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ABSTRACT

The recently-introduced Lottery Ticket Hypothesis (LTH) posits that it is possi-
ble to extract a sparse trainable subnetwork from a dense network using iterative
magnitude pruning. By iteratively training the model, removing the connections
with the lowest global weight magnitude and rewinding the remaining connec-
tions, sparse networks can be extracted. These sparse networks are referred to as
lottery tickets and when fully trained, they reach a similar or better performance
than their dense counterpart. Intuitively, this approach of comparing connection
weights globally removes a lot of context about the relations between connection
weights in their layer, as the weight distributions in layers throughout the network
often differ significantly. In this paper, we study a number of different approaches
that aim at recovering some of this layer distributional context by computing a
connection importance value that is dependent on the weights of the other connec-
tions in the same layer. We then generalise the LTH to consider weight importance
values rather than weight magnitudes.

Experiments using these importance metrics on several architectures and datasets,
reveal interesting aspects on the structure and emergence of Lottery tickets. We
find that given a repeatable training procedure, applying different importance met-
rics leads to distinct performant lottery tickets with little overlapping connections
which strongly suggests that lottery tickets are not unique.

1 INTRODUCTION

The recent trend in machine learning to chase higher benchmark scores by adding additional param-
eters, has led to an explosive increase in the size of neural network architectures. A prime example
of this phenomenon are the GPT models. While the first model in the family (Radford et al., [2018))
has 117 million parameters, the latest model (Brown et al.,|2020) already has a whopping 175 billion
parameters which amounts to a > 1000 times increase. However, this explosive rise in parameters
poses new problems.

Training a single transformer model with a parameter count of 213 millon — still orders of magni-
tude smaller than GPT-3 — using Neural Architecture Search emits as much CO?2 as five cars during
their lifetime (Strubell et al., [2020). Furthermore larger models typically need specialised hardware
and a lot of computing power for training and inference, which constrain the ability of the model to
run on mobile devices, thus limiting powerful models to well-funded institutions. Finally, research
has shown that these large models are typically overparameterized and encode a lot of redundant
information that can be removed (Denil et al., 2013)).

To alleviate these issues, numerous approaches have been studied to scale down the number of pa-
rameters in a model, while still preserving (roughly) the same performance. This can be achieved
by, e.g., designing parameter-efficient network structures (Sandler et al., 2018), or sparsifying exist-
ing neural network structures via pruning (le Cun, |1990; Hassibi & Storkl [1993; Han et al., 2015;
Louizos et al.l [2018; [Molchanov et al.||[2017)).

Until recently, it was thought to be difficult to train sparse neural networks from scratch (Evci et al.,
2019)), which was further strengthened by the finding that over-parameterized network architectures
are proven to lead to an optimal global minimum when training (Zou & Gul 2019). As such the
classical way to reduce parameter count was via the train-prune-finetune loop, in which a model is
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first trained to completion, then redundant connections are pruned and finally the resulting network
is finetuned

The recently introduced lottery ticket hypothesis (LTH) (Frankle & Carbin| 2019) challenged this
notion and introduced a procedure to extract a sparse trainable network — a lottery ticket (LT) —
from a dense network. This is done using a pruning criterion in the form of the global weight
magnitude in combination with a gradual pruning procedure.

In this paper we study a refinement on this criterion by adding a notion of layerwise importance,
which we introduce in We do this by considering a number of different weight rescaling
methods, such that the comparisons are more calibrated between layers. Quantitative and qualitative
comparisons between different importance measures and the baseline are reported in In
addition, we shine light on the observable differences in the generated LTs (section 4)), and determine
how LTs emerge and differ when considering identical training conditions (section 5). A brief

overview of related work is laid out in and finally, the paper is concluded in

The key observations of our study are that: i) given a fixed weight initialization, it is possible to ex-
tract different lottery tickets that have similar performance, but differ significantly in their structure,
ii) these tickets have a noticeable amount of common connections which have low-variance across
tickets, and iii) these stable common connections survive the LTH procedure even when the other
weights in the model are reinitialized. Together these observations suggest that these connections
might be a promising avenue towards finding LTs more efficiently.

2 THE LOTTERY TICKET HYPOTHESIS

The Lottery ticket hypothesis uses iterative Global Magnitude Pruning (GMP) (Han et al.| |2015)),
which prunes individual connections that have the lowest weight magnitudes in a network. By
repeating this process multiple times, it is possible to obtain a highly sparse network that when
trained still reaches commensurate accuracy.

