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Abstract

Real-world datasets are often a combination of unobserved subpopulations that
follow distinct causal generating processes. In an observational study, for example,
participants may fall into unknown groups that either (a) respond effectively to
a drug, or (b) show no response due to drug resistance. Not accounting for such
heterogeneity then risks biased estimates of drug effectiveness. In this work, we
formulate this setting through a causal mixture model, in which the data-generating
process of each variable depends on latent group membership (a or b). Specifically,
we model each variable as a mixture of structural causal equation models, where
latent categorical (mixing) variables index assignment to subpopulations. Unlike
prior work, the approach allows for multiple independent mixing variables, each
affecting distinct sets of observed variables. To infer both the graph, mixing
variables, and assignments jointly, we integrate mixture modeling into score-based
causal discovery; show theoretically that the resulting scoring criterion is consistent;
and demonstrate empirically that the resulting causal discovery approach discovers
the causal model in synthetic and real-world evaluations.

1 Introduction

A central part of scientific investigation is understanding cause-effect relationships, which the field
of causal discovery [Pearl, 2009] aims to discover directly from observational data. Many existing
causal discovery approaches, however, rely on idealized assumptions, among others assuming that
no relevant unmeasured variables exist and that all samples come from a homogeneous distribution.
Real-world applications might violate both assumptions, for example, when observations come from
heterogeneous populations or environments.

Take, for example, a nationwide study of antimicrobial resistance in hospitalized patients, focusing on
a resistant pathogen such as Methicillin-Resistant Staphylococcus Aureus (MRSA) [Hasanpour et al.,
2023]. As patients come from different regions, their individual medical histories differ, including
prior exposure to pathogens such as Enterococcus [Li et al., 2022] with known cross-resistance to
MRSA. The regional plasmid profiles of Enterococcus largely determine its susceptibility, say to
Vancomycin [Boumasmoud et al., 2022], in turn influencing MRSA cross-resistance [Arredondo-
Alonso et al., 2020]. Although well documented, this variable is not routinely measured, and is hence
a latent variable that defines the mechanism under which the presence of Enteroccocus affects MRSA
cross-resistance [Cong et al., 2019]. Consequently, observations across regions effectively arise from
a mixture of distinct causal mechanisms.

More generally, observational data can be a combination of multiple subgroups with distinct gen-
erating processes. To illustrate, consider a simplified, synthetic setting in Fig. 1, where the causal
mechanism for Y is a mixture of two functional relationships X → Y . Treating all samples as one
population can then cause artifacts during causal discovery, such as spurious relationships or reversed
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Figure 1: Causal Mixture Models. Left: Example of a mixed causal relationship X → Y . Right:
Recovering the class assignments with (Gaussian) mixture models (MM) compared to causal mixture
models (CMM) on simulated bivariate datasets.

causation [Huang et al., 2020]. While a line of research known as multi-context and interventional
causal discovery [Mooij et al., 2016; Huang et al., 2020; Squires et al., 2020] addresses a similar
setting, these require access to multiple datasets where all causal mechanisms remain fixed, which
are unknown in the motivating example.

Recent works attempt to separate a single given dataset into multiple interventional datasets or
environments; for instance, Kumar et al., 2024 combine Gaussian mixture modeling (GMM) with
interventional discovery (UT-IGSP), addressing . mixtures arising from atomic interventions [Kumar
et al., 2024]. In examples such as Fig. 1, the underlying mixtures are better captured through
conditional relationships, such as in mixture-of-regressions models [Hennig, 2000]. To illustrate the
difference between an unconditional mixture model (MM) and the conditional (causal) counterpart
(CMM), we draw synthetic datasets over X,Y and evaluate the discovered class assignments for
Y via the Adjusted Mutual Information (AMI). While in the case without mixing (k = 1 group),
both methods correctly reject the existence of groups, with mixing (k = 2 groups), the MM reports
no better than random assignments, whereas the CMM improves over the baseline. This suggests
considering the causal mechanism for Y as a conditional mixture subject to a latent variable Z.

When extending the scope from the bivariate case to multiple observed variables, our interest then
also extends from a single to multiple, independent latent variables. Returning to the motivating
example, for instance, suppose each medical center chooses a different collaborating laboratory for
antibiotic testing. This introduces a batch effect, a latent factor independent of regional susceptibility.
To address this, different from previous formalizations that assume a single mixing variable affecting
all observables [Mazaheri et al., 2023; Kumar et al., 2024], we allow multiple independent mixing
variables that each affect different subsets of observed variables (cf. Fig. 2). For each variable, we
model its generating mechanism as a conditional mixture given its direct causes and its corresponding
latent factor, referred to as a Causal Mixture Model (CMM). The central question in the remainder of
this work is how to infer the structure of such models from data.

Causal Mixture Models To summarize, we propose basing mixture modeling on functional
relationships within a causal graph, where we consider the causal mechanism for each variable as
a mixture of conditional relationships given its causes and an associated latent variable. Unlike
two-stage approaches that separate cluster and graph discovery, our approach integrates mixture
inference directly into causal discovery by extending local score-based criteria, where we focus on
linear mixture-of-regression (MLR) models inferred through Expectation Maximization (EM) and
extend the BIC score [Chickering, 2002]. We show that under oracle access to the MLR parameters,
we can guarantee the identification of the causal model under mild assumptions, and hypothesize
that this also holds for their EM estimates in practice. We propose integrating this approach into
score-based causal discovery algorithms such as Greedy Equivalence Search (GES) [Chickering,
2002] or TOPIC [Xu et al., 2025]. To demonstrate empirically we can recover the CMM components
in practice, we consider simulated mixed data, a mixture of interventions [Kumar et al., 2024], as
well as a real-world benchmark on causal cell signaling pathways [Sachs et al., 2005].

We include all theoretical justifications and experimental details in the supplement.
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2 Causal Model

Given a set of continuous random variables X = {X1, . . . , Xn}, we are interested not only in causal
relationships among them, but especially in unknown changes of their causal mechanisms. Assuming
that the mechanisms are linear functions of a fixed subset of the observed random variables, we allow
their coefficients to be chosen from a finite set of vectors conditional on an external latent variable.

To formalise this, we also consider a set of discrete, unobserved random variables Z = {Z1, . . . , Zm},
with m ≤ n, each following a categorical distribution Zi ∼ Categorical(γi) with Zi ∈ {1, . . . ,Ki}.
That is, each γi lies on a Ki-dimensional probability simplex γi = (γi

1, . . . , γ
i
Ki

) with
∑Ki

k=1 γ
i
k = 1,

so that P(Zi = k) = γi
k. We call these random variables mixing variables.

The causal mechanism of each observed random variable in X depends, besides on the set of
observed causal parents denoted Paj , on exactly one of the unobserved, latent Z, as determined
by the surjective map La : X → Z : Xj 7→ Zi, in which case we simply write Laj = Zi. The
mixing variable directly affects the parameters of the causal mechanism, which we therefore express
as a function bj : [Ki] → R|Paj | : z 7→ βjz mapping each value z of Zi to a linear coefficient
vector βjz ∈ R|Paj |. Hence, the parameters of the functional dependency f is the collection of
vectors Bj = (βj1, . . . , βjKi

); this consists of one coefficient vector βjk for each mixing coefficient
1 ≤ k ≤ Ki, and each such vector has dimension equal to the number of parents Paj of Xj .

