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ABSTRACT

We present the Fourier Sliced Wasserstein (FSW) embedding—a novel method to
embed multisets and measures over Rd into Euclidean space.

Our proposed embedding approximately preserves the sliced Wasserstein distance
on distributions, thereby yielding geometrically meaningful representations that
better capture the structure of the input. Moreover, it is injective on measures
and bi-Lipschitz on multisets—a significant advantage over prevalent embedding
methods based on sum- or max-pooling, which are provably not bi-Lipschitz, and
in many cases, not even injective. The required output dimension for these guar-
antees is near optimal: roughly 2nd, where n is the maximal number of support
points in the input.

Conversely, we prove that it is impossible to embed distributions over Rd into
Euclidean space in a bi-Lipschitz manner. Thus, the metric properties of our em-
bedding are, in a sense, the best achievable.

Through numerical experiments, we demonstrate that our method yields supe-
rior representations of input multisets and offers practical advantage for learn-
ing on multiset data. Specifically, we show that (a) the FSW embedding induces
significantly lower distortion on the space of multisets, compared to the leading
method for computing sliced-Wasserstein-preserving embeddings; and (b) a sim-
ple combination of the FSW embedding and an MLP achieves state-of-the-art
performance in learning the (non-sliced) Wasserstein distance.

1 INTRODUCTION

Multisets are unordered collections of vectors that account for repetitions. They are the main math-
ematical tool for representing unordered data, with perhaps the most notable example being point
clouds. As such, there is growing interest in developing architectures suited for learning tasks on
multisets. To address this need, several permutation-invariant neural networks have been introduced,
with applications for point-cloud classification (Qi et al., 2017), chemical property prediction (Pozd-
nyakov & Ceriotti, 2023), and image deblurring (Aittala & Durand, 2018). Multiset aggregation
functions are also key components in more complex architectures, such as Message Passing Neural
Networks (MPNNs) for graphs (Gilmer et al., 2017), or setups with multiple permutation actions
(Maron et al., 2020).

A central concept in the study of multiset functions, i.e. functions that take multisets as input, is
injectivity. The importance of injectivity is highlighted by the following observation: A multiset
architecture that cannot separate two distinct multisets X ̸= X ′, will not be able to approximate
a target function f that differentiates between these multisets, i.e. f(X) ̸= f(X ′). Conversely, a
multiset model that maps multisets injectively to vectors, composed with an MLP, can universally
approximate all continuous multiset functions (Zaheer et al., 2017; Dym & Gortler, 2024). This
observation has inspired many works to study the injectivity properties of multiset models (Wagstaff
et al., 2022; 2019; Tabaghi & Wang, 2024). Injectivity on multisets also plays a key role in the
development of expressive MPNNs (Xu et al., 2018).
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Common multiset architectures are typically based on simple building blocks of the form

E ({x1, . . . , xn}) = Pool
{
F
(
x(1)

)
, . . . , F

(
x(n)

)}
,

where F is usually an MLP, and Pool is a simple pooling operation such as maximum, mean, or
sum. Xu et al. (2018) showed that multiset functions based on max- or mean-pooling are never
injective, but injectivity can be achieved using sum pooling, under the assumption that the vectors
x(i) come from a discrete domain, and an appropriate function F is used. Then it was shown by
Zaheer et al. (2017); Maron et al. (2019) that injectivity over multisets with continuous elements
can be achieved using sum pooling with a polynomial F . The more common case, in which F is a
neural network, was discussed in (Amir et al., 2023). There it was shown that injectivity on multisets
and measures over Rd can be achieved using F that is a shallow MLP with random parameters and
analytic, non-polynomial activations, such as Sigmoid and Softplus.

However, injectivity alone is not the strongest property one may desire for multiset functions. While
an injective multiset embedding E can separate any pair of distinct multisets X ̸= X ′, this does
not ensure the quality of separation. Ideally, if two multisets X,X ′ are far apart in terms of some
notion of distance, then one would expect E(X), E(X ′) ∈ Rm to also be far apart, and vice versa.
The standard mathematical notion used to guarantee this behaviour is bi-Lipschitzness.
Definition. Let E : D → Rm, where D is some collection of multisets, or more generally, dis-
tributions over Rd. We say that E is bi-Lipschitz if there exist constants 0 < c ≤ C < ∞ such
that

c · Wp(µ, µ̃) ≤ ∥E(µ)− E(µ̃)∥ ≤ C · Wp(µ, µ̃), ∀µ, µ̃ ∈ D, (1)
where Wp denotes the p-Wasserstein distance and ∥ · ∥ denotes the ℓ2 norm.

The Wasserstein distance, defined in the next section, is used as a standard notion of distance be-
tween multisets and distributions. The ratio of Lipschitz constants C/c represents a bound on the
maximal distortion incurred by the map E, akin to the condition number of a matrix.

Bi-Lipschitz embeddings can be used to apply metric-based learning methods, such as nearest-
neighbor search, data clustering and multi-dimensional scaling, to the embedded Euclidean domain
rather than the original domain of multisets and distributions, where metric calculations are more
computationally demanding; see, for example, (Indyk & Thaper, 2003). The bi-Lipschitzness of
the embedding provides correctness guarantees for this approach, which depend on the Lipschitz
constants c, C; see (Cahill et al., 2024).

A guarantee of bi-Lipschitzness is typically more difficult to achieve than injectivity, and often
requires a different set of theoretical tools. It was recently shown in (Amir et al., 2023) that multiset
embeddings based on average- or sum-pooling can never be bi-Lipschitz, even if they are injective.
Currently, there are two main approaches for constructing bi-Lipschitz embeddings for multisets:
(1) the max filtering approach of Cahill et al. (2022) which is relatively computationally intensive
as it requires multiple computations of Wasserstein distances from ‘template multisets’; and (2) the
sort embedding approach of Balan et al. (2022), which is based on sorting random projections of the
multiset elements.

While sort-based methods have been used with some success (Zhang et al., 2019; 2018; Balan et al.,
2022), it seems that their popularity in practical applications is still rather limited, despite their bi-
Lipschitzness guarantees. Perhaps one of the main reasons for this is that these methods can only
handle multisets of fixed size, and to date it is not clear how to generalize them to multisets of
varying size, let alone distributions. This is a major limitation, since multisets of varying size arise
naturally in numerous learning tasks, for example graph classification, where vertices may have
neighbourhoods of different sizes. This problem is often circumvented via ad-hoc solutions such as
padding (Zhang et al., 2018) or interpolation (Zhang et al., 2019), which do not preserve the original
theoretical guarantees of the method. Moreover, even in the restricted setting of fixed-size multisets,
the bi-Lipschitzness guarantees of these methods require prohibitively high embedding dimensions.

Our goal in this paper is to overcome these limitations by constructing a bi-Lipschitz embedding
for the space of all nonempty multisets over Rd with at most n elements. We denote this space
by S≤n

(
Rd
)
. Note that the assumption of bounded cardinality is necessary, as otherwise, even

injectivity is impossible; see, e.g. (Amir et al., 2023, Theorem C.3). We are also interested in the
larger space of probability distributions over Rd supported on at most n points, which we denote
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by P≤n

(
Rd
)
. This setting, in which the points may have non-uniform weights, can be particularly

relevant for attention-based methods on sets (Lee et al., 2019), as well as graph architectures such
as GCN (Kipf & Welling, 2016) or GAT (Veličković et al., 2018), which use non-uniform weights
for vertex neighbourhoods. In summary, our main goal is:

Main Goal For D = S≤n

(
Rd
)

or P≤n

(
Rd
)
, construct an embedding E : D → Rm that is

injective and preferably bi-Lipschitz.

Main results We propose an embedding method for finitely supported multisets and distributions,
which is a non-trivial generalization of the sort embedding. We observe that the Euclidean distance
between the sort embedding of two multisets can be interpreted as a finite Monte Carlo sampling of
their sliced Wasserstein distance (Bonneel et al., 2015): in the special case where the input consists
of multisets of fixed size, this sampling corresponds to the project-and-sort operations used in the
sort embedding. Based on this interpretation, we extend beyond fixed-size multisets and propose an
embedding method for both S≤n

(
Rd
)

and P≤n

(
Rd
)
. Our method essentially operates as follows:

(1) compute random one-dimensional projections (also called slices) of the input distribution; (2)
for each projected distribution, compute the quantile function; and (3) sample each quantile function
at a random frequency in the Fourier domain. We name our method the Fourier Sliced Wasserstein
(FSW) embedding and denote it by EFSW

m : P≤n

(
Rd
)
→ Rm.

The function
EFSW

m (µ) = EFSW
m

(
µ;
(
v(k), ξ(k)

)m
k=1

)
maps multisets and distributions to Rm, and depends on the parameters v(k) ∈ Rd, ξ(k) ∈ R for
k = 1, . . . ,m, which represent projection vectors and frequencies respectively. It has the following
properties:

1. Bi-Lipschitzness on multisets: For m ≥ 2nd+1, the map EFSW
m : S≤n

(
Rd
)
→ Rm is bi-

Lipschitz (and hence also injective) for almost any choice of the parameters
(
v(k), ξ(k)

)m
k=1

(Theorem 4.1 and Corollary 4.3).

2. Injectivity on measures: For m ≥ 2nd + 2n − 1, the map EFSW
m : P≤n

(
Rd
)
→ Rm is

injective (but is not bi-Lipschitz) for almost any choice of parameters (Theorem 4.1). More-
over, by adding one more output coordinate, it can be made injective on arbitrary measures
supported on n points. We also prove that bi-Lipschitzness on P≤n

(
Rd
)

is impossible for
any Euclidean embedding (Theorem 4.4). Thus, the bi-Lipschitzness properties of EFSW

m
are in a sense the best possible.

3. Piecewise smoothness: The map EFSW
m is continuous and piecewise smooth in both the

input measure parameters
(
x(i), wi

)n
i=1

and the embedding parameters
(
v(k), ξ(k)

)m
k=1

.
Hence, it is amenable to gradient-based learning methods, and its parameters can be trained.

4. Sliced Wasserstein approximation: The expectation of 1
m

∥∥EFSW
m (µ)− EFSW

m (µ̃)
∥∥2 over

the parameters
(
v(k), ξ(k)

)m
k=1

, drawn from our appropriately defined distribution, is ex-
actly the squared sliced Wasserstein distance between µ and µ̃ (Corollary 3.3), with the
standard error decreasing as O

(
1√
m

)
.

5. Complexity: The embedding EFSW
m (µ) can be computed efficiently in

O(mnd+mn log n) time, which matches the time complexity of the most efficient
methods that are used in practice (up to the logarithmic factor).

In properties 1 and 2 above, the required embedding dimension m is near optimal, essentially up to
a multiplicative factor of two.

Empirically, we show that our method embeds the space of input multisets with a significantly lower
distortion than the leading method for computing sliced-Wasserstein-preserving embeddings. We
also demonstrate the promise of our method for practical applications by evaluating it in the task of
learning the (non-sliced) 1-Wasserstein distance function. We show that replacing the summation-
based aggregation used in state-of-the-art methods with our FSW embedding leads to improved
results with lower training times.
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2 PROBLEM SETTING

In this section we describe the problem in detail and briefly review its theoretical background and
existing approaches.

2.1 THEORETICAL BACKGROUND

We begin by defining the spaces of multisets and distributions that we are interested in, and metrics
over these spaces.

Multisets and distributions Following the notation of Amir et al. (2023), we use P≤n(Ω) to
denote the collection of all probability distributions over Ω ⊆ Rd that are supported on at most n
points. Any distribution µ ∈ P≤n(Ω) can be parametrized by points x(i) ∈ Ω and weights wi ≥ 0
such that

∑n
i=1 wi = 1,

µ =

n∑
i=1

wiδx(i) , (2)

where δx is Dirac’s delta function at x. Note that distributions supported on less than n points can be
parameterized in this was by setting some of the weights wi to zero and choosing the corresponding
x(i) arbitrarily. This parametrization is generally not unique.