Later work by [Frankle et al.| (2020) introduced a modification to the LTH procedure by rewinding
to parameters at iteration ¢ = k < m, rather than resetting to the initial parameters at t = 0. By
rewinding to a later iteration, the performance of the found lottery tickets was improved for complex
networks at high sparsities. In the literature, this procedure is usually referred to as Lottery Ticket
Rewinding (LTR) rather than the LTH. We will adopt this naming in the rest of the document.

While the exact mechanism behind the success of lottery tickets is not fully understood, one hy-
pothesis, posited by [Evci et al.[(2022), is that due to the LTH/LTR procedure the resulting networks
are already in the same loss basin as the fully trained dense network and as such the ticket can still
converge to a performant solution during training. Pseudocode for the LTR in its initial form can be

found in|Algorithm 1

Algorithm 1 The LTR procedure

1: Initialize a model M with parameters 6

2: Pretrain M for k iterations resulting parameters 6y j,

3: for i < 0,n do

4: Train M for m-k iterations, resulting in parameters 6; ,
5: Opooted + Pool(abs(0;.m,))

6: p < j-th percentile of Opoo1cq
7.

8

9:

Prune all connections with abs(6; .,) < p
: Rewind parameters of M to g j,
end for

A weak aspect of globally pruning is that the only factor that determines whether a connection is
pruned, is the magnitude of the connection weight. As such, connection weights from different
layers are compared on a global scale, rather than within the layer. This disregards more complex
factors such as the weight distribution within a layer and the number of remaining connections in the
layer. In fact, due to the commonly used Kaiming Normal initialization (He et al.,|2015), different
layers are already initialized at different weight distributions as the standard deviation is inversely
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| Initialised (0 it) | Pretrained (1000 it) | Fully Trained (78200 it) |

Convl [[0.47, 0.41] [[0.57, 0.78] [-1.07, 0.90]
Downsamplel | [-0.65, 0.66] [-0.64, 0.63] [-1.01, 1.11]
Conv17 [-0.11, 0.10] [-0.12, 0.10] [-0.15, 0.19]
FC [-0.30, 0.27] [-0.29, 0.39] [-0.45, 1.19]

Table 1: Weight distributions [minimum and maximum] of selected layers in a ResNet-18 network
at different steps in the training procedure.

proportional to the size of the layer, and as illustrated in they also converge to different
distributions. However, it should be noted that this difference in standard deviation actually already
introduces a small implicit bias in the weights such that the weights are somewhat dependent on
the size of the layer. Using importance metrics makes this bias both more explicit and stronger,
dependent on which metric is used.

Disregarding these previously-mentioned factors might come at the cost of accuracy loss in the
resulting ticket. In the worst case this can even lead to a phenomenon called ’layer-collapse’ (Tanaka
et al.,|2020), a critical failure case of neural network pruning in which information can no longer
flow from the input layer to the output layer of the network. This finds its origin in one or more
intermediate layers being completely destroyed, thus rendering the resulting predictions invalid.

Proposal. Taking these issues into account, we propose a modification of the LTR procedure in
the form of assigning an importance value to each connection representing its importance within
the layer. This importance score is still dependent on the weight magnitude, but also considers
the weight magnitudes of all other unpruned connections within the same layer. In doing so, it
injects an additional notion of the layer distribution in the pruning process. Intuitively, this should
alleviate the issue with layer-collapse and should improve the performance of the LTR procedure.
Furthermore, it is possible to view this modification as a generalization of the LTR procedure, where
the purely magnitude-based approach uses the identity mapping to calculate importance values. The
only computational overhead incurred in our method is the calculation of importance scores, which
is negligible. A pseudo code overview of the modified procedure can be found in

Algorithm 2 The modified LTR procedure

1: Initialize a model M with parameters 6,
2: Pretrain M for k iterations resulting parameters 6 j,
3: fori < 1,ndo
: Train M for m-k iterations, resulting in parameters 6; ,,

4
5 score; < layerwise-importance(abs(6; .,))
6: SCOT€pooied < Pool(score;)

7: p < j-th percentile of scorepooied

8: Prune all connections with abs(score;) < p

9: Rewind parameters to 0 j,
10: end for

In the same context of layerwise importance calculation, Lee et al.[(2021]) introduced a metric called
the LAMP score, which follows a model-level distortion minimization perspective by calculating
the Lo norm of the connections w.r.t. the other unpruned connections in the layer. The authors
also demonstrated that this results in more performant lottery tickets at a very high sparsity levels.
Intuitively, adding a layerwise importance score would allow the LTR procedure to focus more on
the layers with more connections — and more redundancy, and as such avoid removing connections
from sparser layers, thus limiting the impact on model performance.

