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ABSTRACT

Recent advancements in integrating large language models (LLMs) with appli-
cation programming interfaces (APIs) have gained significant interest in both
academia and industry. Recent work demonstrates that these API-based agents
exhibit relatively strong autonomy and planning capabilities. However, their ability
to handle multi-dimensional difficulty levels, diverse task types, and real-world
demands remains unknown. In this paper, we introduce SHORTCUTSBENCH,
a large-scale benchmark for the comprehensive evaluation of API-based agents
in solving real-world complex tasks. SHORTCUTSBENCH includes a wealth of
real APIs from Apple Inc., refined user queries, human-annotated high-quality
action sequences, detailed parameter filling values, and parameters requesting
necessary input from the system or user. We revealed how existing bench-
marks / datasets struggle to accommodate the advanced reasoning capabilities
of existing more intelligent LLMs. Moreover, our extensive evaluation of agents
built with 5 leading open-source (size ≥ 57B) and 5 closed-source LLMs (e.g.
Gemini-1.5-Pro and GPT-4o-mini) with varying intelligence level reveals signif-
icant limitations of existing API-based agents in the whole process of handling
complex queries related to API selection, parameter filling, and requesting nec-
essary input from the system and the user. These findings highlight the great
challenges that API-based agents face in effectively fulfilling real and complex
user queries. All datasets, code, experimental logs, and results are available at
https://anonymous.4open.science/r/ShortcutsBench .

1 INTRODUCTION

Table 1: Less intelligent LLMs (even 3B) on exist-
ing benchmarks / dataset demonstrated excellent
results with the same prompt in Section 4.1.

Acc. (%) MetaToolToolLLMToolBench
2024b 2024 2024

LLaMA-3.2-3B 89.64 72.92 79.47
QWen-2.5-3B 88.29 77.86 91.35
LLaMA-3-8B 89.00 78.31 93.57
QWen-2.5-7B 92.50 82.69 94.26
GPT-4o-mini 88.31 84.50 89.90

Large language model based agents (LLM-
based agents) (Wang et al., 2024b; Xi et al.,
2023) built on application programming inter-
faces (APIs) have gained significant interest in
academia and industry. By integrating LLM
with APIs, LLMs can access real-time infor-
mation (Qin et al., 2024), reduce hallucination
with external knowledge (Gao et al., 2024),
as well as plan and complete complex tasks
that need multi-step actions (Gravitas, 2024).
Many of these agents (OpenAI, 2024a) have al-
ready demonstrated commendable performance
on simple tasks involving only a few actions
such as “Check the weather ① and tell me ②”. This impressive performance raises an important
question: Are these API-based agents truly capable of generating action sequences for real and
complex demands?

Some existing benchmarks / datasets1 have attempted to evaluate API-based agents. However, they
have three limitations (please refer to Table 2 for all details): First, the APIs (a.k.a tools available to
the agent) lack richness, and the queries (a.k.a the task to the agent) lack complexity. They either
involve a limited number of APIs, cover small numbers of apps (an app may have ≥ 1 APIs), or the

1We refer to the evaluation-specific datasets as "benchmarks" and fine-tuning datasets as "datasets".
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difficulties of the queries are limited in a narrow range, with the average action length ranges from 1 to
5.9. This lack of richness and complexity makes it difficult to effectively distinguish the capabilities
of different agents, even on less intelligent LLMs like QWen-2.5-3B (Alibaba, 2024), let alone
more intelligent LLMs like Gemini-1.5-Pro (Google, 2024). Our evaluation on API selection of
these less intelligent LLMs on 3 representative2 benchmarks / datasets (Table 1) shows that even
3B LLMs can achieve impressive results. There is almost no difference in accuracy across LLMs
of varying intelligence levels. Therefore, existing benchmarks / datasets struggle to accommodate
more intelligent LLMs and to differentiate the intelligence levels among various LLMs. Second,
the APIs lack realism as they may be manually crafted, and the queries fail to reflect actual user
demands since they may be either created by hand or generated directly by LLMs without verifying
real user demands. Moreover, they only cover the evaluation of API selection, lacking a study on API
parameter filling. Efficient and accurate parameter filling is essential for an agent to finish the whole
process of completing queriess Third, they don’t adequately evaluate the agent’s ability to request
systems or the users for the necessary input to resolve the missing information for solving the queries.
This is crucial as a user’s query may be implicit or may not provide all the input an agent needs to
solve the task effectively.

In this paper, we innovatively propose to use data extracted from existing Digital Automation
Platforms (DAPs), Apple Shortcuts, to construct a high-quality benchmark for API-based agents, i.e.,
SHORTCUTSBENCH. To the best of our knowledge, SHORTCUTSBENCH is the first large-scale real
API-based agent benchmark considering APIs, queries, and action sequences. SHORTCUTSBENCH
provides rich and real APIs, queries with various difficulties and task types, high-quality human-
annotated action sequences, and queries from real user demands. Moreover, it also provides precise
values for parameter filling, including primitive data types, enum types, and the use of output
from previous actions for parameter values, as well as evaluations of the agent’s awareness in
requesting necessary input from the system or user. Furthermore, the scale of APIs, queries, and the
corresponding action sequences is comparable or even better to benchmarks / datasets created by
LLM or modified by existing datasets. The overall comparison between SHORTCUTSBENCH and
existing benchmarks / datasets is listed in Table 2.

To demonstrate SHORTCUTSBENCH’s advantages, we do extensive evaluations of API-based agents
from 10 leading open-source and close-source LLMs, covering varying intelligence levels. To our
best known, this is the most comprehensive evaluation considering the API selection, parameter value
filling, and recognition of the need for input from the system or the user, covering all key processes
of API-based agent. The evaluation results highlight great limitations of existing API-based agents.

In summary, this paper makes the following key contributions:

• We identified problems of the existing benchmarks / datasets, specifically that they struggle to
accommodate the advanced reasoning capabilities of existing more intelligent LLMs, and have
conducted experiments to validate the problem.

• We innovatively extracted data from Shortcuts, to build a high-quality benchmark for API-based
agents. To our best knowledge, SHORTCUTSBENCH is the most realistic, rich, comprehensive,
and large-scale benchmark for API-based agents. We hope this approach to dataset construction
will inspire more researchers.

• We made efforts to evaluate 10 advanced LLM-based agents with varying intelligence levels on
the whole process required to complete user queries, including API selection, parameter filling,
and their awareness of requesting necessary input from the system or user.

• We obtained massive interesting conclusions such as (1) Open-source LLM agents now match
closed-source ones on simpler tasks but still lag behind on complex ones; (2) Extracting necessary
parameters from queries is the most challenging task in parameter filling; (3) There is a substantial
lack of awareness in agents when it comes to requesting the necessary input;

• We have fully open-sourced all the datasets, code, experimental logs, and results, and provided
detailed documents. We hope our research opens new directions for the real-world deployment of
existing LLM-based agents.

2MetaTool uses the native GPT API, while ToolBench and ToolLLM have the longest average action length
and the largest scale with real-world API, respectively.
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Table 2: SHORTCUTSBENCH has a great advantage in the ①realness and richness, ②the complexity
of APIs, queries, and corresponding action sequences, ③the validity of action sequences, ④detailed
parameter value filling, ⑤the awareness for asking necessary input, and ⑥the overall scale.

Resource
Shortcuts

Bench
Meta
Tool

Tool
LLM

API
Bench

Tool
Alpaca

API
Bank

Tool
Bench

Tool
QA

Tool
Lens

(Ours) 2024b 2024 2024 2023 2023 2024 2024 2024

Real API? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Demand-driven Query? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Human-Annotated Act.? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Multi-APIs Query? ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓
Multi-Step Act.? ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Prec. Val. for Para. Fill? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Awareness for Ask Info? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

# Apps 88 N/A 3451 3 N/A N/A 8 N/A N/A
# APIs 1414 390 16464 1645 53 400 232 13 464
# Queries 7627 21112 12657 17002 3938 274 2726 1530 18770
# Avg APIs 9.62 1.02 2.3 1.0 1.0 2.1 5.4 3.5* 2.65
# Avg Actions 21.62 1.02 4.0 1.0 1.0 2.2 5.9 3.9* 2.67

* denotes estimation.