Similarly, let S≤n(Ω) be the collection of all nonempty multisets over Ω ⊆ Rd with at most n points.
We identify each multiset X =

{
x(i)

}
i∈[n]

∈ S≤n(Ω) with the distribution µ[X] ∈ P≤n(Ω) that

assigns uniform weights wi =
1
n to each x(i), accounting for multiplicities.1 With this identification,

we can regard S≤n(Ω) as a subset of P≤n(Ω). Our embedding, at its basic form, described in the
next section, considers S≤n(Ω) with this identification and therefore does not distinguish between
multisets of different cardinalities if their element proportions are identical.2 This can be easily
remedied by augmenting the embedding with an additional coordinate representing the multiset
cardinality, or in the case of measures, the total mass

∑n
i=1 wi; see discussion in Appendix A.1.

Throughout this work, we focus on Ω = Rd and only discuss finitely-supported multisets and distri-
butions. Nonetheless, our embedding can accommodate general distributions over Rd, while retain-
ing its sliced-Wasserstein approximation property. Thus, in principle, our method can be applied to
structures other than point clouds, for example polygonal meshes and volumetric data.

Wasserstein distance As a measure of distance on S≤n

(
Rd
)

and P≤n

(
Rd
)
, we use the Wasser-

stein distance. Intuitively, the Wasserstein distance is the minimal amount of work required in order
to ‘transport’ one distribution to another. For two distributions µ, µ̃ ∈ P≤n

(
Rd
)
, parametrized by

points x(i), x̃(i) and weights wi, w̃i as in (2), the p-Wasserstein distance from µ to µ̃ is defined by

Wp(µ, µ̃) :=

 inf
π∈Π(µ,µ̃)

∑
i,j∈[n]

πij

∥∥∥x(i) − x̃(j)
∥∥∥p


1
p

p ∈ [1,∞) ,

where ∥ · ∥ is the Euclidean norm, and Π(µ, µ̃) is the set of all transport plans from µ to µ̃:

Π(µ, µ̃) :=

π ∈ Rn×n

∣∣∣∣∣∣ (∀i, j ∈ [n]) πij ≥ 0 ∧
∑
j∈[n]

πij = wi ∧
∑
i∈[n]

πij = w̃j

.

Intuitively, πij denotes how much mass is to be transported from point x(i) to point x̃(j). For
p = ∞, the Wasserstein distance is defined by

W∞(µ, µ̃) := inf
π∈Π(µ,µ̃)

max
{∥∥∥x(i) − x̃(j)

∥∥∥ ∣∣∣ i, j ∈ [n], πij > 0
}
.

Whenever p is omitted, we refer to Wp with p = 2. Similarly, ∥ · ∥ always denotes the ℓ2 norm.

1For example, if X = {a, b, b} ∈ S≤3(R), then µ[X] = 1
3
δa + 2

3
δb.

2e.g., X = {a, b, b} and Y = {a, a, b, b, b, b} are considered identical in S≤6(R), since µ[X] = µ[Y ].
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Computation of Wasserstein The Wasserstein distance can be computed in O
(
n3 log n

)
time

by solving a linear program (Altschuler et al., 2017; Orlin, 1988). Alternatively, one may use
the Sinkhorn algorithm (Cuturi, 2013), which approximates the Wasserstein distance in Õ

(
n2ε−3

)
time, with ε being the error tolerance (Altschuler et al., 2017). This complexity was improved to
Õ
(
min

{
n2.25ε−1, n2ε−2

})
in (Dvurechensky et al., 2018). However, in the special case d = 1, it

can be computed significantly faster.

Wasserstein when d = 1 In the one-dimensional case, the Wasserstein distance can be computed
in only O(n log n) time. If x = (x1, . . . , xn), y = (y1, . . . , yn) are two vectors in Rn, then the
distance between the two uniform distributions induced by the vector coordinates is given by

W(µ[x], µ[y]) =
1√
n
∥sort(x)− sort(y)∥, (3)

with sort : Rn → Rn being the function that returns the input coordinates sorted in increasing order.

When considering arbitrary distributions in P≤n(R), the Wasserstein distance can be com-
puted via the quantile function. For a distribution µ over R, the quantile func-
tion Qµ : [0, 1) → R is a continuous analog of the sort function, defined by

{4,5,6}

{1,2,3}

{3,4}

1
3

2
3 1

1

3

5

Figure 1: The quantile function
of three different multisets

Qµ(t) := inf {x ∈ R | µ((−∞, x]) > t}.

Figure 1 depicts the quantile functions for three distinct multisets.

The quantile function enables an explicit formula for the Wasser-
stein distance between two distributions over R (see e.g. Bayraktar
& Guo (2021), Eq. 2.3 and the paragraph thereafter):

W(µ, µ̃) =

√∫ 1

0

(Qµ(t)−Qµ̃(t))
2
dt. (4)

Note that when µ and µ̃ are generated by multisets of the same
cardinality (like the two multisets of cardinality three in Figure 1),
the formulas (4) and (3) coincide.

Sliced Wasserstein distance The sliced Wasserstein distance,
proposed by Bonneel et al. (2015) as a surrogate for the Wasserstein distance, exploits the efficient
calculation of the latter for d = 1 to define a more computationally tractable distance for d > 1. It is
defined as the average Wasserstein distance between all 1-dimensional projections (or slices) of the
two input distributions. To give a formal definition, we first define the projection of a distribution.
Definition. Let µ =

∑n
i=1 wiδx(i) ∈ P≤n

(
Rd
)
. The projection of µ in the direction v ∈ Rd,

denoted by vTµ, is the one-dimensional distribution in P≤n(R) defined by vTµ :=
∑n

i=1 wiδvTx(i) .

Using the above definition, the Sliced-Wasserstein distance between µ, µ̃ ∈ P≤n

(
Rd
)

is defined by

SW(µ, µ̃) :=
√
Ev[W2(vTµ,vT µ̃)], (5)

where W2 is the 2-Wasserstein distance squared, and the expectation Ev[ · ] is over the direction
vector v ∼ Uniform

(
Sd−1

)
, i.e. distributed uniformly over the unit sphere in Rd.

2.2 EXISTING EMBEDDING METHODS

We now return to our main goal of constructing an embedding E : P≤n

(
Rd
)
→ Rm. In this

subsection, we discuss existing embedding methods and some straightforward ideas to extend them.
We then propose our method in the next section.

We first observe that on the space of multisets over R with exactly n elements, it follows from (3)
that the map {x1, . . . , xn} 7→ 1√

n
· sort(x1, . . . , xn) is an isometry, i.e. (1) holds with c = C = 1.

To extend this idea to multisets in S≤n(R) with possibly less than n elements, a naive approach
would be to represent each multiset in S≤n(R) by a multiset of size N , with N being the least

5
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common multiple (LCM) of {1, 2, . . . , n}. For example, for n = 3, LCM({1, 2, 3}) = 6, and
thus multisets in S≤n(R) of sizes 1 {a}, 2 {a, b} and 3 {a, b, c} would be represented respectively
by {a, a, a, a, a, a}, {a, a, a, b, b, b} and {a, a, b, b, c, c}. At this point, a sorting approach can be
applied. However, as n increases, this method quickly becomes infeasible, both in terms of compu-
tation time as well as memory, since LCM([n]) grows exponentially in n. Moreover, this method
cannot handle arbitrary distributions in P≤n(R), whose weights may be irrational.

One possible approach to embed general distributions µ ∈ P≤n(R) is to sample Qµ(t) at m points
t1, . . . , tm ∈ [0, 1] equispaced on a grid or drawn uniformly at random. While this approach would
indeed approximately preserve the Wasserstein distance, as follows from (4), it is easy to show that
for any finite number of samples m, this embedding is not injective on P≤n(R). Moreover, it is
discontinuous with respect to the probabilities wi and sampling points tk, and thus not amenable to
gradient-based learning methods. Our method, described in the next section, resolves these issues
by sampling the quantile function in the frequency domain rather than in the t-domain.

When considering P≤n

(
Rd
)

with d > 1, one natural idea is to take m one-dimensional projections
of the input distribution, and then embed each of the projections using one of the methods described
above for P≤n(R). In the case of multisets of fixed cardinality n, this corresponds to the mapping

{x1, . . . ,xn} 7→ 1√
n
· rowsort

([
vT
k xi

]
k∈[m],i∈[n]

)
.

This idea was discussed in (Balan et al., 2022; Zhang et al., 2019; Dym & Gortler, 2024; Balan &
Tsoukanis, 2023b). It is rather straightforward to show that in expectation over the directions vk,
this method gives a good approximation of the sliced Wasserstein distance. The relationship to the d-
dimensional Wasserstein distance is a priori less clear. It was shown by Balan & Tsoukanis (2023a)
that for m that is exponential in n, this mapping is injective and bi-Lipschitz for almost any choice
of the directions v1, . . . ,vm. Later, Dym & Gortler (2024) showed that m = 2nd+ 1 is sufficient.
In this paper we combine this idea of using linear projections with our idea of Fourier sampling
of the quantile function, to construct an embedding capable of handling arbitrary distributions in
P≤n

(
Rd
)

while maintaining theoretical guarantees and practical efficiency.

In a related line of work, Kolouri et al. (2015); Naderializadeh et al. (2021); Lu et al. (2024) de-
veloped a method that preserves the sliced Wasserstein distance by embedding distributions into an
infinite dimensional Hilbert space. In practice, a finite dimensional discretization is used, which
does not maintain the injectivity guarantees. In contrast, our method is guaranteed injectivity with a
finite and near-optimal embedding dimension of ≈ 2nd.

Lastly, Haviv et al. (2024) recently proposed a neural architecture based on transformers that com-
putes Euclidean embeddings for multisets and distributions. Their architecture, called the Wasser-
stein Wormhole, is trained to approximately preserve the Wasserstein distance. However, this
method is not guaranteed to preserve the Wasserstein distance precisely. This limitation is par-
ticularly significant when generalizing to out-of-distribution samples.

In addition, there exist methods that compute sliced optimal-transport distances for pairs of input
distributions (Deshpande et al., 2019; Kolouri et al., 2019; Nguyen et al., 2020). These methods
have limited applicability to most learning tasks, which typically involve a single input distribution.

3 PROPOSED METHOD

Our method to embed a distribution µ essentially consists of computing random slices vTµ and,
for each slice, taking one random sample of its quantile function QvTµ(t). Instead of sampling the
function directly though, we sample its cosine transform—a variant of the Fourier transform. Since
the Fourier transform is a linear isometry, integrating the squared difference of these samples for
two distributions µ, µ̃ will give us the squared sliced Wasserstein distance SW2(µ, µ̃), as we shall
show next. We will also show that this sampling guarantees injectivity, unlike direct sampling of
QvTµ(t). Lastly, the Fourier transform is smooth with respect to the frequencies, and thus so is our
embedding. We shall now discuss this in detail.
Definition 3.1. Given a projection vector v ∈ Sd−1 and a number ξ ≥ 0 denoting a frequency, we
define the one-sample embedding EFSW( · ;v, ξ) : P≤n

(
Rd
)
→ R by

EFSW(µ;v, ξ) := 2(1 + ξ)

∫ 1

0

QvTµ(t) cos (2πξt)dt, (6)
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which is the cosine transform of QvTµ(t), sampled at frequency ξ and multiplied by 1 + ξ; see Ap-
pendix B.1 for further discussion. Details on the practical computation of EFSW are in Appendix A.2.

Next, we define a probability distribution Dξ for the frequency ξ, given by the PDF

fξ(ξ) :=

{
1

(1+ξ)2
ξ ≥ 0

0 ξ < 0.

We now show that this choice of EFSW and Dξ ensures that given two distributions µ, µ̃ ∈ P≤n

(
Rd
)
,

the expected distance between the samples equals the sliced Wasserstein distance between µ and µ̃.

Theorem 3.2. [Proof in Appendix B.2] Let µ, µ̃ ∈ P≤n

(
Rd
)
, whose support points are all of ℓ2-

norm ≤ R. Let v ∼ Uniform
(
Sd−1

)
, ξ ∼ Dξ.

