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Abstract

We study the distributed multi-agent multi-armed bandit problem with heteroge-
neous rewards over random communication graphs. Uniquely, at each time step t
agents communicate over a time-varying random graph Gt generated by applying
the Erdős–Rényi model to a fixed connected base graph G (for classical Erdos-
Rényi graphs, G is a complete graph), where each potential edge in G is randomly
and independently present with the link probability p. Notably, the resulting ran-
dom graph is not necessarily connected at each time step. Each agent’s arm rewards
follow time-invariant distributions, and the reward distribution for the same arm
may differ across agents. The goal is to minimize the cumulative expected regret
relative to the global mean reward of each arm, defined as the average of that arm’s
mean rewards across all agents. To this end, we propose a fully distributed algo-
rithm that integrates the arm elimination strategy with the random gossip algorithm.
We theoretically show that the regret upper bound is of order log T and is highly
interpretable, where T is the time horizon. It includes the optimal centralized re-
gret O

(∑
k:∆k>0

log T
∆k

)
and an additional term O

(
N2 log T

pλN−1(Lap(G)) +
KN2 log T

p

)
where N and K denote the total number of agents and arms, respectively. This
term reflects the impact of G’s algebraic connectivity λN−1(Lap(G)) and the link
probability p, and thus highlights a fundamental trade-off between communication
efficiency and regret. As a by-product, we show a nearly optimal regret lower
bound. Finally, our numerical experiments not only show the superiority of our
algorithm over existing benchmarks, but also validate the theoretical regret scaling
with problem complexity.

1 Introduction

Multi-armed bandit (MAB) is a widely studied framework for sequential decision-making under
uncertainty [Auer et al., 2002]. In this setting, an agent selects an arm from multiple options
in each round, observes the reward from the chosen arm, and aims to maximize the cumulative
expected reward. The emergence of large-scale cooperative systems holds true in various applications
ranging from sensor networks [Ganesan et al., 2004, Zhu et al., 2016] to federated learning [Ye
et al., 2023, McMahan et al., 2017] and edge computing [Wang et al., 2022a, Ghoorchian and
Maghsudi, 2020]. It has naturally motivated interest in distributed multi-agent multi-armed bandit
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(MA-MAB) problem, where multiple agents collaboratively learn to optimize rewards. MA-MAB
settings are typically categorized as homogeneous [Landgren et al., 2016a, Martínez-Rubio et al.,
2019] or heterogeneous [Zhu et al., 2021, Xu and Klabjan, 2023], depending on whether the reward
distributions for the same arm are identical across agents. The heterogeneous setting, in which reward
distributions vary across agents, is significantly more general but more challenging, and thus has
attracted growing attention. It introduces substantial difficulties, as agents must make sequential
decisions under uncertainty while relying on limited information about both their own rewards and
the actions or observations of other agents.

Another challenging aspect of MA-MAB lies in the underlying communication protocol, which
constrains how agents share information with one another. Decentralized MA-MAB settings are
more realistic than centralized ones—where all agents can communicate with any other agent—as
they restrict communication to immediate neighbors defined by a graph structure. Much of the
existing work has focused on time-invariant graphs [Zhu et al., 2021], where the communication
graph remains fixed throughout. However, the complexity of many real-world decentralized systems,
such as wireless ad-hoc networks, necessitates the use of time-varying graphs [Zhu and Liu, 2023],
particularly random graphs [Xu and Klabjan, 2023]. This added complexity significantly complicates
both the communication and learning dynamics. Notably, [Xu and Klabjan, 2023] is the first to
consider classical Erdős–Rényi (E-R) random graphs in the MA-MAB setting, where any two agents
can communicate with probability p at each time step. However, it is possible that some pairs of
agents can never communicate directly due to inherent topological constraints. This scenario has
been formulated as a more general version of the E-R graph, where two agents can communicate
with probability p only if there is an edge between them in a base graph. Note that when the base
graph is a complete graph, it is equivalent to classical (E-R) random graphs, implying consistency. To
date, this setting remains unexplored, which motivates our work.

To date, a line of work has studied regret bounds under various graph structures, where connectivity
or sequential connectivity is typically required. For example, in the context of time-invariant graphs,
Martínez-Rubio et al. [2019] and Zhu et al. [2021] analyze distributed bandits over connected graphs
and derive log T regret bounds. For time-varying graphs, Zhu et al. [2025] obtains log T regret
bounds under the assumption of B-connectivity, where the union of any l consecutive graphs must
be connected. In the classical Erdős–Rényi model [Erdos et al., 1960] over fully connected agent
communication, Xu and Klabjan [2023] derive a regret of order log T , but only under the assumption
that p ≥ 1/2 + 1/2

√
1− (ϵ/NT)2/N−1 which is larger than 1/2 and can even approach 1 when the

number of agents N or the time horizon T is large. This is a strong assumption, as it may not hold in
many real-world settings, but is required in their analysis to ensure that the graph is connected with
high probability. Relaxing this connectivity requirement to allow arbitrary p presents a significant
challenge. Moreover, their regret bound does not reflect how the link probability p impacts the
regret. Incorporating p into the regret expression would significantly improve our understanding of
how to choose p in practice—a gap that remains open. In this work, we address both of these gaps.
To this end, we address the following key research question: Can we solve MA-MAB under new
Erdős–Rényi random networks and heterogeneous rewards, and derive regret bounds that captures
graph complexity under much milder assumptions?

Contribution. We provide an affirmative answer to the above question via the following contribu-
tions. Methodologically, we solve the MA-MAB problem over general Erdős–Rényi communication
networks with a gossip algorithm, which is widely adopted in distributed settings. Moreover, we
adopt an arm elimination based algorithm with a minimal number of arm pulls required for each arm
to guarantee sufficient information for each agent, which addresses the E-R communication networks.

Analytically, we study the regret of MA-MAB under our proposed algorithm over general
Erdős–Rényi communication networks for any p ∈ (0, 1], leading to novel contributions. We are the
first to 1) explore general Erdos-Rényi graphs induced by any fixed connected base graphs beyond
classical setting that assumes a complete base graphs; 2) obtain a tighter and more interpretable regret
bound, which generalizes the bound from the homogeneous fixed-graph setting studied in Martínez-
Rubio et al. [2019] to our more challenging heterogeneous setting, as shown in Section 5; 3) relax the
assumption of a sufficiently large p used in Xu and Klabjan [2023] and reduce the order of N in the
upper bound in their analysis of classical Erdős–Rényi models with complete base graphs. Precisely,
we obtain a regret upper bound of order of O

(∑
k:∆k>0

log T
∆k

+ N2 log T
pλN−1(Lap(G)) +

KN2 log T
p

)
where

the first term accounts for an optimal centralized regret, aligning with the lower bound established
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in Section 5.2, and the last two terms capture the effects of both the link probability p and the
algebraic connectivity λN−1(Lap(G)) of the base graph. Moreover, we uniquely characterize how
the regret upper bounds are influenced by p and λN−1(Lap(G)), which highlights a tradeoff between
the communication cost (i.e., the number of communication rounds) and regret performance.

Numerically, we implement our proposed algorithm and conduct experiments to validate our theo-
retical results with multiple random graph settings and the link probability p. We also compare our
methods with existing approaches to demonstrate their effectiveness.

2 Related Works

Distributed online algorithm. Our framework builds on the classical line of work on gossip
algorithms [Xiao and Boyd, 2004, Boyd et al., 2006]. Specifically, when an agent has access only to
local information and communicates solely with its immediate neighbors, it adopts a gossip algorithm
to aggregate information from agents beyond its local neighborhood, based on a weight matrix.
Notably, gossip algorithms are widely used in distributed optimization. For example, Duchi et al.
[2011], Nedic and Ozdaglar [2009] address distributed convex optimization problems using gossip
algorithms. Subsequently, Hosseini et al. [2013], Yan et al. [2013] extend the gossip approach to the
online setting and achieve a regret of order

√
T , assuming convex loss functions. Later, Mateos-Núnez

and Cortés [2014] consider distributed online optimization over B-connected and design a distributed
online primal-dual algorithm coupled with a gossip protocol, also achieving a

√
T regret bound.

More recently, Lei et al. [2020] study the same problem over random communication networks
(Erdős–Rényi networks) and obtain the same regret order. They further characterize how regret is
affected by the link probability p in the Erdős–Rényi model and the algebraic connectivity of the base
graph G. We consider the same graph topology but focus on multi-agent multi-armed bandits, which
differ significantly from online convex optimization and introduce the additional challenge of learning
the dynamics of bandits. For a more comprehensive survey on distributed online optimization, we
recommend the reader to Li et al. [2023] and Yuan et al. [2024].

