
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SHORTCUTSBENCH: A LARGE-SCALE REAL-WORLD
BENCHMARK FOR API-BASED AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in integrating large language models (LLMs) with appli-
cation programming interfaces (APIs) have gained significant interest in both
academia and industry. Recent work demonstrates that these API-based agents
exhibit relatively strong autonomy and planning capabilities. However, their ability
to handle multi-dimensional difficulty levels, diverse task types, and real-world
demands remains unknown. In this paper, we introduce SHORTCUTSBENCH,
a large-scale benchmark for the comprehensive evaluation of API-based agents
in solving real-world complex tasks. SHORTCUTSBENCH includes a wealth of
real APIs from Apple Inc., refined user queries, human-annotated high-quality
action sequences, detailed parameter filling values, and parameters requesting
necessary input from the system or user. We revealed how existing bench-
marks / datasets struggle to accommodate the advanced reasoning capabilities
of existing more intelligent LLMs. Moreover, our extensive evaluation of agents
built with 5 leading open-source (size ≥ 57B) and 5 closed-source LLMs (e.g.
Gemini-1.5-Pro and GPT-4o-mini) with varying intelligence level reveals signif-
icant limitations of existing API-based agents in the whole process of handling
complex queries related to API selection, parameter filling, and requesting nec-
essary input from the system and the user. These findings highlight the great
challenges that API-based agents face in effectively fulfilling real and complex
user queries. All datasets, code, experimental logs, and results are available at
https://anonymous.4open.science/r/ShortcutsBench .

1 INTRODUCTION

Table 1: Less intelligent LLMs (even 3B) on exist-
ing benchmarks / dataset demonstrated excellent
results with the same prompt in Section 4.1.

Acc. (%) MetaToolToolLLMToolBench
2024b 2024 2024

LLaMA-3.2-3B 89.64 72.92 79.47
QWen-2.5-3B 88.29 77.86 91.35
LLaMA-3-8B 89.00 78.31 93.57
QWen-2.5-7B 92.50 82.69 94.26
GPT-4o-mini 88.31 84.50 89.90

Large language model based agents (LLM-
based agents) (Wang et al., 2024b; Xi et al.,
2023) built on application programming inter-
faces (APIs) have gained significant interest in
academia and industry. By integrating LLM
with APIs, LLMs can access real-time infor-
mation (Qin et al., 2024), reduce hallucination
with external knowledge (Gao et al., 2024),
as well as plan and complete complex tasks
that need multi-step actions (Gravitas, 2024).
Many of these agents (OpenAI, 2024a) have al-
ready demonstrated commendable performance
on simple tasks involving only a few actions
such as “Check the weather ① and tell me ②”. This impressive performance raises an important
question: Are these API-based agents truly capable of generating action sequences for real and
complex demands?

Some existing benchmarks / datasets1 have attempted to evaluate API-based agents. However, they
have three limitations (please refer to Table 2 for all details): First, the APIs (a.k.a tools available to
the agent) lack richness, and the queries (a.k.a the task to the agent) lack complexity. They either
involve a limited number of APIs, cover small numbers of apps (an app may have ≥ 1 APIs), or the

1We refer to the evaluation-specific datasets as "benchmarks" and fine-tuning datasets as "datasets".

1

https://anonymous.4open.science/r/ShortcutsBench

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

difficulties of the queries are limited in a narrow range, with the average action length ranges from 1 to
5.9. This lack of richness and complexity makes it difficult to effectively distinguish the capabilities
of different agents, even on less intelligent LLMs like QWen-2.5-3B (Alibaba, 2024), let alone
more intelligent LLMs like Gemini-1.5-Pro (Google, 2024). Our evaluation on API selection of
these less intelligent LLMs on 3 representative2 benchmarks / datasets (Table 1) shows that even
3B LLMs can achieve impressive results. There is almost no difference in accuracy across LLMs
of varying intelligence levels. Therefore, existing benchmarks / datasets struggle to accommodate
more intelligent LLMs and to differentiate the intelligence levels among various LLMs. Second,
the APIs lack realism as they may be manually crafted, and the queries fail to reflect actual user
demands since they may be either created by hand or generated directly by LLMs without verifying
real user demands. Moreover, they only cover the evaluation of API selection, lacking a study on API
parameter filling. Efficient and accurate parameter filling is essential for an agent to finish the whole
process of completing queriess Third, they don’t adequately evaluate the agent’s ability to request
systems or the users for the necessary input to resolve the missing information for solving the queries.
This is crucial as a user’s query may be implicit or may not provide all the input an agent needs to
solve the task effectively.

In this paper, we innovatively propose to use data extracted from existing Digital Automation
Platforms (DAPs), Apple Shortcuts, to construct a high-quality benchmark for API-based agents, i.e.,
SHORTCUTSBENCH. To the best of our knowledge, SHORTCUTSBENCH is the first large-scale real
API-based agent benchmark considering APIs, queries, and action sequences. SHORTCUTSBENCH
provides rich and real APIs, queries with various difficulties and task types, high-quality human-
annotated action sequences, and queries from real user demands. Moreover, it also provides precise
values for parameter filling, including primitive data types, enum types, and the use of output
from previous actions for parameter values, as well as evaluations of the agent’s awareness in
requesting necessary input from the system or user. Furthermore, the scale of APIs, queries, and the
corresponding action sequences is comparable or even better to benchmarks / datasets created by
LLM or modified by existing datasets. The overall comparison between SHORTCUTSBENCH and
existing benchmarks / datasets is listed in Table 2.

To demonstrate SHORTCUTSBENCH’s advantages, we do extensive evaluations of API-based agents
from 10 leading open-source and close-source LLMs, covering varying intelligence levels. To our
best known, this is the most comprehensive evaluation considering the API selection, parameter value
filling, and recognition of the need for input from the system or the user, covering all key processes
of API-based agent. The evaluation results highlight great limitations of existing API-based agents.

In summary, this paper makes the following key contributions:

• We identified problems of the existing benchmarks / datasets, specifically that they struggle to
accommodate the advanced reasoning capabilities of existing more intelligent LLMs, and have
conducted experiments to validate the problem.

• We innovatively extracted data from Shortcuts, to build a high-quality benchmark for API-based
agents. To our best knowledge, SHORTCUTSBENCH is the most realistic, rich, comprehensive,
and large-scale benchmark for API-based agents. We hope this approach to dataset construction
will inspire more researchers.

• We made efforts to evaluate 10 advanced LLM-based agents with varying intelligence levels on
the whole process required to complete user queries, including API selection, parameter filling,
and their awareness of requesting necessary input from the system or user.

• We obtained massive interesting conclusions such as (1) Open-source LLM agents now match
closed-source ones on simpler tasks but still lag behind on complex ones; (2) Extracting necessary
parameters from queries is the most challenging task in parameter filling; (3) There is a substantial
lack of awareness in agents when it comes to requesting the necessary input;

• We have fully open-sourced all the datasets, code, experimental logs, and results, and provided
detailed documents. We hope our research opens new directions for the real-world deployment of
existing LLM-based agents.

2MetaTool uses the native GPT API, while ToolBench and ToolLLM have the longest average action length
and the largest scale with real-world API, respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 2: SHORTCUTSBENCH has a great advantage in the ①realness and richness, ②the complexity
of APIs, queries, and corresponding action sequences, ③the validity of action sequences, ④detailed
parameter value filling, ⑤the awareness for asking necessary input, and ⑥the overall scale.

Resource
Shortcuts

Bench
Meta
Tool

Tool
LLM

API
Bench

Tool
Alpaca

API
Bank

Tool
Bench

Tool
QA

Tool
Lens

(Ours) 2024b 2024 2024 2023 2023 2024 2024 2024

Real API? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Demand-driven Query? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Human-Annotated Act.? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Multi-APIs Query? ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓
Multi-Step Act.? ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Prec. Val. for Para. Fill? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Awareness for Ask Info? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Apps 88 N/A 3451 3 N/A N/A 8 N/A N/A
APIs 1414 390 16464 1645 53 400 232 13 464
Queries 7627 21112 12657 17002 3938 274 2726 1530 18770
Avg APIs 9.62 1.02 2.3 1.0 1.0 2.1 5.4 3.5* 2.65
Avg Actions 21.62 1.02 4.0 1.0 1.0 2.2 5.9 3.9* 2.67

* denotes estimation.

2 RELATED WORK

API-based agents. API-based agents treat APIs as tools. They accept queries, generate action
sequences based on queries and provided APIs, and generate next action depends on the history
actions (Wang et al., 2024b; Yao et al., 2023). Related work about API-based agents can generally
be categorized into 3 types: (1) Task-specific enhancement focuses on improving the agent’s ability
like using the model (Shen et al., 2024; Zhong et al., 2024). (2) Data-driven workflows emphasize
the importance of data by researching how to construct action sequences, enabling generated data to
fine-tune the model (Qin et al., 2024; Patil et al., 2024). (3) Agent evaluation studies the assessment
of agents (Huang et al., 2024b; Li et al., 2023).