Additionally, as also noticed in [Lee et al.| (2021)), we can view the use of importance scores in the
LTR procedure as an heuristic to calculate layerwise pruning ratios in the context of local pruning
rather global pruning.
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2.1 CONSIDERED IMPORTANCE METRICS

To calculate a layerwise importance value for a given connection at position j in layer ¢, we need
access to the weight matrix W ..

W; ;
* Ly normalization : importance(i, j) = 5 VVJ'Z
w2,
* Lo normalization : importance(i, j) = 5 ‘;";2 (Lee et al.}[2021)
. . exp(W; ;)
e Softmax : importance(i,j) = =———=="—~
)= S enp W)

Wi’j — mm(Wz )

e

max(W;.) — min(W; .)

50

* Min-Max normalization : importance(i, j) =

The goal of the considered importance measures is to make weight values from different layers
comparable. To accomplish this, there are two main approaches.

The first approach, as followed by L;, Lo and SoftMax is the sum-to-one principle, to rescale
the importances of a layer such that the total importance of a layer is one. Then the importances
themselves are still determined by (an operation on) the magnitude, but rescaled.

The second approach, followed by Min-Max normalization determines the importances such that
each layer has the same lower and upper boundaries.

Importance Distributions. In case of the softmax function, we notice that the importance dis-
tribution is very narrow and the lower bound is exactly 1/|W|, while for the other functions the
distribution is more broad with a lower bound of 0. This is due to a combination of two factors: (1)
the Kaiming Normal initialization which has a mean of 0 and a standard deviation that is inversely
proportional to the size of the layer and (2) the exponential function for which e* =~ 1 if |z| < 1.
Together this nullifies the dependence on the weights themselves almost completely in the softmax
function when applied on large layers. Lo is another measure that transforms the relevance distri-
bution to be more narrower than the weight distribution due to the quadratic function. The other
measures, L; and Min-Max, do not fundamentally impact the relevance distribution, only re-scale
(and re-center) the distribution.

3 EXPERIMENTS

Our experiments, are based on the openlth library (Frankle, [2020). We follow the configurations
specified in|Frankle et al.|(2021) unless otherwise stated.

Networks. We adopt three different types of Neural Network architectures: Fully Connected Net-
works (LeNet-300-100 Lecun et al.| (1998))), classical Convolutional Networks (VGG-16|Simonyan
& Zisserman|(2015) and Residual Networks |He et al.|(2016) (ResNet-18 & ResNet-20).

Datasets. We adopt three different datasets commonly used in the LTH/LTR literature: MNIST,
CIFAR-10 and TinyImageNet. MNIST is used in conjunction with LeNet-300-100, CIFAR-10 is
used with both VGG-16 and ResNet-20, and TinyImageNet is used with ResNet-18.

For a detailed description of the used training configuration, we refer the reader to We
consider the Lottery Ticket Hypothesis with weight rewinding (LTR) introduced in |Frankle et al.
(2020). The authors noted that inclusion of rewinding increased the performance of the procedure
on all types of models and datasets, but more specifically on complexer datasets and models.

3.1 QUANTITATIVE EVALUATION

The goal of the initial experiments is to determine whether using different importance methods
results in Lottery tickets with similar or better accuracy. To this end, we calculate the Top-1 accuracy
results for Lottery Tickets at different sparsity levels. Results are listed in tabular form in
(averaged over 3 runs), or in graphical form in Appendix To enable comparison with other



Under review as a conference paper at ICLR 2022

Table 2: Average top-1 accuracy of different network & dataset combinations over 3 runs. Boldfaced
results highlight the best result for a given amount of pruning steps.