Distributed multi-agent multi-armed bandit. Along the line of work on MA-MAB, several
studies [Landgren et al., 2016a,b, Zhu et al., 2020, Chawla et al., 2020, Wang et al., 2022b, 2020,
Zhu et al., 2025, Martínez-Rubio et al., 2019, Agarwal et al., 2022, Sankararaman et al., 2019, Zhu
et al., 2021, Zhu and Liu, 2023, Xu and Klabjan, 2023, Yi and Vojnovic, 2023] have investigated both
homogeneous and heterogeneous settings. In homogeneous settings, numerous works incorporate
gossip algorithms to reduce regret in terms of the number of agents; information sharing among
agents accelerates the concentration of reward observations. For example, Landgren et al. [2016a,b]
firstly formulate this problem and solve it using gossip algorithms. Martínez-Rubio et al. [2019]
achieves the optimal centralized regret—independent of the number of agents and matching that of
the single-agent bandit—plus an additional term depending on the spectral gap of the communication
matrix. Chawla et al. [2020] characterizes the regret-communication tradeoff, considers circular ring
graphs, and improves regret. Wang et al. [2022b, 2020] further focus on optimizing communication
efficiency to minimize the number of communication rounds while guaranteeing regret performance.
In contrast, we consider more challenging heterogeneous settings and also characterize the regret-
communication trade-off. Here gossiping enables regret reduction in terms of the order of T ; without
information from other agents, the regret can easily be linear in T [Xu and Klabjan, 2025]. In this
direction, Zhu et al. [2021] is the first to study heterogeneous rewards over a time-invariant connected
graph and establishes regret bounds of order log T . Zhu and Liu [2023] extend this to B-connected
graphs, also achieving regret bounds of order log T . Recently, Xu and Klabjan [2023] propose a
gossip-based algorithm for the classical E-R model and obtain regret bounds of order log T when p is
sufficiently larger than 1/2 to ensure the graph is connected with high probability. More generally, Yi
and Vojnovic [2023] consider MA-MAB with heterogeneous rewards in the adversarial environment
and establishes a regret bound of order T 2/3. In contrast, we consider the stochastic setting with
general Erdős–Rényi random networks, without any assumption on p.

3 Setting and Notations

In this section, we formally define the problem of interest, starting with general notations. A full
notation chart can be found in Appendix E.
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General Notations. For a matrix M ∈ Rp×q, let [M ]i,j denote the entry in the i-th row and
j-th column. Given a doubly stochastic matrix P ∈ Rd×d, we denote by λ2(P ) its second largest
eigenvalue. Let ei ∈ Rd be the i-th standard basis vector, 1 ∈ Rd the all-ones vector, and Id the
d× d identity matrix. We use I

{
·
}

to denote the indicator function, which equals 1 if the condition
inside holds, and 0 otherwise. Moreover, we use [n] = {1, 2, · · · , n} to denote a set of indices.

Multi-Agent Multi-armed Bandit. We consider a multi-agent multi-armed bandit (MA-MAB)
setting involving N agents. The bandit problem is run over a time horizon of T . In each round
t ∈ [T ], every agent i ∈ [N ] selects an arm Ai(t) ∈ [K] and receives a local stochastic reward
Xi,Ai(t)(t) drawn independently from an unknown, time-invariant distribution Pi,Ai(t) supported on
[0, 1], with mean µi,Ai(t) = E[X ∼ Pi,Ai(t)] ∈ [0, 1]. However, the agent’s true objective depends
on the global reward XAi(t)(t), where XAi(t) :=

1
N

∑
j∈[N ] Xj,Ai(t)(t), which is the average reward

over all agents and is not observable by any agent. Accordingly, we define the global mean reward
for arm k as µk := 1

N

∑
j∈[N ] µj,k by taking the expectation of Xk(t), where µj,k is the mean of

Pj,k. The underlying target is to optimize the global mean reward, and hence agents require estimates
of the global mean reward values for each arm in order to identify the global optimal arm with the
highest global mean reward. We further use Ti,k(t) to denote the total number of times agent i has
selected arm k up to time t by Ti,k(t) =

∑t
s=1 I(Ai(s) = k).

Throughout, we focus on a decentralized setting where N agents are distributed on undirected
time-varying graphs and communicate via the graphs. Specifically, we consider a communication
graph based on Erdős–Rényi random graphs. More precisely, agents communicate via a time-varying
graph Gt = (V, Et), where the vertex set V = [N ] is fixed, but the edge set Et may vary at each
round t. Uniquely, each communication graph Gt is generated based on an underlying undirected,
fixed, and connected (but not necessarily complete) base graph G = (V, E) that defines all feasible
communication edges. The connectedness of the base graph is essential to avoid linear regret as proved
in Theorem 4 in Xu and Klabjan [2025]. In every round t, each edge in graph G is independently in
Gt with probability p ∈ (0, 1]. Two agents can communicate if and only if there is an edge between
them in Gt—namely, an active edge. Formally, the random graph generation reads as follows.
Assumption 3.1 (Erdős–Rényi Random Graph). In each round t, the random communication graph
Gt = (V, Et), generated from the base graph G meets:

P ((i, j) ∈ Et) =
{
p, if (i, j) ∈ E ,
0, otherwise,

for all vertices i, j ∈ V . We refer to p as the link probability.

Thus, Et ⊆ E for all t. Let Ni = {j ∈ V : (i, j) ∈ E} denote the neighbors of agent i in the base
graph G, and Ni(t) = {j ∈ V : (i, j) ∈ Et} denote the active neighbors of agent i in round t, clearly
satisfying Ni(t) ⊆ Ni.

The shared objective for each agent is to design a distributed algorithm π that minimizes the global
regret over T rounds; in other words, all agents share a common target that makes consensus possible
and necessary. Precisely, we first define the individual regret, which represents the objective of any
agent i ∈ [N ], as:

Regi,T (π) = Tµ∗ −
T∑

t=1

µAi(t) =

T∑
t=1

∆Ai(t), (1)

where µ∗ = maxk∈[K] µk is the optimal global mean reward, and ∆k = µ∗ − µk is the global
suboptimality gap for arm k. Notably, agents aim to optimize the global mean rewards of the pulled
arms, i.e., to pull the global optimal arm. We define the individual regret as the cumulative difference
between the global mean reward of the global optimal arm and that of the actual arm pulled by each
agent. Building on this, we define the global regret of the entire system for algorithm π as the sum of
the individual regret over all agents:

RegT (π) =
∑
i∈[N ]

Regi,T (π) = NTµ∗ −
∑
i∈[N ]

T∑
t=1

µAi(t) =
∑
i∈[N ]

T∑
t=1

∆Ai(t), (2)

which establishes the equivalence of Equation (1) in the context of individual agents.
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4 Algorithm: Gossip Successive Elimination

In this section, we present our proposed methodology. Unlike existing work on gossip ban-
dits [Martínez-Rubio et al., 2019, Zhu et al., 2021], which assumes fixed connected graphs, we
handle the fundamental challenges of randomness and possible disconnectivity in the random com-
munication graph. To this end, we propose distributed bandit algorithm designed for Erdős–Rényi
random graphs (Assumption 3.1) based on arm elimination, named Gossip Successive Elimination
(GSE) (Algorithm 1). GSE combines three key components: an arm elimination protocol, a refined
weight matrix, and a novel confidence interval design. Specifically, we adopt the arm elimination
framework [Even-Dar et al., 2006] in distributed bandits setting, which naturally ensures that all
agents pull each arm a comparable number of times, so that the global estimates obtained via gossip
are not largely biased and not dominated by any single agent’s feedback. Second, we design a refined
weight matrix based on the Laplacian, which guarantees that the weight matrices are i.i.d. across
rounds. This construction is crucial to balance information among agents over time and to ensure
that the global reward estimates converge to the true global mean reward for each arm. Finally, GSE
introduces a new confidence interval with two terms: the first term captures the estimation error due to
finite sampling, while the second term accounts for the consensus error, reflecting the approximation
introduced by time-delayed information propagation under random gossip. Together, all these novel
components enable GSE to jointly address reward heterogeneity and random communication in a
principled and analytical paradigm.

The agent needs several parameters, including the link probability p and algebraic connectivity
λN−1(Lap(G)) as inputs. Initially, agent i’s active arm set Si is set to the full set of arms [K], while
both the local reward estimate µ̂i,k(t) and global reward estimate zi,k(t+ 1) are initialized to zero
(t = 0). Following the standard practice in existing work [Martínez-Rubio et al., 2019, Zhu et al.,
2021, Xu and Klabjan, 2023], we assume that λN−1(Lap(G)) is known, while allowing the link
probability p to remain unknown. In this case, the algorithm can still be implemented, and the
corresponding regret upper bound preserved, by adding a short burn-in phase to estimate a value
p̂ ∈ (p/2, p]. This estimation requires only O(log T ) time steps. We refer the reader to Appendix C
for the details and theoretical analysis of this procedure.

At each round t, agent i observes its active neighbors Ni(t) in the communication graph Gt, which
is randomly generated from the base graph G according to Assumption 3.1. As part of our key
contributions, we consider a weighting matrix Wt for gossip as

Wt = IN −
1

N
Lap(Gt), (3)

where Lap(Gt) denotes the Laplacian matrix of the communication graph Gt.

Algorithm 1 Gossip Successive Elimination for Agent i ∈ [N ]

1: Input: Algebraic connectivity λN−1(Lap(G)), total time horizon T , set of arms [K], link
probability p

2: Initialization: Active set Si ← [K], local reward estimate µ̂i,k(0)← 0, global reward estimate
zi,k(1)← 0 for all k ∈ [K].

