetting in the head. When storing the output logits for each sample, more information is stored,
and it is possible that this reduces the risk of overfitting of the head on the few samples that are in the
memory.
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Figure 14: Relative Forgetting at the output level and the level of representation as in Eq. 1, for T1 to T5
of more replay variants on the Mini-ImageNet sequence. The influence of storing more samples and adding
distillation with soft logits (DER (Buzzega et al., 2020)) is evaluated. (Mean ± SE, 5 runs)
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Figure 15: Task exclusion results of more replay variants on the Mini-ImageNet sequence. The influence
of storing more samples and adding distillation with soft logits (DER (Buzzega et al., 2020)) is evaluated.
(Mean ± SE, 5 runs)

Table 3: Learning accuracy averaged over all tasks (LPi,i) and knowledge accumulation on a downstream
task (LP19,d − LP0,d), reported when adding more replay samples and with DER (Buzzega et al., 2020).
(Mean ± SE, 5 runs)

Finetune Ensemble ER (n = 20) ER (n = 50) ER (n = 100) DER (n = 20)

LPi,i 0.860 ± 0.002 0.864 ± 0.002 0.815 ± 0.002 0.814 ± 0.003 0.821 ± 0.003 0.826 ± 0.003
LP19,d − LP0,d 0.249 ± 0.023 0.365 ± 0.020 0.247 ± 0.018 0.298 ± 0.014 0.309 ± 0.015 0.271 ± 0.013

F Relative forgetting: extra results

Figure 3 only shows the relative forgetting in the Mini-ImageNet task sequence. For completeness, we report
here the relative forgetting of all tasks in Figure 16.
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Figure 16: Representation and observed forgetting using linear probes for all tasks in Mini-ImageNet using
finetuning (except first and last, for which we cannot calculate relative forgetting)
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G Results on CIFAR-100

To reduce the dependency on only having experiments on a single dataset, we report our main results here
also on CIFAR-100. The results on CIFAR-100 follow the same general trends as those on Mini-ImageNet
in the main paper. The largest difference is that the effects are sometimes smaller, due to the shorter task
sequence.
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Figure 17: Linear probe and output accuracy of T4 during the entire CIFAR-100 sequence.
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Figure 18: Representation and observed forgetting using linear probes for all tasks in CIFAR-100 using
finetuning (except first and last task, for which we cannot calculate relative forgetting)
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Figure 19: Finetune, exclusion, single task and multi
task with CIFAR-100.
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Figure 20: Comparing the ensemble and finetuning
on CIFAR-100.
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Figure 21: LP-accuracies on a downstream task of CIFAR-100.
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H Evaluation with kNN

In this section we report the most important results of the main paper using kNN instead of using linear
probes. This has the benefit that it there are no hyper-parameters to tune and does not depend on the
optimization used. We report it here for completeness, and keep the linear probes in the main paper as this
is how previous papers reported their results Davari et al. (2022); Cha et al. (2022); Zhang et al. (2022). In
general, the results in Figure 22, 23, 24 and 25 follow the same trends as observed in the main paper, with
the main difference that the absolute values are lower, likely due to the suboptimalitiy of kNN compared to
linear probe optimization.
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Figure 22: kNN and output accuracy of T7 during the entire Mini-ImageNet sequence.
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Figure 23: Representation and observed forgetting using kNN for all tasks in Mini-ImageNet (except last
and first, for which we cannot calculate relative forgetting)
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Figure 25: Comparing the ensemble and finetuning
using kNN.
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I Detailed task sequence information

In Table 4 and Table 5 we report the exact task sequences used in the experiments in the main paper. These
are chosen at random, but consistent in all experiments. The randomness of the tasks also means that there
difficult varies quite a bit, which explais some of the higher standard errors in the experiments reported.