Summarizing, we can now model each random variable Xj as generated from its observed causes
Paj ⊆X by the causal function f and the coefficients bj that depend on the latent Zi = Laj ∈ Z,
where we recall that Z ∩X = ∅. Then, we have

Xj = f(Paj , bj) +Nj with f(x, bj(z)) = β⊤
jzx+ β

(0)
jz , (1)

where Nj ⊥⊥ Paj is additive Gaussian noise, Nj ∼ N (0, σ2).

This construction implies that for a random variable Xj for which Laj = Zi we get

(Xj |Paj = y,Laj = k) ∼ N
(
βjk

⊤y, σ2
)

for k ∈ {1, . . . ,Ki} and (2)

(Xj |Paj = y) ∼ MLR
(
Bj ,γ

j , σ2
)
, (3)

where MLR
(
B,γ , σ2

)
is the conditional distribution of a mixture of linear regressions with density

pMLR

X|Y(x,y;B,γ , σ2) =

K∑
k=1

γkp
N
X(x;βk

⊤y, σ2) =

K∑
k=1

γk√
2πσ

exp

(
−∥βk

⊤y − x∥2
2σ2

)
, (4)

and pN
X(x;µ, σ2) is the density of the normal distribution with mean µ and variance σ2. Note that in

case Paj = ∅, the formulation reduces to a standard unconditional GMM.
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Figure 2: Example
Causal Mixture Model.
The observed variables
are affected by two latent
mixing variables Z1, Z2.

Graphical Model We represent the above causal model as a Directed
Acyclic Graph (DAG) GZ = (X ∪ Z, EZ) over both observed X and
latent Z random variables, between which we add edges Xj → Xl

whenever Xj is a cause of Xl, as well as Zi → Xj whenever Laj = Zi;
since the Z were assumed exogenous and independent, we allow no
incoming edges toward the Z themselves. Of special interest is the
subgraph G = (X, E) that is induced on GZ by the node subset X ,
with E = {Xj → Xl | Xj → Xl ∈ EZ}. Considering only the latter
subgraph, we denote the set of all observed direct predecessors of Xj in
G by Paj ⊂X \ {Xj}. We also consider a surjective map π : X → N
which induces a topological ordering on G (and thus partial ordering over
X) that we call a causal order under G, and assigns such values on X
that Xr ∈ Prej ⇒ π(j) < π(r), for Prej ⊂ X \ {Xj} the set of all
direct and indirect predecessors of Xj in G. Fig. 2 depicts an example of such a graph GZ (colored
and black) and the resp. induced subgraph G (black). We then model edges such as Z1 → X1 where
X1 is a source node of the causal graph as a GMM and edges such as Z1 → X2 through an MLR.

We assume the causal Markov Property to hold in the full causal model GZ , which results in the
following factorization over the observed variables.
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Assumption 1 (Mixture-Markov Property). The distribution of X has (marginal) density

pX(x) =
∏

Xj∈X

pMLR

X|Paj
(x,paj ;B,γ , σ2) , (5)

where we implicitly use the independence of all Z (see Appendix A.3 on relaxing this assumption).

The objective in this work is to infer the CMM from finite observations, as follows.
Problem 1. Given i.i.d. observations D = {x1, . . . ,xr}, of the random variables X generated from
a distribution compatible with our assumptions, we aim to infer the structure of GZ ,

1. the causal dependencies Xj → Xl ∈ E encoded in the edges E of the induced graph G,
2. the linear coefficients of the corresponding causal mechanisms γj for all Xj ∈X ,
3. the set Z of latent variables, i.e., their number m, and for each Zi ∈ Z the domain Ki and

mixing probabilities γi, as well as
4. the mapping Laj ∈ Z for each Xj ∈X .

We address this problem in the following section.

3 Theory

As the first contribution of our work, we study conditions that allow inference on GZ , as formalised
in Problem 1, using score-based causal discovery. To this end, it is of interest to determine whether
existing local scoring criteria can be adapted for our setting, so as to use them consistently in a score-
based framework, such as the well-known Greedy Equivalent Search (GES) algorithm [Chickering,
2002] and related approaches [Xu et al., 2025].

GES performs a greedy search over the set of all Markov equivalent classes (MECs) of causal graphs
with nodes X . More specifically, each iteration updates the current MEC by the best hypothesis
among all those that differ from the current one by a single edge modification (i.e., edge reversal,
addition, or removal). This process allows for the inference of the most likely MEC, as expressed
in the form of the edges of a Partially Directed Acyclic Graph (PDAG) with nodes representing the
observed X .

Importantly, GES can be shown to be asymptotically consistent as long as the search is guided by a
scoring criterion that satisfies the appropriate criteria given shortly. We write LX ∈ IG for a graph
with nodes X whenever the (conditional) independencies implied by the PDAG G are also true for
the distribution LX .
Definition 3.1 (Consistent Scoring Criterion [Chickering, 2002]). Given data D of size r sampled
from distribution LX and two graph hypotheses Gh

1, Gh
2 then the score S is consistent whenever

1. LX ∈ IGh
1

and LX /∈ IGh
2
=⇒ S(Gh

1;D) > S(Gh
2;D)

2. LX ∈ IGh
1
∩ IGh

2
and Gh

1 has fewer parameters than Gh
2 it is S(Gh

1;D) > S(Gh
2;D).

One score that satisfies this criterion is the Bayes Information Criterion (BIC).
Definition 3.2 (Bayes Information Criterion). Given model hypothesis H assuming distribution
LX(θ) with parameters θ ∈ Θ ⊆ Rd and observations D = {x1, . . . ,xr} of X , the score ofH is

BIC(H) := −2 log pX(D|θ̂) + d log r , (6)

where the first term is the scaled (log) likelihood of LX evaluated at its maximiser θ̂.

This score has the important property of decomposability [Chickering, 2002], dictating that when
LX factorises as a product the BIC decomposes as a sum

pX(x) =
∏

Xj∈X

pXj |Paj
(xj |paj) =⇒ BIC(X) =

∑
Xj∈X

BIC(Xj |Paj) . (7)

To transfer these properties to our own model, we need to further account for the latent mixing
variables. Hence, at each step of the GES algorithm, and according to our model of Eq. (5) we need
to compute the likelihood pMLR

X|Paj
(x,paj ;B,γ , σ2), which requires an estimation of the Mixture of
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Figure 3: Identifiable Cases. Under mild assumptions, when Z has at least two mixing components,
all of the shown DAGs are identifiable.

Linear Regressions (MLR) parameters. Unfortunately, the computation of the Maximum Likelihood
Estimate (MLE) estimates for both Gaussian Mixture Models (GMMs) and MLR models is NP-hard
in the general case. However, an efficient algorithm to compute well-performing local maximisers of
the corresponding likelihoods is the Expectation Maximisation (EM) framework [Wu, 1983] and its
variants [Bishop, 2006]; we therefore employ these algorithms to approximate the MLE parameters.