(a) LeNet-300-100 on MNIST

Steps (sparsity) Magnitude L1y Lo SoftMax MinMax

Dense network 98.11% =+ 0.08 98.11% =+ 0.08 98.11% =+ 0.08 98.11% =+ 0.08 98.11% =+ 0.08
5(67.23%) 98.00% + 0.09  98.12% =+ 0.10 98.04% =+ 0.15 98.00% =+ 0.08 98.02% =+ 0.09
10 (89.26%) 98.08% 4+ 0.06  98.15% =+ 0.05 98.06% =+ 0.08 98.05% = 0.08 98.04% =+ 0.10
15 (96.48%) 97.94% 4+ 0.08  98.12% =+ 0.15 97.95% 4+ 0.10  97.90% = 0.05 97.77% + 0.17
20 (98.85%) 97.23% + 0.15 97.44% =+ 0.02 97.47% + 0.10  97.33% £ 0.17 97.41% =+ 0.05
24 (99.53%) 90.62% =+ 0.29 90.89% =+ 0.22 91.05% =+ 1.09 91.29% +0.79  91.82% =+ 0.16

(b) ResNet-20 on CIFAR-10

Steps (sparsity) Magnitude Ly Lo SoftMax MinMax

Dense network 91.67% =+ 0.40 91.67% =+ 0.40 91.67% £ 0.40  91.67% £0.40  91.67% =+ 0.40
5(67.23%) 92.01% + 0.14  91.57% % 0.20 91.65% £ 025  90.15% £092  91.64% + 0.13
10 (89.26%) 90.90% + 0.15  90.56% =+ 0.22 90.86% £+ 039  87.75% £ 0.33  90.51% =+ 0.05
15 (96.48%) 85.59% + 1.00 84.76% £ 0.62  86.28% + 0.45  84.00% £ 0.54  83.28% + 0.32
20 (98.85%) 77.07% £ 1.57  76.31% + 0.71 76.68% £ 0.63  76.37% £ 1.06  74.36% =+ 0.57
25 (99.62%) 63.36% =+ 0.55 63.40% +0.77  62.78% +0.46  63.07% £ 0.55  50.17% =+ 6.78
30 (99.88%) 45.66% +2.96  45.36% + 1.49 43.65% +0.80  38.42% £+ 546  31.50% + 1.80
35 (99.96%) 22.58% + 4.57  21.60% + 4.79 19.59% =+ 6.37 17.75% + 3.20 14.62% =+ 4.00
40 (99.99%) 12.87% =+ 4.97 10.00% =+ 0.00 12.45% £ 3.55 12.29% £2.00  13.34% =+ 2.89

(c) ResNet-18 on TinyImageNet

Steps (sparsity) Magnitude Ly Lo SoftMax MinMax

Dense network 49.53% 4+ 0.56  49.53% + 0.56 49.53% 4 0.56 49.53% 4+ 0.56  49.53% =+ 0.56
5(67.23%) 49.99% +0.10  50.96% + 0.19  50.45% +0.40  50.96% + 0.18  50.38% =+ 0.47
10 (89.26%) 49.98% =+ 0.41 50.84% + 0.65  50.49% + 0.50 50.69% 4+ 0.73  50.24% + 0.68
15 (96.48%) 48.72% + 0.20  49.76% + 0.56  49.41% =+ 0.09 4530% +4.42  47.77% £+ 0.37
20 (98.85%) 46.36% £ 0.52  47.58% + 0.24  47.26% £ 0.52 40.48% £+ 3.52  43.49% £ 0.17
25 (99.62%) 38.54% + 0.48  37.37% + 0.35 37.90% =+ 0.54 32.51% £2.57  34.23% + 1.19
30 (99.88%) 24.56% £ 1.00 25.12% £+ 0.71 25.88% + 047  21.67% + 140  23.34% £+ 0.12
35(99.96%) 13.56% £ 0.11 14.03% =+ 0.61 15.30% =+ 0.28 10.16% =+ 2.17 12.74% 4 0.76
40 (99.99%) 4.62% + 0.25 6.48% =+ 0.30 6.83% =+ 0.36 4.69% + 0.72 5.31% £ 0.62

(d) VGG16 on CIFAR-10

Steps (sparsity) Magnitude Ly Lo SoftMax MinMax
Dense network 93.52% =+ 0.08 93.52% =+ 0.08 93.52% =+ 0.08 93.52% =+ 0.08 93.52% =+ 0.08
5(67.23%) 93.45% £+ 0.12 93.57% £ 0.14 93.69% =+ 0.04 93.49% =+ 0.03 93.76% + 0.25