Code-based agents. Code-based agents use code generated for interaction with the external envi-
ronment. They accept queries, generate scripts in programming languages such as Python (OpenAI,
2024b; Wang et al., 2024c), JavaScript (Wang et al., 2024a; Zheng et al., 2023), or Shell (OpenIn-
terpreter, 2024; Sladić et al., 2024), and then input the code into interpreters. The execution results
are then returned to the agent, which is used to help determine the next code generation. Currently,
these approaches primarily focus on enhancing agent performance in specific tasks by incorporating
additional knowledge (Wang et al., 2024a; Wu et al., 2023), increasing feedback (OpenInterpreter,
2024; Huang et al., 2024a), and decomposing tasks (Huang et al., 2023; Prasad et al., 2024). In
addition to work on optimization methods, numerous efforts have emerged to evaluate code-based
agents (Trivedi et al., 2024; Liu et al., 2024)

Digital Automation Platforms (DAPs). DAPs (Abdou et al., 2021) refer to software tools or
services designed to optimize workflows through automation. DAPs leverage technologies such as
robotic process automation (RPA) (Chakraborti et al., 2020) and low-code / no-code development
tools to achieve the goals. DAPs like Zapier (Zapier, 2024), Make (Make, 2024), and IFTTT (Rahmati
et al., 2017) offer extensive APIs that enable users to create automated workflows. Similarly, DAPs
such as Microsoft Power Automate (Microsoft, 2024) and Tasker (Dias, 2024) are primarily used
to build workflows on Azure and Android, respectively. Recently, with the rise of LLM-based
agents, platforms like Coze (Coze, 2024) and Dify (Dify, 2024) have emerged as “agent construction
platforms”. Functionality like “workflow” in these platforms can also help manually build workflows,
but they have been specifically optimized for integration with LLMs.

Shortcuts app (formerly Workflow) (Apple, 2024) is an app developed by Apple for building workflows
through a graphical interface, available on Apple’s operating systems (iOS / iPadOS and macOS).
Shortcuts app can be seen as the DAP of Apple. It allows users to create workflows (known as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

shortcuts (Apple, 2024c)) that execute specific tasks on their devices and share them online via iCloud
link (Apple, 2024b). Users can also download curated shortcuts from the Gallery of the Shortcuts
app. However, the shortcuts available in the Gallery are very limited, with only a few dozen options.
To access more shortcuts, users must either collect them from third-party sharing sites like Shortcuts
Gallery (Gallery, 2024) or create their own. Shortcuts can be triggered through the Shortcuts app,
widgets, the share sheet, old Siri (Apple, 2024a), new Siri of Apple Intelligence (Apple, 2024b), and
they can also be automated to run upon specific events.

Shortcuts are composed of multiple API calls (actions). An agent can use the shortcut as a whole API
or utilize the individual APIs involved in the shortcut. This paper treats APIs within the shortcuts as
APIs available to the agent, aiming for the agent to automatically construct workflows of API calls.

3 DATASET

In this Section, we first introduce the acquisition of the dataset (Section 3.1). Then, we outline the
SHORTCUTSBENCH’s construction process (Section 3.2). Finally, we outline the setup for evaluation
tasks to evaluate the agent’s ability to handle tasks of varying difficulty, including the ability to select
suitable APIs (Section 3.3.1), the ability to do parameter filling (Section 3.3.2), and the awareness in
requesting additional input from the system or user (Section 3.3.3).

3.1 DATASET ACQUISITION

Figure 1: (a) illustrates the data acquisition process.
(b) shows the dataset acquisition of existing work.
APIs in existing work are collected from API hubs,
created by hand, or modified from existing datasets.
The queries and action sequences are constructed
using templates or semi / fully automated methods.

Figure 1 shows the data acquisition process. We
first use search engines to identify popular pub-
lic shortcut-sharing sites ①. We totally find 14
sites (Table 5). Then we crawled these sites to
obtain fields such as “shortcut name”, “function
description”, “shortcut type”, and “iCloud link”
②. Then we downloaded the shortcut source file
by “iCloud link” and then perform deduplicating
based on iCloud link itself and the actual short-
cut content (i.e., the action sequences) ③. Sub-
sequently, we extracted “app name” using the
field WFWorkflowActionIdentifier in
the shortcut source file, and then downloaded
associated apps ④. These apps may come
from various sources. (1) apps from the ma-
cOS or iOS App Store, (2) apps like Keynote
from path /Applications/ and /System
/Application/ on macOS, (3) third-party
apps from the the official website of the app.
During the downloading, we also excluded some
legacy apps and paid apps.

Then we managed to extract APIs from the downloaded apps ⑤. The APIs are mainly from intent
definition file ${filename}.actionsdata from AppIntent (Apple-Inc., 2024b) framework and
${filename}.intentdefinition from SiriKit (Apple-Inc., 2024c) framework. We extracted
all APIs involved in the apps. During the extraction, we perform deduplication of APIs based on
manually crafted rules as an app may have multiple duplicate API definition files with the same API
definition. This process also involves significant manual filtering. Additionally, for app Shortcuts,
which are deeply integrated with Apple’s operating system, we need to obtain their API defini-
tion files WFActions.json from system path /System/Library/PrivateFrameworks/
WorkflowKit.framework/ on macOS, instead of extracting it from the app itself. Subsequently,
we further filtered the shortcuts ⑥ based on criteria such as whether the associated apps is paid app,
whether the apps were outdated, and whether the APIs were deprecated. Additionally, we imported
all shortcuts into the macOS Shortcuts app to ensure they were functional. Finally, as shown in
Table 2, we get 88 apps from various categories such as “Health & Fitness” and “Developer Tools”.
We finally get 1414 APIs involved in 7627 shortcuts.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a. API Information
(1) com.openai.chat.AskIntent (prompt: String, newChat: Boolean, model: ModelEntity, continuous: Boolean) -> Ask
ChatGPT: String

(2) Parameters [parameter name (default value): title. parameterDescription]:
 (2.1) prompt: Message. Message to send to ChatGPT
 (2.2) newChat (0): Start new chat. Indicates whether a new chat should be started
 (2.3) model (default): Model. Model to use with the new chat
 (2.4) continuous (0): Continuous chat. Whether to enable back-and-forth chat or complete the Shortcut immediately after
response

(3) Return Value [return value name: resultValueName. displayTypeName]:
 (3.1) Ask ChatGPT: None

(4) Description [title + description + actionSummary]:
 (4.1) title: Ask ChatGPT
 (4.2) description: This action will send a single message to a chat with ChatGPT and return the response.
 (4.3) actionSummary: Ask ChatGPT ${prompt} in a new chat

b. Generating User Queries using Info from (c), (d), (e)
(5) As a user-friendly and patient inquirer, you need to craft a query based on the provided shortcut

(6) APIs: Related API and corresponding Parameters and Return Value: ...
(7) NLP descriptions to developers:
 Ask ChatGPT $Message$ in a new chat. Start new chat: true, Model: default, Continuous chat: true, Show When Run: true
 If $Ask ChatGPT$ $does not have any value$:
 Open $ChatGPT$
NameInStore: Ask ChatGPT; DescriptionInStore: Chat with ChatGPT.

......
DescriptionInStore: Chat with ChatGPT.

NameInStore: Ask ChatGPT.

d. Funcs of APIc. NLP desc to devs

e. Descs from Sharing-site

Figure 2: The construction of SHORTCUTSBENCH. (a) shows the information of API com.openai.
chat.AskIntent extracted from the app ChatGPT’s ${filename}.actionsdata. We
provide this API description to the LLM, expecting it to call the API at the appropriate time. The API
information shown in (a) includes the API functionality description (a.k. (a.1)~(a.4)) as shown in (d),
and the user-friendly natural language description of the API (a.k. (a.4.3)) seen by shortcut developers
during programming, as shown in (c). (e) presents the shortcut name and functionality description
from the shortcut sharing-sites. (b) shows the simplified prompt fed to GPT-4o, instructing it to
generating queries based on demands indicated by shortcuts by integrating the info from (c), (d), and
(e). Different colors indicate different information sources.

As the acquisition process involves specific knowledge about shortcut-sharing sites and Apple’s
operating system, detailed explanations are omitted here due to space constraints. For more details
about the whole acquisition process, please refer to Appendix A.1.

3.2 DATASET CONSTRUCTION

As shown in Figure 2, existing benchmarks / datasets consist of two parts: (1) APIs; (2) queries and
corresponding action sequences.

APIs (Figure 2.a) include the “API description” (a.4), “API name” (a.1), “parameter names” (a.2),
“parameter types” (a.1), “default value” (a.2), “return value type” (a.3), and “return value name” (a.3).
The field names in square brackets [] represent the original field name in the shortcut source file. For
more details about ${filename}.actionsdata, ${filename}.intentdefinition,
and WFActions.json, please refer to the Appendix A.2. In existing benchmarks / datasets,
the “parameter types” and “return value types” are composed of primitive data types such as int
and string. In addition to primitive data types, APIs in SHORTCUTSBENCH also include “enum”
or “advanced data types”. Enum is composed of “the class name” and “the possible value”, with each
value equipping a “value name”. We also provide the agent with a description of the “enum” in the
API information. Advanced data types, such as the model (a.1), include three String types named
identifier, title, and subtitle. We can comprehend them through their “type name” and
“type description”.

Query and action sequence. A query is a user command, such as “Tell me what the weather will
be like tomorrow.” The action sequence (aka. shortcut) is the series of API calls to complete the
query, with each API call referred to as an action. The action sequence identifies the steps needed to
complete a query. As shown in Figure 1.b, existing benchmarks / datasets collect APIs first and then
use them, either fully automatically or semi-automatically, to construct query and action sequences
through LLMs. In contrast, action sequences in SHORTCUTSBENCH are all human-annotated. The
shortcut developers are our annotators. APIs in SHORTCUTSBENCH are also all real-world. Moreover,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we ensured the quality of action sequences by filtering shortcuts based on criteria such as whether the
associated apps were paid, outdated, or relied on deprecated APIs. We also imported all shortcuts
into the macOS Shortcuts app to verify their functionality.