Although certain conservative claims can be made for the consistency of EM, we postpone them for
later on. Instead, for the first part of our analysis we assume the availability of an oracle that can
compute the maximum likelihood estimates for the MLR model for a given number of mixtures K,

θ̂ = (B̂, γ̂, σ̂) = argmax
(B,γ ,σ)∈ΘK

pMLR

X|Y(x,y;B,γ , σ2) , (8)

where ΘK = (R|Paj |)K × SK−1 × R+ is the space of the model parameters for K mixtures and
SK the K-dimensional probability simplex. Given the availability of such an oracle, we can adapt
the GES algorithm in a way that both preserves its asymptotic consistency and takes into account any
possible latent variables. For this, we also incorporate the asymptotically consistent estimation of the
number of components K by maximising the BIC score over a set of allowed values K ≤ Kmax.
This gives rise to the latent-aware BIC scores

BICML
Ẑ

(H) = max
1≤K≤Kmax

BICML
Ẑ

(H,K) and BICEM
Ẑ

(H) = max
1≤K≤Kmax

BICEM
Ẑ

(H,K) , (9)

where BICML
Ẑ

uses the oracle estimate and BICEM
Ẑ

the EM one. By appropriate use of the decompos-
ability property, we can show that the criterion of Def. 3.1 holds for the former score, BICML

Ẑ
.

Note that a known result shows that linear additive Gaussian noise models are not identifiable [Shimizu
et al., 2006; Pearl, 2009], in the sense that the graphs X → Y and X ← Y are then Markov equivalent.
In our general case, however, and under mild conditions (see Lemma B.1), our model deviates from
this problematic case enough for the identifiability of all models in Fig. 3 to become possible.

Theorem 3.3 (Local Consistency of BICML
Ẑ

). Let D = {x1, . . . ,xr} be observations of random
variables X , Y , such that X|Y ∼ MLR

(
B,γ , σ2

)
, with general parameters θ (see Lemma B.1).

Then, out of the structural hypotheses depicted in Fig. 3 the BICML
Ẑ

score of the ground truth
hypothesis Gh

cs is asymptotically larger than any of the alternative ones, Gh
ws and Gh

me, almost surely.

As a corollary, GES with the BICML
Ẑ

can identify between these models.

Corollary 3.4. The latent-aware score BICML
Ẑ

is a consistent scoring criterion.

In our analysis, however, we have yet to address the discrepancy between the BICML
Ẑ

that we assumed
to be tractable, and the one we actually use above, the BICEM

Ẑ
based on the EM algorithm. Of interest

is one particular result of Balakrishnan et al. (2017), which shows that for a Euclidean ball around the
optimal parameters of the MLR model, the EM algorithm finds the MLE estimate if it is initialised
within this ball. The radius of this ball depends on how well the components of each mixture can be
separated, and holds both asymptotically and for the finite sample case.

At the same time, we intuit that when the observations do not fit well with an MLR model, the
algorithm will fail to find the correct estimate, resulting in an underestimation, BICEM

Ẑ
≪ BICML

Ẑ
.

This assumption would steer the GES algorithm away from selecting the said model, which would
instead favor the selection of a correct model. We formalise this intuition as follows.
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Algorithm 1: DISCOVER A CAUSAL MIXTURE MODEL (CMM)
Input: Dataset X , max. number of mixture components Kmax

Output: Set of latent variables Z, causal graph GZ
1 Initialize Z ← ∅, GZ ← ∅, G ← ∅, T ← [ ];
// Discover local mixing and graph

2 while not all nodes are ordered do
3 Xj ← INFERSOURCE(T,G);
4 G ← EDGEADDITIONS(Xj ,G);
5 G ← EDGEPRUNING(Xj ,G);
6 for each k in 1, . . . ,Kmax do
7 Using EM, fit (Xj |Paj = y) ∼ MLR

(
Bj ,γ

j , σ2
)

with k components;

8 Zj ← mixing assignment with best BICEM
Ẑ

= max1≤K≤Kmax BIC
EM
Ẑ

(K);
9 T.APPEND(Xj);
// Infer global mixing

10 Z,GZ ← INFERMIXING(G, {Zj});
11 return G, Z;

Conjecture 3.5. The latent-aware score BICEM
Ẑ

is a consistent scoring criterion.

The analysis justifies the use of the latent-aware score BICEM
Ẑ

in score-based algorithms for consis-
tent structure estimation. Inspired by this, we complement our theoretical results with a practical
implementation using the BICEM

Ẑ
, which we present and evaluate in the remainder of this work.

4 Algorithm

Here, we outline an algorithm for discovering i) the mixing variables Z and ii) the causal graph GZ .
Building on the score consistency that our theory establishes, we propose a joint inference procedure
that discovers both components within a score-based framework. At each scoring step, we fit an
MLR under a given candidate parent set. Choices for the score-based algorithm include, for example,
the GES algorithm [Chickering, 2002] or other score-based causal discovery frameworks. As our
main proof-of-concept implementation, we describe how to integrate the latent-aware BIC within the
topological order-based framework TOPIC [Xu et al., 2025].

Causal Mixture Inference and Scoring Given a node Y with parents pa(Y ) ⊆X, we score the
causal relationship using the latent-aware BIC of Eq. (9). That is, the score accounts for an unknown
number of mixtures, where the likelihood takes the form of Eq. (4). To compute the BIC in practice,
we need to consider each 1 ≤ k ≤ Kmax up to a given hyperparameter Kmaxand use the Expectation
Maximisation (EM) [Bishop, 2006] algorithm to obtain estimates for the MLR parameters; finally,
we then use the BIC score of the best such k in our algorithm and the corresponding estimates for the
rest of the model parameters. In the special case of source nodes, we infer a GMM similarly using
EM. Regarding the number of components k, we assume that a reasonably high maximum number of
Kmax is given that caps the number of mixture components. When MLR model selects K < Kmax,
it is (asymptotically) sure that this estimate of K is the true number of mixture coefficients. When
2 ≤ Kmax < K∗, for K∗ the true number of clusters, the causal structure would still be correctly
inferred, as the capped MLR would still offer a higher likelihood versus any alternative model.

Causal and Mixing Structure Search We discover the causal DAG G over the observed X by
embedding the above inference step into the TOPIC algorithm. Considering a candidate edge
X → Y , we also define the score difference g as the difference in BICs before and after adding X ,
g(X,Y ;G) = BICZ(Y | pa(Y ) ∪ {X})− BICZ(Y | pa(Y )). TOPIC then constructs the DAG in
topological order in the following steps.

(i) Source Identification: Identify Xj = argmaxX minY [g(X,Y ;G)− g(Y,X;G)] .
(ii) Edge Additions: For each Y ̸= Xt, add an outgoing edge Xt → Y if g(Xt, Y ;G) > 0.

(iii) Edge Pruning: Remove any redundant incoming edges Z → Xt using g.
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Following this strategy, we discover a topological order T , DAG G as well as a mixture assignment
Zi for each variable Xj along the topological order. We finally consolidate these. With the reasoning
that pairwise estimated Zi, Zl exhibit significant overlap when they correspond to the same mixing
variable, we measure the similarity of the assignments, here using Adjusted Mutual Information
(AMI), and merge variables when the AMI exceeds its expected value [Vinh et al., 2010].

We summarize our approach in Alg. 1.