2 RELATED WORK

API-based agents. API-based agents treat APIs as tools. They accept queries, generate action
sequences based on queries and provided APIs, and generate next action depends on the history
actions (Wang et al., 2024b; Yao et al., 2023). Related work about API-based agents can generally
be categorized into 3 types: (1) Task-specific enhancement focuses on improving the agent’s ability
like using the model (Shen et al., 2024; Zhong et al., 2024). (2) Data-driven workflows emphasize
the importance of data by researching how to construct action sequences, enabling generated data to
fine-tune the model (Qin et al., 2024; Patil et al., 2024). (3) Agent evaluation studies the assessment
of agents (Huang et al., 2024b; Li et al., 2023).

Code-based agents. Code-based agents use code generated for interaction with the external envi-
ronment. They accept queries, generate scripts in programming languages such as Python (OpenAI,
2024b; Wang et al., 2024c), JavaScript (Wang et al., 2024a; Zheng et al., 2023), or Shell (OpenIn-
terpreter, 2024; Sladić et al., 2024), and then input the code into interpreters. The execution results
are then returned to the agent, which is used to help determine the next code generation. Currently,
these approaches primarily focus on enhancing agent performance in specific tasks by incorporating
additional knowledge (Wang et al., 2024a; Wu et al., 2023), increasing feedback (OpenInterpreter,
2024; Huang et al., 2024a), and decomposing tasks (Huang et al., 2023; Prasad et al., 2024). In
addition to work on optimization methods, numerous efforts have emerged to evaluate code-based
agents (Trivedi et al., 2024; Liu et al., 2024)

Digital Automation Platforms (DAPs). DAPs (Abdou et al., 2021) refer to software tools or
services designed to optimize workflows through automation. DAPs leverage technologies such as
robotic process automation (RPA) (Chakraborti et al., 2020) and low-code / no-code development
tools to achieve the goals. DAPs like Zapier (Zapier, 2024), Make (Make, 2024), and IFTTT (Rahmati
et al., 2017) offer extensive APIs that enable users to create automated workflows. Similarly, DAPs
such as Microsoft Power Automate (Microsoft, 2024) and Tasker (Dias, 2024) are primarily used
to build workflows on Azure and Android, respectively. Recently, with the rise of LLM-based
agents, platforms like Coze (Coze, 2024) and Dify (Dify, 2024) have emerged as “agent construction
platforms”. Functionality like “workflow” in these platforms can also help manually build workflows,
but they have been specifically optimized for integration with LLMs.

Shortcuts app (formerly Workflow) (Apple, 2024) is an app developed by Apple for building workflows
through a graphical interface, available on Apple’s operating systems (iOS / iPadOS and macOS).
Shortcuts app can be seen as the DAP of Apple. It allows users to create workflows (known as
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shortcuts (Apple, 2024c)) that execute specific tasks on their devices and share them online via iCloud
link (Apple, 2024b). Users can also download curated shortcuts from the Gallery of the Shortcuts
app. However, the shortcuts available in the Gallery are very limited, with only a few dozen options.
To access more shortcuts, users must either collect them from third-party sharing sites like Shortcuts
Gallery (Gallery, 2024) or create their own. Shortcuts can be triggered through the Shortcuts app,
widgets, the share sheet, old Siri (Apple, 2024a), new Siri of Apple Intelligence (Apple, 2024b), and
they can also be automated to run upon specific events.

Shortcuts are composed of multiple API calls (actions). An agent can use the shortcut as a whole API
or utilize the individual APIs involved in the shortcut. This paper treats APIs within the shortcuts as
APIs available to the agent, aiming for the agent to automatically construct workflows of API calls.

3 DATASET

In this Section, we first introduce the acquisition of the dataset (Section 3.1). Then, we outline the
SHORTCUTSBENCH’s construction process (Section 3.2). Finally, we outline the setup for evaluation
tasks to evaluate the agent’s ability to handle tasks of varying difficulty, including the ability to select
suitable APIs (Section 3.3.1), the ability to do parameter filling (Section 3.3.2), and the awareness in
requesting additional input from the system or user (Section 3.3.3).

3.1 DATASET ACQUISITION

Figure 1: (a) illustrates the data acquisition process.
(b) shows the dataset acquisition of existing work.
APIs in existing work are collected from API hubs,
created by hand, or modified from existing datasets.
The queries and action sequences are constructed
using templates or semi / fully automated methods.

Figure 1 shows the data acquisition process. We
first use search engines to identify popular pub-
lic shortcut-sharing sites ①. We totally find 14
sites (Table 5). Then we crawled these sites to
obtain fields such as “shortcut name”, “function
description”, “shortcut type”, and “iCloud link”
②. Then we downloaded the shortcut source file
by “iCloud link” and then perform deduplicating
based on iCloud link itself and the actual short-
cut content (i.e., the action sequences) ③. Sub-
sequently, we extracted “app name” using the
field WFWorkflowActionIdentifier in
the shortcut source file, and then downloaded
associated apps ④. These apps may come
from various sources. (1) apps from the ma-
cOS or iOS App Store, (2) apps like Keynote
from path /Applications/ and /System
/Application/ on macOS, (3) third-party
apps from the the official website of the app.
During the downloading, we also excluded some
legacy apps and paid apps.

Then we managed to extract APIs from the downloaded apps ⑤. The APIs are mainly from intent
definition file ${filename}.actionsdata from AppIntent (Apple-Inc., 2024b) framework and
${filename}.intentdefinition from SiriKit (Apple-Inc., 2024c) framework. We extracted
all APIs involved in the apps. During the extraction, we perform deduplication of APIs based on
manually crafted rules as an app may have multiple duplicate API definition files with the same API
definition. This process also involves significant manual filtering. Additionally, for app Shortcuts,
which are deeply integrated with Apple’s operating system, we need to obtain their API defini-
tion files WFActions.json from system path /System/Library/PrivateFrameworks/
WorkflowKit.framework/ on macOS, instead of extracting it from the app itself. Subsequently,
we further filtered the shortcuts ⑥ based on criteria such as whether the associated apps is paid app,
whether the apps were outdated, and whether the APIs were deprecated. Additionally, we imported
all shortcuts into the macOS Shortcuts app to ensure they were functional. Finally, as shown in
Table 2, we get 88 apps from various categories such as “Health & Fitness” and “Developer Tools”.
We finally get 1414 APIs involved in 7627 shortcuts.

4
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a. API Information
(1) com.openai.chat.AskIntent (prompt: String, newChat: Boolean, model: ModelEntity, continuous: Boolean) -> Ask
ChatGPT: String

(2) Parameters [parameter name (default value): title. parameterDescription]: 
    (2.1) prompt: Message. Message to send to ChatGPT
    (2.2) newChat (0): Start new chat. Indicates whether a new chat should be started
    (2.3) model (default): Model. Model to use with the new chat
    (2.4) continuous (0): Continuous chat. Whether to enable back-and-forth chat or complete the Shortcut immediately after
response

(3) Return Value [return value name: resultValueName. displayTypeName]:
    (3.1) Ask ChatGPT: None

(4) Description [title + description + actionSummary]: 
    (4.1) title: Ask ChatGPT
    (4.2) description: This action will send a single message to a chat with ChatGPT and return the response.
    (4.3) actionSummary: Ask ChatGPT ${prompt} in a new chat

b. Generating User Queries using Info from (c), (d), (e)
(5) As a user-friendly and patient inquirer, you need to craft a query based on the provided shortcut ......