Ev,ξ

[∣∣EFSW(µ;v, ξ)− EFSW(µ̃;v, ξ)
∣∣2] = SW2(µ, µ̃), (7)

STDv,ξ

[∣∣EFSW(µ;v, ξ)− EFSW(µ̃;v, ξ)
∣∣2] ≤ 4

√
10R2, (8)

where E[ · ] and STD[ · ] are the expectation and standard deviation. The result can be further sta-
bilized by taking multiple samples. Building on this idea, we define the Fourier Sliced Wasserstein
(FSW) embedding EFSW

m : P≤n

(
Rd
)
→ Rm, which aggregates multiple independent samples of the

one-sample embedding:

EFSW
m (µ) :=

(
EFSW

(
µ;v(1), ξ(1)

)
, . . . , EFSW

(
µ;v(m), ξ(m)

))
, (9)

where
(
v(k), ξ(k)

)m
k=1

are drawn randomly i.i.d. from Uniform
(
Sd−1

)
×Dξ.

Corollary 3.3. Under the assumptions of Theorem 3.2,

Ev,ξ

[
1
m

∥∥EFSW
m (µ)− EFSW

m (µ̃)
∥∥2] = SW2(µ, µ̃), (10)

STDv,ξ

[
1
m

∥∥EFSW
m (µ)− EFSW

m (µ̃)
∥∥2] ≤ 4

√
10

R2

√
m
. (11)

Note that the bounds in Corollary 3.3 are independent of both the number of points n and the
dimension d. Thus, the estimation error is not affected by the curse of dimensionality. By taking a
sufficiently high embedding dimension, one can embed distributions of arbitrarily high dimension
and with arbitrary (and possibly infinite) support cardinality, while maintaining a bounded standard
estimation error, provided all distributions have supports contained within a fixed ball of radius R.

4 THEORETICAL RESULTS

In the previous section, we showed that our embedding approximately preserves the sliced Wasser-
stein distance in a probabilistic sense, with diminishing estimation error as the embedding dimension
increases. Here we show that with a finite dimension, our embedding guarantees injectivity and bi-
Lipschitzness, as outlined in the Main results paragraph of Section 1.

First, we show that with a sufficiently high dimension m, our embedding is guaranteed injectivity.

Theorem 4.1. [Proof on Page 21] Let EFSW
m : P≤n

(
Rd
)
→ Rm be as in (9), with

(
v(k), ξ(k)

)m
k=1

sampled i.i.d. from Uniform
(
Sd−1

)
×Dξ. Then:

1. If m ≥ 2nd+ 1, then with probability 1, EFSW
m is injective on S≤n

(
Rd
)
.

2. If m ≥ 2nd+ 2n− 1, then with probability 1, EFSW
m is injective on P≤n

(
Rd
)
.

These bounds are essentially optimal up to a multiplicative factor of 2, for any continuous embed-
ding, since any m smaller than nd precludes injectivity (Amir et al., 2023).

7
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Proof idea. The proof relies on the Finite Witness Theorem—a result from the theory of σ-
subanalytic functions presented in (Amir et al., 2023). The core idea is to use a dimension counting
argument to show that for sufficiently large m, the set of embedding parameters

(
v(k), ξ(k)

)m
k=1

for which EFSW
m

(
· ;
(
v(k), ξ(k)

)m
k=1

)
does not uniquely determine all distributions in S≤n

(
Rd
)

or

P≤n

(
Rd
)

is dimensionally deficient.

Next, we show that in the case of S≤n

(
Rd
)
, the injectivity of EFSW

m implies that it is in fact bi-
Lipschitz. Our proof relies on the fact that EFSW

m is piecewise linear and homogeneous in the input
points, in a sense we shall now define. By a slight abuse of notation, we refer to the distribution
parametrized by points X =

(
x(1), . . . ,x(n)

)
and weights w = (w1, . . . , wn) as (X,w).

Definition. Let E : D → Rm with D = P≤n

(
Rd
)

or D = S≤n

(
Rd
)
. We say that E is positively

homogeneous if for any α ≥ 0 and any distribution (X,w) ∈ D,

E(αX,w) = αE(X,w).

The following theorem shows that any embedding that is injective, positively homogeneous and
piecewise linear, is bi-Lipschitz when restricted to distributions with fixed weights.

Theorem 4.2. [Proof in Page 28] Let E : P≤n

(
Rd
)
→ Rm be injective and positively homoge-

neous. Let ∆n be the probability simplex in Rn. Suppose that the function E(X,w) : Rd×n×∆n →
Rm is piecewise linear in X for any fixed w. Then for any fixed w, w̃ ∈ ∆n, there exist constants
c, C > 0 such that for all X, X̃ ∈ Rd×n and p ∈ [1,∞],

c · Wp

(
(X,w),

(
X̃, w̃

))
≤
∥∥∥E(X,w)− E

(
X̃, w̃

)∥∥∥ ≤ C · Wp

(
(X,w),

(
X̃, w̃

))
. (12)

Proof idea. For fixed w, w̃, both functions
∥∥∥E(X,w)− E

(
X̃, w̃

)∥∥∥
1

and W1

(
(X,w),

(
X̃, w̃

))
are homogeneous and piecewise-linear with respect to

(
X, X̃

)
. The proof uses a topological argu-

ment to show that this property, combined with injectivity, implies bi-Lipschitzness.

The assumption that the weighs w, w̃ are fixed can be straightforwardly relaxed to allow for weights
that come from a finite set. Based on this observation, the following corollary shows that EFSW

m is
bi-Lipschitz on multisets.

Corollary 4.3. Let EFSW
m be as in (9) with m ≥ 2nd + 1. Then with probability 1, EFSW

m is bi-
Lipschitz on S≤n

(
Rd
)
.

Proof. Any multiset µ ∈ S≤n

(
Rd
)

can be represented by a parameter of the form
(
X,w(k)

)
, where

w(k) =
( k︷ ︸︸ ︷

1
k , . . . ,

1
k ,

n−k︷ ︸︸ ︷
0, . . . , 0

)
, 1 ≤ k ≤ n.

For k, l ∈ [n], let ckl, Ckl > 0 be the Lipschitz constants c, C of (12) for EFSW
m with the probability

vectors w = w(k), w̃ = w(l). Then it is easy to show that EFSW
m is bi-Lipschitz on S≤n

(
Rd
)

with
the constants c = mink,l∈[n] ckl > 0 and C = maxk,l∈[n] Ckl < ∞.

The bi-Lipschitzness of the FSW embedding constitutes a significant advantage over prevalent meth-
ods for handling multisets. In contrast, methods based on sum- or average-pooling inevitably induce
unbounded distortion on S≤n(Ω), even when Ω is compact (Amir et al., 2023), and methods based
on max-pooling are not even injective (Xu et al., 2018). In the next section we demonstrate how this
theoretical advantage translates into practical improvements.

Next, we explore whether it is possible to further improve by finding an embedding that is bi-
Lipschitz on the entirety of P≤n

(
Rd
)
. For the broader class of distributions

⋃
n∈N P≤n

(
Rd
)
, Naor

& Schechtman (2007) proved that no bi-Lipschitz embedding exists into the space L1([0, 1]), and
thus not into any finite-dimensional space. One may ask whether this can be remedied by restricting

8
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the distributions to a bounded number of support points that come from a fixed compact domain,
namely, P≤n(Ω) with a compact Ω ⊂ Rd. The following theorem shows that even this restricted
class cannot be embedded in a bi-Lipschitz manner into a finite-dimensional Euclidean space.
Theorem 4.4. [Proof on Page 22] Let E : P≤n(Ω) → Rm, where n ≥ 2 and Ω ⊆ Rd has a
nonempty interior. Then for all p ∈ [1,∞], E is not bi-Lipschitz on P≤n(Ω) with respect to Wp.

Proof idea. The proof is technically involved. The core idea is to create two distributions where
an infinitesimally small mass is transported a small distance, such that their Wasserstein distance
decreases linearly, whereas any embedding would produce quadratically-converging outputs.

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate how the theoretical advantages of our method translate into superior
embeddings in practice and improved results in learning on multisets.

Empirical distortion evaluation This experiment evaluates the ability of our embedding to ap-
proximately preserve the sliced Wasserstein distance and compares it with PSWE, which is designed
for the same purpose. In each trial, an instance of each embedding, E : S≤n(Rd) → Rm, was gener-
ated. A batch of 6000 point-clouds in Rd was either sourced from the ModelNet-large dataset
or generated randomly, with n points uniformly distributed in the unit cube [−1, 1]

d. The sliced
Wasserstein distance from each point cloud X ∈ Rd×n to the delta distribution at zero δ0 is given

by the explicit formula SW(X, δ0) = 1√
d
W(X, δ0) = 1√

nd

√∑n
i=1

∥∥x(i)
∥∥2. The embedding

E(X) and the quantity r(X) = ∥E(X)−0∥
SW(X,δ0)

were calculated, and the empirical distortion was taken
as the ratio of the maximal to minimal r(X) across the batch. As shown in Table 1, our embedding
exhibits markedly lower distortion, with the improvement being particularly pronounced in real data.

Table 1: Empirical Distortion Evaluation

Dataset d n Method

ModelNet 3 2047
PSWE 16.45 30.26 OOM OOM
FSW 2.47 1.46 1.2 1.08

Uniform 3 20
PSWE 10.03 4.5 3.55 OOM
FSW 2.23 1.36 1.16 1.07

Uniform 10 20
PSWE 8.15 2.84 1.97 OOM
FSW 2.29 1.41 1.18 1.08

Uniform 100 20
PSWE 7.88 2.74 1.62 OOM
FSW 2.43 1.44 1.19 1.08

Uniform 1000 20
PSWE 7.97 2.7 1.66 OOM
FSW 2.4 1.43 1.19 1.08

m

10 50 200 1000
Empirical distortion with respect
to the sliced Wasserstein dis-
tance, evaluated on real and syn-
thetic data. In each trial, distor-
tion was evaluated on 6000 point
clouds. The numbers show the
average over 200 independent tri-
als. d, n: ambient dimension
and number of points in each
cloud; m: embedding dimen-
sion; OOM: Out of Memory—
the method failed due to insuffi-
cient memory.

Learning to approximate the Wasserstein distance One possible approach to overcome the high
computation time of the Wasserstein distance for d > 1 is to try to estimate it using a neural net-
work, trained on pairs of point-clouds for which the distance is known. This approach was used in
previous works (Chen & Wang, 2024; Kawano et al., 2020), which proposed architectures designed
to approximate functions F : S≤n

(
Rd
)
×S≤n

(
Rd
)
→ R, such as the Wasserstein distance function.

These methods handle multisets using the traditional approach of sum- or average-pooling. Since
our embedding is bi-Lipschitz with respect to the Wasserstein distance, it seems likely to be a more
effective building block for architectures designed to learn it.

For this task we used the following architecture: First, an FSW embedding E1 : P≤n

(
Rd
)
→

Rm1 is applied to each of the two input distributions µ, µ̃. Then, a second FSW embedding E2 :
S≤2(Rm1) → Rm2 is applied to the multiset {E1(µ), E1(µ̃)}. The output of E2 is then fed to an
MLP Φ : Rm2 → R+; see Appendix C.2 for dimensions and technical details. Our full architecture
is described by the formula

F (µ, µ̃) := Φ(E2({E1(µ), E1(µ̃)})).

9
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This formulation ensures that F is symmetric with respect to swapping µ and µ̃. In addition, we
used leaky-ReLU activations and no biases in Φ, which renders F scale-equivariant by design, i.e.

F
(
(αX,w), (αX̃, w̃

)
) = αF

(
(X,w), (X̃, w̃)

)
∀α > 0,

as is the Wasserstein distance function that F is designed to approximate.

The experimental setting was replicated from (Chen & Wang, 2024), where the objective is to ap-
proximate the 1-Wasserstein distance W1. We used the following evaluation datasets, kindly pro-
vided to us by the authors: Three synthetic datasets noisy-sphere-3, noisy-sphere-6 and
uniform, consisting of random point clouds in R3, R6 and R2 respectively; two real datasets
ModelNet-small and ModelNet-large, consisting of 3D point-clouds sampled from Mod-
elNet40 objects (Wu et al., 2015); and the gene-expression dataset RNAseq (Yao et al., 2021),
consisting of multisets in R2000.