idx Synset Synset name idx Synset Synset name idx Synset Synset name
0 n01532829 house_finch 33 n03400231 frying_pan 66 n02981792 catamaran
1 n01558993 robin 34 n03476684 hair_slide 67 n03980874 poncho
2 n01704323 triceratops 35 n03527444 holster 68 n03770439 miniskirt
3 n01749939 green_mamba 36 n03676483 lipstick 69 n02091244 Ibizan_hound
4 n01770081 harvestman 37 n03838899 oboe 70 n02114548 white_wolf
5 n01843383 toucan 38 n03854065 organ 71 n02174001 rhinoceros_beetle
6 n01910747 jellyfish 39 n03888605 parallel_bars 72 n03417042 garbage_truck
7 n02074367 dugong 40 n03908618 pencil_box 73 n02971356 carton
8 n02089867 Walker_hound 41 n03924679 photocopier 74 n03584254 iPod
9 n02091831 Saluki 42 n03998194 prayer_rug 75 n02138441 meerkat
10 n02101006 Gordon_setter 43 n04067472 reel 76 n03773504 missile
11 n02105505 komondor 44 n04243546 slot 77 n02950826 cannon
12 n02108089 boxer 45 n04251144 snorkel 78 n01855672 goose
13 n02108551 Tibetan_mastiff 46 n04258138 solar_dish 79 n09256479 coral_reef
14 n02108915 French_bulldog 47 n04275548 spider_web 80 n02110341 dalmatian
15 n02111277 Newfoundland 48 n04296562 stage 81 n01930112 nematode
16 n02113712 miniature_poodle 49 n04389033 tank 82 n02219486 ant
17 n02120079 Arctic_fox 50 n04435653 tile_roof 83 n02443484 black-footed_ferret
18 n02165456 ladybug 51 n04443257 tobacco_shop 84 n01981276 king_crab
19 n02457408 three-toed_sloth 52 n04509417 unicycle 85 n02129165 lion
20 n02606052 rock_beauty 53 n04515003 upright 86 n04522168 vase
21 n02687172 aircraft_carrier 54 n04596742 wok 87 n02099601 golden_retriever
22 n02747177 ashcan 55 n04604644 worm_fence 88 n03775546 mixing_bowl
23 n02795169 barrel 56 n04612504 yawl 89 n02110063 malamute
24 n02823428 beer_bottle 57 n06794110 street_sign 90 n02116738 African_hunting_dog
25 n02966193 carousel 58 n07584110 consomme 91 n03146219 cuirass
26 n03017168 chime 59 n07697537 hotdog 92 n02871525 bookshop
27 n03047690 clog 60 n07747607 orange 93 n03127925 crate
28 n03062245 cocktail_shaker 61 n09246464 cliff 94 n03544143 hourglass
29 n03207743 dishrag 62 n13054560 bolete 95 n03272010 electric_guitar
30 n03220513 dome 63 n13133613 ear 96 n07613480 trifle
31 n03337140 file 64 n03535780 horizontal_bar 97 n04146614 school_bus
32 n03347037 fire_screen 65 n03075370 combination_lock 98 n04418357 theater_curtain

Table 4: The classes included in Split MiniImagenet, with their index, (which is not general, but used in the
task splits), their synsets and their name.