(6) APIs: Related API and corresponding Parameters and Return Value: ...
(7) NLP descriptions to developers: 
    Ask ChatGPT $Message$ in a new chat. Start new chat: true, Model: default, Continuous chat: true, Show When Run: true
    If $Ask ChatGPT$ $does not have any value$:
        Open $ChatGPT$
NameInStore: Ask ChatGPT; DescriptionInStore: Chat with ChatGPT.

......
DescriptionInStore: Chat with ChatGPT.

NameInStore: Ask ChatGPT.

d. Funcs of APIc. NLP desc to devs

e. Descs from Sharing-site

Figure 2: The construction of SHORTCUTSBENCH. (a) shows the information of API com.openai.
chat.AskIntent extracted from the app ChatGPT’s ${filename}.actionsdata. We
provide this API description to the LLM, expecting it to call the API at the appropriate time. The API
information shown in (a) includes the API functionality description (a.k. (a.1)~(a.4)) as shown in (d),
and the user-friendly natural language description of the API (a.k. (a.4.3)) seen by shortcut developers
during programming, as shown in (c). (e) presents the shortcut name and functionality description
from the shortcut sharing-sites. (b) shows the simplified prompt fed to GPT-4o, instructing it to
generating queries based on demands indicated by shortcuts by integrating the info from (c), (d), and
(e). Different colors indicate different information sources.

As the acquisition process involves specific knowledge about shortcut-sharing sites and Apple’s
operating system, detailed explanations are omitted here due to space constraints. For more details
about the whole acquisition process, please refer to Appendix A.1.

3.2 DATASET CONSTRUCTION

As shown in Figure 2, existing benchmarks / datasets consist of two parts: (1) APIs; (2) queries and
corresponding action sequences.

APIs (Figure 2.a) include the “API description” (a.4), “API name” (a.1), “parameter names” (a.2),
“parameter types” (a.1), “default value” (a.2), “return value type” (a.3), and “return value name” (a.3).
The field names in square brackets [] represent the original field name in the shortcut source file. For
more details about ${filename}.actionsdata, ${filename}.intentdefinition,
and WFActions.json, please refer to the Appendix A.2. In existing benchmarks / datasets,
the “parameter types” and “return value types” are composed of primitive data types such as int
and string. In addition to primitive data types, APIs in SHORTCUTSBENCH also include “enum”
or “advanced data types”. Enum is composed of “the class name” and “the possible value”, with each
value equipping a “value name”. We also provide the agent with a description of the “enum” in the
API information. Advanced data types, such as the model (a.1), include three String types named
identifier, title, and subtitle. We can comprehend them through their “type name” and
“type description”.

Query and action sequence. A query is a user command, such as “Tell me what the weather will
be like tomorrow.” The action sequence (aka. shortcut) is the series of API calls to complete the
query, with each API call referred to as an action. The action sequence identifies the steps needed to
complete a query. As shown in Figure 1.b, existing benchmarks / datasets collect APIs first and then
use them, either fully automatically or semi-automatically, to construct query and action sequences
through LLMs. In contrast, action sequences in SHORTCUTSBENCH are all human-annotated. The
shortcut developers are our annotators. APIs in SHORTCUTSBENCH are also all real-world. Moreover,
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we ensured the quality of action sequences by filtering shortcuts based on criteria such as whether the
associated apps were paid, outdated, or relied on deprecated APIs. We also imported all shortcuts
into the macOS Shortcuts app to verify their functionality.

Generating queries. As shown in Figure 1, existing works construct query and action sequences
based on available APIs. In contrast, we construct queries based on existing action sequences and
APIs. When constructing a query for a specific action sequence, we need to understand the functional
description of the action sequence (Figure 2.e) and detailed information about the involved APIs
(Figure 2.a). With this information, we can generate higher-quality queries. To ensure the quality
of the generated queries, we also leverage the unique advantage of shortcuts: the natural language
workflow descriptions (Figure 2.b.7 / Figure 2.c). By inputting these intuitive natural language
descriptions into an LLM, we can generate more accurate queries. When generating queries, we also
require the model to naturally include primitive data type parameters and enum data type needed
for API calls in generated queries. This helps us evaluate the agent’s ability to fill in primitive
parameters in Section 3.3.2. To ensure the quality of generated queries, we use the state-of-the-art
LLM, GPT-4o (OpenAI, 2024), to generate the queries. The prompt templates we used to generate
queries can be found in the Appendix A.2.

To ensure the quality of queries generated, follow existing work (Qin et al., 2024), we conducted a
preliminary experiment using 3 LLMs: GPT-4o, GPT-3.5, and Gemini-1.5-Pro, on a dataset
of 100 samples. The results showed that human evaluators rated GPT-4o generated queries the
highest, outperforming the other 2 LLMs. GPT-4o demonstrated superior performance by accurately
capturing required parameters and providing clear query descriptions, meeting our criteria in 94/100.
This superior performance can largely be attributed to the natural language workflow descriptions.

3.3 TASK DEFINITION AND METRICS

We aim to address 3 research questions regarding the performance of existing agents built using
leading LLMs on SHORTCUTSBENCH with varying difficulties: (1) How do they perform in API
selection? (2) How do they handle API parameter value filling, including parameters for primitive
data types, enums, and outputs from previous actions? (3) Can they recognize when input is required
for tasks that need system or user input?

Table 3: Final evaluation set with varying difficulties.

|aseqi| (0, 1] (1, 5] (5,15] (15,30] Overall
# Queries 706 2169 1571 774 5220
# Avg APIs 1.17 3.43 8.30 13.76 6.60
# Avg Acts 1.00 3.19 9.60 21.58 8.34

Preliminaries. SHORTCUTSBENCH consists
of a set of queries Q = {q1, q2, ..., qn}, corre-
sponding "golden" action sequences ASeq =
{aseq1, aseq2, ..., aseqn}, and all available
APIs APIs = {api1, api2, ..., apim}. For
each query qi, 1 ≤ i ≤ n, the correspond-
ing “golden” action sequence is aseqi =
{a1, a2, ..., a|aseqi|}, where the length of the
action sequence is |aseqi|. Each app appj has a set of APIs apisj = {api1, api2, ..., api|apisj |}. The
action sequences generated by the agent for each query qi are referred to as bseqi.

Prepare available APIs for each query. For each query qi, we provide the LLM with a certain
number of usable APIs to simulate real-world scenarios where APIs can be input into the LLM’s
context. Following existing work (Qin et al., 2024; Tang et al., 2023; Xu et al., 2024), we equip
each qi with a specific number of APIs. For each aseqi, let |APIsi| represent the number of
APIs involved. In addition to these |APIsi| APIs, we equip each query with extra APIs calculated
as max(min(x × |APIsi| , 20 − |APIsi|), 0), where x ∈ {3, 4, 5}. We do this because it is
impractical to input all APIs into the context simultaneously. When dealing with a large number
of APIs, additional retrieval is often required (Qin et al., 2024; Qu et al., 2024), which we do not
consider in this work.

Further Processing. Considering the context limitations of LLMs, we excluded shortcuts longer
than 30 and parts using the API is.workflow.actions.runworkflow to call other shortcuts.
While these shortcuts remain in our open-source dataset, they will not be included in the subsequent
evaluation. We aim to study the performance of agents on queries of varying difficulties. As shown
in Table 3, we categorize SHORTCUTSBENCH into 4 difficulty levels and 8 task types based on
|aseqi| and “shortcut type”, respectively. For more details, please refer to the Appendix A.3. When
calculating the length, for branching actions like is.workflow.actions.conditional, we
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consider the longest branch as the length. Additionally, we ignore the lengths of looping actions
like is.workflow.actions.repeat.count and special actions such as is.workflow.
actions.comment. Due to the presence of branching actions, the average number of APIs
involved when p = 1 is greater than one, specifically 1.17. For a detailed process, please refer to
the Appendix A.3. The number of shortcuts in each level is denoted as np. Each query and action
sequence is referred to as qp,i and aseqp,i, with 1 ≤ p ≤ 4 and 1 ≤ i ≤ np.