10 (89.26%) 93.75% =+ 0.03 93.78% + 025  93.57% + 0.06  64.99% 4+ 47.64  93.67% £ 0.11
15 (96.48%) 93.69% =+ 0.10 93.76% £ 0.04  93.66% +0.18  64.68% £+ 47.36  93.47% + 0.14
20 (98.85%) 93.53% + 0.10 93.24% £ 0.14 93.03% £ 0.04  63.72% £ 46.54  92.83% =+ 0.02
25 (99.62%) 91.88% =+ 0.14 90.94% =+ 0.31 91.48% + 0.30  60.66% =+ 43.87 91.81% =+ 0.09
30 (99.88%) 51.53% =+ 36.01 83.70% =+ 0.15 84.03% + 0.31  56.58% =+ 40.35 33.95% £+ 22.7
35 (99.96%) 10.00% =+ 0.00 40.99% + 112  29.54% + 6.67  24.21% 4 17.48 14.38% + 7.59

studies, we adopted the commonly used pruning ratio of 20%. Additionally, we will make our code
public at github-1ink-here to foster reproducibility of the reported results.

From these experiments, we can distill a few key observations on which we elaborate in the following
sections. First, the magnitude, L; and Lo criterions all produce LTs of similar performance, the only
noticeable difference is in the VGG16 + CIFAR10 experiment. Second, Min-Max normalization and
SoftMax seem to keep up with magnitude pruning during the initial pruning phase, but suffers during
the later iterations. This seem to be the trend except in the simplest scenario.

3.2 SIMILARITY BETWEEN L1, Ly AND MAGNITUDE

We notice that the top-1 accuracy of both magnitude, and the L; and L, normalization are pretty
much identical at the earlier pruning ratios, contradicting our initial intuition. Our hypothesis is
that this lack of difference indicates that the approaches to finding lottery tickets are less strict than
initially thought, as introducing the notion of importance does not seem to have a large impact on
the LTH procedure. We elaborate further on this more in the rest of the paper, where we conduct a
deeper study on some differences between the found lottery tickets.

3.3 ISSUES WITH MIN-MAX

Due to the definition of Min-Max normalization, at least one connection in each layer will have an
importance of 0 and at least one connection in each layer has an importance of 1. This will mean that
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Figure 1: How the layer sparsities evolve during the LTH procedure with the ResNet-18 model
trained on TinyImageNet. Layers of interest are annotated on the X-axis.

during each pruning iteration, connections will be pruned from each layer. Eventually, this means
that the the thinner layers will have too much capacity removed which will affect the final accuracy.

This phenomenon can also be seen in the additional figures of

3.4 ON LAYER-COLLAPSE

One of the possible symptoms of Layer-collapse is that the predictions of the model revert to random
chance. Indeed, we notice in the later iterations of the LTH procedure on VGG16 with CIFAR-10,
that the top-1 accuracies of the magnitude criterion as well as one run of the softmax criterion are
equivalent to random chance.

Additionally, Layer-collapse also occurs in the ResNet experiments, albeit less noticeable. More
specifically this occurs with the SoftMax and Magnitude criterions, but due to the presence of skip
connections the flow of information is still preserved when the main connection is fully pruned. As
such, the resulting top-1 accuracies are not nearly as affected.

4 A CLOSER LOOK

In this section we take a closer look at the generated LTs from the experiments. We focus our study
on how they differ in structure and how they evolve throughout the pruning process.

Taking a look at how the sparsity of different network layers evolves at different intervals in the
LTH procedure (see[Figure I|for the plots from ResNet18 trained on TinyImageNet), we can clearly
see that during the initial pruning iterations there are large differences both between different layers
and between importance measures. Even though these large differences exist between the tickets
generated by different importance measures, we established in the previous section that there is no
significant difference in the top-1 accuracy of Magnitude, L; and Ls. This is an indication that
different kinds of structures exist in a network, that when trained can still achieve a competitive
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Figure 2: Left: The distribution of standard deviations, Right: The number of sign flips for over-
lapping and non-overlapping connections at 96.48% sparsity for the selected importance measures.

accuracy. As such, we might conclude that there are multiple ways to find Lottery Tickets (on which
we expand in[section 5)). In later iterations, the difference between structures is still noticeable, but
much less pronounced, which is expected as the number of pruned connections vastly outnumbers
the number of unpruned connections.

Additionally, we can find an interesting pattern in the generated structures. We find that in each case,
certain layers are pruned (significantly) less than most other layers in the network. Specifically, these
layers are often layers that intuitively are more important to the quality of the training procedure. In
the case of ResNet-18, these layers are both the input and output layer of the network, as well as the
1x1 convolutions used in the skip connections.