Generating queries. As shown in Figure 1, existing works construct query and action sequences
based on available APIs. In contrast, we construct queries based on existing action sequences and
APIs. When constructing a query for a specific action sequence, we need to understand the functional
description of the action sequence (Figure 2.e) and detailed information about the involved APIs
(Figure 2.a). With this information, we can generate higher-quality queries. To ensure the quality
of the generated queries, we also leverage the unique advantage of shortcuts: the natural language
workflow descriptions (Figure 2.b.7 / Figure 2.c). By inputting these intuitive natural language
descriptions into an LLM, we can generate more accurate queries. When generating queries, we also
require the model to naturally include primitive data type parameters and enum data type needed
for API calls in generated queries. This helps us evaluate the agent’s ability to fill in primitive
parameters in Section 3.3.2. To ensure the quality of generated queries, we use the state-of-the-art
LLM, GPT-4o (OpenAI, 2024), to generate the queries. The prompt templates we used to generate
queries can be found in the Appendix A.2.

To ensure the quality of queries generated, follow existing work (Qin et al., 2024), we conducted a
preliminary experiment using 3 LLMs: GPT-4o, GPT-3.5, and Gemini-1.5-Pro, on a dataset
of 100 samples. The results showed that human evaluators rated GPT-4o generated queries the
highest, outperforming the other 2 LLMs. GPT-4o demonstrated superior performance by accurately
capturing required parameters and providing clear query descriptions, meeting our criteria in 94/100.
This superior performance can largely be attributed to the natural language workflow descriptions.

3.3 TASK DEFINITION AND METRICS

We aim to address 3 research questions regarding the performance of existing agents built using
leading LLMs on SHORTCUTSBENCH with varying difficulties: (1) How do they perform in API
selection? (2) How do they handle API parameter value filling, including parameters for primitive
data types, enums, and outputs from previous actions? (3) Can they recognize when input is required
for tasks that need system or user input?

Table 3: Final evaluation set with varying difficulties.

|aseqi| (0, 1] (1, 5] (5,15] (15,30] Overall
Queries 706 2169 1571 774 5220
Avg APIs 1.17 3.43 8.30 13.76 6.60
Avg Acts 1.00 3.19 9.60 21.58 8.34

Preliminaries. SHORTCUTSBENCH consists
of a set of queries Q = {q1, q2, ..., qn}, corre-
sponding "golden" action sequences ASeq =
{aseq1, aseq2, ..., aseqn}, and all available
APIs APIs = {api1, api2, ..., apim}. For
each query qi, 1 ≤ i ≤ n, the correspond-
ing “golden” action sequence is aseqi =
{a1, a2, ..., a|aseqi|}, where the length of the
action sequence is |aseqi|. Each app appj has a set of APIs apisj = {api1, api2, ..., api|apisj |}. The
action sequences generated by the agent for each query qi are referred to as bseqi.

Prepare available APIs for each query. For each query qi, we provide the LLM with a certain
number of usable APIs to simulate real-world scenarios where APIs can be input into the LLM’s
context. Following existing work (Qin et al., 2024; Tang et al., 2023; Xu et al., 2024), we equip
each qi with a specific number of APIs. For each aseqi, let |APIsi| represent the number of
APIs involved. In addition to these |APIsi| APIs, we equip each query with extra APIs calculated
as max(min(x × |APIsi| , 20 − |APIsi|), 0), where x ∈ {3, 4, 5}. We do this because it is
impractical to input all APIs into the context simultaneously. When dealing with a large number
of APIs, additional retrieval is often required (Qin et al., 2024; Qu et al., 2024), which we do not
consider in this work.

Further Processing. Considering the context limitations of LLMs, we excluded shortcuts longer
than 30 and parts using the API is.workflow.actions.runworkflow to call other shortcuts.
While these shortcuts remain in our open-source dataset, they will not be included in the subsequent
evaluation. We aim to study the performance of agents on queries of varying difficulties. As shown
in Table 3, we categorize SHORTCUTSBENCH into 4 difficulty levels and 8 task types based on
|aseqi| and “shortcut type”, respectively. For more details, please refer to the Appendix A.3. When
calculating the length, for branching actions like is.workflow.actions.conditional, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

consider the longest branch as the length. Additionally, we ignore the lengths of looping actions
like is.workflow.actions.repeat.count and special actions such as is.workflow.
actions.comment. Due to the presence of branching actions, the average number of APIs
involved when p = 1 is greater than one, specifically 1.17. For a detailed process, please refer to
the Appendix A.3. The number of shortcuts in each level is denoted as np. Each query and action
sequence is referred to as qp,i and aseqp,i, with 1 ≤ p ≤ 4 and 1 ≤ i ≤ np.

3.3.1 PERFORMANCE ABOUT API SELECTION

Following existing work (Huang et al., 2024b; Patil et al., 2024; Xu et al., 2024), we use the accuracy
of API selection as the metric. The accuracy is calculated as the number of correct API selections
mp divided by np. Specifically, each time we predict an action bj , 1 ≤ j ≤ |aseqi|, we provide the
agent with all the correct historical actions {a1, a2, ..., aj−1}. We then require the agent to predict
the next action. All actions predicted by the agent form the prediction sequence bseqp,i. This method
is similar to the next token prediction (NTP) in LLMs, effectively preventing a cascade of errors
in subsequent action predictions due to a single incorrect prediction. During the prediction, when
encountering special actions such as branching and looping, we skip predicting these actions and
directly add them to the historical actions. For more details, please refer to Appendix A.4. We chose
API selection accuracy over the final result for the following two additional reasons:

• SHORTCUTSBENCH contains numerous APIs such as opening the “All Shortcuts Folder” in the
Shortcuts app that do not have a return value. This makes it challenging to evaluate using existing
metrics that measure the success rate of solving queries (Qin et al., 2024; Xu et al., 2024;?).

• SHORTCUTSBENCH includes numerous APIs with complex input and output types, such as PDFs
and Rich Text. Converting these formats into text that an LLM can process presents a signifi-
cant challenge (Naveed et al., 2023), as LLMs struggle to serialize them into text. Consequently,
it becomes difficult to ascertain the correctness of the final results. However, measuring API
selection accuracy is straightforward.

3.3.2 EFFECTIVENESS OF API PARAMETER VALUE FILLING

In this part, we aim to investigate the performance of agents in API parameter value filling, including
parameters for “primitive data types” and “enums” and filling output from previous actions. For each
input parameter of every action in SHORTCUTSBENCH, we expect the agent to fill in the following
parameters correctly:

• Static Parameters Preset: These are static parameters that users provide as default inputs of
the action. These static parameters typically include primitive data types such as String and
Integer, as well as custom Enum defined by app developers. When the query explicitly specifies
a parameter that can be used as a static parameter, we expect the agent to accurately fill in the
parameter values according to the user’s query and the API’s definition. When generating queries,
we have already required the LLM to naturally include primitive and enumerated data types
(Section 3.2). To further ensure that the corresponding parameters are indeed included in the
queries during evaluation, we used the LLM to filter these parameters further, ensuring their
presence in the queries. Detailed prompts can be found in the Appendix A.5.

• Outputs from Previous Actions: An action may either have no output or, if it does have an
output, the output may be used by the following actions. In SHORTCUTSBENCH, outputs that are
difficult to input directly into the LLM are represented by a unique identifier (UID) and an output
name (OutputName), which can be input into the LLM for processing. The agent should have
the ability to correctly use the output values of previous actions.

For the static parameters preset, we evaluate using the overall parameter fill rate. Let sppai be the
total number of parameters that need to be filled in aseqi, 1 ≤ i ≤ nq, where nq is the number of
queries. If the agent correctly fills sppti parameters in the generated action sequence bseqi, then
the static parameter preset accuracy can be calculated as Accspp =

∑nq

i=1 sppti/
∑nq

i=1 sppai.
Similarly, for outputs from previous actions, the accuracy can be calculated as Accofpa =∑nq

i=1 ofpati/
∑nq

i=1 ofpaai.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.3.3 RECOGNITION OF NEED FOR INPUT

In this section, we aim to investigate the ability of existing API-based agents to ask systems or users
for necessary input to resolve the missing information. This missing information can come from
the system like clipboard (Clipboard), input files (ExtensionInput), and the current date
(CurrentDate) or from the user (Ask) (Apple-Inc., 2024a). For example, a parameter named
tags is usually represented in a shortcut as "tags":{"Value":{"Type": "Ask"}}, where
"Type": "Ask" indicates that the parameter will prompt the user for input. For more details,
please refer to Appendix A.6. We use the proportion of correctly identified parameters to evaluate
the agent’s ability to recognize the need for input from the system or the user. Let ns be the number
of queries, askai, askti be the number of times the need from the system or the user appears
in aseqi, bseqi, respectively, The accuracy of ask for necessary information can be calculated as
Accafni = askti/askai.

4 EVALUATION

4.1 SETUP

Model. Referencing existing work (Huang et al., 2024b; Qin et al., 2024; Li et al., 2023),
considering the performance of existing LLMs, we selected 10 most advanced LLMs to
construct API-based agent. The chosen model includes 5 closed-sourced and 5 open-
source LLMs, covering varying intelligence levels. Among them, Gemini-1.5-Pro,
LLaMA-3-70B, QWen-2-70B, and Deepseek-2-chat/coder are LLMs bench-
marked against GPT-4o-2024-05, while Gemini-1.5-Flash, ChatGLM-4-Air, and
QWen-2-57B are benchmarked against GPT-4o-mini-2024-07 and GPT-3.5-turbo.
We did not evaluate GPT-o1-preview/mini, GPT-4o, LLaMA-3.1-70b/405B, and
QWen-2.5-72b, mainly due to limited access, high costs, and the fact that LLaMA and QWen are
minor version improvements with recent releases.

