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Abstract

Image segmentation is at the core of many tasks in medical imaging, including the engi-
neering of computational biomarkers. While the self-configuring nnUNet framework for
image segmentation tasks completely shifted the state-of-the-art in the radiology field, it
has never been applied to the field of histopathology, likely due to inherent limitations
that nnUNet has when applied to the pathology domain “off-the-shelf”. We introduce
nnUNet for pathology, built upon the original nnUNet, and engineered domain-specific
solutions to bridge the gap between radiology and pathology. Our framework includes crit-
ical hyperparameter adjustments and pathology-specific color augmentations, as well as an
essential whole-slide image inference pipeline. We developed and validated our approach
on non-small cell lung cancer data, showing the effectiveness of nnUNet for pathology over
default nnUNet settings, and achieved the first position on the experimental segmentation
task of the TIGER challenge on breast cancer data when using our pipeline “out-of-the-
box”. We also introduce a novel inference uncertainty approach, which proved helpful for
the quantification of the tumor-infiltrating lymphocytes biomarker in non-small cell lung
cancer biopsies of patients treated with immunotherapy. We coded our framework as a
workflow-friendly segmentation tool and made it publicly available.!

Keywords: nnUNet, computational pathology, segmentation, TIL biomarker, uncertainty.

1. Introduction

Computer vision tasks such as semantic segmentation and object detection are the foun-
dation of automated image analysis and understanding. In medical imaging, these tasks
function at the core of computer-aided detection and diagnosis systems (Gao et al., 2019),

1. https://github.com/DIAGNijmegen/nnUNet-for-pathology
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and the engineering of computational biomarkers in both radiology (Parekh et al., 2020) and
histopathology images (Kulkarni et al., 2020). The advent of deep learning (LeCun et al.,
2015) facilitated a substantial breakthrough in the development of accurate detection and
segmentation models, powering systems that achieve and even surpass human performance
on certain medical tasks (Esteva et al., 2017). In semantic image segmentation, the UNet
architecture (Ronneberger et al., 2015) has increasingly been adopted and has become the
state-of-the-art (SOTA) approach. However, hyperparameter tuning of UNet architectures
is a crucial, non-trivial, and time-consuming endeavor for training highly specialized medical
imaging solutions.

In recent years, AutoML approaches have been proposed to address this problem (He
et al., 2021). In the field of radiology, Isensee et al. (2020) introduced the self-configuring
nnUNet framework, which utilizes well-established internal fingerprints, fixed parameters,
empirical decisions, and a cross-validation strategy to determine optimal hyperparameters to
train a UNet model. This self-configuring approach enabled nnUNet to surpass the SOTA
performance in many radiology applications (Antonelli et al., 2022). While transformer-
based segmentation approaches are increasingly being adopted (Chen et al., 2022), UNet-
based models with manually tweaked hyperparameters still power SOTA applications in the
computational pathology domain (Bulten et al., 2020; Ho et al., 2021). Surprisingly, the
challenge-winning self-configuring nnUNet framework has never been adapted to suit the
requirements for application to the pathology domain.

Despite the general purpose nature of nnUNet, several aspects of pathology data are
intrinsically different from radiology. For example, loading entire gigapixel histopathol-
ogy whole-slide images (WSIs) poses memory constraints during training and inference,
resorting to customized dataset preparation and sliding window techniques that are not
included in nnUNet’s default framework. Additionally, multi-class semantic segmentation
in histopathology involves a large variety of patterns, cell types, and tissue morphologies,
which may not be fully considered in nnUNet’s radiology-oriented default configurations.

To accommodate for the high morphological variety, segmentation models for pathology
tasks typically use Batch Normalization (BN) with an appropriate batch size, in contrast
with nnUNet’s preference for large patch sizes and smaller batch sizes, in combination
with Instance normalization (IN). Additionally, capturing the full spectrum of tissue and
cellular varieties in the training data is difficult, and deep learning models often make incor-
rect, overconfident predictions for out-of-training-distribution data. Extracting a model’s
uncertainty can therefore be useful in identifying poorly segmented regions when applied
to unseen data (Lakshminarayanan et al., 2016). Finally, pathology data often exhibits
variations in slide staining, even within the same lab on different days. To address this,
pathology-specific data augmentation techniques are commonly used (Tellez et al., 2019).