5 Related Work

Discovering causal graphs from observational data is a well-studied problem. Among constraint-based
methods is the PC algorithm [Spirtes et al., 2001] using conditional independence (CI) testing, among
score-based approaches is GES [Chickering, 2002] using local scoring criteria [Huang et al., 2018].
Both search over the space of Markov Equivalence classes (MECs) over DAGs. LINGAM [Shimizu
et al., 2006] and RESIT [Hoyer et al., 2008] assume non-Gaussianity and independence of regression
residuals to orient edges. CAM [Bühlmann et al., 2014] and SCORE [Rolland et al., 2022]/DAS
[Montagna et al., 2023] combine topological order estimators with pruning to discover a DAG, while
TOPIC [Xu et al., 2025] uses Bayesian or information-theoretic scores for both steps. NOTEARS
[Zheng et al., 2018] frames DAG discovery as a continuous optimization problem. Given the
potential variance- resp. R2-sortability problems of causal discovery benchmarks [Reisach et al.,
2021], Reisach et al., 2023 propose simple baselines exploiting these scoring criteria, VARSORT and
R2SORT. Finally, some works relax the common assumption of causal sufficiency and allow for latent
confounding variables, such as FCI [Spirtes et al., 1993]. In comparison, with discrete-valued latent
variables and special interest in their inference, our setting is more similar to multiple environments.

Multiple Environments and Interventional Data Towards addressing non-i.i.d. data, several works
consider different datasets (called environments, contexts, or interventional datasets) that arise from
interventions or causal mechanism shifts, but within which all causal mechanisms are fixed [Schölkopf
et al., 2021]. Extensions of common causal discovery algorithms to this setting exist [Mooij et al.,
2016; Huang et al., 2020; Squires et al., 2020; Mameche et al., 2023]. Common to these methods is
that they consider causal discovery in an augmented graphical model with a single latent variable that
can be interpreted as the (known) dataset index, respectively, with intervention variables, allowing
identifiability of the causal model up to the interventional MEC (iMEC) [Hauser and Bühlmann,
2013; Wang et al., 2017a]. A different line of work, addressing causal discovery in time series
[Runge, 2020], considers discovering temporal regimes with changes in causal mechanism, such as
RPCMCI [Saggioro et al., 2020]. This approach differs from ours in that it discovers changes in
causal mechanisms along the temporal dimension, assuming a temporal ordering of observations.

Mixture Modeling and Causal Discovery Gaussian Mixture Models as well as their conditional
counterparts, Mixtures of Linear Gaussian Regressions, are well studied [McLachlan and Peel, 2000;
Hennig, 2000]. The idea of reinterpreting clustering and mixture modeling within a causal framework
is not new; most works in this area assume a global mixing variable, also termed a latent-class
confounder [Mazaheri et al., 2023]. Some works study for example the bivariate cases [Hu et al.,
2018], discrete variables [Mazaheri et al., 2023] and causal inference settings [Kim et al., 2024;
Mazaheri et al., 2025]. Most closely related to ours is the work of Kumar et al., 2024 which proposes
Mixture-UT-IGSP (MIXUTIGSP), combining a GMM with adequate component selection with
UT-IGSP. Kumar et al., 2024 give insight into the sample complexity of identifying interventional
mixtures, as well as establish identifiability of the iMEC in this setting using the two-stage approach.
We will evaluate against this approach in the next section.

Causal Identifiability Methods exist to identify linear additive Gaussian noise models with equal
variance, under further conditions, such as non-perfect dependencies, and what is more, also when
other constraints are added (e.g., that the coefficients are all less than the unit) [Peters and Bühlmann,
2013]. Our identification results do not rely on these specific assumptions; instead, we base identifi-
cation on the effects of the latent mixing variables and the asymmetries they introduce in the causal
directions. The results are thus independent of the approach of restricting the functional model with
further assumptions, and can address scenarios where these assumptions do not hold.
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GMM×

GMM
KMEANS
DBSCAN
HDBSCAN
SPECTRAL

0 2 4 6 8

0
0.2
0.4
0.6
0.8

1

NZ

A
M

I

0
0.
2
0.
4
0.
6
0.
8 1

pZ

2 4 6 8 10

SZ

2 3 4 5

K

5 10 15 20

NX

Figure 4: Discovering Mixing Structure. In synthetically generated CMMs, we evaluate the quality
of the recovered mixing structure, evaluating the affected observed variables (F1 (target)), variable
sets affected by the same latent variable (Jacc) as well as per-node mixing assignments (AMI).

6 Evaluation

We evaluate our approach on two main questions,

(i) Discovering Mixing Structure: Given a causal graph, can our approach accurately discover
the underlying mixing structure, including the number of mixing variables, the number of
their components, assignments, and sets of targeted observed variables?

(ii) Discovering Causal Structure: When the causal graph is unknown, can our approach recover
the mixing structure as well as the causal graph?

We address the above questions on synthetic and real-world data.

Experimental Setup We generate data according to our assumptions by drawing Erdős Rènyi DAGs
using Xj |Paj ∼ MLR

(
Bj ,γ

j , σ2
)

with Gaussian additive noise Nj ∼ N (0, 1) and ensuring that
the linear coefficients Bj are bounded away from zero, βjk ∈ [−1,−0.25] ∪ [0.25, 1] and similarly
from one another. To avoid issues related to Var-sortability and R2-sortability [Reisach et al., 2021]
we generate an internally standardized structural causal model (iSCM) [Ormaniec et al., 2024].

The experiments address the effect of several parameters: the number of observed NX ∈ {5, . . . 20}
and latent variables NZ ∈ {0, . . . , 10}, number of latent classes K ∈ {2, . . . , 5}, fraction of observed
variables pZ ∈ [0, 1] affected by mixing, dag density pG ∈ [0, 1], sample size S ∈ {200, ...1000}
and a parameter controlling the size of the samples in each group SZ ∈ {2, . . . , 10}; for example,
for K=2, we uniformly at random draw S

SZ
samples belong class 0, otherwise assign class 1. By

default, we show results for NX = 10, NZ = 4,K = 2, pZ = 0.5, pG = 0.4, S = 500, SZ = 5. For
a detailed description of the data generation setup, see Appendix D.

6.1 Discovering Mixing Structure

We assess the quality of mixing assignments Zi using the Adjusted Mutual Information (AMI)
averaged over the estimated vs. true assignments for each observed node Xj in a simulated graph G,
and the mixing structure in GZ using F1 scores (binary edge existence Zi → Xj) and Jaccard indices
(set overlap of each Zi’s observed targets). We include simple baselines that apply mixture modeling
without causal information for comparison.

In Fig. 4, we observe reliable recovery of mixing assignments (AMI) and their targets (F1, Jacc) for
our approach given the true graph (dashed green) and for the full framework (solid green). Applying
a clustering baseline such as GMM over all nodes in the graph, as in [Kumar et al., 2024] (blue,
×), is misspecified in case NZ > 1, as per-node assignments are distinct, hence not surprisingly,
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Figure 5: Discovering Causal Graphs. In synthetically generated CMMs, we evaluate the quality of
the causal DAG over the observed variables in terms of the separation distance (SD) and true positive
rate over directed edges (TPR).

performance worsens as NZ increases (left). Given this, we also apply the models to each node in
turn (purple, gray), where gray variants show different instantiation choices. These perform not much
better than random splitting in most cases (AMI, F1) and with accurate set recovery (Jacc).