We compared our architecture to the following methods: (a) NSDeepSets—a DeepSets-like architec-
ture trained to compute W1-preserving Euclidean embeddings for input distributions, and NProductNet,
which further processes the two joined embeddings by an MLP (Chen & Wang, 2024); (b) a Siamese
autoencoder called Wasserstein Point-Cloud Embedding network (WPCE) (Kawano et al., 2020); (c)
the Sinkhorn algorithm (Cuturi, 2013), which computes an efficient approximation to Wp by adding
an entropy regularization term. We also evaluated the PSWE embedding of Naderializadeh et al.
(2021), by employing it in our architecture instead of E1, E2.

Table 2: 1-Wasserstein approximation: Relative error

d set size PSWE

noisy-sphere-3 3 100–299 1.4 % 2.2 % 4.6 % 34.1 % 36.2 % 18.7 %
noisy-sphere-6 6 100–299 1.3 % 1.4 % 1.5 % 26.9 % 29.1 % 13.7 %
uniform 2 256 2.4 % 2.1 % 9.7 % 12.0 % 12.3 % 7.3 %
ModelNet-small 3 20–199 2.9 % 5.7 % 8.4 % 7.7 % 10.5 % 10.1 %
ModelNet-large 3 2047 2.6 % 2.4 % 14.0 % 15.9 % 16.6 % 14.8 %
RNAseq 2000 20–199 1.1 % 1.2 % 1.2 % 47.7 % 48.2 % 4.0 %

Dataset Ours NProductNet WPCE NSDeepSets Sinkhorn

Mean relative error in approximating the 1-Wasserstein distance between point sets.

As seen in Table 2, our architecture achieves the best accuracy on most evaluation datasets. Training
times are in Table 3. Further details on this experiment appear in Appendix C.2.

Table 3: 1-Wasserstein approximation: Training time

noisy-sphere-3 2.2 min 33 min 6 min 1 h 46 min 9 min
noisy-sphere-6 4 min 1 h 12 min 4 h 6 min 1 h 38 min
uniform 3 min 51 min 7 min 3 h 36 min 1 h 27 min
ModelNet-small 3 min 48 min 7 min 1 h 23 min 12 min
ModelNet-large 14.2 min 1 h 19 min 8 min 3 h 5 min 40 min
RNAseq 4 min 50 min 15 min 14 h 26 min 3 h 1 min

Dataset Ours PSWE NProductNet WPCE NSDeepSets

Training times for the different architectures.

6 CONCLUSION

In this paper, we introduced an embedding that offers strong bi-Lipschitzness and injectivity guaran-
tees for multisets and measures respectively. Our experimental results indicate that our embedding
produces representations that better preserve the original geometry of the data and can lead to im-
proved performance in practical learning tasks.

In the future, we aim to explore the use of the FSW embedding as an aggregation function in graph
neural networks, and to generalize the concepts described here to other notions of distance, such as
partial and unbalanced optimal transport.
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Reproducibility Statement All experiments in this paper are fully reproducible.
The code for training and evaluation, along with the datasets, checkpoints, and ac-
tual numerical results presented in this paper, are available at the anonymous URL
https://drive.filen.io/d/07bcfdb5-b7bf-41b0-96b3-265542caf1fa#
3l6YAiOBzMA9lvwIpywqiCOZHsoIs57V. Reproduction instructions can be found in the file
readme.txt at the root directory of the downloaded zip file. While we did not use fixed random
seeds for our experiments, the results are consistent across multiple runs. For further technical
details regarding the experimental setup and parameters, please refer to Appendix C.
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A FURTHER DETAILS ON THE FSW EMBEDDING

A.1 EXTENSION TO MEASURES WITH ARBITRARY TOTAL MASS

We now discuss how to extend the definition of the FSW embedding to input measures that are not
necessarily probability measures.

Denote by M≤n(Ω) the collection of all measures µ over Ω ⊆ Rd with at most n support points
x(1), . . . ,x(n) and corresponding weights w1, . . . , wn ≥ 0,

µ =

n∑
i=1

wiδx(i) . (13)

The total mass of µ is the quantity µ(Ω) =
∑n

i=1 wi.

A first step towards extending EFSW to M≤n(Ω) while maintaining injectivity is to simply add an
extra coordinate in the output that represents the total mass of the input measure. Define ẼFSW

m :
M≤n(Ω) → Rm for an input µ as in (13) by

ẼFSW
m (µ) :=

(
µ(Ω), EFSW

m−1(µ̂)
)
, (14)

where µ̂ is the measure µ normalized to have a total mass of 1:

µ̂ =

n∑
i=1

wi∑n
j=1 wj

δx(i) . (15)

It is easy to show that with the above definition, by Theorem 4.1, ẼFSW
m with output dimension

m ≥ 2nd+2n is injective on M≤n(Rd) excluding the zero measure, for which (15) is not defined,
and when restricted to nonempty multisets in S≤n(Rd), it suffices to take m ≥ 2nd+2 to ensure that
ẼFSW

m differentiates between input multisets with different cardinalities but the same proportions of
element multiplicities, as discussed in Page 4, Section 2.1.

One limitation of the definition in (14) is that ẼFSW
m is not well defined and has a pathological jump

discontinuity at the input zero measure µ(Ω) = 0. This can be remedied by padding input measures
whose total mass is below a chosen threshold with the complementary mass assigned to the zero
vector. Namely, choose an arbitrary threshold ρ > 0 and adjust the definition in (14) to

ẼFSW
m (µ) :=

{(
µ(Ω), EFSW

m−1(µ̂)
)

µ(Ω) ≥ ρ,(
µ(Ω), EFSW

m−1

((
1− µ(Ω)

ρ

)
δ0 +

∑n
i=1

wi

ρ δx(i)

))
µ(Ω) < ρ.

(16)

It is easy to show that with the definition (16), ẼFSW
m with the appropriate m as detailed above is

well defined and injective on the whole of M≤n(Rd).

A.2 PRACTICAL COMPUTATION

Here we present some formulas that facilitate the practical computation of EFSW.

We start by developing some notation that shall be used to express quantile functions of distributions
in P≤n(R).
Definition A.1. For a vector x = (x1, . . . , xn) ∈ Rn, the order statistics x(1), . . . , x(n) are the
coordinates of x sorted in increasing order: x(1) ≤ . . . ≤ x(n). We define the sorting permutation

σ(x) = (σ1(x), . . . , σn(x)) ∈ Sn

to be a permutation that satisfies xσi(x) = x(i) for all i ∈ [n], with ties broken arbitrarily.

We now show how Qµ(t) can be expressed explicitly in terms of the order statistics of µ. Let
µ =

∑n
i=1 wixi ∈ P≤n(R), and denote x = (x1, . . . , xn), w = (w1, . . . , wn). Then for all

t ∈ [0, 1), it can be shown that
Qµ(t) = x(kmin(σ(x),w,t)), (17)
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where kmin(σ,w, t) is defined for σ = (σ1, . . . , σn) ∈ Sn by

kmin(σ,w, t) := min {k ∈ [n] | wσ1
+ · · ·+ wσk

> t}. (18)

It can be seen in (17) and (18) that Qµ(t) is monotone increasing with respect to t. Moreover,

Qµ(0) = essmin (µ) and lim
t↗1

Qµ(t) = essmax (µ),

with essmin (µ) and essmax (µ) denoting the essential minimum and maximum of the distribution
µ. We thus augment the definition of Qµ to [0, 1] by setting Qµ(1) = essmax (µ).
Note. In the following discussion we treat quantile functions only in terms of their integrals, and
thus we only need their values at almost every t ∈ [0, 1]. Still it’s worth noting that under the
above definition, Qµ(t) is right-continuous on [0, 1], is continuous at both end points, and since it is
monotone increasing, it only has jump discontinuities. Lastly, we note that Qµ(t) indeed depends
only on the distribution µ and not on its particular representation

∑n
i=1 pixi, which can be verified

from (17) and (18).

Using the identity (17), we can express E(µ;v, ξ) as

E(µ;v, ξ) =2(1 + ξ)

n∑
k=1

∫ ∑k
i=1 wσi(vT X)

t=
∑k−1

i=1 wσi(vT X)

QvTµ(t) cos (2πξt)dt

=2(1 + ξ)

n∑
k=1

∫ ∑k
i=1 wσi(vT X)

t=
∑k−1

i=1 wσi(vT X)

(
vTX

)
(k)

cos (2πξt)dt

=2
1 + ξ

2πξ

n∑
k=1

(
vTX

)
(k)

[sin (2πξt)]

∑k
i=1 wσi(vT X)

t=
∑k−1

i=1 wσi(vT X)
,

(19)

under the notion
∑0

i=1 wσi(vTX) = 0. Rearranging terms gives us the alternative formula

E(µ;v, ξ) = 2
1 + ξ

2πξ

n∑
k=1

sin

(
2πξ

k∑
i=1

wσi(vTX)

)[(
vTX

)
(k)

−
(
vTX

)
(k+1)

]
, (20)

with the definition of
(
vTX

)
(k)

extended to k = n+ 1 by(
vTX

)
(n+1)

:= 0.

B PROOFS

B.1 THE COSINE TRANSFORM

The cosine transform takes a major role in our proofs. Let us now define it and present some of
its properties. The results in this section appear in standard textbooks such as (Jones, 2001; Boas,
2006). We include them here for completeness.

In the following discussion, Lp always denotes the space Lp(R), defined by

Lp(R) := {f : R → R | f is Lebesgue measurable and ∥f∥Lp < ∞},

with

∥f∥Lp :=

{[∫
R |f(t)|pdt

]1/p
p ∈ [1,∞)

ess supt∈R |f(t)| p = ∞.

Definition B.1. Let f ∈ L1 such that f(t) = 0 for all t < 0. The cosine transform of f is

“f(ξ) := 2

∫ ∞

0

f(t) cos (2πξt)dt (21)

for ξ ≥ 0.
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Note that if f ∈ L1, then ∥∥∥ “f
∥∥∥
L∞

≤ 2∥f∥L1 (22)

since ∣∣∣ “f(ξ)
∣∣∣ ≤ 2

∫ ∞

0

|f(t)| · |cos (2πξt)|dt ≤ 2

∫ ∞

0

|f(t)|dt = 2∥f∥L1 . (23)

Thus, “f ∈ L∞. The following lemma proves a better bound as ξ → ∞ if f is monotonous, and
shows that the cosine transform preserves the L2-norm.

Lemma B.2 (Properties of the cosine transform). Let f ∈ L1 such that f(t) = 0 for all t < 0.
Then:

1. If f ∈ L1 ∩ L2 then ∫ ∞

0

(f(t))
2
dt =

∫ ∞

0

(
“f(t)
)2

dt. (24)

2. Suppose that f ∈ L1 ∩ L∞, and that f is monotonous on an interval (0, T ) and vanishes
almost everywhere outside of (0, T ). Then for any ξ > 0,∣∣∣ “f(ξ)

∣∣∣ ≤ 3

πξ
∥f∥L∞ . (25)

Proof. We start from part 1. Let fe(t) be the even part of f ,

fe(t) :=
1
2 (f(t) + f(−t)) = 1

2f(|t|).

Then the Fourier transform of fe is given by

fe
∧
(ξ) :=

∫ ∞

−∞
fe(t)e

−2πiξtdt
(a)
=

∫ ∞

−∞
fe(t) cos (−2πξt)dt

=

∫ ∞

−∞

1
2 (f(t) + f(−t)) cos (−2πξt)dt

= 1
2

∫ 0

−∞
(f(t) + f(−t)) cos (−2πξt)dt+ 1

2

∫ ∞

0

(f(t) + f(−t)) cos (−2πξt)dt

= 1
2

∫ 0

−∞
f(−t) cos (−2πξt)dt+ 1

2

∫ ∞

0

f(t) cos (−2πξt)dt

=====
r=−t

1
2

∫ 0

∞
f(r) cos (2πξr)(−dr) + 1

2

∫ ∞

0

f(t) cos (2πξt)dt

=

∫ ∞

0

f(t) cos (2πξt)dt = 1
2

“f(ξ),

with (a) holding since the Fourier transform of a real even function is real. Thus,

“f(ξ) = 2fe
∧
(ξ).