Seed 42 Seed 52 Seed 62 Seed 72 Seed 82

T1 83 - 53 - 70 - 45 - 44 82 - 8 - 44 - 19 - 2 76 - 48 - 62 - 80 - 29 76 - 82 - 43 - 16 - 84 72 - 33 - 58 - 2 - 55
T2 39 - 22 - 80 - 10 - 0 73 - 37 - 89 - 67 - 18 99 - 60 - 89 - 39 - 69 95 - 78 - 91 - 30 - 22 84 - 54 - 75 - 28 - 40
T3 18 - 30 - 73 - 33 - 90 4 - 92 - 83 - 24 - 14 14 - 74 - 59 - 87 - 55 1 - 96 - 25 - 81 - 62 39 - 15 - 41 - 12 - 35
T4 4 - 76 - 77 - 12 - 31 93 - 90 - 84 - 81 - 66 40 - 46 - 54 - 92 - 7 5 - 18 - 63 - 14 - 24 23 - 49 - 91 - 32 - 38
T5 55 - 88 - 26 - 42 - 69 40 - 72 - 56 - 36 - 51 6 - 32 - 77 - 27 - 63 23 - 75 - 9 - 60 - 27 64 - 68 - 6 - 92 - 18
T6 15 - 40 - 96 - 9 - 72 50 - 68 - 88 - 55 - 57 96 - 33 - 49 - 25 - 68 83 - 20 - 90 - 55 - 36 48 - 47 - 13 - 89 - 79
T7 11 - 47 - 85 - 28 - 93 27 - 29 - 80 - 3 - 94 26 - 94 - 38 - 85 - 98 4 - 10 - 77 - 93 - 33 96 - 22 - 34 - 81 - 63
T8 5 - 66 - 65 - 35 - 16 53 - 62 - 87 - 52 - 95 61 - 43 - 93 - 15 - 28 58 - 35 - 97 - 11 - 59 53 - 85 - 14 - 50 - 44
T9 49 - 34 - 7 - 95 - 27 70 - 12 - 1 - 97 - 48 36 - 2 - 42 - 75 - 31 56 - 98 - 47 - 86 - 38 24 - 61 - 11 - 0 - 21

T10 19 - 81 - 25 - 62 - 13 60 - 47 - 65 - 10 - 41 22 - 56 - 3 - 67 - 19 85 - 66 - 49 - 41 - 87 10 - 59 - 90 - 71 - 56
T11 24 - 3 - 17 - 38 - 8 17 - 96 - 9 - 49 - 30 20 - 90 - 50 - 84 - 66 42 - 99 - 57 - 0 - 6 17 - 76 - 1 - 95 - 70
T12 78 - 6 - 64 - 36 - 89 38 - 58 - 0 - 26 - 21 70 - 97 - 4 - 64 - 44 70 - 13 - 50 - 40 - 68 94 - 37 - 5 - 4 - 26
T13 56 - 99 - 54 - 43 - 50 31 - 15 - 75 - 25 - 6 82 - 47 - 95 - 41 - 51 48 - 73 - 37 - 8 - 39 60 - 20 - 45 - 98 - 74
T14 67 - 46 - 68 - 61 - 97 74 - 59 - 64 - 43 - 34 23 - 5 - 79 - 88 - 34 32 - 3 - 89 - 51 - 44 62 - 57 - 73 - 97 - 87
T15 79 - 41 - 58 - 48 - 98 20 - 77 - 7 - 78 - 71 16 - 35 - 52 - 71 - 72 17 - 54 - 15 - 67 - 2 46 - 51 - 7 - 82 - 83
T16 57 - 75 - 32 - 94 - 59 22 - 39 - 63 - 76 - 85 57 - 12 - 1 - 13 - 86 31 - 52 - 61 - 34 - 71 19 - 88 - 9 - 8 - 52
T17 63 - 84 - 37 - 29 - 1 79 - 45 - 61 - 42 - 46 78 - 8 - 21 - 91 - 83 64 - 92 - 65 - 53 - 28 30 - 65 - 16 - 36 - 69
T18 52 - 21 - 2 - 23 - 87 54 - 91 - 16 - 5 - 33 10 - 0 - 65 - 73 - 37 72 - 80 - 12 - 45 - 21 25 - 67 - 43 - 29 - 42
T19 91 - 74 - 86 - 82 - 20 35 - 98 - 69 - 32 - 99 45 - 30 - 17 - 53 - 58 29 - 7 - 26 - 79 - 69 78 - 80 - 31 - 86 - 93

Downstream task 60 - 71 - 14 - 92 - 51 86 - 23 - 13 - 11 - 28 11 - 9 - 81 - 24 - 18 94 - 74 - 46 - 19 - 88 77 - 27 - 99 - 66 - 3

Table 5: Task splits used in the results with Split MiniImagenet. The indices correspond to the classes
listed in Table 4. Results reported on Split MiniImagenet average over these 5, randomly determined, task
sequences.
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