In this paper, we build upon the existing nnUNet framework and, to the best of our
knowledge, propose the first application of nnUNet to digital pathology data. We iden-
tify and address pathology-specific workflow-related limitations of the framework, critically
assess nnUNet’s model configurations on a multi-class tissue segmentation task on hema-
toxylin and eosin (H&E)-stained non-small cell lung cancer (NSCLC) WSIs, and introduce
a lightweight uncertainty extraction method to identify likely-incorrectly segmented regions.

To prove the versatility and robustness of the entire nnUNet framework for pathology
data, we assess the proposed configuration’s training and WSI-inference performance on the
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most recent public pathology benchmark for multi-class segmentation; the TIGER challenge
2. This challenge involves a different organ and segmentation task and therefore serves as
a perfect performance readout of our work against optimized SOTA approaches.

Finally, we showcase the use of the proposed nnUNet framework in biomarker de-
velopment on a tumor-infiltrating lymphocytes (TILs) quantification task in a cohort of
metastatic NSCLC cases treated with immunotherapy (Theelen et al., 2019). While initially
intra-tumoral TILs (;TILs) were deemed most relevant, (Salgado et al., 2015) proposed vi-
sual estimation in the stromal regions of the tumor (sTILs), while excluding necrotic areas.
Since this approach depends on the identification of multiple tissue types, it was adopted as
a suitable proof of concept segmentation task for nnUNet’s use in biomarker development.

2. Methods

We first describe the data used during training, validation, and biomarker development.
Then, we introduce nnUNet for pathology, where we focus on added technical and method-
ological contributions to the framework, and go over the experiments carried out in an
ablation study to verify that the proposed changes improve segmentation performance over
the default nnUNet framework. Finally, we detail how the proposed nnUNet framework
was evaluated on the TIGER challenge, and explain the steps taken for TIL biomarker
development.

2.1. Materials

Train and test data. For training, we used a set of 30 H&FE stained WSI of NSCLC tissue
samples (21 surgical resections, 9 biopsies) from Radboud University Medical Center (Ni-
jmegen, Netherlands). Cases were selected to represent a balanced mix of adenocarcinoma
(AD) and squamous cell carcinoma (SC) subtypes, tumor growth patterns, and morpholo-
gies. For each WSI, approximately five regions of interest (ROI) of 2x2 mm were selected
by a pathologist and manually annotated densely to cover 13 morphological patterns in the
tissue (Fig. 1). Using the same selection and annotation procedure, we obtained an external
test set containing 14 cases (7 AD, 7 SC) from the publicly available TCGA-LUAD and
TCGA-LUSC datasets (respectively containing AD and SC cases). Additionally, test cases
were sought out to contain varying stain color characteristics, to assess the generalizability
of trained nnUNet models to staining variations across different medical centers. In total,
163 training ROIs and 55 test ROIs were annotated; an example of the data is depicted in
Fig. 1.

TIGER challenge data. The challenge’s publicly available training data contains 195
WSI from various medical centers with a total of 286 annotated ROIs. Each ROI contains
up to 7 classes and may contain unannotated regions that should be excluded from loss
calculation. The experimental test used for the SOTA comparison of our proposed nnUNet
framework contained 26 WSI with 130 ROIs. The final test set was not considered in this
study because it was not accessible at the time of validating our method.

PEMBRO-RT trial data. The predictive value of TILs was assessed on a cohort of
NSCLC treated with immunotherapy (Pembrolizumab) from PEMBRO-RT (Theelen et al.,
2019), a phase-2 clinical trial led by the Dutch Cancer Institute (NKI) in the Netherlands.
This cohort consists of 68 tumor biopsies from patients with metastatic NSCLC, containing

2. https://tiger.grand-challenge.org/
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Figure 1: Visual example of a WSI with 3 annotated ROIs; labels legend indicates names of
annotated classes and their corresponding colors.

25 biopsies from the lung and 43 from other metastatic sites. Since the train and test data
in this study solely contains lung tissue, the selection was restricted to the 25 lung tissue
biopsies. Furthermore, two cases were excluded due to insufficient biopsy quality, assessed by
a resident pathologist, resulting in n=23 cases. As a readout for immunotherapy treatment
response, we defined response as stable disease (as defined by the RECIST1.1 guidelines
(Eisenhauer et al., 2009)) or better at 12 weeks after treatment.