6.2 Discovering Causal Structure

Next, we evaluate the learned causal DAG resp. CPDAG G against the ground truth G⋆. We consider
the separation-based distance metrics proposed by Wahl and Runge, 2024, measuring among others
the Separation Distance (SD) over graphs. To demonstrate the strength of our approach in discovering
edge orientations in particular, we also compute orientation F1 scores and report true positive rates
(TPR). Additional metrics of interest are postponed to the Appendix. Baselines include a range of
causal discovery methods, CAM, SCORE, LINGAM, FCI, GES, PC, VARSORT, and R2SORT.

While some baselines perform reasonably well in mixed settings, CMM maintains high accuracy
across both structural and causal direction evaluations (Figure 5). We note that Mixture-UTIGSP
is not meaningfully applicable here, as there may be multiple mixing variables and no well-defined
"observational" part of the dataset as required as input to UTIGSP; thus we will instead consider an
experimental setting with a single mixing variable.
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Figure 6: Mixtures of Interventions. For
data generated from an interventional
mixture, we show the quality of mixture
separation (AMI, cf. Fig. 4) and causal
DAG discovery (SD, cf. Fig. 5).

Case Study: Mixtures of Interventions Next, we repli-
cate the experimental setup of Kumar et al., 2024 us-
ing their data generators to evaluate performance in the
mixtures-of-interventions setting. As Figure 6 shows, the
GMM used in Mixture-UTIGSP performs well in recov-
ering mixture assignments as expected, given that its mod-
eling assumptions are met in this setting. Our method
performs comparably in mixture assignment recovery and
recovers the causal graph more reliably (Figure 6 bottom).
We also noticed a competitive performance of VARSORT
in this dataset suggesting potential Var-sortabity which
may inflate the performance of the discovery approaches.

Case Study: Flow Cytometry Data Finally, we in-
vestigate the real-world flow cytometry dataset curated
by Sachs et al., 2005. The dataset originates from single-
cell protein-signalling samples of the human immune re-
sponse system, where each of the 11 observed variables
corresponds to the activity of one compound of inter-
est: either a protein or a phospholipid. The dataset con-
tains (among others) 5 experimental conditions, in each
of which a particular molecular modifier has been applied

9



MIXED/IV. SAMPLES (AMI)

TARGET CMM∗ CMM MIXUTIGSP

Akt 0.02 0.04 0.04
PKC 0.26 0.43 0.49
PIP2 0.10 0.10 0.03
Mek 0.20 0.20 0.14
PIP3 0.00 0.00 0.00

Table 1: Mixing discovery as in Fig. 4, for the
data by Sachs et al., 2005.

CAUSAL GRAPH

METRIC CMM MIXUTIGSP

TP 5 0
FP 10 2
FN 5 10
SD 0.25 0.75
S/C 0.27 0.57

Table 2: Causal discovery as in Fig. 5, for the
data by Sachs et al., 2005.

to the cells, such that the activity of exactly one of the 11 compounds of interest is affected; this
results in a known change of the measured activity for the corresponding compound. As in previous
analyses [Wang et al., 2017b], we combine the data from all experimental conditions into a larger
dataset of size 5846, and do not disclose their origin to the algorithm. Hence, in the pooled data, each
variable is affected by a latent one.

For example, considering the node "‘Akt‘", there are two mixture components: one is the experimental
condition where the so-called Akt inhibitor was applied, directly inhibiting Akt activation; the other
mixture component comprises the remaining samples where Akt is in its baseline condition. In
particular, the variables Akt, PKC, PIP2, Mek, and PIP3 were manipulated. We test how well, for
each given target node, its intervened subsample can be recovered (AMI). The dataset split found by
Mixture-UTIGSP appears to match PKC best, similar for our per-variable splits which match PIP2
and MEC slightly better (Table 1). Still, neither method reaches convincing AMI, consistent with
the observations [Kumar et al., 2024; Squires et al., 2020] that the interventional targets are difficult
to identify in this dataset. In terms of causal discovery, our approach performs better in terms of
separation distances (SD, S/C) albeit discovering a number of spurious (FP) edges (Table 2). All
other baselines report similarly high false positive directions (10+ FP) with the exception of PC (2
FP). Additionally, some edge directions in the ground truth such as Raf→Mek are subject to debate.
We discover the Mek→ Raf direction which has been previously discussed as agreeing better with
the given data [Mooij et al., 2016].

In summary, the experiments give empirical support for effectively recovering the mixing structure
and the causal structure. In Appendix E, we additionally (i) compare the GES to the TOPIC
instantiation; (ii) study the effect of latent mixing variables on causal discovery algorithms; and (iii)
compare functional forms both in the data generation as well as during scoring.

7 Conclusion

We address the problem that real-world datasets rarely come from a fixed data-generating process, but
could be a combination of subpopulations with distinct causal mechanisms. This gives rise to a causal
mixture model in the sense that each effect given its causes results from a finite mixture of linear
regressions. We characterize this model in our work and establish theoretical results showing that
consistent scoring criteria, such as the latent-aware BIC, allow causal identifiability. Complementary
to these insights, we propose a practical implementation for causal discovery using this score which
we demonstrate to have strong empirical performance in various settings.

In the real-world case study [Sachs et al., 2005], while the approaches recover the causal graph
structure to an extent, we observed limited ability of both the CMM and Mixture-UTIGSP to discover
the intervention targets, likely due to the strong assumption of linearity. As our proposed approach can
in principle easily incorporate richer models, future work could study scoring criteria and theoretical
guarantees for non-linear mixtures, encouraged by a proof-of-concept experiment that we provide in
Appendix E. Future work could also study how to further interpret the meaning of a given Z, especially
when it points to previously unknown states, for example, by exploring explainability approaches such
as LIME [Ribeiro et al., 2016] or Shapley values [Lundberg and Lee, 2017]. Furthermore, invoking
Expectation Maximization at every scoring step comes with drawbacks regarding the scalability of
our method, especially when relying on random restarts, therefore subsequent analysis could devise
algorithmic approaches to reduce this overhead.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and data can be released alongside the manuscript and to the best of our
efforts contain all necessary scripts and environments for reproducing the results.
Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details necessary to understand the results are to the best of our efforts
included in the evaluation section, such as the considered experimental parameters, and the
baselines were run without modifying the standard hyperparameters in their off the shelf
implementations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main plots show error regions for the methods to account for randomness
in the synthetic data generation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments can be reproduced with standard commodity hardware.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no ethical considerations with e.g. experiments and research methods
and to our knowledge no major ethical concerns with the approach.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no direct negative societal impact of this research in our view as
this work is part of foundational research. Its practical applicability is towards gaining
causal insights in the sciences and is mostly unrelated to the malicious and unintended uses
mentioned in the guidelines.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The widely used dataset by Sachs et al. (2005) was considered which is cited.
Code for reproducing various causal discovery baselines is available under public licenses
and the corresponding works have been cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core ideation, development and presentation of the research does not
involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminaries

In this section, we provide a brief overview of helpful preliminary concepts that, although relevant to
our analysis, we assume to be widely familiar in the main target audience of our work; for brevity and
clarity, we therefore chose to postpone them away from the main manuscript and into this appendix.