We did not compare with specialized API-calling fine-tuned LLMs like AgentLM (Zeng et al., 2024)
or xLAM (Zhang et al., 2024) for two reasons. First, our selected models already cover a range of
intelligence levels, including closed-source models fine-tuned for API-calling tasks. Second, our goal
is to provide a benchmark that is challenging, rich, and distinctive, which has been validated under
the current setup. While AgentLM and xLAM focus on fine-tuning LLMs for API usage in specific
domains, the APIs and methods in SHORTCUTSBENCH could be combined with their approaches to
generate data for enhancing performance in targeted areas.

Prompt Template. Following existing work (Huang et al., 2024b; Qin et al., 2024; Tang et al., 2023;
Zhuang et al., 2024), we slightly modified the ReACT (Yao et al., 2023) templates to construct the
API-based agents. For all 3 research questions (RQs), we use the same prompt templates. An agent
should correctly select APIs, fill in parameters, and be aware of the need to request necessary input
from the system or user at appropriate times. Please refer to Appendix A.7 for more details.

4.2 RESULT ANALYSIS

Gem
ini

1.5
-Pr

o
QWen

2-7
2B

Dee
pse

ek

2-c
ha

t
Dee

pse
ek

2-c
od

er LLa
MA

3-7
0B

Gem
ini

1.5
-Fl

ash QWen

2-5
7B GPT

4o
-m

ini GPT

3.5
-tu

rbo
Cha

tGLM

4-A
ir

0

20

40

60

80

10
0

AP
I S

el
ec

tio
n

Ac
cu

ra
cy

 (%
) Overall (0,1] (1,5] (5,15] (15,30]

Figure 3: The API selection accuracy on queries with
different complexity levels.

Gem
ini

1.5
-Pr

o
QWen

2-7
2B

Dee
pse

ek

2-c
ha

t
Dee

pse
ek

2-c
od

erLLa
MA

3-7
0B

Gem
ini

1.5
-Fl

ashQWen

2-5
7B GPT

4o
-m

ini GPT

3.5
-tu

rbo
Cha

tGLM

4-A
ir

0

20

40

60

80

100

AP
I S

el
ec

tio
n

Ac
cu

ra
cy

 (%
)

47.92

84.62

39.57

60.02

40.42

68.19

38.97

73.15

41.28

61.65

33.43

57.99

28.01

47.39

34.82

50.76

30.97

50.29

26.11

44.15

Figure 4: The API selection accuracy dif-
ference of each LLM across 8 task types.

From Figure 3, we can see that for tasks with a lower difficulty level, both less intelligent LLMs and
more intelligent LLMs perform well. This is similar to the conclusion drawn from Table 1. However,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

20

40

60

80

100

Mean: 42.94
Std: 8.38

Productivity & Utilities

0

20

40

60

80

100

Mean: 44.19
Std: 8.78

Health & Fitness

0

20

40

60

80

100

Mean: 49.98
Std: 9.00

Entertainment & Media

0

20

40

60

80

100

Mean: 55.83
Std: 14.62

Lifestyle & Social

0

20

40

60

80

100

Mean: 46.82
Std: 8.74

Education & Reference

0

20

40

60

80

100

Mean: 46.07
Std: 6.48

Business & Finance

0

20

40

60

80

100

Mean: 36.15
Std: 6.71

Development & API

0

20

40

60

80

100

Mean: 56.38
Std: 7.86

Home & Smart Devices

AP
I S

el
ec

tio
n

Ac
cu

ra
cy

 (%
)

Gemini-1.5-Pro QWen-2-72B Deepseek-2-chat Deepseek-2-coder LLaMA-3-70B Gemini-1.5-Flash QWen-2-57B GPT-4o-mini GPT-3.5 ChatGLM-4-Air

Figure 5: The API selection accuracy of each task type on 10 API-based agents.

for tasks with a higher difficulty level, only the more intelligent LLMs like Gemini-1.5-Pro,
Deepseek, and QWen2 perform adequately.

The superiority of SHORTCUTSBENCH. Combined with Table 1, SHORTCUTSBENCH can effec-
tively distinguishes between different levels of intelligence, making it a superior benchmark.

Through the results of API selection accuracy (Section 3.3.1), we get the following conclusions:

• Agents built using open-source LLMs now perform comparably to closed-source LLMs on
lower-difficulty tasks but still lag on higher-difficulty tasks. From Figure 3 we know that
open-source LLMs >= 70B match the performance of closed-source LLMs from the first 3
difficulty tasks, significantly outperforming GPT-4o-mini and GPT-3.5-turbo. However,
they still lag behind closed-source LLMs in handling complex tasks at the 4-th level. For more
details, please refer to Appendix A.8.

• Existing LLM-based agents still perform poorly on tasks requiring multi-step reasoning,
even more intelligent LLMs like Gemini-1.5-Pro struggle with high-difficulty tasks. From
Figure 3 we know that almost all LLMs handle well in API selection tasks at the level of (0,1],
but only more advanced models like Gemini-1.5-Pro and QWen-2-72B can do well in
higher-difficulty tasks of (1,5]. As tasks become more complex, the accuracy drops sharply. The
average accuracy dropped by 19% as task difficulty rose from (0,1] to (1,5], ranging from a
9% decrease (Deepseek-2-chat) to a 44% (ChatGLM-4-Air). From (0,1] to (5,15],
accuracy fell by 46%, with drops from 38% (Gemini-1.5-Pro) to 58% (ChatGLM-4-Air).

• Agents built with the same LLM show significant performance variations across different
types of tasks. From Figure 5 we know that the performance difference of agents built with
different LLM ranges from 15.94% (GPT-4o-mini) to 36.70% (Gemini-1.5-Pro).

• Existing API-based agents perform well on tasks in daily life such as Lifestyle & Social but
show poorer performance on professional tasks like Development & API. From Figure 5 we
know that Lifestyle & Social exhibit the highest average accuracy, surpassing the lowest
category, Development & API by approximately 18%.

Based on the results of API Parameter Value Filling (Section 3.3.2), we draw following conclusions:

• API selection and parameter filling both impact the agent’s performance. However, API
selection has a greater effect. As shown in Figure 6a, for existing more intelligent LLM like
Gemini-1.5-Pro, increased task difficulty has a much smaller impact on the accuracy of
parameter filling, especially on using outputs from previous actions. This indicates that the
greatest limitation of existing API-based agents in addressing user queries lies in the reasoning
and planning capabilities implied by API selection.

• The performance of API parameter filling remains a bottleneck for existing less intelligent
LLMs. As shown in Figure 6a, the performance of less intelligent LLMs like GPT-4o-mini in
API parameter filling significantly decreases as task difficulty increases.

• Compared to using the outputs of previous actions, extracting relevant parameters from the
user’s query and filling them is more challenging. As shown in Figure 6a, the colors in the
top plot (filling primitive data types and enum data types) are generally lighter than those in the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(0,
1]

(1,
5]

(5,
15

]

(15
,30

]

Ove
ral

l

Pr
im

iti
ve

 P
ar

a.
 Fi

ll

83.33 90.24 86.44 89.34 84.48 91.74 83.96 94.29 83.78 89.00
81.90 82.13 81.86 81.41 75.18 83.92 71.97 83.24 70.59 76.65
75.53 73.68 73.92 75.07 63.28 72.12 64.72 75.13 65.28 66.97
71.87 65.63 69.09 69.20 59.48 63.96 55.33 62.53 59.47 57.51
74.83 73.22 74.02 74.48 66.62 72.47 64.08 73.54 65.38 65.52

Gemini
1.5-Pro

QWen
2-72B

Deepseek
2-chat

Deepseek
2-coder

LLaMA
3-70B

Gemini
1.5-Flash

QWen
2-57B

GPT
4o-mini

GPT
3.5-turbo

ChatGLM
4-Air

(1,
5]

(5,
15

]

(15
,30

]

Ove
ral

l

Pr
ev

. A
ct

io
ns

 Fi
ll 94.17 84.76 91.12 89.74 86.58 89.79 76.22 84.88 79.52 75.45

88.05 79.51 83.47 82.94 79.00 78.81 64.53 72.56 66.12 64.54
86.29 80.49 78.50 82.78 74.42 75.63 59.23 63.78 62.49 65.58
89.14 81.47 84.70 85.06 82.01 82.03 67.78 75.13 70.33 68.07

60

70

80

90

(a) Accuracy of primitive data types & enum data types (upper) and outputs from previous actions (lower).

Gemini

1.5-Pro QWen
2-72B Deepseek

2-chatDeepseek

2-coder LLaMA
3-70B Gemini

1.5-Flash QWen
2-57B GPT

4o-mini GPT

3.5-turboChatGLM
4-Air

0

10

20

Er
ro

r R
at

e
(%

) No Prediction Format Error Choose Error

(b) The error rates for action parameter value filling.

Table 4: The accuracy of recognition of the need for input from the system or the user.

Levels
Gemini QWen Deep Deep LLaMA Gemini QWen GPT GPT Chat

1.5 2 seek2 seek2 3 1.5 2 4o 3.5 GLM4
Pro 72B chat coder 70B Flash 57B mini turbo Air

(0, 1] 33.33 37.78 64.29 62.71 47.62 62.79 22.22 37.14 28.89 47.62
(1, 5] 45.95 50.40 55.50 60.08 44.08 53.99 37.24 40.55 37.70 48.06

(5, 15] 51.85 36.42 40.76 49.44 35.71 40.65 28.37 29.71 20.33 48.42
(15, 30] 46.67 25.00 27.59 43.14 22.22 44.64 8.11 38.89 17.14 48.89

Overall 46.59 41.97 47.90 55.18 49.89 40.71 30.74 36.71 30.55 48.28

bottom plot (filling the outputs of previous actions as parameters). The accuracy drop ranges from
2.55% (GPT-3.5-turbo) to 15.39% (Deepseek-2-Chat).