3.3.1 PERFORMANCE ABOUT API SELECTION

Following existing work (Huang et al., 2024b; Patil et al., 2024; Xu et al., 2024), we use the accuracy
of API selection as the metric. The accuracy is calculated as the number of correct API selections
mp divided by np. Specifically, each time we predict an action bj , 1 ≤ j ≤ |aseqi|, we provide the
agent with all the correct historical actions {a1, a2, ..., aj−1}. We then require the agent to predict
the next action. All actions predicted by the agent form the prediction sequence bseqp,i. This method
is similar to the next token prediction (NTP) in LLMs, effectively preventing a cascade of errors
in subsequent action predictions due to a single incorrect prediction. During the prediction, when
encountering special actions such as branching and looping, we skip predicting these actions and
directly add them to the historical actions. For more details, please refer to Appendix A.4. We chose
API selection accuracy over the final result for the following two additional reasons:

• SHORTCUTSBENCH contains numerous APIs such as opening the “All Shortcuts Folder” in the
Shortcuts app that do not have a return value. This makes it challenging to evaluate using existing
metrics that measure the success rate of solving queries (Qin et al., 2024; Xu et al., 2024;?).

• SHORTCUTSBENCH includes numerous APIs with complex input and output types, such as PDFs
and Rich Text. Converting these formats into text that an LLM can process presents a signifi-
cant challenge (Naveed et al., 2023), as LLMs struggle to serialize them into text. Consequently,
it becomes difficult to ascertain the correctness of the final results. However, measuring API
selection accuracy is straightforward.

3.3.2 EFFECTIVENESS OF API PARAMETER VALUE FILLING

In this part, we aim to investigate the performance of agents in API parameter value filling, including
parameters for “primitive data types” and “enums” and filling output from previous actions. For each
input parameter of every action in SHORTCUTSBENCH, we expect the agent to fill in the following
parameters correctly:

• Static Parameters Preset: These are static parameters that users provide as default inputs of
the action. These static parameters typically include primitive data types such as String and
Integer, as well as custom Enum defined by app developers. When the query explicitly specifies
a parameter that can be used as a static parameter, we expect the agent to accurately fill in the
parameter values according to the user’s query and the API’s definition. When generating queries,
we have already required the LLM to naturally include primitive and enumerated data types
(Section 3.2). To further ensure that the corresponding parameters are indeed included in the
queries during evaluation, we used the LLM to filter these parameters further, ensuring their
presence in the queries. Detailed prompts can be found in the Appendix A.5.

• Outputs from Previous Actions: An action may either have no output or, if it does have an
output, the output may be used by the following actions. In SHORTCUTSBENCH, outputs that are
difficult to input directly into the LLM are represented by a unique identifier (UID) and an output
name (OutputName), which can be input into the LLM for processing. The agent should have
the ability to correctly use the output values of previous actions.

For the static parameters preset, we evaluate using the overall parameter fill rate. Let sppai be the
total number of parameters that need to be filled in aseqi, 1 ≤ i ≤ nq, where nq is the number of
queries. If the agent correctly fills sppti parameters in the generated action sequence bseqi, then
the static parameter preset accuracy can be calculated as Accspp =

∑nq

i=1 sppti/
∑nq

i=1 sppai.
Similarly, for outputs from previous actions, the accuracy can be calculated as Accofpa =∑nq

i=1 ofpati/
∑nq

i=1 ofpaai.
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3.3.3 RECOGNITION OF NEED FOR INPUT

In this section, we aim to investigate the ability of existing API-based agents to ask systems or users
for necessary input to resolve the missing information. This missing information can come from
the system like clipboard (Clipboard), input files (ExtensionInput), and the current date
(CurrentDate) or from the user (Ask) (Apple-Inc., 2024a). For example, a parameter named
tags is usually represented in a shortcut as "tags":{"Value":{"Type": "Ask"}}, where
"Type": "Ask" indicates that the parameter will prompt the user for input. For more details,
please refer to Appendix A.6. We use the proportion of correctly identified parameters to evaluate
the agent’s ability to recognize the need for input from the system or the user. Let ns be the number
of queries, askai, askti be the number of times the need from the system or the user appears
in aseqi, bseqi, respectively, The accuracy of ask for necessary information can be calculated as
Accafni = askti/askai.

4 EVALUATION

4.1 SETUP

Model. Referencing existing work (Huang et al., 2024b; Qin et al., 2024; Li et al., 2023),
considering the performance of existing LLMs, we selected 10 most advanced LLMs to
construct API-based agent. The chosen model includes 5 closed-sourced and 5 open-
source LLMs, covering varying intelligence levels. Among them, Gemini-1.5-Pro,
LLaMA-3-70B, QWen-2-70B, and Deepseek-2-chat/coder are LLMs bench-
marked against GPT-4o-2024-05, while Gemini-1.5-Flash, ChatGLM-4-Air, and
QWen-2-57B are benchmarked against GPT-4o-mini-2024-07 and GPT-3.5-turbo.
We did not evaluate GPT-o1-preview/mini, GPT-4o, LLaMA-3.1-70b/405B, and
QWen-2.5-72b, mainly due to limited access, high costs, and the fact that LLaMA and QWen are
minor version improvements with recent releases.

We did not compare with specialized API-calling fine-tuned LLMs like AgentLM (Zeng et al., 2024)
or xLAM (Zhang et al., 2024) for two reasons. First, our selected models already cover a range of
intelligence levels, including closed-source models fine-tuned for API-calling tasks. Second, our goal
is to provide a benchmark that is challenging, rich, and distinctive, which has been validated under
the current setup. While AgentLM and xLAM focus on fine-tuning LLMs for API usage in specific
domains, the APIs and methods in SHORTCUTSBENCH could be combined with their approaches to
generate data for enhancing performance in targeted areas.

Prompt Template. Following existing work (Huang et al., 2024b; Qin et al., 2024; Tang et al., 2023;
Zhuang et al., 2024), we slightly modified the ReACT (Yao et al., 2023) templates to construct the
API-based agents. For all 3 research questions (RQs), we use the same prompt templates. An agent
should correctly select APIs, fill in parameters, and be aware of the need to request necessary input
from the system or user at appropriate times. Please refer to Appendix A.7 for more details.

4.2 RESULT ANALYSIS

Gem
ini

1.5
-Pr

o
QWen

2-7
2B

Dee
pse

ek

2-c
ha

t
Dee

pse
ek

2-c
od

er LLa
MA

3-7
0B

Gem
ini

1.5
-Fl

ash QWen

2-5
7B GPT

4o
-m

ini GPT

3.5
-tu

rbo
Cha

tGLM

4-A
ir

0

20

40

60

80

10
0

AP
I S

el
ec

tio
n 

Ac
cu

ra
cy

 (%
) Overall (0,1] (1,5] (5,15] (15,30]

Figure 3: The API selection accuracy on queries with
different complexity levels.
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Figure 4: The API selection accuracy dif-
ference of each LLM across 8 task types.

From Figure 3, we can see that for tasks with a lower difficulty level, both less intelligent LLMs and
more intelligent LLMs perform well. This is similar to the conclusion drawn from Table 1. However,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

20

40

60

80

100

Mean: 42.94
Std: 8.38

Productivity & Utilities

0

20

40

60

80

100

Mean: 44.19
Std: 8.78

Health & Fitness

0

20

40

60

80

100

Mean: 49.98
Std: 9.00

Entertainment & Media

0

20

40

60

80

100

Mean: 55.83
Std: 14.62

Lifestyle & Social

0

20

40

60

80

100

Mean: 46.82
Std: 8.74

Education & Reference

0

20

40

60

80

100

Mean: 46.07
Std: 6.48

Business & Finance

0

20

40

60

80

100

Mean: 36.15
Std: 6.71

Development & API

0

20

40

60

80

100

Mean: 56.38
Std: 7.86

Home & Smart Devices

AP
I S

el
ec

tio
n 

Ac
cu

ra
cy

 (%
)

Gemini-1.5-Pro QWen-2-72B Deepseek-2-chat Deepseek-2-coder LLaMA-3-70B Gemini-1.5-Flash QWen-2-57B GPT-4o-mini GPT-3.5 ChatGLM-4-Air

Figure 5: The API selection accuracy of each task type on 10 API-based agents.

for tasks with a higher difficulty level, only the more intelligent LLMs like Gemini-1.5-Pro,
Deepseek, and QWen2 perform adequately.