Now extend the definition of “f(ξ) to negative values of ξ, according (21), namely “f(ξ) = “f(−ξ).
Then ∫ ∞

0

(
“f(ξ)

)2
dξ = 1

2

∥∥∥ “f
∥∥∥2
L2

= 2
∥∥∥fe∧∥∥∥2

L2

(a)
= 2∥fe∥2L2

(b)
= ∥f∥2L2

=

∫ ∞

−∞
(f(t))

2
dt =

∫ ∞

0

(f(t))
2
dt,
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with (a) holding by the Plancherel theorem, and (b) holding since

∥fe∥2L2 =

∫ ∞

−∞
(fe(t))

2
dt =

∫ ∞

−∞

(
1
2 (f(t) + f(−t))

)2
dt

=

∫ ∞

−∞

[
1
4 (f(t))

2
+ 1

2f(t)f(−t) + 1
4 (f(−t))

2
]
dt

= 1
4

∫ ∞

−∞

[
(f(t))

2
+ (f(−t))

2
]
dt

= 1
4

∫ ∞

0

(f(t))
2
dt+ 1

4

∫ 0

−∞
(f(−t))

2
dt

= 1
2

∫ ∞

0

(f(t))
2
dt = 1

2

∫ ∞

−∞
(f(t))

2
dt = 1

2∥f∥
2
L2 .

We now prove part 2. Suppose first that f is differentiable on I . Using integration by parts, we have

“f(ξ) = 2

∫ T

0

f(t) cos (2πξt)dt

=
1

πξ

A1︷ ︸︸ ︷[
f(t) sin (2πξt)

]T
t=0

− 1

πξ

A2︷ ︸︸ ︷∫ T

0

f ′(t) sin (2πξt)dt .

Let us now bound A1 and A2.

|A1| = |f(T ) sin (2πξT )| ≤ |f(T )| ≤ ∥f∥L∞ ,

and

|A2| =

∣∣∣∣∣
∫ T

0

f ′(t) sin (2πξt)dt

∣∣∣∣∣
≤
∫ T

0

|f ′(t)| · |sin (2πξt)|dt

≤
∫ T

0

|f ′(t)|dt (a)
=

∣∣∣∣∣
∫ T

0

f ′(t)dt

∣∣∣∣∣
= |f(T )− f(0)| ≤ 2∥f∥L∞ ,

with (a) holding since f ′ does not change sign on (0, T ) due to the monotonicity of f .

In conclusion, we have ∣∣∣ “f(ξ)
∣∣∣ ≤ 1

πξ
(|A1|+ |A2|) ≤

3

πξ
∥f∥L∞ .

To remove the differentiability assumption on f , we shall use the technique of mollifying; namely,
replace f by a sequence of smooth functions that converges to it in L1; see Chapter 7, Section C.3
of (Jones, 2001).

For the smooth functions to be monotonous, we first define a modified function f̃ : R → R

f̃(t) :=


f(0+) t ≤ 0

f(t) t ∈ (0, T )

f(T−) t ≥ T.

(26)

With this definition, f̃ coincides with f on I , is monotonous on R, and it can be shown that∥∥∥f̃∥∥∥
L∞

= ∥f∥L∞ .

Let ϕε : R → R for ε > 0 be the mollifying function defined in (Jones, 2001), page 176. We now
list a few properties of ϕε.

17
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1. ϕε is infinitely differentiable and compactly supported.

2. ϕε is radial, i.e. ϕε(t) = ϕε(−t).

3. ϕε(t) ≥ 0 for all t, and ϕε(t) > 0 iff |t| < ε.

4.
∫
R ϕε(t)dt = 1.

Let fε : R → R for ε > 0 be defined by

fε(t) := χI(t)

∫
R
f̃(r)ϕε(t− r)dr = χI(t)

∫
R
f̃(t+ r)ϕε(r)dr, (27)

with χI denoting the characteristic function of I . From the rightmost part of (27), it is evident that
the monotonicity of f̃ implies that fε is monotonous on I .

Also note that

|fε(t)| ≤ χI(t)

∫
R

∣∣∣f̃(t+ r)
∣∣∣ϕε(r)dr

≤
∥∥∥f̃∥∥∥

L∞

∫
R
ϕε(r)dr

=
∥∥∥f̃∥∥∥

L∞
= ∥f∥L∞ .

(28)

Thus,

∥fε∥L1 ≤ T∥f∥L∞ , ∥fε∥L∞ ≤ ∥f∥L∞ , (29)

and hence fε ∈ L1 ∩ L∞.

From the discussion in (Jones, 2001), fε satisfies:

1. fε ∈ C∞(I)

2. limε→0 ∥fε − f∥L1 = 0

So far we have shown that for any ε > 0, fε is in L1 ∩ L∞, is monotonous and smooth on I , and
vanishes outside of I . Therefore its cosine transform satisfies∣∣∣ “fε(ξ)

∣∣∣ ≤ 3

πξ
∥fε∥L∞

(a)
≤ 3

πξ
∥f∥L∞ , (30)

with (a) due to (29). Thus,

1
2

∣∣∣ “fε(ξ)− “f(ξ)
∣∣∣ =∣∣∣∣∣

∫ T

0

(fε(t)− f(t)) cos (2πξt)dt

∣∣∣∣∣
≤∥fε − f∥L1∥cos (2πξt)∥L∞

≤∥fε − f∥L1 −→
ε→0

0.

In conclusion,
3

πξ
∥f∥L∞ ≥ (30)

∣∣∣ “fε(ξ)
∣∣∣ −→
ε→0

∣∣∣ “f(ξ)
∣∣∣

and therefore ∣∣∣ “f(ξ)
∣∣∣ ≤ 3

πξ
∥f∥L∞ .
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B.2 PROBABILISTIC PROPERTIES OF E(µ;v, ξ) AND ∆(µ, ν;v, ξ)

In this proof, we use the notation

∆(µ, µ̃;v, ξ) :=
∣∣EFSW(µ;v, ξ)− EFSW(µ̃;v, ξ)

∣∣.
We define a ’norm’ for distributions in P≤n

(
Rd
)

by

∥µ∥Wp
:= Wp(µ, 0), p ∈ [1,∞],

where 0 here denotes the distribution that assigns a mass of 1 to the point 0 ∈ Rd. Note that this is
not a norm in the formal sense of the word, as P≤n

(
Rd
)

is not a vector space.

The following claim provides a useful bound on the Wasserstein and sliced Wasserstein distances.

Claim B.3. For any µ, ν ∈ P≤n

(
Rd
)
,

SW(µ, ν) ≤ W(µ, ν) ≤ ∥µ∥W∞
+ ∥ν∥W∞

. (31)

Proof. The left inequality is a well-known property of the Sliced Wasserstein distance; see e.g.
Eq. (3.2) of (Bayraktar & Guo, 2021). The right inequality is easy to see by considering the transport
plans that transport each of the distributions to δ0, and applying the triangle inequality.

To prove Theorem 3.2, we first prove the following lemma.

Lemma B.4. Let µ, ν ∈ P≤n

(
Rd
)

and v ∈ Sd−1. Let ξ ∼ Dξ. Then

|E(µ;v, ξ)| ≤ 3∥µ∥W∞
∀ξ ≥ 0, (32)

Eξ

[
∆2(µ, ν;v, ξ)

]
=W2

(
vTµ,vT ν

)
, (33)

STDξ

[
∆2(µ, ν;v, ξ)

]
≤ 3
(
∥µ∥W∞

+ ∥ν∥W∞

)
W
(
vTµ,vT ν

)
. (34)

Proof. By definition,

E(µ;v, ξ) = (1 + ξ) “QvTµ(ξ). (35)

From part 2 of Lemma B.2,∣∣∣ “QvTµ(ξ)
∣∣∣ ≤ 3

πξ

∥∥QvTµ

∥∥
L∞ ≤ 3

πξ
∥µ∥W∞

and from (23), ∣∣∣ “QvTµ(ξ)
∣∣∣ ≤ 2

∥∥QvTµ

∥∥
L1

(a)
≤ 2
∥∥QvTµ

∥∥
L∞ = 2∥µ∥W∞

,

with (a) holding since QvTµ is supported on [0, 1]. Thus,∣∣∣ “QvTµ(ξ)
∣∣∣ ≤ min

{
2,

3

πξ

}
∥µ∥W∞

,

which implies

|E(µ;v, ξ)| ≤ (1 + ξ)min

{
2,

3

πξ

}
∥µ∥W∞

≤
(
2 +

3

π

)
∥µ∥W∞

≤ 3∥µ∥W∞
,

and thus (32) holds. Note that since E(µ;v, ξ) is bounded as a function of ξ, so is ∆2(µ, ν;v, ξ),
and therefore both have finite moments of all orders with respect to ξ.
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Now,

Eξ

[
∆2(µ, ν;v, ξ)

]
= Eξ

[
(E(µ;v, ξ)− E(ν;v, ξ))

2
]

=

∫ ∞

0

1

(1 + ξ)
2

(
(1 + ξ)

2
(

“QvTµ(ξ)− “QvT ν(ξ)
)2)

dξ

=

∫ ∞

0

(
“QvTµ(ξ)− “QvT ν(ξ)

)2
dξ

(a)
=

∫ ∞

0

(
QvTµ(t)−QvT ν(t)

)2
dt

=

∫ 1

0

(
QvTµ(t)−QvT ν(t)

)2
dt

(b)
= W2

(
vTµ,vT ν

)
,

with (a) following from part 1 of Lemma B.2 and the linearity of the cosine transform, and (b)
holding by the identity (4). Thus, (33) holds.

To bound the variance of ∆2(µ, ν;v, ξ), note that

Varξ
[
∆2(µ, ν;v, ξ)

]
=Eξ

[(
∆2(µ, ν;v, ξ)

)2]− (Eξ

[
∆2(µ, ν;v, ξ)

])2
= (33)Eξ

[
∆4(µ, ν;v, ξ)

]
−
(
W2
(
vTµ,vT ν

))2
=Eξ

[
(E(µ;v, ξ)− E(ν;v, ξ))

2 ·∆2(µ, ν;v, ξ)
]
−W4

(
vTµ,vT ν

)
≤Eξ

[
(|E(µ;v, ξ)|+ |E(ν;v, ξ)|)2 ·∆2(µ, ν;v, ξ)

]
−W4

(
vTµ,vT ν

)
≤ (32)Eξ

[(
3∥µ∥W∞

+ 3∥ν∥W∞

)2 ·∆2(µ, ν;v, ξ)
]
−W4

(
vTµ,vT ν

)
=9
(
∥µ∥W∞

+ ∥ν∥W∞

)2 · Eξ

[
∆2(µ, ν;v, ξ)

]
−W4

(
vTµ,vT ν

)
= (33)9

(
∥µ∥W∞

+ ∥ν∥W∞

)2 · W2
(
vTµ,vT ν

)
−W4

(
vTµ,vT ν

)
≤9
(
∥µ∥W∞

+ ∥ν∥W∞

)2 · W2
(
vTµ,vT ν

)
,

and thus (34) holds.

This concludes the proof of Lemma B.4.

Let us now prove Theorem 3.2.

Theorem 3.2. [Proof in Appendix B.2] Let µ, µ̃ ∈ P≤n

(
Rd
)
, whose support points are all of ℓ2-

norm ≤ R. Let v ∼ Uniform
(
Sd−1

)
, ξ ∼ Dξ.

Ev,ξ

[∣∣EFSW(µ;v, ξ)− EFSW(µ̃;v, ξ)
∣∣2] = SW2(µ, µ̃), (7)

STDv,ξ

[∣∣EFSW(µ;v, ξ)− EFSW(µ̃;v, ξ)
∣∣2] ≤ 4

√
10R2, (8)

Proof. Eq. (7) holds since

Ev,ξ

[
∆2(µ, ν;v, ξ)

]
= Ev

[
Eξ|v

[
∆2(µ, ν;v, ξ)

]]
= (33) Ev

[
W2
(
vTµ,vT ν

)]
= (5) SW2(µ, ν).
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We now prove (8).