2.2. nnUNet for pathology

From whole-slide images to nnUNet and back. We developed a custom dataset
preparation pipeline for the nnUNet framework that is compatible with pathology data. Our
pipeline uses the open-source WholeSlideData Python library? to fast and efficiently extract
ROIs and corresponding annotations from the WSIs on a set spacing of 0.5 um/px. These
extracted ROIs and annotation masks are then converted to the required nifti file format for
compatibility with nnUNet’s pre-processing pipeline. We ensured similar class distributions
in the train and validation splits instead of using a random 5-fold cross-validation split.
Additionally, we developed a WSI inference approach as an essential feature for nnUNet
for pathology. The pipeline (1) accepts a WST and its tissue/background mask (Bandi et al.,
2019), (2) samples patches from the WSI, using a sliding window on patches containing
tissue, (3) applies nnUNet’s default sliding window approach with Gaussian weighted half
overlap within the sampled patches, (4) only writes the fully overlapped region of the
sampled patches in a pyramidal TIFF file structure, and (5) outputs the model output
mask, and uncertainty mask (further described in the ‘Inference uncertainty extraction’
section). Further details of the WSI inference pipeline are discussed in the Appendix.

WSI segmentation with nnUNet. Evaluated configurations of the nnUNet model are:
types of input pre-processing, feature normalization methods, batch size and patch size
configurations, and the use of pathology-specific color augmentations. The performance of
the evaluated changes was measured using the fl-score, which combines the precision and
recall into a single metric by taking the harmonic mean.

3. https://github.com/DIAGNijmegen/pathology-whole-slide-data
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Input pre-processing. In contrast with radiology image pixels representing signal in-
tensities, pathology image pixels represent color in RGB space. The default nnUNet pre-
processing method, z-score normalization, normalizes each image channel separately with a
mean of 0 and a standard deviation of 1. However, this method may result in color shifts
in pathology images’ RGB channels. To mitigate this issue, we evaluated the performance
of 0-1 scaling, which scales 8-bit images with values ranging from 0 to 255 to a new range
of 0-1 without causing color shifts.

Feature normalization € patch and batch size. We noticed experimentally that the de-
fault settings of nnUNet can lead to a ‘label switching’ patch effect (Fig. 5 A). Default
nnUNet strongly favors large patch sizes over large batch sizes, which supports the use of
IN that, in contrast with BN, works well with extremely small batch sizes. We evaluated the
segmentation performance and the impact on this patch effect of both normalization meth-
ods on a model with patch size 1024x1024 px (ps1024) and batch size 2 (bs2) (configured
by default nnUNet), and patch size 512x512 px (ps512) and batch size 8 (bs8).

Data augmentation. We assessed the use of Hematoxylin-Eosin-DAB (HED) and Hue-
Saturation-Value (HSV) augmentation for nnUNet. HED augmentation decomposes an
RGB image into the staining intensities of the individual hematoxylin, eosin, and DAB
staining, augments their intensities, and converts them back to RGB. Similarly, HSV aug-
mentation first converts the RGB images to HSV space, augments the images’ hue, satu-
ration, and value, and converts the augmented image back to RGB space. We evaluated
the addition of HED, and the sequential addition of HED and HSV, as the first color-
augmenting transformations in the default data augmentation pipeline. From the HED
and HSV augmentation settings proposed in Tellez et al. (2019), we used the HED-light
setting, and an adjusted HSV-light setting, with additional value augmentation in the same
intensity range as the hue and saturation.

Next to augmentations during training, nnUNet also encompasses test time augmen-
tation (TTA), which mirrors the input image along the two axes during inference and
reconstructs and averages the predictions on the augmented images into a final output.
The effect of TTA was evaluated on all before-mentioned nnUNet variants.

Inference uncertainty extraction. By default, nnUNet trains five models through a
5-fold cross-validation approach. These models enable the extraction of pixel uncertainty,
derived from the internal disagreement among the 5 folds, where greater disagreement
corresponds to more uncertain pixel predictions. To calculate a fold’s disagreement on
a pixel, we use the soft cross-entropy loss over the fold’s pixel log(softmax) values and
the mean pixel log(softmax) values of the 5 folds. The final uncertainty value per pixel is
obtained by averaging the disagreements from the 5 folds, following a method similar to that
proposed by Lakshminarayanan et al. (2016). Given that uncertain predictions tend to be
more incorrect, we use the uncertainty value as a measure of incorrectness. We examine the
uncertainty value distribution for each predicted output class on the entire test set, splitting
True Positive (TP) and False Positive (FP) predictions’ uncertainty values for each class.
We established a cutoff point in the uncertainty values for each class individually, using the
ROC curves’ optimal operation points to distinguish TP from FP predictions based on the
uncertainty value.
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2.3. TIL biomarker development