The superiority of SHORTCUTSBENCH. Combined with Table 1, SHORTCUTSBENCH can effec-
tively distinguishes between different levels of intelligence, making it a superior benchmark.

Through the results of API selection accuracy (Section 3.3.1), we get the following conclusions:

• Agents built using open-source LLMs now perform comparably to closed-source LLMs on
lower-difficulty tasks but still lag on higher-difficulty tasks. From Figure 3 we know that
open-source LLMs >= 70B match the performance of closed-source LLMs from the first 3
difficulty tasks, significantly outperforming GPT-4o-mini and GPT-3.5-turbo. However,
they still lag behind closed-source LLMs in handling complex tasks at the 4-th level. For more
details, please refer to Appendix A.8.

• Existing LLM-based agents still perform poorly on tasks requiring multi-step reasoning,
even more intelligent LLMs like Gemini-1.5-Pro struggle with high-difficulty tasks. From
Figure 3 we know that almost all LLMs handle well in API selection tasks at the level of (0,1],
but only more advanced models like Gemini-1.5-Pro and QWen-2-72B can do well in
higher-difficulty tasks of (1,5]. As tasks become more complex, the accuracy drops sharply. The
average accuracy dropped by 19% as task difficulty rose from (0,1] to (1,5], ranging from a
9% decrease (Deepseek-2-chat) to a 44% (ChatGLM-4-Air). From (0,1] to (5,15],
accuracy fell by 46%, with drops from 38% (Gemini-1.5-Pro) to 58% (ChatGLM-4-Air).

• Agents built with the same LLM show significant performance variations across different
types of tasks. From Figure 5 we know that the performance difference of agents built with
different LLM ranges from 15.94% (GPT-4o-mini) to 36.70% (Gemini-1.5-Pro).

• Existing API-based agents perform well on tasks in daily life such as Lifestyle & Social but
show poorer performance on professional tasks like Development & API. From Figure 5 we
know that Lifestyle & Social exhibit the highest average accuracy, surpassing the lowest
category, Development & API by approximately 18%.

Based on the results of API Parameter Value Filling (Section 3.3.2), we draw following conclusions:

• API selection and parameter filling both impact the agent’s performance. However, API
selection has a greater effect. As shown in Figure 6a, for existing more intelligent LLM like
Gemini-1.5-Pro, increased task difficulty has a much smaller impact on the accuracy of
parameter filling, especially on using outputs from previous actions. This indicates that the
greatest limitation of existing API-based agents in addressing user queries lies in the reasoning
and planning capabilities implied by API selection.

• The performance of API parameter filling remains a bottleneck for existing less intelligent
LLMs. As shown in Figure 6a, the performance of less intelligent LLMs like GPT-4o-mini in
API parameter filling significantly decreases as task difficulty increases.

• Compared to using the outputs of previous actions, extracting relevant parameters from the
user’s query and filling them is more challenging. As shown in Figure 6a, the colors in the
top plot (filling primitive data types and enum data types) are generally lighter than those in the
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Table 4: The accuracy of recognition of the need for input from the system or the user.

Levels
Gemini QWen Deep Deep LLaMA Gemini QWen GPT GPT Chat

1.5 2 seek2 seek2 3 1.5 2 4o 3.5 GLM4
Pro 72B chat coder 70B Flash 57B mini turbo Air

(0, 1] 33.33 37.78 64.29 62.71 47.62 62.79 22.22 37.14 28.89 47.62
(1, 5] 45.95 50.40 55.50 60.08 44.08 53.99 37.24 40.55 37.70 48.06

(5, 15] 51.85 36.42 40.76 49.44 35.71 40.65 28.37 29.71 20.33 48.42
(15, 30] 46.67 25.00 27.59 43.14 22.22 44.64 8.11 38.89 17.14 48.89

Overall 46.59 41.97 47.90 55.18 49.89 40.71 30.74 36.71 30.55 48.28

bottom plot (filling the outputs of previous actions as parameters). The accuracy drop ranges from
2.55% (GPT-3.5-turbo) to 15.39% (Deepseek-2-Chat).

• For existing less intelligent LLMs errors mainly stem from incorrect output formats and
wrong API selections. Figure 6b shows error types for tasks requiring outputs from previous
actions. It can be seen that powerful LLMs like Gemini-1.5-Pro rarely make format errors,
whereas the less intelligent models frequently make mistakes in output format and API selection.

The results from Recognition of Need for Input (Section 3.3.3) lead us to the following conclusions:

• All agents perform poorly at recognizing necessary system and user inputs when re-
quired. Overall, all agents have weak recognition capabilities, with accuracy ranging between
30.55% (GPT-3.5-turbo) and 55.18%(Deepspeed-2-coder). Larger LLMs such as
Deepspeed-2-chat (236B) still demonstrate better recognition accuracy.

5 CONCLUSION

In this paper, we introduce SHORTCUTSBENCH, a benchmark for evaluating API-based agents.
To the best of our knowledge, SHORTCUTSBENCH is the most realistic, rich, and comprehensive
benchmark of its kind. Our findings indicate that for agents built on the most advanced LLMs, the
primary bottleneck is API selection. For the most cost-effective LLMs, there is considerable room for
improvement in both API selection and parameter filling. Additionally, we identified a significant
deficiency in the agents’ awareness of requesting necessary input.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DATASET ACQUISITION

In this section, we introduce more details about the dataset acquisition introduced in Section 3.1.

Regarding data acquisition, we first use search engines to identify popular public shortcut-sharing
sites (① in Figure 1). We found a total of 14 sites. These sites include:

Table 5: 14 shortcut-sharing sites, including names, URLs, and shortcut counts.

# Site Name URL Count
1 Matthewcassinelli https://matthewcassinelli.com 1535
2 Routinehub https://routinehub.co 6860
3 MacStories https://www.macstories.net/shortcuts 4993
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"WFWorkflowActions": [
    {
        "WFWorkflowActionIdentifier": "com.openai.chat.AskIntent",
        "WFWorkflowActionParameters": {
            "AppIntentDescriptor": {
                "AppIntentIdentifier": "AskIntent",
                "BundleIdentifier": "com.openai.chat",
                "Name": "ChatGPT",
                "TeamIdentifier": "2DC432GLL2"
            },
            "UUID": "37A69184-E40B-444C-ACE5-31CD37AEDD89",
            "prompt": "What's the weather like tomorrow?"
        }
    }
]

API Name Paras System Paras API Paras

Figure 7: An example of a shortcut: Ask ChatGPT.

# Site Name URL Count
4 ShareShortcuts https://shareshortcuts.com 2395
5 ShortcutsGallery https://shortcutsgallery.com 4269
6 iSpazio https://shortcuts.ispazio.net 115
7 Jiejingku https://jiejingku.net 3347
8 SSPai https://shortcuts.sspai.com 145
9 Jiejing.fun https://jiejing.fun 84
10 Kejicut https://www.kejicut.com 37
11 RCuts https://www.rcuts.com 133
12 Sharecuts https://sharecuts.app 2395
13 Siri-shortcuts https://www.siri-shortcuts.de 15
14 Reddit https://www.reddit.com/r/shortcuts 100

Total (After Deduplication):8675

We can obtain shortcuts from these sites. Specifically, each dataset includes the “shortcut
name” (NameInStore), “function description” (DescriptionInStore), “shortcut type”
(CategoryInStore), and most importantly, the “iCloud link” (Apple, 2024a). Addition-
ally, it includes less important data such as the number of downloads (Downloads), favorites
(Favorites), reads (Reads), and ratings (Rates). All shortcuts include NameInStore and
DescriptionInStore, while the availability of other fields varies slightly depending on the
specific shortcut-sharing site.