• For existing less intelligent LLMs errors mainly stem from incorrect output formats and
wrong API selections. Figure 6b shows error types for tasks requiring outputs from previous
actions. It can be seen that powerful LLMs like Gemini-1.5-Pro rarely make format errors,
whereas the less intelligent models frequently make mistakes in output format and API selection.

The results from Recognition of Need for Input (Section 3.3.3) lead us to the following conclusions:

• All agents perform poorly at recognizing necessary system and user inputs when re-
quired. Overall, all agents have weak recognition capabilities, with accuracy ranging between
30.55% (GPT-3.5-turbo) and 55.18%(Deepspeed-2-coder). Larger LLMs such as
Deepspeed-2-chat (236B) still demonstrate better recognition accuracy.

5 CONCLUSION

In this paper, we introduce SHORTCUTSBENCH, a benchmark for evaluating API-based agents.
To the best of our knowledge, SHORTCUTSBENCH is the most realistic, rich, and comprehensive
benchmark of its kind. Our findings indicate that for agents built on the most advanced LLMs, the
primary bottleneck is API selection. For the most cost-effective LLMs, there is considerable room for
improvement in both API selection and parameter filling. Additionally, we identified a significant
deficiency in the agents’ awareness of requesting necessary input.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

App store categories. URL https://developer.apple.com/app-store/
categories/. Accessed: date-of-access.

Mohammed Abdou, Abdelrahman M Ezz, and Ibrahim Farag. Digital automation platforms com-
parative study. In 2021 4th International Conference on Information and Computer Technologies
(ICICT), pp. 279–286. IEEE, 2021.

Alibaba. Qwen2.5-3b-instruct. https://huggingface.co/Qwen/Qwen2.
5-3B-Instruct, 2024. Accessed: 2024-06-10.

Apple. Shortcuts app, 2024. URL https://apps.apple.com/us/app/shortcuts/
id915249334. Accessed: 2024-05-09.

Apple. Use a shortcut on iphone. https://support.apple.com/en-hk/guide/
iphone/iph7d118960c/ios, 2024a. Accessed: [Date of Access].

Apple. Apple worldwide developers conference 2024. https://developer.apple.com/
wwdc24/, 2024b. Accessed: [Date of Access].

Apple. icloud api shortcut, 2024a. URL https://www.icloud.com/shortcuts/api/
records/cc2283b9eaa947e6a049b2020755fad1. Accessed: 2024-05-09.

Apple. icloud shortcut, 2024b. URL https://www.icloud.com/shortcuts/
dff19df10aaf47de9740209b6f9bde7a. Accessed: 2024-05-09.

Apple. Which is a shortcut, 2024c. URL https://support.apple.com/en-sg/guide/
shortcuts/welcome/ios. Accessed: 2024-05-09.

Apple-Inc. Use the ask each time variable in a shortcut on iphone or ipad. https://support.
apple.com/en-hk/guide/shortcuts/apd8b28e2166/ios, 2024a. Accessed: 2024-
05-15.

Apple-Inc. Appintent documentation, 2024b. URL https://developer.apple.com/
documentation/appintents/appintent. Accessed: 2024-05-09.

Apple-Inc. Sirikit documentation, 2024c. URL https://developer.apple.com/
documentation/sirikit/. Accessed: 2024-05-09.

Tathagata Chakraborti, Vatche Isahagian, Rania Khalaf, Yasaman Khazaeni, Vinod Muthusamy,
Yara Rizk, and Merve Unuvar. From robotic process automation to intelligent process automa-
tion: –emerging trends–. In Business Process Management: Blockchain and Robotic Process
Automation Forum: BPM 2020 Blockchain and RPA Forum, Seville, Spain, September 13–18, 2020,
Proceedings 18, pp. 215–228. Springer, 2020.

Coze. Coze. https://www.coze.com/home, 2024. Accessed: 2024-05-10.

João Dias. Tasker for android. https://tasker.joaoapps.com/, 2024. Accessed: 2024-11-
24.

Dify. Dify. https://dify.ai/, 2024. Accessed: 2024-05-10.

Shortcuts Gallery. Shortcuts gallery, 2024. URL https://shortcutsgallery.com/. Ac-
cessed: 2024-05-09.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Google. Gemini-1.5-pro, 2024. URL https://deepmind.google/technologies/
gemini/. Accessed: 2024-05-17.

Significant Gravitas. Autogpt, 2024. URL https://github.com/
Significant-Gravitas/AutoGPT. Accessed: 2024-05-09.

11

https://developer.apple.com/app-store/categories/
https://developer.apple.com/app-store/categories/
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://apps.apple.com/us/app/shortcuts/id915249334
https://apps.apple.com/us/app/shortcuts/id915249334
https://support.apple.com/en-hk/guide/iphone/iph7d118960c/ios
https://support.apple.com/en-hk/guide/iphone/iph7d118960c/ios
https://developer.apple.com/wwdc24/
https://developer.apple.com/wwdc24/
https://www.icloud.com/shortcuts/api/records/cc2283b9eaa947e6a049b2020755fad1
https://www.icloud.com/shortcuts/api/records/cc2283b9eaa947e6a049b2020755fad1
https://www.icloud.com/shortcuts/dff19df10aaf47de9740209b6f9bde7a
https://www.icloud.com/shortcuts/dff19df10aaf47de9740209b6f9bde7a
https://support.apple.com/en-sg/guide/shortcuts/welcome/ios
https://support.apple.com/en-sg/guide/shortcuts/welcome/ios
https://support.apple.com/en-hk/guide/shortcuts/apd8b28e2166/ios
https://support.apple.com/en-hk/guide/shortcuts/apd8b28e2166/ios
https://developer.apple.com/documentation/appintents/appintent
https://developer.apple.com/documentation/appintents/appintent
https://developer.apple.com/documentation/sirikit/
https://developer.apple.com/documentation/sirikit/
https://www.coze.com/home
https://tasker.joaoapps.com/
https://dify.ai/
https://shortcutsgallery.com/
https://arxiv.org/abs/2312.10997
https://deepmind.google/technologies/gemini/
https://deepmind.google/technologies/gemini/
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Di Huang, Ziyuan Nan, Xing Hu, Pengwei Jin, Shaohui Peng, Yuanbo Wen, Rui Zhang, Zidong
Du, Qi Guo, Yewen Pu, and Yunji Chen. ANPL: Towards natural programming with interactive
decomposition. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=RTRS3ZTsSj.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024a. URL https:
//arxiv.org/abs/2312.13010.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language models: De-
ciding whether to use tools and which to use. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=R0c2qtalgG.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. API-bank: A comprehensive benchmark for tool-augmented LLMs.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 3102–3116, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187. URL
https://aclanthology.org/2023.emnlp-main.187.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Make. Make. https://www.make.com/, 2024. Accessed: 2024-05-10.

Microsoft. Microsoft power automate – process automation platform. https:
//www.microsoft.com/en-us/power-platform/products/power-automate,
2024. Accessed: 2024-11-24.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models. arXiv
preprint arXiv:2307.06435, 2023.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/. Ac-
cessed: 2024-05-17.

OpenAI. Introducing gpts, 2024a. URL https://openai.com/index/
introducing-gpts. Accessed: 2024-05-09.

OpenAI. Openai code interpreter documentation. https://platform.openai.com/docs/
assistants/tools/code-interpreter, 2024b. Accessed: 2024-05-10.

OpenAI Community. Conversation context and quadratic
billing, 2023. URL https://community.openai.com/t/
conversation-context-and-quadratic-billing/126421. Accessed: 2023-07-
22.

OpenInterpreter. Open interpreter. https://github.com/OpenInterpreter/
open-interpreter, 2024. Accessed: 2024-05-10.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive APIs. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=tBRNC6YemY.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit
Bansal, and Tushar Khot. ADaPT: As-needed decomposition and planning with language mod-
els. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for
Computational Linguistics: NAACL 2024, pp. 4226–4252, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.264. URL
https://aclanthology.org/2024.findings-naacl.264.

12

https://openreview.net/forum?id=RTRS3ZTsSj
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://openreview.net/forum?id=R0c2qtalgG
https://aclanthology.org/2023.emnlp-main.187
https://openreview.net/forum?id=zAdUB0aCTQ
https://www.make.com/
https://www.microsoft.com/en-us/power-platform/products/power-automate
https://www.microsoft.com/en-us/power-platform/products/power-automate
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-gpts
https://openai.com/index/introducing-gpts
https://platform.openai.com/docs/assistants/tools/code-interpreter
https://platform.openai.com/docs/assistants/tools/code-interpreter
https://community.openai.com/t/conversation-context-and-quadratic-billing/126421
https://community.openai.com/t/conversation-context-and-quadratic-billing/126421
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://openreview.net/forum?id=tBRNC6YemY
https://aclanthology.org/2024.findings-naacl.264

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng2O0Jjr.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Towards completeness-oriented tool retrieval for large language models.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, CIKM ’24, pp. 1930–1940, New York, NY, USA, 2024. Association for Com-
puting Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679847. URL https:
//doi.org/10.1145/3627673.3679847.

Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Ifttt vs. zapier: A comparative
study of trigger-action programming frameworks. arXiv preprint arXiv:1709.02788, 2017.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Muris Sladić, Veronica Valeros, Carlos Catania, and Sebastian Garcia. Llm in the shell: Gen-
erative honeypots. In 2024 IEEE European Symposium on Security and Privacy Workshops
(EuroSamp;amp;PW), pp. 430–435. IEEE, July 2024. doi: 10.1109/eurospw61312.2024.00054.
URL http://dx.doi.org/10.1109/EuroSPW61312.2024.00054.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca: General-
ized tool learning for language models with 3000 simulated cases. arXiv preprint arXiv:2306.05301,
2023.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A controllable world of
apps and people for benchmarking interactive coding agents. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 16022–16076, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.850.
URL https://aclanthology.org/2024.acl-long.850.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large lan-
guage models. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL
https://openreview.net/forum?id=ehfRiF0R3a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024b. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better LLM agents. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 50208–50232. PMLR, 21–27 Jul 2024c. URL https://proceedings.
mlr.press/v235/wang24h.html.

Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Ruslan Salakhutdinov, Amos Azaria,
Tom Mitchell, and Yuanzhi Li. SPRING: Studying papers and reasoning to play games. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=jU9qiRMDtR.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,

13

https://openreview.net/forum?id=dHng2O0Jjr
https://doi.org/10.1145/3627673.3679847
https://doi.org/10.1145/3627673.3679847
http://dx.doi.org/10.1109/EuroSPW61312.2024.00054
https://aclanthology.org/2024.acl-long.850
https://openreview.net/forum?id=ehfRiF0R3a
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://proceedings.mlr.press/v235/wang24h.html
https://proceedings.mlr.press/v235/wang24h.html
https://openreview.net/forum?id=jU9qiRMDtR
https://openreview.net/forum?id=jU9qiRMDtR

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongx-
iang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, and Tao Gui. The rise and potential of large language model based agents: A survey, 2023.
URL https://arxiv.org/abs/2309.07864.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the
tool manipulation capability of open-sourced large language models, 2024. URL https:
//openreview.net/forum?id=iShM3YolRY.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Zapier. Zapier - automate your work with no code, 2024. URL https://zapier.com/. Ac-
cessed: 2024-11-24.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. AgentTuning:
Enabling generalized agent abilities for LLMs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 3053–3077,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.181. URL https://aclanthology.org/2024.findings-acl.
181.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh
Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
Silvio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent
systems, 2024. URL https://arxiv.org/abs/2409.03215.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 5673–5684,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
10.1145/3580305.3599790. URL https://doi.org/10.1145/3580305.3599790.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing
large language models with long-term memory. In AAAI, pp. 19724–19731, 2024. URL https:
//doi.org/10.1609/aaai.v38i17.29946.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36,
2024.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DATASET ACQUISITION

In this section, we introduce more details about the dataset acquisition introduced in Section 3.1.

Regarding data acquisition, we first use search engines to identify popular public shortcut-sharing
sites (① in Figure 1). We found a total of 14 sites. These sites include:

Table 5: 14 shortcut-sharing sites, including names, URLs, and shortcut counts.

Site Name URL Count
1 Matthewcassinelli https://matthewcassinelli.com 1535
2 Routinehub https://routinehub.co 6860
3 MacStories https://www.macstories.net/shortcuts 4993

14

https://arxiv.org/abs/2309.07864
https://openreview.net/forum?id=iShM3YolRY
https://openreview.net/forum?id=iShM3YolRY
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://zapier.com/
https://aclanthology.org/2024.findings-acl.181
https://aclanthology.org/2024.findings-acl.181
https://arxiv.org/abs/2409.03215
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1609/aaai.v38i17.29946
https://doi.org/10.1609/aaai.v38i17.29946

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

"WFWorkflowActions": [
 {
 "WFWorkflowActionIdentifier": "com.openai.chat.AskIntent",
 "WFWorkflowActionParameters": {
 "AppIntentDescriptor": {
 "AppIntentIdentifier": "AskIntent",
 "BundleIdentifier": "com.openai.chat",
 "Name": "ChatGPT",
 "TeamIdentifier": "2DC432GLL2"
 },
 "UUID": "37A69184-E40B-444C-ACE5-31CD37AEDD89",
 "prompt": "What's the weather like tomorrow?"
 }
 }
]

API Name Paras System Paras API Paras

Figure 7: An example of a shortcut: Ask ChatGPT.

Site Name URL Count
4 ShareShortcuts https://shareshortcuts.com 2395
5 ShortcutsGallery https://shortcutsgallery.com 4269
6 iSpazio https://shortcuts.ispazio.net 115
7 Jiejingku https://jiejingku.net 3347
8 SSPai https://shortcuts.sspai.com 145
9 Jiejing.fun https://jiejing.fun 84
10 Kejicut https://www.kejicut.com 37
11 RCuts https://www.rcuts.com 133
12 Sharecuts https://sharecuts.app 2395
13 Siri-shortcuts https://www.siri-shortcuts.de 15
14 Reddit https://www.reddit.com/r/shortcuts 100

Total (After Deduplication):8675

We can obtain shortcuts from these sites. Specifically, each dataset includes the “shortcut
name” (NameInStore), “function description” (DescriptionInStore), “shortcut type”
(CategoryInStore), and most importantly, the “iCloud link” (Apple, 2024a). Addition-
ally, it includes less important data such as the number of downloads (Downloads), favorites
(Favorites), reads (Reads), and ratings (Rates). All shortcuts include NameInStore and
DescriptionInStore, while the availability of other fields varies slightly depending on the
specific shortcut-sharing site.

We then downloaded the shortcut source file by “iCloud link” and performed deduplication based on
both iCloud links and the actual shortcut content (i.e., action sequences) to ensure the uniqueness of
each shortcut in the final dataset (② in Figure 1). For details on downloading source files via iCloud
links, please refer to our open-source code repository. We do deduplication because shortcuts sharing
sites store shortcuts as iCloud links, which often results in the same shortcut appearing in multiple
sharing-site. Additionally, shortcuts linked by these iCloud links could have identical content, making
deduplication essential to ensure that each shortcut in the final dataset was unique.

We then extracted the app name using the field WFWorkflowActionIdentifier from the
shortcut source file and downloaded the associated apps (③ in Figure 1). Shortcuts are composed of
a series of shortcut API calls, referred to as Actions. An example of a typical shortcut is shown in
Figure 7. Each shortcut API call is identified by a name, which usually includes the app’s identifier,
such as com.openai.chat, and the Intent name, such as AskIntent. For most API names, the
segment before the last dot represents the app name, while the segment after denotes the Intent name.
We semi-automatically extracted all app names to streamline the app download process.

We download these apps from various sources:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• Apps from the macOS or iOS App Store: We downloaded a variety of applications directly from
Apple’s official platforms. This provided us with a vast selection of apps that are widely used and
trusted by users.

• System apps like Keynote from paths /Applications/ and /System/Application/ on
macOS: These are pre-installed applications integral to the operating system. Including them
ensured that our dataset covered essential tools commonly used by macOS users.

• Third-party apps from the official websites of the apps: To include software not available through
the App Store, we downloaded apps from their official websites. This allowed us to capture a
broader range of functionalities offered by third-party developers.

During the downloading process, we also excluded some legacy apps that are no longer maintained
and 12 paid apps to avoid potential licensing issues and focus on applications readily accessible to
the general public.

Then we managed to extract APIs from the downloaded apps (④ in Figure 1). The APIs are mainly
from intent definition file ${filename}.actionsdata from AppIntent (Apple-Inc., 2024b)
framework and ${filename}.intentdefinition from SiriKit (Apple-Inc., 2024c) frame-
work. We extracted all APIs involved in the apps. During the extraction, we perform deduplication of
APIs based on manually crafted rules as an app may have multiple duplicate API definition files with
the same API definition.

We perform deduplication to streamline API definitions, minimize redundancy, and ensure compati-
bility across frameworks, addressing inconsistencies introduced by the coexistence of SiriKit and
AppIntents. SiriKit, introduced in 2016 with iOS 10, enabled applications to integrate with
Siri for voice command interactions. In 2022, Apple launched AppIntents with iOS 16, providing
a more modern and flexible approach to defining and handling app intents. AppIntents facilitate
integration with Siri, Shortcuts, widgets, and more. To encourage adoption, Apple has provided
migration tools for developers transitioning from SiriKit. However, some apps still rely on the
SiriKit. Under SiriKit, developers use $filename.intentdefinition files, while the
AppIntents relies on $filename.actionsdata files. These files define APIs corresponding
to actions in Shortcuts. Apps may include only $filename.intentdefinition files, only
$filename.actionsdata files, or both, potentially leading to redundancy in API definitions.
To address this, we have implemented a set of rules to reduce API definition files and ensure API
uniqueness.

Additionally, for app Shortcuts, which are deeply integrated with Apple’s operating system, we need
to obtain their API definition files WFActions.json from system path /System/Library/
PrivateFrameworks/WorkflowKit.framework/ on macOS, instead of extracting it from
the app itself.

Subsequently, we further filtered the shortcuts based on criteria such as whether the associated apps
is paid app, whether the apps were outdated, and whether the APIs were deprecated. Additionally,
we imported all shortcuts into the macOS Shortcuts app to ensure they were functional. These steps
were repeated multiple times.

Finally, as shown in Table 2, we get 88 apps from various categories such as “Health & Fitness”,
“Developer Tools”, and “Lifestyle”. These apps in total include 1414 APIs, including all of 556 APIs
(Not all APIs have been used in Shortcuts) involved in 7627 shortcuts.

The approximate time spent on each step of the process is outlined below:

• Shortcut site collection: Approximately 3 days, completed entirely manually.

• Link scraping using Selenium: Around 2 weeks, requiring custom scripts for each site.

• Shortcut deduplication, API validity checks, and shortcut functionality validation: Approximately
4 weeks. Deduplication: Automated using iCloud links and content cleaning.