Varv,ξ
[
∆2(µ, ν;v, ξ)

] (a)
= Ev

[
Varξ|v

[
∆2(µ, ν;v, ξ)

]]
+ Varv

[
Eξ|v

[
∆2(µ, ν;v, ξ)

]]
= (33) Ev

[
Varξ|v

[
∆2(µ, ν;v, ξ)

]]
+ Varv

[
W2
(
vTµ,vT ν

)]
≤ (34) Ev

[
9
(
∥µ∥W∞

+ ∥ν∥W∞

)2W2
(
vTµ,vT ν

)]
+ Varv

[
W2
(
vTµ,vT ν

)]
= 9
(
∥µ∥W∞

+ ∥ν∥W∞

)2Ev

[
W2
(
vTµ,vT ν

)]
+ Varv

[
W2
(
vTµ,vT ν

)]
= (5) 9

(
∥µ∥W∞

+ ∥ν∥W∞

)2SW2(µ, ν) + Varv
[
W2
(
vTµ,vT ν

)]
≤ 9
(
∥µ∥W∞

+ ∥ν∥W∞

)2SW2(µ, ν) + Ev

[
W4
(
vTµ,vT ν

)]
≤ (31) 9

(
∥µ∥W∞

+ ∥ν∥W∞

)2(∥µ∥W∞
+ ∥ν∥W∞

)2
+ Ev

[(
∥µ∥W∞

+ ∥ν∥W∞

)4]
= 10

(
∥µ∥W∞

+ ∥ν∥W∞

)4
,

where (a) is by (Wasserman, 2004, Theorem 3.27, pg. 55). Thus, (8) holds.

B.3 INJECTIVITY AND BI-LIPSCHITZNESS

Theorem 4.1. [Proof on Page 21] Let EFSW
m : P≤n

(
Rd
)
→ Rm be as in (9), with

(
v(k), ξ(k)

)m
k=1

sampled i.i.d. from Uniform
(
Sd−1

)
×Dξ. Then:

1. If m ≥ 2nd+ 1, then with probability 1, EFSW
m is injective on S≤n

(
Rd
)
.

2. If m ≥ 2nd+ 2n− 1, then with probability 1, EFSW
m is injective on P≤n

(
Rd
)
.

Proof. This proof relies on the theory of σ-subanalytic functions, introduced in (Amir et al., 2023).
The main result that we use from (Amir et al., 2023) is the Finite Witness Theorem, which is a tool
to reduce an infinite set of equality constraints to a finite subset chosen randomly, while maintaining
equivalence with probability 1. The Finite Witness Theorem is a useful tool to prove that certain
functions are injective.

The theory defines a family of functions called σ-subanalytic functions. The full definition of this
family is technically involved and requires heavy theoretical machinery, and thus we do not state here
the full definition. However, we use the following properties of σ-subanalytic functions, proved in
(Amir et al., 2023):

1. Piecewise-linear functions are σ-subanalytic.

2. Finite sums, products and compositions of σ-subanalytic functions are σ-subanalytic.

We first show that the function EFSW(X,p;v, ξ) is σ-subanalytic as a function of (X,p,v, ξ). To
see this, note that by (20), EFSW(X,p;v, ξ) is the sum over k ∈ [n] of terms of the form

2
1 + ξ

2πξ
sin

(
2πξ

k∑
i=1

wσi(vTX)

)[(
vTX

)
(k)

−
(
vTX

)
(k+1)

]
. (36)

Each term
[(
vTX

)
(k)

−
(
vTX

)
(k+1)

]
and

∑k
i=1 wσi(vTX) is piecewise linear in the prod-

uct vTX and thus σ-subanalytic, as well as the product 2πξ
∑k

i=1 wσi(vTX), composition

sin
(
2πξ

∑k
i=1 wσi(vTX)

)
and again product 2 1+ξ

2πξ sin
(
2πξ

∑k
i=1 wσi(vTX)

)
and finally the prod-

uct (36) and the finite sum of such.

We shall now show that EFSW(X,p;v, ξ) satisfies the dimension deficiency condition of the Finite
Witness Theorem. Let µ, µ̃ ∈ P≤n

(
Rd
)

be two fixed distributions. Let A be the set

A :=
{
(v, ξ) ∈ Sd−1 × (0,∞)

∣∣ EFSW(µ;v, ξ) = EFSW(µ̃;v, ξ)
}
,
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and suppose that A is of full dimension. Then A contains a submanifold B × C of full dimension,
where B ⊆ Sd−1 and C ⊆ (0,∞). Thus, B and C are also of full dimension.

For any fixed v ∈ B, the function EFSW(µ;v, ξ) is analytic on (0,∞) as a function of ξ, as can be
seen in (36). Thus, the function

f(ξ) = EFSW(µ;v, ξ)− EFSW(µ̃;v, ξ)

is also analytic on (0,∞). Since f = 0 on the set C of full dimension, f = 0 on all of (0,∞). By
(33), this implies that

W
(
vTµ,vT µ̃

)
=

√
Eξ

[
f(ξ)

2
]
= 0, (37)

and thus vTµ = vT µ̃.

Since the above holds for all v ∈ B, which is a set of full dimension, this implies that µ = µ̃.
Hence, EFSW(X,p;v, ξ) satisfies the dimension deficiency condition.

Lastly, note that dim
(
P≤n

(
Rd
))

= nd + n − 1 and dim
(
S≤n

(
Rd
))

= nd and thus for m ≥
2nd + 2n − 1 and m ≥ 2nd + 1 respectively, f qualifies for the Finite Witness Theorem on the
domain S≤n

(
Rd
)

and P≤n

(
Rd
)

respectively. This finalizes our proof.

Theorem 4.4. [Proof on Page 22] Let E : P≤n(Ω) → Rm, where n ≥ 2 and Ω ⊆ Rd has a
nonempty interior. Then for all p ∈ [1,∞], E is not bi-Lipschitz on P≤n(Ω) with respect to Wp.

Before proving the theorem, we note that it implies that most practical embeddings of P≤n(Ω) are
likely to fail in lower-Lipschitzness, since it is reasonable to expect most such embeddings to be
upper Lipschitz. This is formulated in the following corollary.

Corollary B.5. Under the above assumptions, if E : P≤n(Ω) → Rm is upper-Lipschitz with respect
to W1, then it is not lower-Lipschitz with respect to any Wp with p ∈ [1,∞].

Proof. If E is upper-Lipschitz w.r.t. W1, then by Theorem 4.4 it is not lower-Lipschitz w.r.t. W1.
Since Wp(µ, µ̃) ≥ W1(µ, µ̃) for any p ≥ 1, E is thus not lower-Lipschitz w.r.t. Wp.

Proof. Our proof of Theorem 4.4 consists of three steps. First, in Lemma B.6 below, we prove the
theorem for the special case that E is positively homogeneous and Ω is an open ball centered at
zero. Then, in Lemma B.7, we release the homogeneity assumption by considering a homogenized
version of E. Finally, we generalize to arbitrary Ω with a nonempty interior in a straightforward
manner.

Before we state and prove our results, we define the operation of scalar multiplication of distributions
in P≤n(Ω).

Definition. For µ =
∑n

i=1 wiδx(i) ∈ P≤n

(
Rd
)

and a scalar α ∈ R, we define the distribution
αµ ∈ P≤n

(
Rd
)

by

αµ :=

n∑
i=1

wiδαx(i) .

Let us begin with the special case of a positively homogeneous E.

Lemma B.6. Let E : P≤n(Ω) → Rm, with Ω ⊆ Rd being an open ball centered at zero, n ≥ 2
and m ≥ 1. Suppose that E is positively homogeneous, i.e. E(αµ) = αE(µ) for any µ ∈ P≤n(Ω),
α ≥ 0. Then for all p ∈ [0,∞], E is not bi-Lipschitz with respect to Wp.

Proof. Let {θt}∞t=1 be a sequence of real numbers such that

0 < θt+1 ≤ 1
2θt ≤ 1 ∀t ≥ 1. (38)

The set Ω contains a ball Br(0) by assumption. Choose x ̸= 0 in that ball. For θ ∈ [0, 1] we define

µ(θ) = (1− θ)δ0 + θδx.
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Note that for 1 ≤ p < ∞

Wp(µ(θt), δ0) = [θt∥x∥p]
1/p

=
p
√

θt∥x∥
This holds for p = ∞ too, if we denote p

√
θt = 1 in this case. Therefore, for all natural t,

E(µ(θt))− E(δ0)

Wp(µ(θt), δ0)
=

1

∥x∥
E(µ(θt))− E(δ0)

p
√
θt

=
1

∥x∥
E(µ(θt))

p
√
θt

, (39)

where for the last equality we used the homogeniety of E to show that E(δ0) = 0.

We can assume that E in upper-Lipschitz, since otherwise there is nothing to prove. Under this
assumption, the norm of the expression above is uniformly bounded from above for all natural t.
which implies that the exists a subsequence of θt for which this expression converges. Replacing θt
with this subsequence, we note that this subsequence still satisfies (38), and that for an appropriate
vector L,

lim
t→∞

E(µ(θt))
p
√
θt

= L

Now consider the sequence of distributions

µ̃t :=
p

√
θt

θt−1
µ(θt−1), t ≥ 2.

Since θt
θt−1

≤ 1
2 , and x is contained in a ball in Ω. the measure µ̃t is indeed in P≤n(Ω). We wish

to lower-bound the p-Wasserstein distance from µ(θt) to µ̃t for t ≥ 2. Note that both measures
split their mass between zero and an additional vector. The measure µ̃t assigns a mass of θt−1 to
the non-zero point p

√
θt

θt−1
x, whereas the other measure µ(θt) assigns a smaller mass of θt to a non-

zero point. Therefore a transporting µ̃t to µ(θt) requires transporting at least θt−1 − θt mass from
p

√
θt

θt−1
x to 0, so that for all 1 ≤ p < ∞

Wp
p (µ(θt), µ̃t) ≥ (θt−1 − θt)∥ p

√
θt

θt−1
x− 0∥p

= θt(1−
θt

θt−1
)∥x∥p

≥ 1

2
θt∥x∥p.

We obtained that
Wp(µ(θt), µ̃t) ≥

p
√

θt/2∥x∥ (40)

for p < ∞, and the same argument as above can be used to verify that this is the case for p = ∞ as
well. We deduce that

∥E(µ(θt))− E(µ̃t)∥
Wp(µ(θt), µ̃t)

(a)
≤

p

√
1
θt

∥∥∥E(µ(θt))− p

√
θt

θt−1
E(µ(θt−1))

∥∥∥
p
√
1/2∥x∥

=

∥∥∥ p

√
1
θt
E(µ(θt))− p

√
1

θt−1
E(µ(θt−1))

∥∥∥
p
√
1/2∥x∥

→ 0

where (a) is by (40) and the homogeniety of E, and the convergence to zero is because both ex-
pressions in the numerator converge to the same limit L. This shows that E is not lower-Lipschitz,
which concludes the proof of Lemma B.6.

The following lemma shows that the homogeneity assumption on E can be released.
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Lemma B.7. Let E : P≤n(Ω) → Rm, with Ω ⊆ Rd being an open ball centered at zero, n ≥ 2 and
m ≥ 1. Then for all p ∈ [1,∞], E is not bi-Lipschitz with respect to Wp.

Proof. Let p ∈ [1,∞] and suppose by contradiction that E is bi-Lipschitz with constants 0 < c ≤
C < ∞,

c · Wp(µ, µ̃) ≤ ∥E(µ)− E(µ̃)∥ ≤ C · Wp(µ, µ̃), ∀µ, µ̃ ∈ P≤n(Ω). (41)

We can assume without loss of generality that E(0) = 0, since otherwise let

Ẽ(µ) := E(µ)− E(0),

then E satisfies (41) if and only if Ẽ satisfies (41).

We first prove an auxiliary claim.

Claim. For any µ, µ̃ ∈ P≤n(Ω) with ∥µ∥Wp
= 1 and 0 < ∥µ̃∥Wp

≤ 1,∥∥∥∥∥E
(

µ̃

∥µ̃∥Wp

)
− E(µ̃)

∥∥∥∥∥ ≤ C ·
(
1− ∥µ̃∥Wp

)
≤ C · Wp(µ, µ̃). (42)

Proof. By (41), ∥∥∥∥∥E
(

µ̃

∥µ̃∥Wp

)
− E(µ̃)

∥∥∥∥∥ ≤ C · Wp

(
µ̃

∥µ̃∥Wp

, µ̃

)
.

We shall now show that

Wp

(
µ̃

∥µ̃∥Wp

, µ̃

)
≤ 1− ∥µ̃∥Wp

.