A.1 Structural Causal Models

Given random variables X = {X1, . . . , Xn} we can encode the underlying data generating process
(DGP) as a structural equation model (SEM) [Koller and Friedman, 2009]; this model encodes a set
of hypotheses on this process in the form of one functional dependency fj for each random variable
Xj ∈X , so that

Xj = fj(Xj) with Xj ⊆X \ {Xj} . (10)

Of special interest is a structural causal model (SCM) [Bollen, 1989], which is a particular kind
of an SEM with additional assumptions that allow it to also model the causal mechanisms of the
DGP. Here, the set of random variables X is extended to also include random unobserved variables
U = {U1, . . . , Un}, which play the role of noise. Hence, each functional dependency takes the form

Xj = fj(Xj , Uj) with Xj ⊆X \ {Xj} and Uj ∈ U . (11)

To further study SCMs, we need to establish their correspondence with causal graphs [Pearl, 2009].

A.2 Causal Graphs

Consider a set of random variables X = {X1, . . . , Xn} that follow a distribution LX that has a joint
probability density pX with respect to some appropriate measure, and an (arbitrary) total ordering
X1 < X2 < · · · < Xn. Then the joint probability density factorises as

pX(x) =
∏

Xj∈X

pXj |Yj
(x,yj) , where Yj ⊆ {X1, . . . , Xj} (12)

and yj are those values out of x corresponding to the same indices as Yj . This comes as a direct result
of the chain rule and the conditional independence rules. Any such factorisation can be represented
as a (fully) directed acyclic graph (DAG) G = (X, E) with nodes the random variables X and edges
the set E = ∪nj=1{i→ j|Xi ∈ Yj}. In other words, in this graph we add an edge to the dependent
variable Xj from each variable in the corresponding conditioning set Yj that appears in each factor
pXj |Yj

of Eq. (12). We further make this relation explicit, by instead writing Paj = Yj to indicate
that the conditioning set Yj serves as the set of direct parents of node Xj in G. Such a graph is called
a Bayesian network [Koller and Friedman, 2009] and allows for a visual representation of all those
independencies that are implied solely from this factorisation of the joint density and irrespective of
the form of each factor.

These independencies can be read from the graph in terms of the d-separation [Pearl, 2009].

Definition A.1 (d-separation). For any pairwise disjoint subsets U,V,W ⊆X , and U,V ̸= ∅, it is

U ⊥⊥ V|W ⇐⇒ all paths from any variable in U to any of V are blocked by W . (13)

We call a path blocked if it either

• traverses a section→ V →,← V ← or← V → for some variable V ∈W , or
• traverses a section→ V ← where neither V nor any of its descendants are contained in W .

Hence, a Bayesian network G can be seen as a description of an entire family of distributions that
fulfill a given set of conditional independencies. When a distribution LX exhibits all the conditional
independencies that one can read from the graph G, we call G an I-map of LX and write LX ∈ IG .

In other words, the I-map defines an equivalence relation among all DAGs via the relation G ≡M

G′ ⇐⇒ IG = IG′ , of which each equivalence class is called the Markov equivalence class (MEC).
When, in addition, each of the factors in the factorisation of Eq. (12) correspond to a functional
dependency of an SCM, we call the resulting DAG causal.
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A graphical representation of MECs can be given through the common notion of completed partially
directed acyclic graphs (CPDAGs) [Chickering, 2002] also known under other names such as
maximally oriented graphs [Meek, 1997]. A partially directed graph (PDAG) P contains both
undirected and directed edeges, and can be associated to an equivalence classM(P) with G ∈ M(P)
if and only if G,P have the same skeleton and v-structures. The notion of completion of PDAGs
allows for representing equivalence classes uniquely. To this end, for a given equivalence classM
one distinguishes between compelled edges with the same directionality in every member ofM, and
reversible edges otherwise. The completed PDAG P forM is then the one having a directed edge
for every compelled edge inM, and an undirected edge for every reversible edge inM.

A.3 SCMs and causal graphs

We now return to the assumptions implicit in an SCM.
Assumption 2 (Causal Interpretation). Each functional dependency fj corresponds to a true causal
mechanism in the data, with Xj being the direct causes of the direct effect Xj .

As a corollary, the corresponding causal graph can have no recurrence.
Assumption 3 (Orientation and Acyclicity). The causal graph of an SCM is a DAG.

Hence, we can once again identify the direct causes of each effect Xj with its parents in the
corresponding DAG, Xj = Paj .
Assumption 4 (Exogeneity of Noise). The random variables U are exogenous; that is, there are no
edges Xj → Ui, for any Xj and any Ui.
Assumption 5 (Independence of Noise). The random variables U are mutually independent.

In our work, in particular, we consider that part of the noise for each effect Xj is the latent variable
Laj , in addition to the typical Uj . Hence, even though for the set U we do make Assumption 5, we
note that this fails to hold for the entire set of exogenous noise sources, which, in our case, is further
extended to include all Z. As a result, to be more rigorous, we make claims to find the CPDAG
corresponding to the conditional distribution LX|Z , rather than the marginal LX .

We remark that, if one is interested in the entire marginal LX , this can be achieved as a two-level
algorithm, in which we first use our presented method to infer the Markov equivalence class of
LX|Z , and then use the inferred values of each Laj to identify which variables correspond to the
same underlying latent Zi, and finally performing causal structure inference over the values of Z to
complete the Markov equivalence class of LX .

In the scope of our work, we hence focus on the conditional LX|Z . In the following section we
formally show that we can recover the corresponding underlying Markov equivalence class, as
represented by a CPDAG G. Specifically, we next move to formally showing our main claims in
Corollary 3.4 on using the proposed latent-aware BIC as a consistent scoring criterion for this purpose.

B Proof of Theorem 3.3

Xj ∈X

Xj Y

Z

X ∈ Rn, Z ∈ N
Y |X ∼ MLR(θ),

θ = (B,γ , σ2) ∈
⋃
K≥2

ΘK

ΘK = (Rn)K × SK−1 × R+

Figure B.1: The parameters
of the MLR distribution.

In this section we elaborate on the theoretical justification of our method.
For this, we make use of the relaxed space constraints to break down
our analysis in finer steps. We first show that under mild conditions,
the MLR distribution does not degenerate to a Gaussian.

We hence treat the parameters θ as random variables and assume each
MLR distribution in the data generating process to be drawn as follows.
First, a finite number K ≥ 2 of components is arbitrarily fixed; then the
tuple θ = (B,γ , σ2) ∈ ΘK is drawn, where ΘK = (Rn)K ×SK−1×
R+ is the parameter space of the model with K components and SK
the K-dimensional probability simplex.
Out of this tuple, the linear coefficients are assumed to be drawn from
a prior B ∼ µK

B , the mixture coefficients from γ ∼ µK
γ , and a positive

variance σ2 > 0 from an arbitrary distribution.
Also let λK

B be the push-forward of the Lebesgue measure on Rn×K

through the homeomorphism of that space with (Rn)
K and λK

γ the Lebesgue measure on SK−1.
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Lemma B.1 (Non Gaussianity of Direct Effect). Let X ∈ Rd, Y ∈ R be random variables such that
Y |X ∼ MLR

(
B,γ , σ2

)
, with parameters θ = (B,γ , σ2) ∈ Θ = ∪K≥2ΘK . Let the parameter

prior µΘ be σ-additive; let for each ΘK the marginal priors of the linear coefficients and the mixture
coefficients1 be absolutely continuous with respect to the corresponding Lebesgue measure, that is,
µK
B ≪ λK

B and µK
γ ≪ λK

γ .
Then the distribution of Y |X is almost surely not a Gaussian.