We then downloaded the shortcut source file by “iCloud link” and performed deduplication based on
both iCloud links and the actual shortcut content (i.e., action sequences) to ensure the uniqueness of
each shortcut in the final dataset (② in Figure 1). For details on downloading source files via iCloud
links, please refer to our open-source code repository. We do deduplication because shortcuts sharing
sites store shortcuts as iCloud links, which often results in the same shortcut appearing in multiple
sharing-site. Additionally, shortcuts linked by these iCloud links could have identical content, making
deduplication essential to ensure that each shortcut in the final dataset was unique.

We then extracted the app name using the field WFWorkflowActionIdentifier from the
shortcut source file and downloaded the associated apps (③ in Figure 1). Shortcuts are composed of
a series of shortcut API calls, referred to as Actions. An example of a typical shortcut is shown in
Figure 7. Each shortcut API call is identified by a name, which usually includes the app’s identifier,
such as com.openai.chat, and the Intent name, such as AskIntent. For most API names, the
segment before the last dot represents the app name, while the segment after denotes the Intent name.
We semi-automatically extracted all app names to streamline the app download process.

We download these apps from various sources:
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• Apps from the macOS or iOS App Store: We downloaded a variety of applications directly from
Apple’s official platforms. This provided us with a vast selection of apps that are widely used and
trusted by users.

• System apps like Keynote from paths /Applications/ and /System/Application/ on
macOS: These are pre-installed applications integral to the operating system. Including them
ensured that our dataset covered essential tools commonly used by macOS users.

• Third-party apps from the official websites of the apps: To include software not available through
the App Store, we downloaded apps from their official websites. This allowed us to capture a
broader range of functionalities offered by third-party developers.

During the downloading process, we also excluded some legacy apps that are no longer maintained
and 12 paid apps to avoid potential licensing issues and focus on applications readily accessible to
the general public.

Then we managed to extract APIs from the downloaded apps (④ in Figure 1). The APIs are mainly
from intent definition file ${filename}.actionsdata from AppIntent (Apple-Inc., 2024b)
framework and ${filename}.intentdefinition from SiriKit (Apple-Inc., 2024c) frame-
work. We extracted all APIs involved in the apps. During the extraction, we perform deduplication of
APIs based on manually crafted rules as an app may have multiple duplicate API definition files with
the same API definition.

We perform deduplication to streamline API definitions, minimize redundancy, and ensure compati-
bility across frameworks, addressing inconsistencies introduced by the coexistence of SiriKit and
AppIntents. SiriKit, introduced in 2016 with iOS 10, enabled applications to integrate with
Siri for voice command interactions. In 2022, Apple launched AppIntents with iOS 16, providing
a more modern and flexible approach to defining and handling app intents. AppIntents facilitate
integration with Siri, Shortcuts, widgets, and more. To encourage adoption, Apple has provided
migration tools for developers transitioning from SiriKit. However, some apps still rely on the
SiriKit. Under SiriKit, developers use $filename.intentdefinition files, while the
AppIntents relies on $filename.actionsdata files. These files define APIs corresponding
to actions in Shortcuts. Apps may include only $filename.intentdefinition files, only
$filename.actionsdata files, or both, potentially leading to redundancy in API definitions.
To address this, we have implemented a set of rules to reduce API definition files and ensure API
uniqueness.

Additionally, for app Shortcuts, which are deeply integrated with Apple’s operating system, we need
to obtain their API definition files WFActions.json from system path /System/Library/
PrivateFrameworks/WorkflowKit.framework/ on macOS, instead of extracting it from
the app itself.

Subsequently, we further filtered the shortcuts based on criteria such as whether the associated apps
is paid app, whether the apps were outdated, and whether the APIs were deprecated. Additionally,
we imported all shortcuts into the macOS Shortcuts app to ensure they were functional. These steps
were repeated multiple times.

Finally, as shown in Table 2, we get 88 apps from various categories such as “Health & Fitness”,
“Developer Tools”, and “Lifestyle”. These apps in total include 1414 APIs, including all of 556 APIs
(Not all APIs have been used in Shortcuts) involved in 7627 shortcuts.

The approximate time spent on each step of the process is outlined below:

• Shortcut site collection: Approximately 3 days, completed entirely manually.

• Link scraping using Selenium: Around 2 weeks, requiring custom scripts for each site.

• Shortcut deduplication, API validity checks, and shortcut functionality validation: Approximately
4 weeks. Deduplication: Automated using iCloud links and content cleaning.

• API validity checks: Performed manually. Shortcut validity checks: A mix of automated and
semi-automated methods. Automated filtering was conducted using Apple Scripts to execute
shortcuts for preliminary filtering, followed by manual validation through importing shortcuts into
the Shortcuts app.
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(1) is.workflow.actions.getrichtextfromhtml (WFHTML: WFStringContentItem) -> Rich Text from HTML: public.html

(2) Parameters [parameter name (default value): DescriptionInput]: 
    (2.1) WFHTML: HTML

(3) Return Value [return value name: DescriptionResult]:
    (3.1) Rich Text from HTML: None

(4) Description [Name + DescriptionSummary + ParameterSummary]:
    (4.1) Name: Make Rich Text from HTML. 
    (4.2) DescriptionSummary: Takes the inputted HTML and turns it into rich text, which can then be converted to other formats.
    (4.3) ParameterSummary: Make rich text from ${WFHTML}

(1) com.ulyssesapp.mac.ULInsertTextIntent (sheet: SheetReference (Object), text: String, format: TextFormat (Enum), position: TextPosition (Enum))
-> Result: None

(2) Parameters [parameter name (default value): INIntentParameterDisplayName. INTypeDisplayName]:
    (2.1) sheet: Sheet. Sheet Reference
    (2.2) text: Content. 
    (2.3) format: None
    (2.4) TextPosition: None
 
(3) Return Value [return value name: INIntentResponseParameterDisplayName]:
    Result: None

(4) Description. [INIntentTitle + INIntentDescription + INIntentParameterCombinationTitle]:
    (4.1) INIntentTitle: Add Text to Sheet. 
    (4.2) INIntentDescription: Adds text to an existing sheet in Ulysses.
    (4.3) INIntentParameterCombinationTitle: Add ${text} to ${sheet}

(1) com.openai.chat.AskIntent (prompt: String, newChat: Boolean, model: ModelEntity, continuous: Boolean) -> Ask ChatGPT: String

(2) Parameters [parameter name (default value): title. parameterDescription]: 
    (2.1) prompt: Message. Message to send to ChatGPT
    (2.2) newChat (0): Start new chat. Indicates whether a new chat should be started
    (2.3) model (default): Model. Model to use with the new chat
    (2.4) continuous (0): Continuous chat. Whether to enable back-and-forth chat or complete the Shortcut immediately after response

(3) Return Value [return value name: resultValueName. displayTypeName]:
    (3.1) Ask ChatGPT: None

(4) Description [title + description + actionSummary]: 
    (4.1) title: Ask ChatGPT
    (4.2) description: This action will send a single message to a chat with ChatGPT and return the response.
    (4.3) actionSummary: Search for ${query}

Figure 8: We randomly selected three samples from three different definition files, as
shown in the upper (${filename}.actionsdata), middle (WFActions.json), and lower
(${filename}.intentdefinition) figures. The content in brackets represents different field
names. In practice, there are various details to handle, such as name prefixes and missing fields. For
complete details, please refer to our open-source code.

Additional manual and automated checks were conducted throughout the process but are not detailed
here.

A.2 DATASET CONSTRUCTION

The API definition files extracted from the app exist in two forms: the ${filename}.
intentdefinition files as indicated by the Sirikit framework and the ${filename}.
actionsdata files as indicated by the App Intent framework. Additionally, Apple’s first-party
apps provide a third type of definition file, WFActions.json. All three file formats provide “API
description”, “API name”, “parameter names”, “parameter types”, “default value”, “return value
type”, and “return value name”, but differ in their file format. We give a sample from each of the
three different file formats, as shown in Figure 8.