3: for t = 1, 2, . . . , T do
4: Select arm Ai(t) ∈ Si with the minimum pull count Ti,k(t) and update Ti,k(t)
5: Receive feedback and update statistics for each arm using Equation (4)
6: Remove arm k ∈ Si if there exists an arm k′ ∈ Si, k′ ̸= k, satisfying the elimination condition

in Equation (7)
7: Update the active set Si according to Equation (8)
8: end for

The execution steps of agents run as follow. Agent i selects arm Ai(t) from the active set Si with the
least number of pulls Ti,k(t), observes the local reward of Ai(t), and updates the reward estimates as
follows:

µ̂i,k(t) =
1

Ti,k(t) ∨ 1

t∑
τ=1

I {Ai(τ) = k}Xi,k(τ),

zi,k(t+ 1) =
∑

j∈Ni(t)∪{i}

[Wt]i,jzj,k(t) + µ̂i,k(t)− µ̂i,k(t− 1), (4)
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where Xi,k(τ) is the feedback observed by agent i from pulling arm k at round τ . The global estimate
zi,k(t) is updated via a gossip protocol: at each round t, agent i aggregates its own and its active
neighbors’ estimates, weighting each neighbor j ∈ Ni(t)∪ {i} by the corresponding entry [Wt]i,j of
the matrix Wt. We also define the gossip-based upper and lower confidence bounds for arm k, which
remain key criteria for arm elimination and updating Si, as

GUCBi,k(t) = zi,k(t) + ci,k(t), GLCBi,k(t) = zi,k(t)− ci,k(t).

Here the confidence bound ci,k(t) reads as

ci,k(t) =

√
4 log(T )

N max{Ti,k(t)−KL∗, 1}
+

4(
√
N + τ∗)

max{Ti,k(t)−KL∗, 1}
, (5)

with

τ∗ =

⌈
2N log(T )

pλN−1(Lap(G))

⌉
, L∗ = N

⌈
−2 log(NT )

log(1− p)

⌉
. (6)

The confidence radius in Equation (5) decomposes into two parts. The first term captures the
estimation error, arising from the statistical variance of independently sampled rewards for each
arm. The second term captures the consensus error, which stems from the cumulative approximation
error error incurred as agents reach consensus via a gossip-based communication protocol.

Arm elimination occurs if and only if there exists an arm k′ ̸= k in Si that meets the condition

GLCBi,k′(t) ≥ GUCBi,k(t), (7)

which means that arm k′ has a higher global reward estimate than arm k with high probability.
Subsequently, the active set Si is updated as

Si ←
⋂

j∈Ni(t)∪{i}

Sj . (8)

This procedure coupled with the arm-elimination strategy ensures that, for every agent, each arm in
the active set is pulled a roughly equal number of times, ensuring consensus.

5 Regret Analyses

In this section, we analyze the regret of the proposed algorithm and establish an upper bound on the
corresponding regret, demonstrating its theoretical effectiveness. Additionally, we derive a lower
bound for our problem setting, highlighting the problem’s inherent complexity and showing that the
algorithm is nearly optimal up to some interpretable factors.

5.1 Upper Bound

We start by presenting the regret upper bound for Algorithm 1. To that end, we first introduce several
technical lemmas that play a key role in the regret analysis. The proofs can be found in Appendix B.
Lemma 5.1. Let us assume that the communication graph follows Assumption 3.1. Then we have
that for Algorithm 1, for any agent i ∈ [N ], any arm k ∈ [K], and any t ∈ [T ], the following holds
with probability at least 1− 3NK

T ,

|zi,k(t)− µk| ≤ ci,k(t),

where ci,k(t) is the confidence bound defined in Equation (5), and τ∗ and L∗ are the parameters
introduced in Equation (6).

Importantly, we show that the estimation error compared to the global mean value is upper bounded
by the confidence bound ci,k(t). Notably, ci,k(t) is monotonically decreasing in the number of pulls
of arm k by agent i, i.e., Ti,k(t), when Ti,k(t) > KL∗. Here, KL∗ is the minimal number of pulls
required to ensure that agent i has collected sufficient information from all other agents. This also
implies that the global estimate zi,k(t) becomes increasingly accurate and approaches the true mean
reward µk as the number of pulls increases. As a result, based on Lemma 5.1, we derive the following
regret bound for individual agents.
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Lemma 5.2. Let us assume that the communication graph follows Assumption 3.1. The individual
regret of agent i defined in Equation (1) for Algorithm 1 is bounded as:

Regi,T (GSE) ≤
∑

k:∆k>0

(
64 log(T )

N∆k
+ 16

(√
N + τ∗

))
+KL∗ + 3KN∆max,

where ∆max = maxk∈[K] ∆k denotes the largest reward gap across all arms.

In other words, Lemma 5.2 shows that the regret incurred by any individual agent can be effectively
bounded. This result naturally extends to the global regret, as stated in the theorem below.
Theorem 5.3. Let us assume that the communication graph follows Assumption 3.1. The global
regret defined in Equation (2) for Algorithm 1 is bounded as:

RegT (GSE) =
∑
i∈[N ]

Regi,T (GSE) ≤ O

( ∑
k:∆k>0

log(T )

∆k
+

N2 log(T )

pλN−1(Lap(G))
+

KN2 log(NT )

p

)
,

where λN−1(Lap(G)) is the second smallest eigenvalue of Lap(G).

We continue our discussion on how the base graph G topology affects the regret bound. In addi-
tion to the parameter p, which determines the difference between G and Gt, another key factor is
λN−1(Lap(G)), which reflects the topology of the base graph G. This value is the algebraic con-
nectivity or Fiedler value of G, which reflects how well connected the overall graph is. To illustrate
this, we next provide more explicit regret upper bounds by specifying λN−1(Lap(G)) for different
base graph topologies commonly used in distributed optimization Duchi et al. [2011]. The following
corollary summarises how the choice of the random gossip matrix in Equation (3) interacts with
different topologies of the base graph. The proof of λN−1(Lap(G)) for various base graphs G can be
found in Corollary 1 of Duchi et al. [2011].
Corollary 5.4. For specific choices of the base graph G, the global regret upper bound in Theorem 5.3
simplifies as follows:

1) When G is a complete graph with λN−1(Lap(G)) = N , and refining L∗ =
⌈
− 2 log(NT )

log(1−p)

⌉
in

Equation (6), Theorem 5.3 simplifies to: O
(∑

k:∆k>0
log T
∆k

+ KN log T
p

)
.

2) When G is a
√
N ×

√
N 2D grid with λN−1(Lap(G)) = 2

(
1− cos

(
π√
N

))
= Θ(1/N), Theo-

rem 5.3 simplifies to: O
(∑

k:∆k>0
log T
∆k

+ N2(K+N) log T
p

)
.

3) When G is an expander graph with a bounded ratio between minimum and maximum node degrees
and thus λN−1(Lap(G)) = Θ(1), Theorem 5.3 simplifies to: O

(∑
k:∆k>0

log T
∆k

+ KN2 log T
p

)
.

Remark 5.5 (Comparison of Regret Bounds). In Theorem 5.3, for any fixed connected base graph G
and 0 < p ≤ 1, we obtain the optimal centralized regret O

(∑
k:∆k>0

log T
∆k

)
(see the lower bound in

Section 5.2) plus an additional term O
(

N2 log T
pλN−1(Lap(G)) +

KN2 log T
p

)
. We emphasize that our regret

bound outperforms existing work—many of which are special (degenerated) cases of our more general
framework—and is easier to interpret. Notably, Xu and Klabjan [2023] study MA-MAB under the
classical E-R model (where G is a complete graph) with p largely over 1/2, and derive a regret bound
of O

(∑
k:∆k>0

N log T
∆k

)
. In the same setting, based on Corollary 5.4, we obtain a regret bound

of O
(∑

k:∆k>0
log(T )
∆k

+KN log(T )
)

, which is significantly smaller. Also, Zhu and Liu [2023]
consider B-connected graphs, which do not capture E-R random graphs; the distinction between the
two models is discussed in detail in Yuan et al. [2024]. Finally, when p = 1, the communication
graph becomes time-invariant, which corresponds to most existing work where connected graphs are
assumed. For example, Zhu et al. [2021] and Zhu and Liu [2023] study such settings. The former
derive a regret bound of O

(∑
k:∆k>0

N2 log T
∆k

)
, which is worse than our results with a dependency

on N . The latter obtain O
(
max

(∑
k:∆k>0

N log T
Nk∆k

,K1,K2

))
, where K1 and K2 depend on T but

lack explicit formulas, may grow arbitrarily large, and are difficult to interpret—at least to the best of
our knowledge.
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Remark 5.6 (Regret and Communication Trade-off). We emphasize that our regret upper bound
exhibits a novel trade-off between regret performance and communication efficiency in the presence
of random graphs. It is straightforward to observe that increasing p reduces the regret bound but
increases communication overhead, thereby lowering communication efficiency. For classical E-R
graphs, the expected number of agent-to-agent communications per agent over the given time horizon
is pNT , while the expected regrets decrease as p increases. Therefore, for a fixed time horizon T and
a given base graph G, p can be tuned to balance communication overhead and reward maximization,
informing practical decision making.