Proof. Fix a K ≥ 2. We first show that the MLR distribution with density

pMLR

Y |X(y,x;B,γ , σ2) =

K∑
k=1

γkp
N
X(x;βk

⊤y, σ2) (14)

almost never degenerates into a Gaussian.

The alternative can only happen under either of the following two conditions:

1. there is only one (active) component in the mixture, or
2. each active component has the same linear coefficients.

For the former condition to hold, it must be that for the drawn γ it is γk = 1 for some 1 ≤ k ≤ K.
The probability of drawing such a γ is equal to µK

γ (EK) where

EK = {γ ∈ SK−1 | ∃k, 1 ≤ i ≤ K, γk = 1} (15)

is the set of the K extremal points of SK−1. However, EK is a finite subset of SK−1, and so
λK
γ (EK) = 0; this, implies that µK

γ (EK) = 0, since µK
γ ≪ λK

γ .

To study the latter condition, we treat the domain of the linear coefficients as B ∈ Rn×K , which is
homeomorphic to (Rn)K . Denote VK the set of matrices with all columns equal. This set forms a
linear subspace VK ⊆ Rn×K , as it contains the zero matrix and is closed under scalar multiplication
and addition. Additionally, this linear subspace VK is a proper subspace of Rn×K , as the latter
contains matrices with unequal columns, which are not part of VK . Therefore, the Lebesgue measure
of this subspace vanishes, λK

B (VK) = 0, which in turn implies that µK
B (VK) = 0, due to µK

B ≪ λK
B .

We now consider the pre-images V̄K = π−1
B|K(VK) and ĒK = π−1

γ |K(EK) of these sets, where
πB|K : ΘK → Rn×K and πγ |K : ΘK → SK−1 are the Cartesian projections from the space of
parameter tuples in ΘK to that of the space of linear coefficients and mixing coefficients, respectively.
Further, since Θ =

⋃
K≥2 ΘK , it is also that V̄K , ĒK ∈ Θ. However, since the measure of both VK

and EK vanished in the corresponding marginal measures, µK
B , µK

γ , respectively, it must also be that
µΘ(V̄K) = µΘ(ĒK) = 0.

Hence, the probability that for a given K the distribution degenerates is equal to µΘ(D̄K), which we
define as D̄K := V̄K ∪ ĒK . Now, by the union bound µΘ(D̄K) ≤ µΘ(V̄K) + µΘ(ĒK) = 0.

Finally, we can bound the probability that the MLR distribution degenerates into a Gaussian for an
arbitrarily drawn number of components. Let D̄ ⊆ Θ be the parameters of the MLR distribution
that correspond to the cases that degenerate into a Gaussian, for which it is D̄ =

⋃
K≥2 D̄K . By the

σ-additivity of µΘ we get

P
(
{MLR degenerates into Gaussian}) = µΘ(D̄

)
= µΘ

( ⋃
K≥2

D̄K

)
=

∑
K≥2

µΘ(D̄K) = 0 , (16)

which concludes the proof.

To show identifiability, we need to be able to distinguish, under the true hypothesis Y |X ∼ MLR,
between all competing hypotheses of Fig. B.2.

Theorem 3.3 (Local Consistency of BICML
Ẑ

). Let D = {x1, . . . ,xr} be observations of random
variables X , Y , such that X|Y ∼ MLR

(
B,γ , σ2

)
, with general parameters θ (see Lemma B.1).

Then, out of the structural hypotheses depicted in Fig. 3 the BICML
Ẑ

score of the ground truth
hypothesis Gh

cs is asymptotically larger than any of the alternative ones, Gh
ws and Gh

me, almost surely.
1Note that a weaker condition is needed for the mixture coefficients, namely that at least two components

have positive probability. This more general requirement, however, is already general enough and easier to treat.
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Xj ∈X \ {Xl}

Xj Y Xl

Z

(a) Correct Structure Gh
cs

Xj ∈X \ {Xl}

Xj Xl Y

Z ′

(b) Wrong Sink Gh
ws

Xj ∈X \ {Xl}

Xj Y Xl

Z ′′

(c) Missing edge Gh
me

Figure B.2: Identifiable Cases. Under mild assumptions, when Z has at least two mixing components,
all of the shown DAGs are identifiable.

Proof. This claim builds on the established properties of the vanilla BIC score. Here, we treat
X \ {Xl} as nuisance parameters, and we focus on single edge modifications, between the sink of
each structural hypothesis and the node on the right of each depiction.

We first consider the pair Gh
cs and Gh

ws. In this case, since the BICML
Ẑ

is based on the Maximum
Likelihood Estimate (MLE) estimates θ̂ of the true parameter values θ, and the MLE estimate
is asymptotically unbiased, then the the correct model Gh

cs and the one arising from the alternate
hypothesis Gh

ws have the same number of parameters, while at the same time the likelihood under Gh
cs

is larger than that of Gh
ws. Hence, in this case the BICML

Ẑ
value is an increasing function of only the

likelihood, and hence it must be that also BICML
Ẑ

(Gh
cs) > BICML

Ẑ
(Gh

ws).

For the pair Gh
cs and Gh

me the number of parameters in the latter hypothesis is smaller than that of
the Gh

cs. Under similar reasoning as in Lemma B.1, we can claim that Y ̸⊥⊥ Xl almost surely. The
rest follows from established asymptotic behaviour of BICML

Ẑ
as a special case of BIC, due to the

decomposability property that BICML
Ẑ

inherits from BIC.

Using this result, we can extend the local consistency of BICML
Ẑ

to its global consistency.

Corollary 3.4. The latent-aware score BICML
Ẑ

is a consistent scoring criterion.

Proof. By considering any sequence of appropriate single edge modifications between adjacent struc-
tural hypotheses as in Fig. B.2, we can extend the global consistency of BIC to that of BICML

Ẑ
Chick-

ering, 2002.

C Implementation Considerations

We note that our main theory covers the Greedy Equivalent Search (GES) algorithm. In our imple-
mentation, however, we have used TOPIC [Xu et al., 2025], a more recent greedy score-based search
that has similar guarantees to GES, and when similar requirements are met by the used score. Hence,
we replace within TOPIC our proposed BICEM

Ẑ
score, to thus derive TOPICBIC, and here analyse

the two algorithms.

We first assume access to the MLE oracle. Then, although the output of both algorithms lies on the
domain of all CPDAGs over X , TOPICBIC builds on TOPIC, which is both asymptotically and
practically more efficient than GES. Indeed, in each iteration, it first limits the candidate hypotheses
from the set of all representatives of the Markov equivalence classes which perform a single-edge
modification from the current best, to only those which differ with respect to the most likely modified
source. Formally, the combination of these two steps are two subsequent maximisations over exactly
the same domain (of all hypotheses with single edge modifications), only performed first over the
possible sources, and then over the rest of the hypotheses, conditioned on the chosen source. Hence,
at each iteration, the asymptotic greedy optimum is the same in both algorithms.