5 MULTIPLE LTS PER INITIALIZATION

In this experiment we determine whether a single initialization may lead to multiple Lottery Tickets.
This requires making the LTR procedure deterministic and repeatable, i.e., all randomness in the
training procedure is dependent on a set random seed. This ensures that the only impact on the
quality and structure of the found ticket is the importance measure applied for the pruning step.

We consider the LTs found by the following importance measures: magnitude, L1 and Lo. We
limit ourselves to these measures, as they demonstrate a matching accuracy with the orginal dense
network on the TinyImageNet dataset at a higher sparsity level (96.48%) than the other measures.
As such, we also do this experiment on the same configuration namely ResNet18 and TinyImagenet.

We find that the resulting tickets share little amount of connections. Only 0.33% of the total (pruned
and unpruned) connections are overlapping, while 9.34% of the unpruned connections are overlap-
ping between different settings. We also find that some layers have a noticeably larger fraction of
overlapping connections, more specifically the first few convolutional layers as well as the linear
classification layer. This can be attributed to the intuition that these layers have less connections and
as such are much less overparameterized.

Looking at the overlapping connections in the first convolutional layer (Figure 3)), which is 68.78%
of the remaining connections, compared to the non-overlapping connections, we can notice that the
overlapping connections on average have a larger difference between the initial and final weight
value. Please see the appendix for an extended set of plots. We also study whether these overlapping
connections converge to the same weight in each pruning step up until the winning ticket is found.
To do this, we have two simple metrics. For the first metric, we take the set of all weight values
a single connection has at each pruning iteration and consider the standard deviation of that set as
an indication of the robustness of that connection. We repeat this process for all connections in the
ticket and find that on average the overlapping connections have a lower standard deviation than
the non-overlapping connections. In we present results for a sparsity level of 96.48%.
Moreover, it is worth noting that these trends are consistent over other sparsity levels as well (see

subsection B.2).
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The second metric we also apply is counting the number of sign flips. Once again consider-
ing the set of weight values a connection has during the pruning steps, we define a sign flip, if
the sign of at least one instance in the set is differing from the others. Here too, we find that
the overlapping connections have less sign flips than the non-overlapping connections. These re-
sults are presented in with results for other sparsity levels reported in the appendix.

As a final sanity check, we do a partial reinitializa-

tion test, where rather than starting the LTH/LTR 1o
procedure from the initial parameters 6y, we pre-
serve the weights of 6, that correspond to the over-
lapping connections at the 96.84% sparsity level,
while reinitializing the weights of the remaining
connections using the same distribution (Kaiming
Normal). We then restart the LTR procedure with
the studied importance measures using this initial-
ization with the same deterministic training proce-
dure as the initial initialization. The goal is to de-
termine whether these overlapping connections are e w m m w w m W

still (mostly) unpruned given a different initializa- Pruning lterations

tion, and determine as such whether the overlap-

ping property is dependent on the total initializa-  Fjgure 3: The evolution of overlapping con-

tion, or whether these connections are capable by pections within the first convolutional layer
themselves to steer an initialization in a similar, per-

formant lottery ticket.

We find that on average, for three random runs, the

amount of remaining connections is higher than the expected value, assuming that each connection
has the same chance to be in the ticket. More specifically, for the initial few convolutional layers,
we see increases over the expected amount ranging from +8.5% to +70.0%. In the fully connected
layer, we can see even higher increases ranging from +440% to +480%. Finally, these effects were
not nearly as noticeable in the 1x 1 convolutions, with only -3.2% to +20.0%.

These results suggest that these connections are, by grace of their individual initializations, more
likely to be part of the ticket. This also indicates that there likely is a minimum amount of connec-
tions in some layers that are necessary for a performant ticket, with those mostly concentrated in the
initial layers and the classification layer.

6 RELATED WORK

6.1 PRUNING NEURAL NETWORKS

Neural networks can be trimmed of their fat by neural network pruning. These pruning methods can
be grouped on a number of different axes : iterative pruning vs single-shot pruning, local pruning vs
global pruning, data-driven vs data-free and more. Here, we limit ourselves and give a brief overview
of different method categories that have some relation with respect to the analysis conducted in this
paper. For an in-depth review, we refer the reader to |Hoefler et al.| (2021}).