As a proof of concept biomarker development application for nnUNet, we investigate differ-
ent TIL densities on each of the 23 lung biopsies of metastatic NSCLC from the PEMBRO-
RT trial (Theelen et al., 2019). The HoVerNet algorithm, a nuclei segmentation and clas-
sification model which was trained on multiple organ tissues (Graham et al., 2019), was
used to detect inflammatory cells as a proxy for TILs (we validated its use as TIL detector
using manual annotations, see Appendix Fig. 6). TIL densities were computed within the
whole tissue (¢ssue TILS), nnUNet’s stromal sections (for ¢TILs), and nnUNet’s tumor seg-
ments (for ;TILs). Here, stromal segments are defined as the union of nnUNet’s ‘stroma’
and (stromal) ‘inflammation’ class. Additionally, we investigate the use of our proposed
uncertainty filtering approach to exclude likely-FP regions from the nnUNet’s tumoral and
stromal regions. The derived TIL densities were used to stratify responders using ROC
analysis. Welsh test statistics were used to evaluate the significance of the TIL density
distributions from responders and non-responders originating from different populations.

2.4. TIGER challenge segmentation

We adapted the proposed and default configurations to suit the labels of the TIGER dataset,
trained the 5-folds, and subsequently applied them through our WSI inference pipeline on
the experimental test set on the Grand Challenge platform, returning the final f1 scores of
the proposed and default configurations.

3. Results

nnUNet for pathology Out-of-the-box application of nnUNet to pathology data showed
promising quantitative results on patch segmentation level. However, we identified a ‘label-
switching’ patch effect on adjacent or overlapping patches (Appendix Fig. 5 A) inherent
to nnUNet’s default configuration, which is detrimental to WSI inference performance. By
conducting an ablation study, we identified several critical changes and beneficial addi-
tions that are necessary to improve nnUNet’s default configurations for its application to
pathology data. An overview of the evaluated nnUNet configurations is shown in Table 1.

Table 1: nnUNet experiments table

nnUNet configuration F1 score (F1 score without TTA)

input scale feature norm batch/patch size DA Micro avg Macro avg ‘Weighted avg
A z-score IN 2/1024 default 0.697 (0.692) 0.378 (0.374) 0.655 (0.649)
B 01 IN 2/1024 default 0.695 (0.691) 0.382 (0.379) 0.652 (0.648)
Cc o1 IN 8/512 default 0.728 (0.728) 0.406 (0.408) 0.690 (0.690)
D 01 BN 2/1024 default 0.752 (0.750) 0.486 (0.485) 0.725 (0.723)
E 01 BN 8/512 default 0.765 (0.754) 0.511 (0.510) 0.735 (0.733)
F 01 BN 8/512 +HED 0.768 (0.766)  0.522 (0.520) 0.748 (0.746)
G 01 BN 8/512 +HED,HSV  0.766 (0.764) 0.522 (0.520)  0.746 (0.743)

Input scaling. nnUNet’s default z-score normalization can introduce color shifts in ad-
jacent or overlapping patches, which may contribute to the label-switching patch effect.
However, using 0-1 scaling did not resolve the issue (Appendix Fig. 5 B). Although the
performance of both methods on patch segmentation level is comparable (Table 1 A and
B), 0-1 scaling is preferred since it avoids color channel disturbance and is required for HED
and HSV augmentation.
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Feature normalization € batch size, patch size. The performance of the evaluated models
with different feature normalization approaches, and batch and patch sizes are depicted in
Table 1 (B, C, D, and E). Both replacing IN with BN and using bs8 ps512 instead of bs2
ps1024 yielded superior results. Replacing the feature normalization approach yielded a
major performance increase compared to changing the batch and patch size. A combination
of both adjustments showed a synergistic performance increase on all computed f1 scores,
with a macro averaged fl score of 0.510 compared to 0.379 for both default settings. All
evaluated variations from the default solved the identified patch effect (Appendix Fig. 5).

Data augmentation. Both HED and the combination of HED and HSV improved seg-
mentation results compared to nnUNet’s default data augmentations (1 E, F, G). Although
very close to the configuration with HED and HSV augmentation, the addition of HED only
(example augmentations in Appendix Fig. 10) yielded the highest overall performance in all
averaged f1 scores and is thus proposed as the final nnUNet configuration for pathology. A
WSI inference comparison example of nnUNet’s default configuration versus our proposed
configuration is shown in Fig. 2.