5.2 Lower Bound

In this section, we establish a lower bound on the global regret, as defined in Equation (2). Unlike
the upper bound, this lower bound applies to any reasonable algorithm under a specific problem
instance, highlighting the problem complexity. Detailed proofs are deferred to Appendix B. We begin
by introducing several definitions related to the problem instance and the notion of a reasonable
algorithm.
Definition 5.7 (Gaussian Instance). An instance ν is called a Gaussian instance if, for every agent
i ∈ [N ] and arm k ∈ [K], the reward distribution Pi,k is Gaussian with unit variance.
Definition 5.8 (Consistent Policy). Let I denote a class of problem instances, and let RegνT (π)
denote the regret incurred by policy π on instance ν. A policy (algorithm) π is said to be consistent
on I if there exist constants C > 0 and s ∈ (0, 1) such that RegνT (π) meets RegνT (π) ≤ CT s for all
instances ν ∈ I.

We next present the problem instance constructed to establish the regret lower bound. Note that an
alternative, equivalent expression of the global regret reads as

RegνT (π) =
∑

k∈[K]

∆k

∑
i∈[N ]

E[Ti,k(T )].

Thus, to derive a lower bound on regret, it suffices to lower bound the total expected number of pulls∑
i∈[N ] E[Ti,k(T )] for suboptimal arms k ∈ [K]. To this end, we consider a Gaussian instance ν

where each Pi,k = N (µi,k, 1) with the random graph communication protocal based any connected
base graph G and connection probability p, and construct a perturbed instance ν′ such that:

P′
i,a =

{
N (µi,a, 1), if a ̸= k,

N (µi,a + (1 + ε)∆a, 1), if a = k,

for a small constant ε ∈ (0, 1) representing the level of perturbation. The communication protocal
for ν′ is the same as that for ν. Under this perturbation, which defines a new problem instance, we
derive the following information-theoretic inequality:∑

j∈[N ]

E[Tj,k(T )] ·
(1 + ε)2∆2

k

2
≥ log

(
NTε∆k

4
(
RegνT (π) + Regν

′

T (π)
)) , (9)

which imposes a lower bound on the total number of pulls of arm k across all agents.

By applying this inequality to a consistent policy π and rearranging the terms, we obtain the following
lower bound on regret. The formal statement reads as follows.
Theorem 5.9. Let π be a consistent policy on the class I of Gaussian instances for some s ∈ (0, 1).
Then, for all instances ν ∈ I and any ε ∈ (0, 1], the following holds:

lim
T→∞

Regν
T (π)

log T
≥

∑
k:∆k>0

2(1− s)

(1 + ε)2∆k
.

Remark 5.10 (Comparison with Upper Bounds). Recall that the regret upper bound in Theorem 5.3
consists of two terms: a centralized term and additional terms that capture the influence of the
communication graph. The lower bound in Theorem 5.9 shows that the centralized component,
O
(∑

k:∆k>0
log T
∆k

)
, is tight, thereby establishing the optimality of the centralized regret achieved by

Algorithm 1. This result is intuitive: the problem effectively involves N agents collaboratively solving
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a global multi-armed bandit task. With appropriate information sharing, the collective performance
can match that of a single-agent bandit problem with full access to all rewards. Hence, achieving a
global regret of the same order as the classical centralized bandit setting is both natural and optimal.
The additional term related to the communication graph, though not captured in Theorem 5.9, can be
interpreted intuitively. Consider, for instance, a circular base graph G: on average, it takes O(N/p)
rounds for information from one agent to propagate to all others. Aggregating over all N agents,
this leads to an unavoidable lower bound of O(N2/p) in the global regret. Providing a formal lower
bound proof that fully characterizes this effect remains an interesting direction for future work.

6 Experiments

In this section, we demonstrate the effectiveness of our algorithm through numerical experiments on
both synthetic and real-world datasets.3 The objective is twofold. First, we show that the cumulative
regret of our algorithm grows logarithmically with respect to T and is significantly smaller than that
of existing benchmarks, thereby validating our theoretical findings. We use DrFed-UCB, proposed
by [Xu and Klabjan, 2023], as the baseline. Second, we conduct a simulation study to examine
how the regret depends on the link probability p and the algebraic connectivity of the base graph
G, as reflected in the regret bound. We evaluate the impact of different values of p across various
base graphs, including the complete graph, grid, and Petersen graph [Holton and Sheehan, 1993].
Each edge in the base graph G appears in the communication graph Gt with probability p. Moreover,
we provide additional experiments (i.e., an ablation study) in Appendix D, illustrating the regret
dependency on the key parameters p and λN−1(Lap(G)) that determine the problem complexity
beyond T , to validate our theoretical findings.

Experimental Settings. For synthetic experiment setting, We set T = 10000, N = 16, and K = 5;
for the Petersen graph, we use N = 10 by definition. For the comparison with DrFed-UCB, we
consider a complete graph and a high link probability (p = 0.9), as required therein. Before the game
starts, we sample each qi independently and uniformly from the interval [0, 1] for each agent i. The
local mean reward of arm k on agent i is given by µi,k = qi · k−1

K−1 , and the global mean reward of

arm k is µk = k−1
K−1 ·

∑
i∈[N] qi

N . At each time step t, each agent i ∈ [N ] selects an arm and observes
the local reward. For real-world experiments, we use the MovieLens dataset and refer to Yi and
Vojnovic [2023] for details. We set the horizon T = 10,000, and select 20 users as agents (N = 20)
and 5 genres as arms (K = 5). At each time step t, each agent randomly selects a movie from the
genres. All ratings (rewards) of movies are normalised to [0, 1].

Experimental Results. All experiments are performed with 20 independent replications. The
shaded areas consider a range centered around the mean with half-width corresponding to the
empirical standard deviation over 20 repetitions. In Figures 1a and 1b, we observe that our algorithm
consistently outperforms DrFed-UCB on both synthetic and real-world datasets. In all runs, after
an initial exploration period, our algorithm eliminates a significant number of suboptimal actions,
resulting in near-constant regret thereafter. In Figures 1c and 1d, we observe that increasing the link
probability p improves the algorithm’s performance, clearly validating the regret–communication
trade-off. Additionally, different base graphs significantly impact the regret under the same p
value—with the complete graph yielding the lowest regret.

7 Conclusion and Future Work

In this paper, we study the multi-agent multi-armed bandit (MA-MAB) problem under general
Erdős–Rényi random networks with heterogeneous rewards. To the best of our knowledge, we are the
first to formulate MA-MAB with Erdős–Rényi random networks, where the communication graph
is induced by a base graph and each edge in the base graph appears in the communication graph
with probability p. This formulation generalizes the classical Erdős–Rényi model, in which the base
graph is complete. We propose an algorithmic framework that incorporates the gossip communication
protocol into arm elimination. Importantly, we analyze the regret bound of the algorithm and show
that it improves the regret even under the classical Erdős–Rényi model. Moreover, our regret bound

3The code for the experiments is available at https://github.com/haoqiu95/multi-agent-bandit.
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Figure 1: Top two: comparison of the empirical results of our algorithm and DrFed-UCB (complete
base graph, link probability p = 0.9). Bottom two: regret of our algorithm on different base graphs
as p varies.

holds for any p, explicitly characterizes its dependency on p and the algebraic connectivity of the
base graph. This naturally reveals a trade-off between regret and communication efficiency. Moving
forward, while we focus extensively on the stochastic setting, it would be valuable and exciting
to explore other reward models—such as contextual bandits, where rewards depend on dynamic,
non-stationary contexts. In addition, achieving the optimal trade-off among regret, communication,
and privacy, as previously studied in homogeneous MA-MAB settings, points out a meaningful
direction for future research.

Acknowledgments and Disclosure of Funding

Hao Qiu acknowledges the financial support from the EU Horizon CL4-2022-HUMAN-02 research
and innovation action under grant agreement 101120237, project ELIAS (European Lighthouse of AI
for Sustainability) and from the One Health Action Hub, University Task Force for the resilience of
territorial ecosystems, funded by Università degli Studi di Milano (PSR 2021-GSA-Linea 6).

10



References
Juliette Achddou, Nicolò Cesa-Bianchi, and Hao Qiu. Distributed online optimization with stochastic

agent availability. arXiv preprint arXiv:2411.16477, 2024.

Mridul Agarwal, Vaneet Aggarwal, and Kamyar Azizzadenesheli. Multi-agent multi-armed bandits
with limited communication. The Journal of Machine Learning Research, 23(1):9529–9552, 2022.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.
IEEE transactions on information theory, 52(6):2508–2530, 2006.

Ronshee Chawla, Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. The gossip-
ing insert-eliminate algorithm for multi-agent bandits. In International conference on artificial
intelligence and statistics, pages 3471–3481. PMLR, 2020.