Criterion-based. This group constitutes the original line of research, which follows the train-prune-
finetune approach, where the network is first trained on the dataset, then pruned using a criterion and
finally the pruned network is finetuned on the task to regain some accuracy. Pioneered by |le Cun
(1990); Hassibi & Stork]| (1993), there has recently been a resurgence in popularity (Han et al.} | 2015;
Li et al.l 2017; Zhao et al.,[2019} |Dong et al., 2017; |Yu et al., 2018).

Foresight Pruning. Inspired by the LTH, this line of research tries to prune a network at initial-
ization by using a small subset of the training data to select promising connections, after which the
sparse network will be fully trained. (Wang et al., [2020; |Lee et al., 2019; Wang et al., [2019; [Tanaka
et al., 2020) Recent work (Liu et al.| 2022)) asserted that these methods are functionally distinct to
the LTH, because rather than generating sparse structures that depend on the initial weights, these
methods learn efficient layerwise sparsity ratios.
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Pruning and Regrowing. This line of research has been inspired by biological processes in which
new pathways in the brain grow during the lifetime and involves methods that learn both weights
and connections during the training process. (Guo et al., 2016; Bellec et al., 2018; [Mocanu et al.,
2018} Dai et al., 2019)

Regularization-based. Uses a regularization term on the weights of network during training that
will be minimized, such that a sparsity is automatically learned during the training process. (Huang
& Wang, 2018} |Alvarez & Salzmann, [2016} [Srinivas et al., 2017; Liu et al., 2017)

6.2 THE LOTTERY TICKET HYPOTHESIS

Introduced by [Frankle & Carbin/(2019)), the Lottery Ticket Hypothesis introduces a method to extract
sparse trainable networks from a dense network. Initially, this method was criticised due to the
reliance on low learning rates (Liu et al.| 2019) and the fact that it could not be reproduced in more
complex settings (Gale et al., 2019). However, these concerns were mitigated with the introduction
of weight rewinding (Frankle et al., 2020). These initial papers sparked a large body of follow-up
work that we will briefly summarize in the next paragraphs.

Empirical and Theoretical properties. A first line of follow-up work was focussed on the prop-
erties of the LTH. Zhou et al,| (2019) systematically explored different components of the LTH
procedure. Renda et al.|(2020) compares the impact of finetuning and rewinding and introduces the
aspect of learning rate rewinding. [Maene et al.| (2021} introduces a theoretical proof for the effec-
tiveness of the LTH, while |Evci et al.| (2022) studied the gradient flow in the LTH procedure. Given
the characteristics of our study, our work is situated in this category.

Transfering LTs. A second line of research involved transfering lottery tickets. This includes the
transferability of lottery tickets between different datasets (Morcos et al., 2019} |Soelen & Sheppard,
2019; Mehtal, 2019; |Sabatelli. et al.l [2021}; |Desai et al., [2021; |Chen et al., 2021a) and even between
different models (Chen et al., 2021d).

Other domains and models. A third line of research studied the application of the LTH approach
— which was initially introduced for Convolutional Networks — on other types of models and
domains. (Chen et al.l 2021c; Diffenderfer & Kailkhural [2021; |Chen et al., [2020; [Kalibhat et al.,
2021 Chen et al.| [2021b)

Strong LTH. Finally, recently a lot of effort has been poured in the so-called ’strong Lottery Ticket
Hypothesis’ (Ramanujan et al.l|2020) and proving its existence first in MLPs, then in CNNs and even
in Equivariant Networks. (Chijiwa et al.| 2021} [da Cunha et al., 2022} |Malach et al.l 2020; |Orseau
et al.,|2020; |Pensia et al., [2020; |[Ferbach et al., [2022)) The strong Lottery Ticket Hypothesis dictates
that a fully trained network can be approximated by pruning a sufficiently large randomly-initialized
network, rather than extracting a sparse network from a trained network as in the ’original’ Lottery
Ticket Hypothesis formulation.

7 CONCLUSION

We studied a modification to the Lottery Ticket Hypothesis by introducing the notion of layerwise
importance in the procedure. While we did not note a significant difference in performance when
using certain importance measures, we emphasize that the LTH is invariant in a certain sense to the
layerwise pruning ratios, as long as the lowest magnitude weights are removed from each layer.