Default nnUNet configuration Proposed nnUNet configuration Labels
o= ¥k i 8 Background

Tumor

Stroma

Inflammation

Healthy parenchyma

Fatty tissue

Necrotic tissue

Erytrocytes

Healthy epithelium

Mucus

Cartilage

Macrophages

Other

Figure 2: Comparison of WSI inference output between the default nnUNet configuration with
the ‘label switching’ patch effect (left) and our proposed nnUNet configuration with improved ac-
curacy and consistency (right), using the same inference pipeline with weighted half overlap. Our
proposed model correctly identifies the tumor and stroma morphologies, while the default configura-
tion exhibits the patch effect, incorrectly predicting different labels in adjacent patches with similar
morphology, despite regularly predicting a single label within the patch (emphasized by the grid).

Inference uncertainty extraction. Appendix Fig. 7 demonstrates two visual examples
of uncertainty extracted from the 5-fold disagreement, revealing that uncertain predictions
are more likely to be incorrect. In Appendix Fig. 9, the complete result of our approach
to differentiate TP from FP-predicted class pixels using the class’ uncertainty values is de-
picted. The TP and FP predictions for each class exhibit clear differences in the uncertainty
distributions, with TP predictions having mostly low uncertainty values and FP predictions
having high uncertainty values. The distinction in uncertainty distributions was utilized to
determine an optimal split point to distinguish likely-FP from likely-TP pixel predictions
through ROC analysis. Fig. 3 A shows the uncertainty distributions and the defined cutoff
value from the classes used for TIL biomarker development. Fig. 3 B provides a visual
example of the effectiveness of uncertainty filtering in removing large incorrectly predicted
tumor segments, which leads to a more accurate area for ; TIL density calculation.

TILs to predict immunotherapy response ROC curves on response stratification
performance of our evaluated TIL density features are shown in Fig. 4. These results
demonstrate that nnUNet-derived sTIL and iTIL features outperformed the overall tissue
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Figure 3: A. Pixel uncertainty distributions for sTIL and ¢TIL regions. Percentages depict the
sizes of the distributions (TP: orange, FP: blue), with red thresholds (TH) indicating the optimal op-
erating points for separating TP from FP. B. Example of uncertainty filtering. The model predicted
foamy macrophages (out of training distribution) as tumor. We used the internal disagreement of
the 5 folds to calculate pixel-level uncertainty values. Using the tumor TH, we separated likely-TP
from likely-FP tumor pixels, where likely-TP pixels more closely resemble the true tumor mask.

TIL density feature, with AUCs of 0.843 and 0.799, respectively (Fig. 4 B and C). Fur-
thermore, using our uncertainty approach to exclude likely-FP regions in the tumor and
stromal segments improved the discriminatory power of both nnUNet-derived TIL density
features, with AUCs of 0.876 and 0.826 for sTIL and iTIL, respectively. All TIL density
features showed significant differences in Welsh test statistics (p-values < 0.05), but only
the sTIL density features remained significant after Bonferroni correction.

TIGER challenge segmentation performance On our first try, our proposed nnUNet
for pathology framework with additional TTA ranked first on the segmentation task of the
experimental leaderboard on detection and segmentation, with an fl1 score of 0.8089, while
the default configuration yielded an f1 score of 0.7741.
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Figure 4: ROC curves with confidence interval and AUCs from different TIL density features,
depicting that sTIL features and uncertainty filtering yield the best results.

4. Discussion

Our study demonstrates the potential of nnUNet in computational pathology by identifying
and addressing its limitations in training and inference. The improvements proposed in this
study, including the switching from IN to BN and increasing the batch size at the cost of



NNUNET MEETS PATHOLOGY

a reduction in patch size, are effective in addressing the high variability in cell morphology
in histopathology WSI. Furthermore, by training on data from a single medical center
and testing on external datasets, we validated the effectiveness of pathology-specific color
augmentations in improving model robustness to different H&E stainings.

The nnUNet configuration encompassing 0-1 input scaling, BN, ps512, bs8, and ad-
ditional HED augmentation yielded the best performance on all averaged fl scores and
defines our proposed nnUNet model configuration. The success of this proposed nnUNet
model configuration and the entire WSI inference pipeline is further corroborated by the
results on the TIGER challenge’s segmentation task.

The development of the WSI inference pipeline represents a crucial contribution to the
application of nnUNet in pathology. This essential tool is instrumental in bridging the
practical gap that currently exists in utilizing nnUNet for pathology applications. Our
successful resolution of the ‘label switching’ patch effect through proposed changes enabled
accurate WSI inference performance, rendering nnUNet more appealing for use in pathology.