John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic control, 57(3):
592–606, 2011.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of
machine learning research, 7(6), 2006.

Deepak Ganesan, Alberto Cerpa, Wei Ye, Yan Yu, Jerry Zhao, and Deborah Estrin. Networking
issues in wireless sensor networks. Journal of parallel and distributed computing, 64(7):799–814,
2004.

Saeed Ghoorchian and Setareh Maghsudi. Multi-armed bandit for energy-efficient and delay-sensitive
edge computing in dynamic networks with uncertainty. IEEE Transactions on Cognitive Commu-
nications and Networking, 7(1):279–293, 2020.

Derek Allan Holton and John Sheehan. The petersen graph, volume 7. Cambridge University Press,
1993.

Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed optimization via dual
averaging. In 52nd IEEE Conference on Decision and Control, pages 1484–1489. IEEE, 2013.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative decision-
making in multiarmed bandits: Frequentist and bayesian algorithms. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 167–172. IEEE, 2016a.

Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. On distributed cooperative decision-
making in multiarmed bandits. In 2016 European Control Conference (ECC), pages 243–248.
IEEE, 2016b.

Jinlong Lei, Peng Yi, Yiguang Hong, Jie Chen, and Guodong Shi. Online convex optimization
over erdos-rényi random networks. Advances in neural information processing systems, 33:
15591–15601, 2020.

Xiuxian Li, Lihua Xie, and Na Li. A survey on distributed online optimization and online games.
Annual Reviews in Control, 56:100904, 2023.

David Martínez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized cooperative stochastic
bandits. Advances in Neural Information Processing Systems, 32, 2019.

David Mateos-Núnez and Jorge Cortés. Distributed online convex optimization over jointly connected
digraphs. IEEE Transactions on Network Science and Engineering, 1(1):23–37, 2014.

11



Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pages 1273–1282. PMLR, 2017.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. Social learning in multi agent multi
armed bandits. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3
(3):1–35, 2019.

Po-An Wang, Alexandre Proutiere, Kaito Ariu, Yassir Jedra, and Alessio Russo. Optimal algorithms
for multiplayer multi-armed bandits. In International Conference on Artificial Intelligence and
Statistics, pages 4120–4129. PMLR, 2020.

Xiong Wang, Jiancheng Ye, and John CS Lui. Decentralized task offloading in edge computing: A
multi-user multi-armed bandit approach. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pages 1199–1208. IEEE, 2022a.

Xuchuang Wang, Lin Yang, Yu-Zhen Janice Chen, Xutong Liu, Mohammad Hajiesmaili, Don
Towsley, and John CS Lui. Achieving near-optimal individual regret & low communications
in multi-agent bandits. In The Eleventh International Conference on Learning Representations,
2022b.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control
Letters, 53(1):65–78, 2004.

Mengfan Xu and Diego Klabjan. Decentralized randomly distributed multi-agent multi-armed
bandit with heterogeneous rewards. Advances in Neural Information Processing Systems, 36:
74799–74855, 2023.

Mengfan Xu and Diego Klabjan. Multi-agent multi-armed bandit regret complexity and optimality.
In The 28th International Conference on Artificial Intelligence and Statistics, 2025.

Feng Yan, Shreyas Sundaram, SVN Vishwanathan, and Yuan Qi. Distributed autonomous online
learning: Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge
and Data Engineering, 25(11):2483–2493, 2013.

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated learning:
State-of-the-art and research challenges. ACM Computing Surveys, 56(3):1–44, 2023.

Jialin Yi and Milan Vojnovic. Doubly adversarial federated bandits. In International Conference on
Machine Learning, pages 39951–39967. PMLR, 2023.

Deming Yuan, Alexandre Proutiere, Guodong Shi, et al. Multi-agent online optimization. Foundations
and Trends® in Optimization, 7(2-3):81–263, 2024.

Jiang Zhu, Yonghui Song, Dingde Jiang, and Houbing Song. Multi-armed bandit channel access
scheme with cognitive radio technology in wireless sensor networks for the internet of things.
IEEE access, 4:4609–4617, 2016.

Jingxuan Zhu and Ji Liu. Distributed multiarmed bandits. IEEE Transactions on Automatic Control,
68(5):3025–3040, 2023.

Jingxuan Zhu, Romeil Sandhu, and Ji Liu. A distributed algorithm for sequential decision making in
multi-armed bandit with homogeneous rewards. In 2020 59th IEEE Conference on Decision and
Control (CDC), pages 3078–3083. IEEE, 2020.

Jingxuan Zhu, Ethan Mulle, Christopher S Smith, Alec Koppel, and Ji Liu. Decentralized upper con-
fidence bound algorithms for homogeneous multi-agent multi-armed bandits. IEEE Transactions
on Automatic Control, 2025.

Zhaowei Zhu, Jingxuan Zhu, Ji Liu, and Yang Liu. Federated bandit: A gossiping approach.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 5(1):1–29, 2021.

12



A Auxiliary results

In this section, we show several auxiliary lemmas that will be helpful throughout the paper.

The following lemma is the concentration bound for the estimation of the observed expected rewards,
Lemma A.1. Let µ̂i,k(t) be the observed empirical average of the expected reward up to the end of
round t− 1. Then,

P

[
|µ̂i,k(t)− µi,k| >

√
2 log T

Ti,k(t)

]
≤ 2

T 2

for i ∈ [N ], k ∈ [K] and t ∈ [T ] holds.

Proof of Lemma A.1. This lemma follows immediately from Hoeffding’s inequality and a union
bound.

The following lemma is the concentration bound for the estimation of the observed expected rewards.
Lemma A.2. Let µ̂i,k(t) be the observed empirical average of the expected reward for agent i pulling
arm k. Then,

P

∣∣∣∣∣∣
∑
i∈[N ]

µ̂i,k −
∑
i∈[N ]

µi,k

∣∣∣∣∣∣ >
√

4N log T

mini∈[N ]{Ti,k(t)}

 ≤ 2

T 2

holds for any i ∈ [N ], k ∈ [K] and t ∈ [T ].

Proof of Lemma A.2. We sample Ti,k(t) number of random variables iid from Pi,k for each i ∈ [N ],
each taking values in [0, 1], and hence Xi,k(τ)− µi,k is 1-subgaussian for each τ .

According to the property of subgaussian variables, we can obtain that

∑
i∈[N ]

(µ̂i,k(t)− µi,k) is

∑
i∈[N ]

1

Ti,k(t)

1/2

- subgaussian.

Moreover, note that
∑

i∈[N ]
1

Ti,k(t)
≤ N

mini∈[N] Ti,k(t)
, then by applying Chernoff’s bound, we have

P

∣∣∣∣∣∣
∑
i∈[N ]

µ̂i,k(t)− µi,k

∣∣∣∣∣∣ ≥ ϵ

 ≤ 2 exp

(
−
ϵ2 mini∈[N ] {Ti,k(t)}

2N

)
.

Taking ϵ =
√

4N log T
mini∈[N]{Ti,k(t)} , we obtain that

P

∣∣∣∣∣∣
∑
i∈[N ]

µ̂i,k(t)− µi,k

∣∣∣∣∣∣ ≥
√

4N log T

mini∈[N ]{Ti,k(t)}

 ≤ 2

T 2

which ends the proof of Lemma A.1

We provide lemmas for the convergence bound of randomised gossip algorithms. Similar proof could
be found Lei et al. [2020], Achddou et al. [2024].
Lemma A.3 (Random Graph). Let us assume that the communication graph follows Assumption 3.1.
For t = 1 . . . T , Wt is doubly stochastic matrix and symmetric and i.i.d. Then ∀v ∈ V , ∀s, t ∈ [T ]
such that t > s,

P
(∥∥∥∥Wt · · ·Ws+1ev −

1

N
1

∥∥∥∥
2

≥ δ

)
≤ λ2(E[W 2])t−s

δ2
.

When t− s ≥
⌈

3 log(T )
log λ2(E[W 2])−1

⌉
= τ ′, we have

P
(∥∥∥∥Wt · · ·Ws+1ev −

1

N
1

∥∥∥∥
2

≥ δ

)
≤ δ. (10)

Furthermore, when t− s ≥ τ∗ =
⌈

3N log(T )
pλN−1(Lap(G))

⌉
≥ τ ′, Equation (10) still holds.
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Proof. Using Markov’s inequality we have

P
(∥∥∥∥Wt · · ·Ws+1ev −

1

N
1

∥∥∥∥
2

≥ δ

)
≤

E
(∥∥Wt · · ·Ws+1ev − 1

N 1
∥∥2
2

)
δ2

.

Let W̃k = Wk − 1
N 11⊤ and assume

E

[∥∥∥∥Wk−1 · · ·Ws+1ev −
1

N

∥∥∥∥2
2

]
≤ eTv ev

∥∥∥∥E[W1W
⊤
1 ]− 1

N
11⊤

∥∥∥∥k−s−1

op
for some k − 1 > s.