Furthermore, we noticed that given a fixed initialization, it is possible to extract different lottery
tickets that are dependent on the importance measure that is used. These Lottery Tickets all have
roughly the same top-1 accuracy, but differ significantly in their structure. Looking at the remaining
connections in the tickets, we noticed that there exist a noticeable amount of overlapping connections
between the tickets, namely mostly in the first convolutional layers and in the output layer. We
observed that these overlapping connections consistently have a lower variance between different
lottery tickets, suggesting that these connections are somehow more stable and converge more often
to roughly the same value. Finally, we have shown with a partial reinitialization test, that these
connections even survive when the other weights are reinitialized. This suggests that we should
focus our attention on these specific connections to find LTs more efficiently.
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Supplementary Material

A NETWORKS, DATASETS AND TRAINING

Network

Dataset

Epochs Batch Opt. Mom. LR

LR Drop Weight Decay Initialization Iters per Ep Rewind Iter
LeNet MNIST 40 128 SGD — 0.1 — Kaiming Normal 469 0
ResNet20 CIFAR-10 160 238 SGD 0.9 0.1 10x at epochs 80, 120 le-4 Kaiming Normal 391 1000
VGG16  CIFAR-10 160 128 SGD 0.9 0.1 10x at epochs 80, 120 le-4 Kaiming Normal 391 2000
ResNetl8 TinyImageNet 200 256 SGD 0.9 0.2 10x at epochs 100, 150 le-4 Kaiming Normal 391 1000

B ADDITIONAL FIGURES

B.1

ACCURACY CURVES

The curves in illustrate the evolution of the top-1 accuracy of Lottery Tickets at differ-
ent sparsities. These figures provide a more general overview than the tables the tables found in
but are harder to extract fine-grained details from.
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Figure 4: The accuracy curves for the different training configurations used in the main paper. The
mean and standard deviation are given for 3 random seeds. The dashed line represents the mean
accuracy of the dense network.
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B.2 MULTIPLE LTS PER INITIALIZATION
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Figure 5: Additional distributions of standard deviations of both overlapping and non-overlapping
connections for the {L1, L2, Magnitude} importance measures
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Figure 6: Additional Sign flips of both overlapping and non-overlapping connections for the {L1,
L2, Magnitude} importance measures
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B.3 OVERLAP CURVES
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Figure 7: Additional curves measuring the proportion of overlapping connections between tickets

17



Under review as a conference paper at ICLR 2022

C LAYER SPARSITY

When studying the layerwise sparsities generated by the different pruning criteria (see [Figure §J),
we can notice a number of interesting observations. Primarily, we notice that for each pruning
criterion, both the input and output layer are pruned proportionally much less than other layers, even
though this wasn’t explicitly encoded in the criterion. While the exact mechanism behind this isn’t
fully understood and is out-of-scope, we can theorize that this is due a combination of the training
process and the fact that these layers are vital for the flow of information in the network. From all
considered importance measures, the magnitude measure prunes the least of those layers.

When considering ResNets, we can additionally notice that most of the other criterions (L1, Lo,
SoftMax) also prune the 1x1 convolutions less. These 1x1 convolutions are located in the bottleneck
modules and often contain less redundancy than the other 3x3 convolutions.

Pruning ratios of different layers.
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Figure 8: The layerwise pruning ratio of different layers in a LT compared to the total pruning ratio.
The x-axis is (roughly) corresponding to model depth and layers of interest are indicated.
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Figure 10: The evolution of layer sparsity during the LT extracting process, visualised in a number
of selected layers of the ResNet18 network.

D LAYER SPARSITY IN TIME
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Figure 9: The evolution of layer sparsity during the LT extracting process, visualised in a number of
selected layers of the VGG16 network.

In Appendix [C} we showed that some layers are disproportionally pruned less by different pruning
criteria. In this section, we will take a look at how the sparsity of these layers evolves throughout the
pruning process and compare them to "normal’ layers in both VGG16 (see [Figure 9) and ResNet-18

(see[Figure 10).

It can be clearly seen that generally the deeper the layer is within the model, the faster this layer is
pruned. This has the effect that often the higher layers are *ahead’ of the global sparsity, while the
lower layers are “behind’ of the global sparsity. The main exceptions here being the 1x1 convolu-
tional layers, however we can still notice that the later 1x1 convolutions are pruned faster than the
1x1 convolutions.

Additionally, we can notice some differences in behaviour of the different pruning criteria, namely
that softmax has a spiky evolution, meaning that at some timesteps, no connections are pruned in a
layer, while at other timesteps large amounts of connections are pruned. The other criteria follow a
much smoother approach, where at least every timestep some connections are removed from each
layer, with Min-Max often following the global sparsity best.
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