• API validity checks: Performed manually. Shortcut validity checks: A mix of automated and
semi-automated methods. Automated filtering was conducted using Apple Scripts to execute
shortcuts for preliminary filtering, followed by manual validation through importing shortcuts into
the Shortcuts app.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(1) is.workflow.actions.getrichtextfromhtml (WFHTML: WFStringContentItem) -> Rich Text from HTML: public.html

(2) Parameters [parameter name (default value): DescriptionInput]:
 (2.1) WFHTML: HTML

(3) Return Value [return value name: DescriptionResult]:
 (3.1) Rich Text from HTML: None

(4) Description [Name + DescriptionSummary + ParameterSummary]:
 (4.1) Name: Make Rich Text from HTML.
 (4.2) DescriptionSummary: Takes the inputted HTML and turns it into rich text, which can then be converted to other formats.
 (4.3) ParameterSummary: Make rich text from ${WFHTML}

(1) com.ulyssesapp.mac.ULInsertTextIntent (sheet: SheetReference (Object), text: String, format: TextFormat (Enum), position: TextPosition (Enum))
-> Result: None

(2) Parameters [parameter name (default value): INIntentParameterDisplayName. INTypeDisplayName]:
 (2.1) sheet: Sheet. Sheet Reference
 (2.2) text: Content.
 (2.3) format: None
 (2.4) TextPosition: None

(3) Return Value [return value name: INIntentResponseParameterDisplayName]:
 Result: None

(4) Description. [INIntentTitle + INIntentDescription + INIntentParameterCombinationTitle]:
 (4.1) INIntentTitle: Add Text to Sheet.
 (4.2) INIntentDescription: Adds text to an existing sheet in Ulysses.
 (4.3) INIntentParameterCombinationTitle: Add ${text} to ${sheet}

(1) com.openai.chat.AskIntent (prompt: String, newChat: Boolean, model: ModelEntity, continuous: Boolean) -> Ask ChatGPT: String

(2) Parameters [parameter name (default value): title. parameterDescription]:
 (2.1) prompt: Message. Message to send to ChatGPT
 (2.2) newChat (0): Start new chat. Indicates whether a new chat should be started
 (2.3) model (default): Model. Model to use with the new chat
 (2.4) continuous (0): Continuous chat. Whether to enable back-and-forth chat or complete the Shortcut immediately after response

(3) Return Value [return value name: resultValueName. displayTypeName]:
 (3.1) Ask ChatGPT: None

(4) Description [title + description + actionSummary]:
 (4.1) title: Ask ChatGPT
 (4.2) description: This action will send a single message to a chat with ChatGPT and return the response.
 (4.3) actionSummary: Search for ${query}

Figure 8: We randomly selected three samples from three different definition files, as
shown in the upper (${filename}.actionsdata), middle (WFActions.json), and lower
(${filename}.intentdefinition) figures. The content in brackets represents different field
names. In practice, there are various details to handle, such as name prefixes and missing fields. For
complete details, please refer to our open-source code.

Additional manual and automated checks were conducted throughout the process but are not detailed
here.

A.2 DATASET CONSTRUCTION

The API definition files extracted from the app exist in two forms: the ${filename}.
intentdefinition files as indicated by the Sirikit framework and the ${filename}.
actionsdata files as indicated by the App Intent framework. Additionally, Apple’s first-party
apps provide a third type of definition file, WFActions.json. All three file formats provide “API
description”, “API name”, “parameter names”, “parameter types”, “default value”, “return value
type”, and “return value name”, but differ in their file format. We give a sample from each of the
three different file formats, as shown in Figure 8.

We construct queries based on existing action sequences and APIs. To ensure the quality of these
queries, we utilize the natural language workflow descriptions unique to shortcuts. When generating
queries, we require the model to naturally include primitive data type parameters and enum data types
needed for API calls. This helps us evaluate the agent’s ability to handle primitive parameters. We

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

do not require the inclusion of complex data types in the queries, as they are difficult to convert to
text and challenging to evaluate. To ensure high-quality query generation, we use the state-of-the-art
LLM, GPT-4o (OpenAI, 2024). The prompt templates used for generating queries are provided in
Figure 9.

To ensure the quality of shortcuts, we filtered them based on criteria such as whether the associated
apps were paid, outdated, or relied on deprecated APIs. Additionally, all shortcuts were imported
into the macOS Shortcuts app to verify functionality. Deduplication and error-checking processes
were carried out throughout the entire data collection phase.

For ensuring the quality of generated queries, following prior work (Qin et al., 2024), we conducted
a preliminary experiment with three LLMs: GPT-4o, GPT-3.5, and Gemini-1.5-Pro, on a
dataset of 100 samples. Human evaluators rated GPT-4o as generating the highest-quality queries,
outperforming the other two models. GPT-4o excelled in accurately identifying required parameters
and providing clear query descriptions, meeting our criteria in 94 out of 100 cases. This superior
performance can largely be attributed to the natural language workflow descriptions. While we
acknowledge that not all queries may fully meet our requirements, we believe our approach is
reasonable. Similar works, such as ToolLLM, rely on GPT for large-scale query and action sequence
generation without guaranteeing complete accuracy.

A.3 TASK DEFINITION AND METRICS

Considering the context limitations of LLMs, we excluded shortcuts longer than 30 and parts using
the API is.workflow.actions.runworkflow to call other shortcuts. While these shortcuts
remain in our open-source dataset, they will not be included in the evaluation. We aim to study
the performance of agents on queries of varying difficulties. As shown in Table 3, we categorize
SHORTCUTSBENCH into 4 difficulty levels and 8 task types based on |aseqi| and “shortcut type”
(Section 3.1), respectively.

In calculating the length of shortcut commands, we do not simply count the number of actions within
the shortcut. Instead, we apply a specialized approach. Initially, certain actions that do not con-
tribute meaningful operations, such as is.workflow.actions.comment and is.workflow.
actions.alert, which are akin to comments in programming, are excluded. Furthermore,
we disregard the length of certain control flow statements, including is.workflow.actions.
conditional, is.workflow.actions.choosefrommenu, is.workflow.actions.
repeat.count, is.workflow.actions.repeat.each. For branching statements, we
consider the length of the longest branch, rather than the cumulative length of all branches.

When categorizing shortcuts, we first analyzed all available categories from the CategoryInStore
field in the collected data. We then classified the shortcuts into 8 categories, referencing with the
classification of apps on the Apple App Store (app). The categories are as follows:

1. Productivity & Utilities

2. Health & Fitness

3. Entertainment & Media

4. Lifestyle & Social

5. Education & Reference

6. Business & Finance

7. Development & API

8. Home & Smart Devices

Subsequently, I employed a language model to categorize all shortcuts using the prompt shown in
Figure 10.

A.4 PERFORMANCE ABOUT API SELECTION

Following existing work (Huang et al., 2024b; Patil et al., 2024; Xu et al., 2024), we use the accuracy
of API selection as the metric. The accuracy is calculated as the number of correct API selections

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

SYSTEM_PROMPT_TEMPLATE:
Shortcut consist of a sequence of actions, each is an API call, to execute user-provided queries.
As a user-friendly and patient inquirer, you need to craft a query based on the provided shortcut. This
query, formatted as a question, should describe the task a user wants to complete and adhere to the
following criteria:

1. The problem described in the query must be solvable using the shortcut.
2. The query should include all required parameters from the shortcut.
3. The query should be naturally phrased, integrating parameters seamlessly into the question

rather than listing them separately.

For each shortcut command, I will provide you with five fields:
1. ’RecordName’: The name of the shortcut, briefly describing its function.
2. ’Description of the Shortcut Workflow’: A description of the entire action workflow of the

shortcut.
3. ’Comments’: Optional. Notes from the shortcut’s developer, which may describe its func-

tions or other features.
4. ’Description in Store’: A description of the shortcut’s functionality provided in the shortcut

store.
5. ’API Description List’: Detailed descriptions of the APIs involved in the shortcut.

You should rely primarily on the ’Description of the Shortcut Workflow’ and ’API Description List’,
and refer to ’RecordName’, ’Comments’, and ’Description in Store’ to formulate the final query.

USER_PROMPT_TEMPLATE:
Below are the five fields I provide to you:

1. ’RecordName’: {RecordName}
2. ’Description of the Shortcut Workflow’: {DescriptionoftheShortcutWorkflow}
3. ’Comments’: {Comments}
4. ’Description in Store’: {DescriptionInStore}
5. ’API Description List’: {APIDescriptionList}

Please generate a query based on these details. Alongside the query, provide the shortcut’s name and
a description of its functionality using the following JSON format:
{
"shortcut_name": "ThisIsShortcutName",
"shortcut_description": "ThisIsShortcutDescription",
"query": "ThisIsQuery"

}

Do not output any other content; your response should only be in this JSON format. Do not simply
repeat the shortcut workflow. Parameters not surrounded by {{}} should not appear in the generated
query. Output the JSON directly without using “‘json XX“‘ to enclose it.
Note again, you should include all required parameters in the generated query. Please give your
answer in English.

Figure 9: System and user prompt templates for query generation based on a shortcut

mp divided by np. Specifically, each time we predict an action bj , 1 ≤ j ≤ |aseqi|, we provide the
agent with all the correct historical actions {a1, a2, ..., aj−1}. We then require the agent to predict
the next action. All actions predicted by the agent form the prediction sequence bseqp,i. This method
is similar to the next token prediction (NTP) in LLMs, effectively preventing a cascade of errors

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

SYSTEM_PROMPT_TEMPLATE:
Shortcut consist of a sequence of actions, each is an API call, to execute user-provided queries.
As a friendly and patient assistant, you need to categorize the provided shortcut into one of the
following eight categories:

1. Productivity & Utilities
2. Health & Fitness
3. Entertainment & Media
4. Lifestyle & Social
5. Education & Reference
6. Business & Finance
7. Development & API
8. Home & Smart Devices

For each shortcut command, I will provide you with five fields:
1. ’RecordName’: The name of the shortcut, briefly describing its function.
2. ’Description of the Shortcut Workflow’: A description of the entire action workflow of the

shortcut.
3. ’Comments’: Optional. Notes from the shortcut’s developer, which may describe its func-

tions or other features.
4. ’Description in Store’: A description of the shortcut’s functionality provided in the shortcut

store.
5. ’API Description List’: Detailed descriptions of the APIs involved in the shortcut.