Let Fk−1 be the σ-algebra generated by all random events up to time k − 1. We have that

E

[∥∥∥∥W⊤
k · · ·W⊤

s+1ev −
1

N

∥∥∥∥2
2

]
= E

[
eTv W̃

⊤
s+1 · · · W̃⊤

k−1W̃
⊤
k W̃kW̃k−1 · · · W̃s+1ev

]
= E

[
eTv W̃

⊤
s+1 · · · W̃⊤

k−1E[W̃⊤
k W̃k | Fk−1]W̃k−1 · · · W̃s+1ev

]
= E

[
eTv W̃

⊤
s+1 · · · W̃⊤

k−1E[W̃⊤
1 W̃1]W̃k−1 · · · W̃s+1ev

]
(by independence of Wk)

≤
∥∥∥∥E[W1W

⊤
1 ]− 1

N
11⊤

∥∥∥∥
op
eTv ev

∥∥∥∥E[W1W
⊤
1 ]− 1

N
11⊤

∥∥∥∥k−s−1

op

≤ λ2(E[W 2])t−seTv ev

∥∥∥∥E[W1W
⊤
1 ]− 1

N
11⊤

∥∥∥∥k−s−1

op

which by induction, suffices to prove the lemma. Moreover, the proof of τ∗ ≥ τ ′ follows from the
fact that

1

logλ−1
2

≤ 1

1− λ2
, λ2(E[W 2]) ≤ 1− pλN−1(Lap(G))

N
and

1

log(1− p)−1
≤ 1

p
,

where the second inequality is taken from Theorem 6.1 in Achddou et al. [2024].

The following lemmas guarantee local consistency between agents.

Lemma A.4. Let us assume that the communication graph follows Assumption 3.1. Then with
probability 1−N2Tδ, Algorithm 1 guarantees that for fixed arm k ∈ [K], and for every i, j ∈ [N ]
and for every t ∈ [T ],

|Ti,k(t)− Tj,k(t)| ≤ KNLp(δ)

where Lp(δ) =
⌈

log(δ)
log(1−p)

⌉
denotes the maximum number of rounds each edge within base graph G

is connected in the communication graph Gt with probability 1− δ.

Proof. Fix an agent i ∈ [N ] and a time step t ∈ [T ]. According to Assumption 3.1 and Algorithm 1,
p be the probability that agent i communicates with a fixed neighbour j ∈ Ni(t) in any given step,
independently of the past. For a non-negative integer L, we have

P (i does not contact j during the next L+ 1 steps) = (1− p)L+1.

The communication gap length at time t is the number of steps starting from time t until agent i next
successfully communicates with agent j. Choose a confidence parameter δ ∈ (0, 1), we have

P (time until first contact between agents i and j exceeds Lp(δ)) ≤ δ.

Applying a union bound to gives

P (∃ i ∈ [N ], j ∈ Ni, t ∈ [T ] : time until first contact between i and j after time t exceeds Lp(δ))

≤ N2Tδ.
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Note that we have Ni(t) ⊆ Ni, where Ni is a fixed superset of possible neighbors. Hence with
probability at least 1−N2Tδ, for every agent i ∈ [N ], every time step t ∈ [T ], and every neighbor
j ∈ Ni, the time until the next communication between i and j is at most Lp(δ) time steps.

For any two agents i and j, let d(i, j) ≤ N denote the shortest path length between i and j in the
base graph G. Because with high probability, information can gossip across each edge within at most
Lp(δ) steps, it follows that information originating at i at time step t reaches j at most by time step

t+ Lp(δ) · d(i, j) ≤ t+ Lp(δ) ·N. (11)

In order to be cautious for notations, we use Si(t) to denote the active set in round t for Algorithm 1.
According to Algorithm 1, during every communication, each agent i replaces its active set by the
intersection with its neighbors:

Si(t+ 1) =
⋂

j∈Ni(t)∪{i}

Sj(t).

because for all Si(0) = [K], at most K distinct arms can ever be removed. Each arm can start a new
wave of disagreement. Each wave of disagreement at most last Lp(δ) ·N . In the worst case, the waves
do not overlap. Consenquently the longest possible sequence of rounds in which Si(t) ̸= Sj(t) is
K ·N ·Lp(δ). During the disagreement period, for a fixed arm k we could upper bound of maximum
pull of k is KNLp(δ) and lower bound of maximum pull of k is 0. Hence we have

|Ti,k(t)− Tj,k(t)| ≤ KNLp(δ).

B Omitted details in Section 5

In this section, we show the omitted details in Section 5.

Proof of Lemma 5.1. When Ti,k(t) ≤ KL∗, the bound trivially holds.

Now we consider the case when Ti,k(t) > KL∗, We first define the following event:

E :=


⋂

k∈[K]
t∈[T ]


∣∣∣∑j∈[N ] (µ̂j,k(t)− µj,k)

∣∣∣
N

≤

√
4 log(T )

N minj∈[N ] {Tj,k(t)}




∩


⋂

j∈[N ]
τ∗≤t−s≤T

∥∥∥∥Wt · · ·Ws+1ej −
1

N
1

∥∥∥∥
2

≤ 1

T 2

 ∩


⋂
i,j∈[N ]
k∈[K]
t∈[T ]

|Ti,k(t)− Tj,k(t)| ≤ KL∗


.

(12)

In Equation (12), the first event bounds the global estimation error for each arm, the second ensures
near-uniform information mixing across agents after sufficient communication rounds, and the
third guarantees that the number of pulls for any arm remains approximately balanced across
agents at each time step. By applying Lemma A.2, A.3, A.4 and union bound, we obtain that
P [Ec] ≤ K

T + N
T + 1

T ≤
3NK
T when we set δ = 1

N2T 2 and L∗ = NLp

(
1

N2T 2

)
= N

⌈
− 2 log(NT )

log(1−p)

⌉
.

We define µ̃k(t) =
1
N

∑
j∈[N ] zj,k(t) to be an intermediate variable that has access to each agent’s

average mean on arm k at time t.

For any agent i, we have

|zi,k(t)− µk| = |zi,k(t)− µ̃k(t) + µ̃k(t)− µk|
≤ |µ̃k(t)− zi,k(t)|+ |µ̃k(t)− µk| (Triangle inequality)
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= |µ̃k(t)− zi,k(t)|︸ ︷︷ ︸
Consensus Error

+

∣∣∣∑j∈[N ] (µ̂j,k(t)− µj,k)
∣∣∣

N︸ ︷︷ ︸
Estimation Error

, (13)

The last equality is due to the definition of the global mean reward and µ̃k(t). Let us first focus on
Consensus Error. For any i ∈ [N ], According to the update in Equation (4) we have

zi,k(t) =
∑
j∈[N ]

[Wt−1]i,jzi,k(t− 1) + µ̂i,k(t− 1)− µ̂i,k(t− 2)

=
∑
j∈[N ]

[Wt−1 · · ·Wt−s]i,jzi,k(t− s) +

t−2∑
τ=t−s

∑
j∈[N ]

[Wt−2 · · ·Wτ+1]i,j (µ̂j,k(τ)− µ̂j,k(τ − 1))

+ µ̂i,k(t− 1)− µ̂i,k(t− 2) (14)

=
∑
j∈[N ]

[Wt−1 · · ·W1]i,jzi,k(1) +

t−2∑
τ=1

∑
j∈[N ]

[Wt−2 · · ·Wτ+1]i,j (µ̂j,k(τ)− µ̂j,k(τ − 1))

+ µ̂i,k(t− 1)− µ̂i,k(t− 2). (setting s = t− 1)

We also have

µ̃k(t) =
1

N

∑
j∈[N ]

zj,k(t)

= µ̃k(t− s) +
1

N

t−1∑
τ=t−s

∑
j∈[N ]

(µ̂j,k(τ)− µ̂j,k(τ − 1))

= µ̃k(1) +
1

N

t−1∑
τ=1

∑
j∈[N ]

(µ̂j,k(τ)− µ̂j,k(τ − 1)) (setting s = t− 1)

=
1

N

∑
j∈[N ]

zj,k(1) +
1

N

t−1∑
τ=1

∑
j∈[N ]

(µ̂j,k(τ)− µ̂j,k(τ − 1))

=
1

N

∑
j∈[N ]

zj,k(1) +
1

N

t−2∑
τ=1

∑
j∈[N ]

(µ̂j,k(τ)− µ̂j,k(τ − 1))

+
1

N

∑
j∈[N ]

(µ̂j,k(t− 1)− µ̂j,k(t− 2)) (15)

Hence, we obtain

µ̃k(t)− zi,k(t) =

t−2∑
τ=1

∑
j∈[N ]

(
1

N
− [Wt−2 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))


+

1

N

∑
j∈[N ]

(µ̂j,k(t− 1)− µ̂j,k(t− 2))− (µ̂i,k(t− 1)− µ̂i,k(t− 2))

+
1

N

∑
j∈[N ]

zj,k(1)−
∑
j∈[N ]

[Wt−1 · · ·W1]i,jzj,k(1).