We construct queries based on existing action sequences and APIs. To ensure the quality of these
queries, we utilize the natural language workflow descriptions unique to shortcuts. When generating
queries, we require the model to naturally include primitive data type parameters and enum data types
needed for API calls. This helps us evaluate the agent’s ability to handle primitive parameters. We
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do not require the inclusion of complex data types in the queries, as they are difficult to convert to
text and challenging to evaluate. To ensure high-quality query generation, we use the state-of-the-art
LLM, GPT-4o (OpenAI, 2024). The prompt templates used for generating queries are provided in
Figure 9.

To ensure the quality of shortcuts, we filtered them based on criteria such as whether the associated
apps were paid, outdated, or relied on deprecated APIs. Additionally, all shortcuts were imported
into the macOS Shortcuts app to verify functionality. Deduplication and error-checking processes
were carried out throughout the entire data collection phase.

For ensuring the quality of generated queries, following prior work (Qin et al., 2024), we conducted
a preliminary experiment with three LLMs: GPT-4o, GPT-3.5, and Gemini-1.5-Pro, on a
dataset of 100 samples. Human evaluators rated GPT-4o as generating the highest-quality queries,
outperforming the other two models. GPT-4o excelled in accurately identifying required parameters
and providing clear query descriptions, meeting our criteria in 94 out of 100 cases. This superior
performance can largely be attributed to the natural language workflow descriptions. While we
acknowledge that not all queries may fully meet our requirements, we believe our approach is
reasonable. Similar works, such as ToolLLM, rely on GPT for large-scale query and action sequence
generation without guaranteeing complete accuracy.

A.3 TASK DEFINITION AND METRICS

Considering the context limitations of LLMs, we excluded shortcuts longer than 30 and parts using
the API is.workflow.actions.runworkflow to call other shortcuts. While these shortcuts
remain in our open-source dataset, they will not be included in the evaluation. We aim to study
the performance of agents on queries of varying difficulties. As shown in Table 3, we categorize
SHORTCUTSBENCH into 4 difficulty levels and 8 task types based on |aseqi| and “shortcut type”
(Section 3.1), respectively.

In calculating the length of shortcut commands, we do not simply count the number of actions within
the shortcut. Instead, we apply a specialized approach. Initially, certain actions that do not con-
tribute meaningful operations, such as is.workflow.actions.comment and is.workflow.
actions.alert, which are akin to comments in programming, are excluded. Furthermore,
we disregard the length of certain control flow statements, including is.workflow.actions.
conditional, is.workflow.actions.choosefrommenu, is.workflow.actions.
repeat.count, is.workflow.actions.repeat.each. For branching statements, we
consider the length of the longest branch, rather than the cumulative length of all branches.

When categorizing shortcuts, we first analyzed all available categories from the CategoryInStore
field in the collected data. We then classified the shortcuts into 8 categories, referencing with the
classification of apps on the Apple App Store (app). The categories are as follows:

1. Productivity & Utilities

2. Health & Fitness

3. Entertainment & Media

4. Lifestyle & Social

5. Education & Reference

6. Business & Finance

7. Development & API

8. Home & Smart Devices

Subsequently, I employed a language model to categorize all shortcuts using the prompt shown in
Figure 10.

A.4 PERFORMANCE ABOUT API SELECTION

Following existing work (Huang et al., 2024b; Patil et al., 2024; Xu et al., 2024), we use the accuracy
of API selection as the metric. The accuracy is calculated as the number of correct API selections
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SYSTEM_PROMPT_TEMPLATE:
Shortcut consist of a sequence of actions, each is an API call, to execute user-provided queries.
As a user-friendly and patient inquirer, you need to craft a query based on the provided shortcut. This
query, formatted as a question, should describe the task a user wants to complete and adhere to the
following criteria:

1. The problem described in the query must be solvable using the shortcut.
2. The query should include all required parameters from the shortcut.
3. The query should be naturally phrased, integrating parameters seamlessly into the question

rather than listing them separately.

For each shortcut command, I will provide you with five fields:
1. ’RecordName’: The name of the shortcut, briefly describing its function.
2. ’Description of the Shortcut Workflow’: A description of the entire action workflow of the

shortcut.
3. ’Comments’: Optional. Notes from the shortcut’s developer, which may describe its func-

tions or other features.
4. ’Description in Store’: A description of the shortcut’s functionality provided in the shortcut

store.
5. ’API Description List’: Detailed descriptions of the APIs involved in the shortcut.

You should rely primarily on the ’Description of the Shortcut Workflow’ and ’API Description List’,
and refer to ’RecordName’, ’Comments’, and ’Description in Store’ to formulate the final query.

USER_PROMPT_TEMPLATE:
Below are the five fields I provide to you:

1. ’RecordName’: {RecordName}
2. ’Description of the Shortcut Workflow’: {DescriptionoftheShortcutWorkflow}
3. ’Comments’: {Comments}
4. ’Description in Store’: {DescriptionInStore}
5. ’API Description List’: {APIDescriptionList}

Please generate a query based on these details. Alongside the query, provide the shortcut’s name and
a description of its functionality using the following JSON format:
{
"shortcut_name": "ThisIsShortcutName",
"shortcut_description": "ThisIsShortcutDescription",
"query": "ThisIsQuery"

}

Do not output any other content; your response should only be in this JSON format. Do not simply
repeat the shortcut workflow. Parameters not surrounded by {{}} should not appear in the generated
query. Output the JSON directly without using “‘json XX“‘ to enclose it.
Note again, you should include all required parameters in the generated query. Please give your
answer in English.

Figure 9: System and user prompt templates for query generation based on a shortcut

mp divided by np. Specifically, each time we predict an action bj , 1 ≤ j ≤ |aseqi|, we provide the
agent with all the correct historical actions {a1, a2, ..., aj−1}. We then require the agent to predict
the next action. All actions predicted by the agent form the prediction sequence bseqp,i. This method
is similar to the next token prediction (NTP) in LLMs, effectively preventing a cascade of errors
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SYSTEM_PROMPT_TEMPLATE:
Shortcut consist of a sequence of actions, each is an API call, to execute user-provided queries.
As a friendly and patient assistant, you need to categorize the provided shortcut into one of the
following eight categories:

1. Productivity & Utilities
2. Health & Fitness
3. Entertainment & Media
4. Lifestyle & Social
5. Education & Reference
6. Business & Finance
7. Development & API
8. Home & Smart Devices

For each shortcut command, I will provide you with five fields:
1. ’RecordName’: The name of the shortcut, briefly describing its function.
2. ’Description of the Shortcut Workflow’: A description of the entire action workflow of the

shortcut.
3. ’Comments’: Optional. Notes from the shortcut’s developer, which may describe its func-

tions or other features.
4. ’Description in Store’: A description of the shortcut’s functionality provided in the shortcut

store.
5. ’API Description List’: Detailed descriptions of the APIs involved in the shortcut.

You should rely primarily on the ’Description of the Shortcut Workflow’ and ’API Description List’,
and refer to ’RecordName’, ’Comments’, and ’Description in Store’ to give the final category.

USER_PROMPT_TEMPLATE:
Below are the five fields I provide to you:

1. ’RecordName’: {RecordName}
2. ’Description of the Shortcut Workflow’: {DescriptionoftheShortcutWorkflow}
3. ’Comments’: {Comments}
4. ’Description in Store’: {DescriptionInStore}
5. ’API Description List’: {APIDescriptionList}

Please give the category on these details. Alongside the category, provide the shortcut’s name and a
description of its functionality in English using the following JSON format:
{

"category": "category",
"english_name": "ThisIsShortcutName",
"english_functionality": "ThisIsFunctionality"

}

Do not output any other content; your response should only be in this JSON format.