Let µ̃ =
∑n

i=1 piδx̃i
be a parametrization of µ̃. Consider the transport plan π = (πij)i,j∈[n] from µ̃

to µ̃
∥µ̃∥Wp

given by

πij =

{
pi i = j

0 i ̸= j.

By definition, Wp

(
µ̃

∥µ̃∥Wp

, µ̃

)
is smaller or equal to the cost of transporting µ̃ to µ̃

∥µ̃∥Wp

according

to π. Thus, for p < ∞,

Wp
p

(
µ̃

∥µ̃∥Wp

, µ̃

)
≤

n∑
i=1

pi

∥∥∥∥ 1
∥µ̃∥Wp

x̃i − x̃i

∥∥∥∥p =

n∑
i=1

pi

∥∥∥∥( 1
∥µ̃∥Wp

− 1

)
x̃i

∥∥∥∥p
=

(
1

∥µ̃∥Wp

− 1

)p n∑
i=1

pi∥x̃i∥p =

(
1

∥µ̃∥Wp

− 1

)p

∥µ̃∥pWp

=
(
1− ∥µ̃∥Wp

)p
,

and thus

Wp

(
µ̃

∥µ̃∥Wp

, µ̃

)
≤
(
1− ∥µ̃∥Wp

)
.

Both sides of the above inequality are continuous in p, including at the limit p → ∞. Thus, the
above inequality also holds for p = ∞. Now, to show that

1− ∥µ̃∥Wp
≤ Wp(µ, µ̃),

note that

1− ∥µ̃∥Wp
= ∥µ∥Wp

− ∥µ̃∥Wp
= Wp(µ, 0)−Wp(µ̃, 0) ≤ Wp(µ, µ̃),

where the last inequality is the reverse triangle inequality, since Wp( · , · ) is a metric. Thus, (42)
holds.
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Now we define the homogenized function Ê : P≤n(Ω) → Rm+1 byÊ(µ) :=

[
∥µ∥Wp

, ∥µ∥Wp
E

(
µ

∥µ∥Wp

)]
, µ ̸= 0

0 µ = 0.
(43)

Clearly Ê is positively homogeneous. By Lemma B.6, Ê it is not bi-Lipschitz with respect to Wp,
and thus there exist two sequences of distributions µt, µ̃t ∈ P≤n(Ω), t ≥ 1, such that∥∥∥Ê(µt)− Ê(µ̃t)

∥∥∥
Wp(µt, µ̃t)

−−−→
t→∞

L, (44)

with L = 0 or L = ∞. Since Ê is positively homogeneous, we can assume without loss of generality
that

1 = ∥µt∥Wp
≥ ∥µ̃t∥Wp

for all t ≥ 1.

This can be seen by dividing each µt and µ̃t by max
{
∥µt∥Wp

, ∥µ̃t∥Wp

}
and swapping µt and µ̃t

for all t for which ∥µt∥Wp
< ∥µ̃t∥Wp

.

If µ̃t = 0 for an infinite subset of indices t, then redefine µt and µ̃t to be the corresponding
subsequences with those indices, and now (44) reads as∥∥∥Ê(µt)− Ê(0)

∥∥∥
Wp(µt, 0)

=
∥E(µt)− E(0)∥

Wp(µt, 0)
−−−→
t→∞

L.

This contradicts the bi-Lipschitzness of E. Therefore, µ̃t = 0 at most at a finite subset of indices t.
By skipping those indices in µt and µ̃t, we can assume without loss of generality that

1 = ∥µt∥Wp
≥ ∥µ̃t∥Wp

> 0 for all t ≥ 1. (45)

Let us first handle the case L = ∞. The first component of Ê(µt)− Ê(µ̃t) is bounded by∣∣∣∥µt∥Wp
− ∥µ̃t∥Wp

∣∣∣ = 1− ∥µ̃t∥Wp
≤ Wp(µt, µ̃t)

according to (42). Therefore, by (44) combined with the fact that µ̃t > 0 ∀t, we must have that∥∥∥∥∥µt∥Wp
E

(
µt

∥µt∥Wp

)
− ∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥
Wp(µt, µ̃t)

−−−→
t→∞

∞. (46)

On the other hand,∥∥∥∥∥∥µt∥Wp
E

(
µt

∥µt∥Wp

)
− ∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥ (a)
=

∥∥∥∥∥E(µt)− ∥µ̃t∥Wp
E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥
(b)
≤ ∥E(µt)− E(µ̃t)∥+

∥∥∥∥∥E(µ̃t)− E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥+
∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− ∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥,
(47)

where (a) holds since ∥µt∥Wp
= 1 and (b) is by the triangle inequality. We shall now bound the

three above terms.

First,
∥E(µt)− E(µ̃t)∥ ≤ C · Wp(µt, µ̃t) (48)

by (41). Second, ∥∥∥∥∥E(µ̃t)− E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥ ≤ C · Wp(µt, µ̃t) (49)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

by (42). Lastly,∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− ∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥ =
(
1− ∥µ̃t∥Wp

)
·

∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− 0

∥∥∥∥∥
=
(
1− ∥µ̃t∥Wp

)
·

∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− E(0)

∥∥∥∥∥
(a)
≤
(
1− ∥µ̃t∥Wp

)
· C · Wp

(
µ̃t

∥µ̃t∥Wp

, 0

)

=
(
1− ∥µ̃t∥Wp

)
· C ·

∥∥∥∥∥ µ̃t

∥µ̃t∥Wp

∥∥∥∥∥
Wp

= C ·
(
1− ∥µ̃t∥Wp

) (b)
≤ C · Wp(µt, µ̃t),

(50)

where (a) is by (41) and (b) is by (42). Inserting (48)-(50) into (47) yields∥∥∥∥∥∥µt∥Wp
E

(
µt

∥µt∥Wp

)
− ∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥ ≤ 3C · Wp(µt, µ̃t),

which contradicts (46).

Let us now handle the case L = 0. For two sequences of numbers at, bt ∈ R, t ≥ 1, we say that

at = o(bt)

if
lim
t→∞

at
bt

= 0.

Denote
dt := Wp(µt, µ̃t).

According to (44) with L = 0, the first component of Ê(µt) − Ê(µ̃t), which equals ∥µt∥Wp
−

∥µ̃t∥Wp
, satisfies ∣∣∣∥µt∥Wp

− ∥µ̃t∥Wp

∣∣∣
Wp(µt, µ̃t)

−−−→
t→∞

0,

and thus
1− ∥µ̃t∥Wp

=
∣∣∣∥µt∥Wp

− ∥µ̃t∥Wp

∣∣∣ = o(dt). (51)

By the triangle inequality,

∥E(µt)− E(µ̃t)∥ ≤ (52)∥∥∥∥∥E(µt)− ∥µ̃t∥Wp
E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥+
∥∥∥∥∥∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)
− E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥+
∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− E(µ̃t)

∥∥∥∥∥.
(53)

We shall show that each of the three above terms is o(dt).

First, since ∥µt∥Wp
= 1,∥∥∥∥∥E(µt)− ∥µ̃t∥Wp
E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥ =

∥∥∥∥∥∥µt∥Wp
E

(
µt

∥µt∥Wp

)
− ∥µ̃t∥Wp

E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥
=
∥∥∥Ê(µt)− Ê(µ̃t)

∥∥∥, (54)
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which is o(dt) by (44). For the second term,∥∥∥∥∥∥µ̃t∥Wp
E

(
µ̃t

∥µ̃t∥Wp

)
− E

(
µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥
=
(
1− ∥µ̃t∥Wp

)
·

∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)∥∥∥∥∥
=
(
1− ∥µ̃t∥Wp

)
·

∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− 0

∥∥∥∥∥
(a)
≤
(
1− ∥µ̃t∥Wp

)
· C · W

(
µ̃t

∥µ̃t∥Wp

, 0

)

=
(
1− ∥µ̃t∥Wp

)
· C ·

∥∥∥∥∥ µ̃t

∥µ̃t∥Wp

∥∥∥∥∥
Wp

=
(
1− ∥µ̃t∥Wp

)
C

(b)
= o(dt),

(55)

where (a) is by (41) and (b) is by (51).

Finally, by (42), ∥∥∥∥∥E
(

µ̃t

∥µ̃t∥Wp

)
− E(µ̃t)

∥∥∥∥∥ ≤ C ·
(
1− ∥µ̃t∥Wp

)
= o(dt). (56)

Therefore, by (54)-(56) and (52), we have that

∥E(µt)− E(µ̃t)∥ = o(dt),

and thus E is not lower-Lipschitz. This concludes the proof of Lemma B.7.

To finish the proof of Theorem 4.4, suppose that Ω ⊆ Rd is an arbitrary set with a nonempty interior.
Let Ω0 ⊆ Ω be an open ball contained in Ω, and let x0 be the center of Ω0. Then Ω0−x0 is an open
ball centered at zero.

Given E : P≤n(Ω) → Rm with n ≥ 2, define Ẽ : P≤n(Ω0 − x0) → Rm by

Ẽ(µ) := E(µ+ x0).

Then Ẽ satisfies the assumptions of Lemma B.7, and thus there exist two sequences of distributions
µt, µ̃t ∈ P≤n(Ω0 − x0), t ≥ 1 such that∥∥∥Ẽ(µt)− Ẽ(µ̃t)

∥∥∥
Wp(µt, µ̃1)

−−−→
t→∞

L,

with L = 0 or L = ∞. Note that the sequences {µt + x0}t≥1 and {µ̃t + x0}t≥1 are in P≤n(Ω0)

and thus in P≤n(Ω). Since

Wp(µt + x0, µ̃1 + x0) = Wp(µt, µ̃1),

we have that
∥E(µt + x0)− E(µ̃t + x0)∥

Wp(µt + x0, µ̃1 + x0)
=

∥E(µt + x0)− E(µ̃t + x0)∥
Wp(µt, µ̃1)

=

∥∥∥Ẽ(µt)− Ẽ(µ̃t)
∥∥∥

Wp(µt, µ̃1)
−−−→
t→∞

L,

which implies that E is not bi-Lipschitz on P≤n(Ω0), and thus not on P≤n(Ω).
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Theorem 4.2. [Proof in Page 28] Let E : P≤n

(
Rd
)
→ Rm be injective and positively homoge-

neous. Let ∆n be the probability simplex in Rn. Suppose that the function E(X,w) : Rd×n×∆n →
Rm is piecewise linear in X for any fixed w. Then for any fixed w, w̃ ∈ ∆n, there exist constants
c, C > 0 such that for all X, X̃ ∈ Rd×n and p ∈ [1,∞],

c · Wp

(
(X,w),

(
X̃, w̃

))
≤
∥∥∥E(X,w)− E

(
X̃, w̃

)∥∥∥ ≤ C · Wp

(
(X,w),

(
X̃, w̃

))
. (12)

Proof. The proof is outlined as follows: First we show that there exist constants c̃, C̃ > 0 for which
(12) holds in the special case p = 1. Then we show that for any fixed p, q ∈ ∆n there exists a
constant β > 0 such that for all X,Y ∈ Rd×n,

W1((X,p), (Y , q)) ≥ β · W∞((X,p), (Y , q)). (57)

This will imply that for the given pair p, q, (12) holds with the constants c = βc̃ and C = C̃ for all
p ∈ [1,∞], since

W1((X,p), (Y , q)) ≤ Wp((X,p), (Y , q)) ≤ W∞((X,p), (Y , q)).

Let us begin by proving that (12) holds for p = 1. The 1-Wasserstein distance between two distri-
butions parametrized by (X,p) and (Y , q) can be expressed by

W1((X,p), (Y , q)) = min
π∈Π(p,q)

∑
i,j∈[n]

πij

∥∥∥x(i) − y(j)
∥∥∥, (58)

where the set Π(p, q) of admissible transport plans from (X,p) to (Y , q) is given by

Π(p, q) =

π ∈ [0, 1]
n×n

∣∣∣∣∣∣ ∀i ∈ [n]

n∑
j=1

πij = pi
∧

∀j ∈ [n]

n∑
i=1

πij = qj

.

In particular, Π(p, q) depends only on p and q and not on the points X,Y .