=

t−2∑
τ=1

∑
j∈[N ]

(
1

N
− [Wt−2 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))


+

1

N

∑
j∈[N ]

(µ̂j,k(t− 1)− µ̂j,k(t− 2))− (µ̂i,k(t− 1)− µ̂i,k(t− 2)) ,
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.Taking absolute values on both sides, we have

|µ̃k(t)− zi,k(t)| ≤

∣∣∣∣∣∣
t−2∑
τ=1

∑
j∈[N ]

(
1

N
[Wt−2 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1N
∑
j∈[N ]

(µ̂j,k(t− 1)− µ̂j,k(t− 2))− (µ̂i,k(t− 1)− µ̂i,k(t− 2))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t−τ∗−2∑
τ=1

∑
j∈[N ]

(
1

N
− [Wt−2 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))

∣∣∣∣∣∣︸ ︷︷ ︸
♡

+

∣∣∣∣∣∣
t−2∑

τ=t−τ∗−1

∑
j∈[N ]

(
1

N
− [Wt−2 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))

∣∣∣∣∣∣︸ ︷︷ ︸
♠

+

∣∣∣∣∣∣ 1N
∑
j∈[N ]

(µ̂j,k(t− 1)− µ̂j,k(t− 2))− (µ̂i,k(t− 1)− µ̂i,k(t− 2))

∣∣∣∣∣∣︸ ︷︷ ︸
♣

. (16)

Now we analyze three terms on the right-hand side of Equation (16).

Bounding term ♡. Conditioning on event E, we obtain

♡ =

∣∣∣∣∣∣
t−τ∗−2∑
τ=1

∑
j∈[N ]

(
1

N
− [Wt−2 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))

∣∣∣∣∣∣
≤

t−τ∗−2∑
τ=1

∑
j∈[N ]

∣∣∣∣ 1N − [Wt−2 · · ·Wτ+1]i,j

∣∣∣∣ (rewards are bounded in the interval [0, 1])

=

t−τ∗−2∑
τ=1

∣∣∣∣∣∣∣∣Wt−2 · · ·Wτ+1ei −
1

N

∣∣∣∣∣∣∣∣
1

≤
√
N ·

t−τ∗−2∑
τ=1

∣∣∣∣∣∣∣∣Wt−2 · · ·Wτ+1ei −
1

N

∣∣∣∣∣∣∣∣
2

≤
√
N(t− τ∗)

T 2

≤
√
N

T

≤
√
N

Ti,k(t)
, (17)

where the third inequality comes from the condition that t− τ − 1 ∈ [τ∗, t− 3] and the event E.

Bounding term ♠. We have

♠ =

∣∣∣∣∣∣
t−2∑

τ=t−τ∗−1

∑
j∈[N ]

(
1

N
− [Wt−1 · · ·Wτ+1]i,j

)
(µ̂j,k(τ)− µ̂j,k(τ − 1))

∣∣∣∣∣∣
≤

t−2∑
τ=t−τ∗−1

∑
j∈[N ]

∣∣∣∣( 1

N
− [Wt−1 · · ·Wτ+1]i,j

)∣∣∣∣ ·
17



∣∣∣∣∣
∑τ

s=1 I{Aj(s) = k}Xj,k(s)

Tj,k(τ)
−
∑τ−1

s=1 I{Aj(s) = k}Xj,k(s)

Tj,k(τ − 1)

∣∣∣∣∣
)

( definition of µ̂j,k(t))

≤
t−2∑

τ=t−τ∗−1

∑
j∈[N ]

∣∣∣∣( 1

N
− [Wt−1 · · ·Wτ+1]i,j

)∣∣∣∣ ·∣∣∣∣∣
∑τ−1

s=1 I{Aj(s) = k}Xj,k(s) +Xj,k(τ)

Tj,k(τ)
−
∑τ−1

s=1 I{Aj(s) = k}Xj,k(s)

Tj,k(τ)− 1

∣∣∣∣∣
)

≤
t−2∑

τ=t−τ∗−1

∑
j∈[N ]

∣∣∣∣( 1

N
− [Wt−1 · · ·Wτ+1]i,j

)∣∣∣∣ ·∣∣∣∣∣−
∑τ−1

s=1 I{Aj(s) = k}Xj,k(s) + (Tj,k(τ)− 1)Xj,k(τ)

Tj,k(τ) (Tj,k(τ)− 1)

∣∣∣∣∣
)

≤
t−2∑

τ=t−τ∗−1

∑
j∈[N ]

∣∣∣∣( 1

N
− [Wt−1 · · ·Wτ+1]i,j

)∣∣∣∣ 1

Tj,k(τ)

(rewards are bounded in the interval [0, 1])

≤
t−2∑

τ=t−τ∗−1

∑
j∈[N ]

∣∣∣∣( 1

N
− [Wt−1 · · ·Wτ+1]i,j

)∣∣∣∣ 1

max {Ti,k(τ)−KL∗, 1}
(event E)

≤ 4τ∗

max {Ti,k(t)−KL∗, 1}
,

where the second inequality follows from the fact that there are only two possible cases for Tj,k(τ)
and Tj,k(τ − 1). When Tj,k(τ) = Tj,k(τ − 1) the absolute difference of means is trivially 0, so the
only non-trivial case to consider is when Tj,k(τ) = Tj,k(τ − 1) + 1. The last inequality is due to that
the upper bound of the total-variation distance from any distribution to the uniform distribution is 1.

Bounding term ♣. Conditioning on E, we obtain

♣ =

∣∣∣∣∣∣ 1N
∑
j∈[N ]

(µ̂j,k(t− 1)− µ̂j,k(t− 2))− (µ̂i,k(t− 1)− µ̂i,k(t− 2))

∣∣∣∣∣∣
≤
∑
j∈[N ]

2

NTj,k(t− 1)
+

2

Ti,k(t− 1)

≤ 4

max {Ti,k(t− 1)−KL∗, 1}
,

Next, let us analyse Estimation Error. Conditioned on E, for all k ∈ [K] and t ∈ [T ] we obtain∣∣∣∑j∈[N ] (µ̂j,k(t)− µj,k)
∣∣∣

N
≤

√
4 log(T )

N minj∈[N ]{Tj,k(t)}

≤

√
4 log(T )

N max{Ti,k(t)−KL∗, 1}
, (18)

where the last inequality is due to the event E.

Combining all the results collected so far, we can finally derive the concentration bound conditioned
on the event E. For any i ∈ [N ] and k ∈ [K], we obtain

|zi,k(t)− µk| ≤

√
4 log(T )

N max {Ti,k(t)−KL∗, 1}
+

4
(√

N + τ∗
)

max {Ti,k(t)−KL∗, 1}
. (19)

18



Proof of Lemma 5.2. First, for all agents we consider the cases under the event E. According
to Algorithm 1, if arm k is eliminated, there are only two possible cases: 1) there exists some
k′ such that zi,k(t) + ci,k(t) ≤ zi,k′(t) − ci,k′(t); 2) When Algorithm 1 updates the active set
Si(t+ 1)←

⋂
j∈Ni(t)∪{i} Sj(t), k /∈ Sj for any j ∈ Ni(t).

For Case 1, Since we have zi,k(t) + ci,k(t) ≤ µk + 2ci,k(t) as well as zi,k′(t) − ci,k′(t) ≥ µk′ −
2ci,k′(t), then when

2(ci,k(t) + ci,k′(t)) ≤ µk′ − µk ≤ ∆k

arm k will be essentially eliminated. Due to the pulling rule of Algorithm 1, we have |Ti,k(t) −
Ti,k′(t)| ≤ 1. Thus when

∆k ≥ 2

√ 4 log(T )

N max {Ti,k(t)−KL∗, 1}
+

4
(√

N + τ∗
)

max {Ti,k(t)−KL∗, 1}

 .

Hence, here we know that when

Ti,k(t) ≥
64 log(T )

N∆2
k

+
16
(√

N + τ∗
)

∆k
+KL∗,

arm k will be essentially eliminated.

For Case 2,the optimal arm k∗ it cannot be eliminated, because for agents i we consider the cases
under the event E.

For all agents cases under event Ec, we have

T · P(Ec)∆max ≤ 3KN∆max.

Therefore, combining all inequalities above, we have

Regi,T (π) ≤
∑

k:∆k>0

(
64 log(T )

N∆k
+ 16

(√
N + τ∗

))
+KL∗ + 3KN∆max

which ends the proof.

Proof of Theorem 5.3. By adding up Lemma 5.2 for all agents i ∈ N , Theorem 5.3 can be proved
through the facts that

1

logλ−1
2

≤ 1

1− λ2
, λ2(E[W 2]) ≤ 1− pλN−1(Lap(G))

N
and

1

log(1− p)−1
≤ 1

p
,

where the second inequality is taken from Theorem 6.1 in Achddou et al. [2024].

Proof of Corollary 5.4. If G is complete, then d(i, j) = 1 for all i, j ∈ N , and the gossip time
simplifies to t+ L. Recall Equation (11), with the same steps we can prove that

|Ti,k(t)− Tj.k(t)| ≤ KLp(δ) = K

⌈
log(δ)

log(1− p)

⌉
for any arm k ∈ [K] and agents i, j ∈ [N ] for any t ∈ [T ].