Output the JSON directly without using “‘json XX“‘ to enclose it. Please give your answer in English.

Figure 10: System and user prompt templates for categorizing shortcuts based on their functionalities

in subsequent action predictions due to a single incorrect prediction. During the prediction, when
encountering special actions such as branching and looping, we skip predicting these actions and
directly add them to the historical actions.
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Specifically, when calculating the precision of API selection, we do not consider the contributions
of control statements such as branches and loops. This avoids the unreasonable requirement for the
agent to invoke “branch APIs” or “loop APIs” in the next action. The agent should inherently possess
the ability to correctly understand and act according to the conditions dictated by branches and loops.
In addition to excluding the contributions of these control statements, we also disregard contributions
from is.workflow.actions.comment and is.workflow.actions.alert, effectively
removing these non-operative commands from the history of actions provided to the agent.

A.5 EFFECTIVENESS OF API PARAMETER VALUE FILLING

To further ensure that the corresponding parameters are indeed included in the queries during
evaluation, we used the LLM to filter these parameters further, ensuring their presence in the queries.
Detailed prompts can be found in Figure 11.

A.6 RECOGNITION OF NEED FOR INPUT

In the shortcut, a parameter can be set to ExtensionInput, indicating that the parameter requires
a file provided by the user, or CurrentDate, indicating that the parameter needs to retrieve the date
from the system. Similarly, Clipboard indicates that the parameter should obtain content from
the clipboard, and DeviceDetails implies that the parameter needs to access certain information
about the user’s device. Lastly, Ask denotes that the parameter requires user authorization or
essential input from the user. A typical example is shown in Figure 12, where the action uses
the is.workflow.actions.getmyworkflows API. The Folder parameter is set to Ask,
indicating that this parameter requires input provided by the user.

A.7 SETUP

Following existing work (Huang et al., 2024b; Qin et al., 2024; Li et al., 2023), we slightly modified
the ReACT (Yao et al., 2023) templates to construct the API-based agents. The templates used in our
experiments are as shown in Figure 13.

A.8 RESULT ANALYSIS
Table 6: Pricing, Testing Instances, and Actual Costs of Popular AI Models. (07-22-24). Except for
gemini-1.5-pro, which was randomly tested on 800 instances due to cost considerations, all
other LLMs were tested across all datasets. However, the number of successful tests varied slightly
due to factors such as context length, safety reviews, and etc. The cost of testing primarily stems
from inputs, as we continuously feed historical actions into the LLM for evaluation, and all historical
conversations are billed repeatedly (OpenAI Community, 2023).

Model Name Price / 1M tokensInstancesEstimate Cost ($)

gemini-1.5-pro $3.50 / $10.50 801 592

gemini-1.5-flash $0.35 / $1.05 5295 391

qwen2-72b-instruct $0.70 / $1.40 5216 800

qwen2-57b-a14b-instruct $0.49 / $0.98 5368 580

GPT-4o-mini $0.15 / $0.60 5320 100

gpt-3.5-turbo $0.50 / $1.50 5463 500

deepseek-chat $0.14 / $0.28 5319 90

deepseek-coder $0.14 / $0.28 5317 90

GLM-4-Air $0.14 / $0.14 5330 110

Total Cost 3253
Among them, gemini-1.5-pro (tested with 801 instances) and gemini-1.5-flash
(tested with 5,295 instances) incurred a total cost of $801, with gemini-1.5-flash
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SYSTEM_PROMPT_TEMPLATE:
Your task is to classify the parameters I provide based on user queries, API information, and API
calls (also known as actions).

User query describes the task the user wants to accomplish.

Information about the API definition includes the API name, parameter names, parameter types,
default values, return value names, and return value types. Parameters are identified by ’Parameters’
and explained. The return value names and return value types are identified by ’Return Values’. The
API’s brief and detailed descriptions are marked by ’Description’. The natural language description
of the API is marked by ’ParameterSummary’.

Completing the user query requires a series of API calls, each API call needs the correct and
appropriate parameters. We have pre-selected possible parameters that may appear in the query.

Please note, you must classify these pre-selected parameters based on the user query. Each parameter
can generally be classified into the following categories:

1. Precise parameter: Parameters stated by users in the query, or those implicitly indicated in
the query but can be accurately inferred by combining the query and the API definition.

2. Not precise parameter: Parameters not stated by users in the query and cannot be accurately
inferred even with the combination of the query and the API definition.

Note! Note! Note! all precise parameters must be clearly or implicitly specified in the query.

USER_PROMPT_TEMPLATE:
The user query is: {query}
Information about the API definition is provided below: {api_desc}
The API call is: {API_call} The pre-selected possible parameters that may appear in the query are
listed below: {possible_paras}

Output the classification in the following format:
{

para_name1: {
para_name1: para_type1,
"reason1": The reason

},
para_name2: {

para_name2: para_type2,
"reason2": The reason

},
...

}

Do not output any additional content; only output a JSON. Do not enclose your output with “‘json
XXX“‘.
Note! Note! Note! all precise parameters must be clearly or implicitly specified in the query.

Figure 11: System and user prompt templates for classifying parameters based on user queries and
API definitions

accounting for approximately $391 and gemini-1.5-pro approximately $592. The
costs for qwen2-72b-instruct (tested with 5,216 instances) were about $800,
qwen2-57b-a14b-instruct (tested with 5,368 instances) around $580, and GPT-4o-mini
(tested with 5,320 instances) approximately $50. gpt-3.5-turbo (tested with 5,463 instances)
cost approximately $500. The combined expenses for deepseek-chat (tested with 5,319
instances) and deepseek-coder (tested with 5,317 instances) were roughly $180, while
GLM-4-Air cost about $110.
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{
"WFWorkflowActionIdentifier": "is.workflow.actions.getmyworkflows",
"WFWorkflowActionParameters": {

"Folder": {
"Value": {

"Type": "Ask"
},
"WFSerializationType": "WFTextTokenAttachment"

},
"UUID": "E5F695A5-9DD3-4720-84D2-9AB0AD457908"

}
}

Figure 12: An example of Ask parameter.

The cost analysis indicates a notable range in efficiency and value for money. Models like
deepseek-chat and deepseek-coder show excellent cost-effectiveness, particularly suit-
able for high-volume, low-cost deployments. In contrast, models like gemini-1.5-pro and
gemini-1.5-flash reflect higher costs, but they offer superior performance.
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SYSTEM_PROMPT_TEMPLATE:
You are AutoGPT. Your task is to complete the user’s query using all available APIs.

First, the user provides the query, and your task begins.
At each step, you need to provide your thought process to analyze the current status and determine the
next action, with an API call to execute the step. After the call, you will receive the result, and you
will be in a new state. Then, you will analyze your current status, decide the next step, and continue...
After multiple (Thought-Call) pairs, you will eventually complete the task.

Below are all the available APIs, including the API name, parameter names, parameter types, default
values, return value names, and return value types.
{all_api_descs}

For each step, use only one API. Strictly follow the JSON format below for your output and do not
include any irrelevant characters.

{
"Thought": "Your analysis of what to do next",
"WFWorkflowActionIdentifier": "The API name you call",
"WFWorkflowActionParameters": {

"parameter name": "parameter value"
}

}

WFWorkflowActionParameters are the parameters required for the API call. The parameter value
might be:

1. basic data types like string, integer, float, or boolean.
2. output from previous API call.
3. input from the system or the user, including file provided by the user.
4. Previously defined variable names.
5. If the parameter is of type string, you can also combine the output of a previous action, input

from the system or the user, with a string.
6. If the output of a previous action is an Object type, or if you need to use input from the

system or the user, you can utilize specific properties from the previous action’s output.

USER_PROMPT_TEMPLATE:
The user query is: {query}
The history actions and observations are as follows: {history_actions}

Please continue with the next actions based on the previous history. Do not output any other content;
your response should only be in this JSON format.
You should only output one action at a time.

Figure 13: System and user prompt templates for executing API calls based on user queries
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