Let W̃1 be a modified 1-Wasserstein distance that uses the ℓ1-norm rather than ℓ2 as its basic cost
function:

W̃1((X,p), (Y , q)) := min
π∈Π(p,q)

∑
i,j∈[n]

πij

∥∥∥x(i) − y(j)
∥∥∥
1
. (59)

Note that since
∥x∥2 ≤ ∥x∥1 ≤

√
d∥x∥2 ∀x ∈ Rd, (60)

we have

W1((X,p), (Y , q)) ≤ W̃1((X,p), (Y , q)) ≤
√
d · W1((X,p), (Y , q)). (61)

Let f : Rd×n × Rd×n → R2 be the function given by

f(X,Y ) :=

[
∥E(X,p)− E(Y , q)∥1
W̃1((X,p), (Y , q))

]
.

To achieve the desired result, we first show that f is piecewise linear in (X,Y ). The first
component of f , ∥E(X,p)− E(Y , q)∥1, is clearly piecewise linear, as it is the composition of
the ℓ1-norm with a piecewise-linear function. We shall now show that the second component
W̃1((X,p), (Y , q)) is also piecewise linear. For any fixed X and Y , the optimization problem in
(59) is a linear program in π, with the set of feasible solutions being the compact polytope Π(p, q)3.
Thus, the optimal solution must be attained at one of the vertices of Π(p, q). As any polytope has a
finite number of vertices4, let π(1), . . . , π(K) be the vertices of Π(p, q), and recall that these vertices
do not depend on (X,Y ). Therefore, (59) can be reformulated as

W̃1((X,p), (Y , q)) = min
k∈[K]

∑
i,j∈[n]

π
(k)
ij

∥∥∥x(i) − y(j)
∥∥∥
1
. (62)

3Here we denote by polytope any finite intersection of closed half-spaces.
4See (Grünbaum, 2003), Theorem 3, page 32, and the definition of polyhedral sets on page 26 therein.
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From (62) it can be seen that W̃1((X,p), (Y , q)) is piecewise linear in (X,Y ), as it is the mini-
mum of a finite number of piecewise-linear functions. Since the concatenation of piecewise-linear
functions is also piecewise linear, we have that f(X,Y ) is piecewise linear.

Now, let A ⊆ R2 be the image of f :

A :=
{
f(X,Y )

∣∣ X,Y ∈ Rd×n
}
.

Since f is piecewise linear, it maps the space Rd×n × Rd×n to a finite union of closed polytopes
(some of which may be unbounded). Hence, A is a finite union of closed sets, and thus is closed.

Now we show that the points (0, 1) and (1, 0) do not belong to A. If (0, 1) ∈ A, then there
exist X,Y such that E(X,p) = E(Y , q) and W̃1((X,p), (Y , q)) = 1, which contradicts
the injectivity of E. Similarly, if (1, 0) ∈ A, then there exist X,Y such that on one hand
W̃1((X,p), (Y , q)) = 0, which implies that (X,p) and (Y , q) represent the same distribution,
but on the other hand E(X,p) ̸= E(Y , q). This contradicts the assumption that E depends only
on the input distribution and not on its particular representation.

Let α be the ℓ2-distance between the compact set {(0, 1), (1, 0)} and the closed set A. As the
distance between a compact and a closed set is always attained, we have that α > 0, otherwise,
{(0, 1), (1, 0)} and A would intersect.

Now, let X,Y ∈ Rd×n such that W1((X,p), (Y , q)) > 0. Then by (61), W̃1((X,p), (Y , q)) >
0. Denote

ν :=
[
W̃1((X,p), (Y , q))

]−1

.

Then

W̃1((νX,p), (νY , q)) = 1,

and since E and W̃1 are homogeneous, we have

∥E(X,p)− E(Y , q)∥1
W̃1((X,p), (Y , q))

=
∥E(νX,p)− E(νY , q)∥1
W̃1((νX,p), (νY , q))

= ∥E(νX,p)− E(νY , q)∥1

=

∥∥∥∥[∥E(νX,p)− E(νY , q)∥1
1

]
−
[
0
1

]∥∥∥∥
2

=

∥∥∥∥[∥E(νX,p)− E(νY , q)∥1
W̃1((νX,p), (νY , q))

]
−
[
0
1

]∥∥∥∥
2

=

∥∥∥∥f(νX, νY )−
[
0
1

]∥∥∥∥
2

≥ dist(A, {(0, 1), (1, 0)}) = α.

(63)

Therefore,

∥E(X,p)− E(Y , q)∥2
W1((X,p), (Y , q))

(a)
≥ 1√

m

∥E(X,p)− E(Y , q)∥1
W1((X,p), (Y , q))

(b)
≥ 1√

m

∥E(X,p)− E(Y , q)∥1
W̃1((X,p), (Y , q))

≥ α√
m
,

(64)

where (a) is by the ℓ1 − ℓ2 norm inequality over Rm, (b) is by (61), and (c) is by (63).

We now prove a converse bound using a similar argument. Since W1((X,p), (Y , q)) > 0 and E is
injective, E(X,p) ̸= E(Y , q). Redefine ν to be

ν := ∥E(X,p)− E(Y , q)∥−1
1 .

Since E is homogeneous,

∥E(νX,p)− E(νY , q)∥1 = 1
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and thus

W̃1((X,p), (Y , q))

∥E(X,p)− E(Y , q)∥1
=

W̃1((νX,p), (νY , q))

∥E(νX,p)− E(νY , q)∥1
= W̃1((νX,p), (νY , q))

=

∥∥∥∥[ 1

W̃1((νX,p), (νY , q))

]
−
[
1
0

]∥∥∥∥
2

=

∥∥∥∥[∥E(νX,p)− E(νY , q)∥1
W̃1((νX,p), (νY , q))

]
−
[
1
0

]∥∥∥∥
2

=

∥∥∥∥f(νX, νY )−
[
1
0

]∥∥∥∥
2

≥ dist(A, {(0, 1), (1, 0)}) = α.

(65)

Therefore,

∥E(X,p)− E(Y , q)∥2
W1((X,p), (Y , q))

(a)
≤

∥E(X,p)− E(Y , q)∥1
W1((X,p), (Y , q))

(b)
≤

√
d
∥E(X,p)− E(Y , q)∥1
W̃1((X,p), (Y , q))

(c)
≤

√
d

α ,

(66)

where (a) is since ∥ · ∥2 ≤ ∥ · ∥1, (b) is by (61), and (c) is by (65). Hence, from (64) and (66), we
have

α√
m

≤
∥E(X,p)− E(Y , q)∥2
W1((X,p), (Y , q))

≤
√
d

α . (67)

Thus, (12) holds for the case p = 1 with the constants c = α√
m

, C =
√
d

α .

To finish the proof, it is left to show that (57) holds with some constant β > 0 assuming that p and
q are constant. To this end, define the sets Ik ⊆ [n]

2 for k ∈ [K],

Ik :=
{
(i, j) ∈ [n]

2
∣∣∣ π(k)

ij > 0
}
,

and let
δk := min

(i,j)∈Ik
π
(k)
ij , k ∈ [K].

By definition, δk > 0 for all k ∈ [K]. Let

δmin := min
k∈[K]

δk > 0.

Therefore,
√
d · W1((X,p), (Y , q))

(a)
≥ W̃1((X,p), (Y , q))

(b)
= min

k∈[K]

∑
i,j∈[n]

π
(k)
ij

∥∥∥x(i) − y(j)
∥∥∥
1

(c)
≥ min

k∈[K]

∑
i,j∈[n]

π
(k)
ij

∥∥∥x(i) − y(j)
∥∥∥
2

(d)
= min

k∈[K]

∑
(i,j)∈Ik

π
(k)
ij

∥∥∥x(i) − y(j)
∥∥∥
2

(e)
≥ min

k∈[K]

∑
(i,j)∈Ik

δk

∥∥∥x(i) − y(j)
∥∥∥
2

(f)
≥ min

k∈[K]

∑
(i,j)∈Ik

δ
∥∥∥x(i) − y(j)

∥∥∥
2
≥ min

k∈[K]
max

(i,j)∈Ik
δ
∥∥∥x(i) − y(j)

∥∥∥
2

(g)
= δ · min

k∈[K]
max

{∥∥∥x(i) − y(j)
∥∥∥
2

∣∣∣ ij ∈ [n], π
(k)
ij > 0

}
(h)
= δ · min

π∈{π(k)}[K]

k=1

max
{∥∥∥x(i) − y(j)

∥∥∥
2

∣∣∣ ij ∈ [n], πij > 0
}

(i)
≥ δ · min

π∈Π(p,q)
max

{∥∥∥x(i) − y(j)
∥∥∥
2

∣∣∣ ij ∈ [n], πij > 0
}

(j)
= δ · W∞((X,p), (Y , q)).
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where (a) is by (61); (b) is by (62); (c) is since ∥ · ∥1 ≥ ∥ · ∥2; (d) is since π
(k)
ij = 0 whenever

(i, j) /∈ Ik; (e) and (f) are by the definition of δk and δ respectively; (g) is by the definition of Ik; (h)

is a simple reformulation; (i) is since the minimum is taken over a larger set Π(p, q) ⊇
{
π(k)

}[K]

k=1
;

and (j) is by the definition of W∞. Hence, (57) holds with β = δ√
d

and the theorem is proven.

C EXPERIMENT DETAILS

Hardware All experiments were conducted on a single NVidia A40 GPU.

C.1 EMPIRICAL DISTORTION EVALUATION

In some instances during this experiment, particularly with high embedding dimensions m or a large
number of points n, the PSWE method failed due to insufficient memory. To mitigate this issue, we
computed the PSWE embeddings for each input multiset sequentially rather than processing them in
batches. This approach resolved most cases, although memory limitations persisted in the instances
marked as OOM in Table 1.

In the particularly challenging case of n = 2047 with m = 200 or 1000 (right-hand half of the
top row in Table 1), applying our method to entire batches also resulted in insufficient memory.
We resolved this by using our implementation’s support for processing slices sequentially instead
of in parallel, thereby parallelizing over the embedding dimension m rather than the batch size of
6000. This adjustment allowed us to complete all test cases without the need for sequential batch
processing.

Due to the different parallelization strategies, a fair comparison of computation times between the
two methods in this experiment is not possible.

C.2 LEARNING TO APPROXIMATE THE 1-WASSERSTEIN DISTANCE

In this experiment we used embedding dimensions m1 = m2 = 1000. The MLP consisted of
three layers with a hidden dimension of 1000. With this choice of hyperparameters, our model has
roughly 3million learnable parameters and 5million parameters in total. These hyperparameters
were picked manually. The performance of our architecture did not exhibit high sensitivity to the
choice of hyperparameters: on most datasets, similar results were obtained with MLPs consisting of
2 to 8 layers, and with hidden dimensions of 500, 1000, 2000 and 4000.

We used fixed parameters for the first embedding E1 and learnable parameters for the second em-
bedding E2. This choice was made since E1 is, in most cases, supposed to handle arbitrary input
point clouds, whereas the input to E2 is more specific, in that it is always a set of two vectors that
are outputs of E1. Thus, in principle the architecture may benefit from tuning E2 to its particular
input structure. In practice, using fixed parameters in both embeddings did not significantly impair
performance.

Remarkably, applying an MLP to the input points prior to embedding them via E1 (i.e. adding a
feature transform), as well as applying an MLP to the two outputs of E1 prior to embedding them via
E2, impaired rather than improved the performance. This indicates that our embedding is expressive
enough to encode all the required information from the input multisets in a way that facilitates
processing by the MLP Φ, thus making additional processing at intermediate steps unnecessary.

Inference times for one pair of multisets were less than half a second for the ModelNet-large
dataset, and less than 0.2 seconds for the rest of the datasets. The training times of the competing
models appear in Table 3.

Training was performed on an NVidia A40 GPU, whereas the rest of the methods were trained over
an NVidia RTX A6000 GPU, both of which have similar performance on 32-bit floating point (37.4
and 38.7 TFLOPS).

Exact computation of the 1-Wasserstein distance using the ot.emd2() function of the Python
Optimal Transport package (Flamary et al., 2021) was up to 2.5 times slower than our method (2 to
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5 ms vs 1.9 ms) on small multisets (less than 300 elements) and 150 times slower (640 ms vs 4.2 ms)
on large multisets (ModelNet-large).
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