Hence by the fact that λN−1(Lap(G)) = N and let L∗ as defined in Corollary 5.4 we can prove the
case for complete graph.

For the rest two cases, we can just prove which by substituting the exact values of λN−1(Lap(G)) in
Theorem 5.3.

Proof of Theorem 5.9. First, note that

Regν
T (π) =

∑
i∈[N ]

Regν
i,T (π) =

∑
i∈[N ]

∑
k∈[K]

E[Ti,k(T )]∆k =
∑

k∈[K]

∆k

∑
i∈[N ]

E[Ti,k(T )].
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In order to show Theorem 5.9, we only need to prove that

lim
T→∞

∑
i∈[N ] E[Ti,k(T )]

log T
≥ 2(1− s)

(1 + ε)2∆2
k

(20)

for p and ε and some sub-optimal arm k ̸= k∗.

Suppose the distribution over instance ν is given by P = (Pi,a)i∈[N ],a∈[K]. Consider another instance
ν′ with P ′ =

(
P′
i,a

)
i∈[N ],a∈[K]

such that

P′
i,a =

{
N (µi,a, 1), a ̸= k

N (µi,a + (1 + ε)∆a, 1), a = k

for i ∈ [N ] where Pi,a = N (µi,a, 1) and ε ∈ (0, 1].

According to the consistency of policy π, it holds that

Regν
T (π) + Regν′

T (π) ≤ 2CT s

for some constant C and p ∈ (0, 1).

Simultaneously, let event Ai =
{
Ti,k(T ) ≥ T

2

}
, then

Regν
i,T (π) + Regν′

i,T (π) ≥
T

2
·∆k · Pν,π[Ai] +

T

2
· ε ·∆k · Pν′,π[A

c
i ]

≥ T

2
ε∆k (Pν,π[Ai] + Pν′,π[A

c
i ])

≥ T

4
ε∆k exp (−KL(ν, ν′))

=
T

4
ε∆k exp

∑
j∈[N ]

E[Tj,k(T )] · KL(Pj,a,P′
j,a)


=

T

4
ε∆k exp

− ∑
j∈[N ]

E[Tj,k(T )] ·
(1 + ε)2∆2

k

2

.

Hence, summing the above inequality for all agents i ∈ [N ], we obtain

RegνT (π) + Regν
′

T (π) ≥ NT

4
ε∆k exp

− ∑
j∈[N ]

E[Tj,k(T )] ·
(1 + ε)2∆2

k

2

. (21)

Rearranging the terms in Equation (21), it holds that∑
j∈[N ]

E[Tj,k(T )] ·
(1 + ε)2∆2

k

2
≥ log

(
NTε∆k/4

RegνT (π) + Regν
′

T (π)

)

≥ log

(
NTε∆k

8CT s

)
= (1− s) log(T ) + log

(
Nε∆k

8C

)
.

Therefore, we can show

lim
T→∞

∑
i∈[N ] E[Tj,k(T )]

log T
≥ 2(1− s)

(1 + ε)2∆2
k

which is the goal in Equation (20).

C Estimation of unknown link probability

Since G is connected, each agent has at least one neighbor. This allows every agent to estimate the
edge activation probability p by observing its connectivity status over multiple rounds. We design the
following procedure for each agent i ∈ [N ] to compute an estimate p̂ of p.
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Algorithm 2 Burn-in Phase for Estimating p by Agent i ∈ [N ]

1: Input: Confidence level δ ∈ (0, 1), any fixed neighbor ni ∈ [N ]i of agent i in the base graph G
2: Initialization: Set τ̃i ← 0, t← 0, p̂i(0)← 0 and CIi(0)←∞
3: while p̂i(t)− 3CIi(t) ≤ 0 do
4: Increment time t← t+ 1 and observe Ni(t)
5: if ni ∈ Ni(t) then
6: τ̃i ← τ̃i + 1
7: end if
8: Select an arm uniformly at random

9: Update p̂i(t) =
τ̃i
t and CIi(t) =

√
log(2/δ)

2t

10: end while
11: Output: p̂i = p̂i(t)− CIi(t)

Lemma C.1. For the agent i and each t, it holds that

P [|p̂i(t)− p| ≤ CIi(t)] ≥ 1− δ.

Proof of Lemma C.1. Lemma C.1 comes directly from Hoeffding’s inequality.

Theorem C.2. Let δ = 2
T 2 . Then, with probability at least 1 − 2N

T , the estimate p̂i returned by
Algorithm 2 satisfies p̂i ∈

(
p
2 , p
]

for every agent i ∈ [N ]. Furthermore, the cumulative regret incurred

during the burn-in phase across all agents is bounded by O
(

N log T
p2

)
.

Proof of Theorem C.2. Suppose the end round for Algorithm 2 is t∗. As p̂i = p̂i(t) − CIi(t) ≤ p
according to Lemma C.1, we only need to show p̂i >

p
2 . This can be verified by

p̂i = p̂i(t)− CIi(t) >
p̂i(t) + CIi(t)

2
≥ p

2
.

By combining each t ∈ [T ] and i ∈ [N ] and union bound, we can obtain the first part of Theorem C.2.
Moreover, for t∗ > 16 log(T )

p2 , we have

p̂i(t)− 3CIi(t) ≥ p− 4CIi(t) = p− 4

√
log T

t∗
> 0,

hence the stopping condition in Algorithm 2 holds. By the fact that ∆max ≤ 1 for all arms, we can
obtain the second part of Theorem C.2 through adding the regret for all agents i ∈ [N ].

D Additional experiments

To further validate the dependence of the regret on the link probability p and algebraic connectivity
λN−1(Lap(G)), we run the following additional experiments.

Experiment on Link Probability p. We conduct additional experiments on complete base graphs
with p ∈ [0.04, 0.18], and report the log-log relationship between p and the resulting regret. The
results are shown in Figure 2. By performing a linear regression between log(p) and log(Regret),
we obtain a slope α̂ = −0.93 with R2 = 1.0, indicating a nearly perfect linear fit (of order 1

p0.93 ).
Surprisingly, we also report the R2 corresponding to the curve of fit 1

p , and find out that R2 is 0.995,
which represents that the curve fit is quite statistically significant and thus a perfect linear fit. This
strongly supports the inverse proportionality between regret and p, i.e., regret scales approximately as
O(1/p), which is consistent with our theoretical upper bound. This result empirically also validates
that p leads to significantly higher regret due to slower information diffusion across agents.
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Figure 2: Log-log data for GSE: log(p) and log(Regret) with classical ER graph, p = 0.9)

Experiment on Algebraic Connectivity λN−1(Lap(G)). We conduct experiments using d-regular
graphs with varying degrees d. Specifically, we construct the base graphs as circulant graphs. This
structure provides a controllable family of regular graphs with increasing algebraic connectivity as
d grows. We run our algorithm GSE under this setting with the link probability p = 0.9. Table 1
shows a clear inverse relationship: as λN−1(Lap(G)) increases with higher d, the regret decreases
significantly. This supports our theoretical findings that larger algebra connectivity leads to more
efficient information propagation and thus lower regret.

Table 1: Average regret of GSE with d-regular graph
d-regular graph 2 4 6 8 10 12 14

λN−1(G) 0.1716 1.39 1.97 3.97 6.73 10.15 14.00
Regret 751.28 255.52 165.66 133.92 121.93 115.12 112.47

E Notations

The following notation chart provide notation used throughout the paper.
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N Number of agents.
T Number of time steps.
K Number of actions.
Wt Gossip matrix.

λ1, λ2, . . . , λN Eigenvalues of P sorted by norm, i.e. |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λN |. It
is always λ1 = 1 > |λ2|.

µi,k global mean reward of arm k on agent i.
µk global mean reward of arm k.
∆i Reward gaps, i.e. µ1 − µi.
p the link probability p of the Random graph

G = (V, E) base graph.
Gt = (V, Et) Communication network at time t.
Ni the neighbors of agent i in the base graph G
Ni(t) the neighbors of agent i in the communication network at time t

Ti,k(t) Number of times arm k is pulled by node i up to time t.
Xi,k(t) Local reward of arm k on agent i at time step t.
µ̂i,k(t) Local estimate of µi,k on agent i at time step t .
zi,k(t) Global estimate of µk on agent i at time step t .
Ai(t) Action played by agent i at time t.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss several limitations of the work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have stated every necessary assumptions before each theorem and lemma
in the work. Detail proofs can be found in Appendix A and B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information for reproducing the results of the paper in
Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code we used in this paper in the
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details for our experiments are given in both Section 6 and our supplementary
materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Although the error bars in our paper are very small, the figures within our
paper still include which.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our experiments can be run just on laptop, and thus our paper do not include
any further information on computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe that our paper correspond to the NeurIPS Code of Ethics in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since this is a work focusing on machine learning theory, we do not have any
societal impact.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As this is a theory work, we do not have data or models that have a high risk
for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: As this is a machine learning theory work, we do not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Since our work focuses on machine learning theory, we do not provide any
new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: As this is a theory work, we do not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: As this is a machine learning theory work, we do not involve crowdsourcing
nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
crucial components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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