You should rely primarily on the ’Description of the Shortcut Workflow’ and ’API Description List’,
and refer to ’RecordName’, ’Comments’, and ’Description in Store’ to give the final category.

USER_PROMPT_TEMPLATE:
Below are the five fields I provide to you:

1. ’RecordName’: {RecordName}
2. ’Description of the Shortcut Workflow’: {DescriptionoftheShortcutWorkflow}
3. ’Comments’: {Comments}
4. ’Description in Store’: {DescriptionInStore}
5. ’API Description List’: {APIDescriptionList}

Please give the category on these details. Alongside the category, provide the shortcut’s name and a
description of its functionality in English using the following JSON format:
{

"category": "category",
"english_name": "ThisIsShortcutName",
"english_functionality": "ThisIsFunctionality"

}

Do not output any other content; your response should only be in this JSON format.

Output the JSON directly without using “‘json XX“‘ to enclose it. Please give your answer in English.

Figure 10: System and user prompt templates for categorizing shortcuts based on their functionalities

in subsequent action predictions due to a single incorrect prediction. During the prediction, when
encountering special actions such as branching and looping, we skip predicting these actions and
directly add them to the historical actions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Specifically, when calculating the precision of API selection, we do not consider the contributions
of control statements such as branches and loops. This avoids the unreasonable requirement for the
agent to invoke “branch APIs” or “loop APIs” in the next action. The agent should inherently possess
the ability to correctly understand and act according to the conditions dictated by branches and loops.
In addition to excluding the contributions of these control statements, we also disregard contributions
from is.workflow.actions.comment and is.workflow.actions.alert, effectively
removing these non-operative commands from the history of actions provided to the agent.

A.5 EFFECTIVENESS OF API PARAMETER VALUE FILLING

To further ensure that the corresponding parameters are indeed included in the queries during
evaluation, we used the LLM to filter these parameters further, ensuring their presence in the queries.
Detailed prompts can be found in Figure 11.

A.6 RECOGNITION OF NEED FOR INPUT

In the shortcut, a parameter can be set to ExtensionInput, indicating that the parameter requires
a file provided by the user, or CurrentDate, indicating that the parameter needs to retrieve the date
from the system. Similarly, Clipboard indicates that the parameter should obtain content from
the clipboard, and DeviceDetails implies that the parameter needs to access certain information
about the user’s device. Lastly, Ask denotes that the parameter requires user authorization or
essential input from the user. A typical example is shown in Figure 12, where the action uses
the is.workflow.actions.getmyworkflows API. The Folder parameter is set to Ask,
indicating that this parameter requires input provided by the user.

A.7 SETUP

Following existing work (Huang et al., 2024b; Qin et al., 2024; Li et al., 2023), we slightly modified
the ReACT (Yao et al., 2023) templates to construct the API-based agents. The templates used in our
experiments are as shown in Figure 13.

A.8 RESULT ANALYSIS
Table 6: Pricing, Testing Instances, and Actual Costs of Popular AI Models. (07-22-24). Except for
gemini-1.5-pro, which was randomly tested on 800 instances due to cost considerations, all
other LLMs were tested across all datasets. However, the number of successful tests varied slightly
due to factors such as context length, safety reviews, and etc. The cost of testing primarily stems
from inputs, as we continuously feed historical actions into the LLM for evaluation, and all historical
conversations are billed repeatedly (OpenAI Community, 2023).

Model Name Price / 1M tokensInstancesEstimate Cost ($)

gemini-1.5-pro $3.50 / $10.50 801 592

gemini-1.5-flash $0.35 / $1.05 5295 391

qwen2-72b-instruct $0.70 / $1.40 5216 800

qwen2-57b-a14b-instruct $0.49 / $0.98 5368 580

GPT-4o-mini $0.15 / $0.60 5320 100

gpt-3.5-turbo $0.50 / $1.50 5463 500

deepseek-chat $0.14 / $0.28 5319 90

deepseek-coder $0.14 / $0.28 5317 90

GLM-4-Air $0.14 / $0.14 5330 110

Total Cost 3253
Among them, gemini-1.5-pro (tested with 801 instances) and gemini-1.5-flash
(tested with 5,295 instances) incurred a total cost of $801, with gemini-1.5-flash

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

SYSTEM_PROMPT_TEMPLATE:
Your task is to classify the parameters I provide based on user queries, API information, and API
calls (also known as actions).

User query describes the task the user wants to accomplish.

Information about the API definition includes the API name, parameter names, parameter types,
default values, return value names, and return value types. Parameters are identified by ’Parameters’
and explained. The return value names and return value types are identified by ’Return Values’. The
API’s brief and detailed descriptions are marked by ’Description’. The natural language description
of the API is marked by ’ParameterSummary’.

Completing the user query requires a series of API calls, each API call needs the correct and
appropriate parameters. We have pre-selected possible parameters that may appear in the query.

Please note, you must classify these pre-selected parameters based on the user query. Each parameter
can generally be classified into the following categories:

1. Precise parameter: Parameters stated by users in the query, or those implicitly indicated in
the query but can be accurately inferred by combining the query and the API definition.

2. Not precise parameter: Parameters not stated by users in the query and cannot be accurately
inferred even with the combination of the query and the API definition.

Note! Note! Note! all precise parameters must be clearly or implicitly specified in the query.

USER_PROMPT_TEMPLATE:
The user query is: {query}
Information about the API definition is provided below: {api_desc}
The API call is: {API_call} The pre-selected possible parameters that may appear in the query are
listed below: {possible_paras}

Output the classification in the following format:
{

para_name1: {
para_name1: para_type1,
"reason1": The reason

},
para_name2: {

para_name2: para_type2,
"reason2": The reason

},
...

}

Do not output any additional content; only output a JSON. Do not enclose your output with “‘json
XXX“‘.
Note! Note! Note! all precise parameters must be clearly or implicitly specified in the query.

Figure 11: System and user prompt templates for classifying parameters based on user queries and
API definitions

accounting for approximately $391 and gemini-1.5-pro approximately $592. The
costs for qwen2-72b-instruct (tested with 5,216 instances) were about $800,
qwen2-57b-a14b-instruct (tested with 5,368 instances) around $580, and GPT-4o-mini
(tested with 5,320 instances) approximately $50. gpt-3.5-turbo (tested with 5,463 instances)
cost approximately $500. The combined expenses for deepseek-chat (tested with 5,319
instances) and deepseek-coder (tested with 5,317 instances) were roughly $180, while
GLM-4-Air cost about $110.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

{
"WFWorkflowActionIdentifier": "is.workflow.actions.getmyworkflows",
"WFWorkflowActionParameters": {

"Folder": {
"Value": {

"Type": "Ask"
},
"WFSerializationType": "WFTextTokenAttachment"

},
"UUID": "E5F695A5-9DD3-4720-84D2-9AB0AD457908"

}
}

Figure 12: An example of Ask parameter.

The cost analysis indicates a notable range in efficiency and value for money. Models like
deepseek-chat and deepseek-coder show excellent cost-effectiveness, particularly suit-
able for high-volume, low-cost deployments. In contrast, models like gemini-1.5-pro and
gemini-1.5-flash reflect higher costs, but they offer superior performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

SYSTEM_PROMPT_TEMPLATE:
You are AutoGPT. Your task is to complete the user’s query using all available APIs.

First, the user provides the query, and your task begins.
At each step, you need to provide your thought process to analyze the current status and determine the
next action, with an API call to execute the step. After the call, you will receive the result, and you
will be in a new state. Then, you will analyze your current status, decide the next step, and continue...
After multiple (Thought-Call) pairs, you will eventually complete the task.

Below are all the available APIs, including the API name, parameter names, parameter types, default
values, return value names, and return value types.
{all_api_descs}

For each step, use only one API. Strictly follow the JSON format below for your output and do not
include any irrelevant characters.

{
"Thought": "Your analysis of what to do next",
"WFWorkflowActionIdentifier": "The API name you call",
"WFWorkflowActionParameters": {

"parameter name": "parameter value"
}

}

WFWorkflowActionParameters are the parameters required for the API call. The parameter value
might be:

1. basic data types like string, integer, float, or boolean.
2. output from previous API call.
3. input from the system or the user, including file provided by the user.
4. Previously defined variable names.
5. If the parameter is of type string, you can also combine the output of a previous action, input

from the system or the user, with a string.
6. If the output of a previous action is an Object type, or if you need to use input from the

system or the user, you can utilize specific properties from the previous action’s output.

USER_PROMPT_TEMPLATE:
The user query is: {query}
The history actions and observations are as follows: {history_actions}

Please continue with the next actions based on the previous history. Do not output any other content;
your response should only be in this JSON format.
You should only output one action at a time.

Figure 13: System and user prompt templates for executing API calls based on user queries

24

	Introduction
	Related Work
	Dataset
	Dataset Acquisition
	Dataset Construction
	Task Definition and Metrics
	Performance about API Selection
	Effectiveness of API Parameter Value Filling
	Recognition of Need for Input

	Evaluation
	Setup
	Result Analysis

	Conclusion
	Appendix / supplemental material
	Dataset Acquisition
	Dataset Construction
	Task Definition and Metrics
	Performance about API Selection
	Effectiveness of API Parameter Value Filling
	Recognition of Need for Input
	Setup
	Result Analysis