As a proof of concept for nnUNet’s application in biomarker development, we suc-
cessfully segmented tumor and stromal regions, yielding improved ;TIL and ;TIL density
features compared to the overall 554 TIL density. Our novel inference uncertainty im-
plementation was supported by the improved AUC values achieved by filtering likely-FP
tissue segments using pixel uncertainty cutoffs. Although being applied on a small cohort,
the sTILs demonstrated significant predictive value, as determined by Welsh test statistics,
even after Bonferroni correction, showing the relevance of a high-quality segmentation as a
base for the definition of biomarkers.

In addition to the improvements we have already made to nnUNet, there are further
opportunities for enhancing the framework’s performance in computational pathology. One
such area is the optimization of the model configuration. While we manually adjusted
the batch and patch size for our experiments, nnUNet has an automated configuration
optimization feature that could be adjusted to meet specific requirements. Furthermore,
the current sampling strategy and static dataset requirement may not be optimal for many
pathology applications, such as cases with vast class imbalance or fully annotated whole
slide images. To address these challenges, we plan to implement dynamic data loaders and
remove the requirement for a static dataset to initialize the model configuration in our
publicly available codebase, expanding the applicability of nnUNet in pathology.

5. Conclusion

Our proposed nnUNet for pathology framework has demonstrated its potential to contribute
to the SOTA in the field of computational pathology. The results from our paper, including
the first place on the TIGER challenge’s (experimental) segmentation task, corroborate
the effectiveness of our proposed configurations. Our approach provides an accurate and
workflow-friendly segmentation tool, and we hope that the development of our WSI inference
pipeline is welcomed by the computational pathology community, together with our novel
inference uncertainty approach, and that can be adopted as a solid base for the development
of segmentation tools. We also hope that the release of our code will encourage and facilitate
further developments in the field of computational pathology.
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Appendix A. WSI inference pipeline

We developed a WSI inference approach as an essential feature for nnUNet for pathology.
At the core of the pipeline is a batch iterator from our WholeSlideData library, that enables
users to sample patches from the data efficiently, fast, and easily. The Batch iterator loops
patch-wise over the WSI, and writes the model’s argmax output on the 5-fold’s softmax
values, and pixel-wise uncertainty map into 2 separate tiff files. The pipeline efficiently
samples patches containing tissue by using a tissue/background mask (Béndi et al., 2019).
It samples patches bigger than the model input size, making use of nnUNet’s Gaussian
sliding window approach, and only saves the inner part with full 4x overlap. To speed up the
inference time, large parts of background are stripped of the patch (while preserving constant
overlap) before inference. nnUNet’s TTA is turned off with minimal/no performance drop.

Appendix B. Label switching patch effect

“Label switching” patch effect
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Figure 5: Example of the ‘label-switching’ problem that occurs in nnUNet’s default configura-
tion (A), and persists when only the input normalization approach is adjusted to 0-1 scaling. All
experiments with a bigger batch size or BN instead of IN do not exhibit this effect (C, D, E)
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Appendix C. HoVerNet TIL detection FROC
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Figure 6: FROC analysis on HoVerNet’s inflamed class as a proxy for TILs. We measure an
FROC of 0.66, similar to or even surpassing TIL detections FROCs in the TIGER challenge
(https://tiger.grand-challenge.org/evaluation/segmentation-and-detecton-final /leaderboard /)

Appendix D. Inference uncertainty
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Figure 7: Visual examples of nnUNet’s 5-fold inference output and the thereof extracted uncer-
tainty. This image depicts uncertain regions that correlate with incorrect predictions.
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Uncertainty distributions on predicted classes
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Figure 8: Pixel uncertainty distributions on predicted classes. (TP: orange, FP: blue). Percentages
depict the sizes of the distributions.
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Figure 9: Pixel uncertainty distributions on true classes. (TP: orange, FN: blue). Percentages
depict the sizes of the distributions.
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Appendix E. TIL feature Welsh tests

TIL feature p-value Bonferroni corrected p-value

tissue L 1L 0.040 0.201
sT1Ls without uncertainty filtering 0.010 0.050
i T1Ls without uncertainty filtering 0.033 0.163
sT1Ls with uncertainty filtering 0.002 0.008
i T1Ls with uncertainty filtering 0.019 0.095

Appendix F. Data augmentation

Figure 10: Proposed nnUNet data augmentation with additional HED light augmentations. Every
column shows 3 randomly augmented versions of the same sampled patch
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