To see the asymptotical consistency, in the particular assumptions of our causal model, we treat two
different cases. First, when no latent variable affects the result, TOPICBIC would have similar ease to
detect edge additions as in the case of TOPIC/GES. In the case that a the true structure is an Mixture
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Xj ∈X \X ′ \ {Xl}

Xj Y

Xl

Z

Xj ∈X ′

Xj

(a) Correct Structure Gh
cs

Xj ∈X \X ′ \ {Xl}

Xj Y

Xl

Z ′′

Xj ∈X ′

Xj

(b) Missing edge Gh
me

Figure C.1: Decomposability of the MLR model in the intermediate stages of TOPICBIC. The
so-far-undiscovered edges in X ′ ⊆X are akin to noise that affects both cases equally.

of Linear Regressions (MLR) model, we can consider the sequence of edge modifications that the
TOPICBIC algorithm would produce. Within this sequence, we can revisit the cases of Fig. B.2,
and notice that when a subset X ′ ⊂ X is not yet discovered in the structure of the algorithm, the
effects of the so-far-undicovered variables X ′ can be seen as added noise, which equally affects an
appropriate hypothesis Gh

cs and Gh
me, as shown in Fig. C1.

Hence, intuitively, we expect a point at which one of the edges of the type Xl → Y would be added
to the model, until all parents X will be discovered. Finally, we posit that the practical use of BICEM

Ẑ

in lieu of BICML
Ẑ

is equally affecting both frameworks, as long as Conjecture 1 holds.

D Detailed Evaluation

Experimental Setup We give a more detailed description of our synthetic data generation here.
In iteration i ∈ {1, . . . NI} of each experiment, we randomly sample a DAG G over NX := |X|
observed variables under an Erdős Rènyi model with edge density pG ∈ [0, 1]. In addition, we
draw NZ := |Z| latent mixing variables Zi ∼ Categorical(γi) with Zi ∈ {1, . . . ,Ki}, where we
fix all Ki =: K to the same hyperparameter K. We then sample a set of so-called mixing targets
T = {Xj | ∃Zi : Laj = Zi} ⊆ X where Xj ∈ T with probability pZ ∈ [0, 1]. We distribute the
effect of the NZ mixing variables equally across these targets, resulting in 0 ≤ i ≤ NZ many disjoint
sets T i = {Xj | Laj = Zi}. For example, we have T 1 = {X1, X2} and T 2 = {X4} in Fig. 2.

To generate samples, we traverse X in topological order of the induced G. For each Xj , we sample
Bj = {βj1, . . . ,βjKi

} coefficient vectors, where βjk ∈ R|Paj | for all k ∈ {1, . . . ,Ki} with
Ki = K if Xj ∈ T and Ki = 1 otherwise. We draw βjk ∈ [−1,−ϵ] ∪ [ϵ, 1] to avoid causal effects
close to zero, and if possible also ensure that |βjk − βjk′ | > ϵ for all pairs k, k′ to create sufficient
class separation, where ϵ = 0.25 by default. We then draw S samples from a (mixture of) linear
regression model(s) (Xj |Paj = y) ∼ MLR

(
Bj ,γ

j , σ2
)
, and standardize the resulting samples to

generate an internally-standardized structural causal model (iSCM) [Ormaniec et al., 2024].

In the case studies, we consider a mixture of interventional datasets, as well as the flow cytometry
dataset by Sachs et al., 2005 under the experimental setup in Wang et al., 2017. For both cases, we
use the same scripts as in Kumar et al., 20242. For the mixture of interventions, we have NZ = 1
with K = NX + 1 classes which defines a split into one observational and K interventional datasets.
Under a so-called diagonal or atomic setting, one node at a time undergoes intervention, resulting in
disjoint sets Ik ⊆X , here with hard interventions that fix βjk = 0 if Xj ∈ Ik. A similar structure
applies to the real-world dataset with 5846 samples and known manipulations on 5 of the 11 variables,
namely I1 = {Akt}, I2 = {PKC}, I3 = {PIP2}, I4 = {Mek}, I5 = {PIP3}.

Evaluation Metrics To evaluate the discovered number of mixing components and assignments,
standard metrics in clustering evaluation are appropriate, where we show the v-measure and the
Adjusted Mutual Information (AMI) as two examples (e.g., Vinh et al., 2010). We average each
score over X since we can associate each variable Xj to a fixed assignment with Ki components if
Laj = Zi, else Ki = 1. To validate statements on whether observed variables are mixing targets,

2using the implementation of Mixture-UTIGSP at https://github.com/BigBang0072/mixture_mec
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Figure D.1: Discovering Mixing Structure. In synthetically generated CMMs, we evaluate the quality
of the recovered mixing structure, evaluating the affected observed variables (F1 (target)), variable
sets affected by the same latent variable (Jacc) as well as per-node mixing assignments (AMI, ARI,
v-measure).

we compute F1 scores (called F1-target) over the statement Xj ∈ T averaged over X . To validate
results on which mixing variables affect which mixing targets, we compute the Jaccard index (called
Jacc) comparing the true sets {T 1, . . . ,TZm

} to those returned by our algorithm.

We also compare the induced DAG G against the discovered DAG or CPDAG G′. To give intuitive
insight into correct vs. incorrect edge orientations, we show F1 scores over directed edge counts
E in G′ (called F1-dir), where we note that in the case of CPDAGs, we only count edges that are
directed with certainty. As this is a simplistic score mainly included for illustrative purposes, we
also consider classical distance metrics. A common distance measure for two DAGs or CPDAGs
G,G′ is the Structural Hamming Distance (SHD). More suitable for graphs G,G′ with a causal
interpretation are the scores proposed in Wahl and Runge, 2024. The s/c-metrics (S/C) are based on
counting separation statements and comparing their validity in G,G′. Scalable variants thereof are the
separation distances (SD) that associate each pair of separable nodes in G′ with a separation set S
under a given separation strategy, and validate whether S remains separating in G. We report the SC
(without randomization) and the SD (with the ’parent’ resp. ’pparent’ type), which are defined
both when the output is a DAG or a CPDAG3.

Baselines As our method is the only one to discover the full GZ , we show (i) AMI and F1-
target scores over X for all clustering baselines and wherever applicable for Mixture-UTIGSP,
(ii) metrics on G for all causal discovery baselines, and (iii) Jaccard scores over {T i}i only for
our method. We note that we apply all baselines without optimization of their hyperparameters
using their implementations available in the causal-learn, causal discovery toolbox (cdt),
causalDisco and dodiscover Python libraries. For all conditional-independence tests, we use the
Fisher-Z test given the linearity of our functional model. We ran the evaluations on an 11th Gen Intel
Core i9 CPU.

3using the implementation of the metrics at https://github.com/JonasChoice/sep_distances
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Figure D.2: Discovering Causal Graphs. In synthetically generated CMMs, we evaluate the quality
of the causal DAG over the observed variables in terms of separation distances (SD, S/C), structural
hamming distance (SHD) and directed edge counts (F1-dir, TPR-dir, FPR-dir).

Discovering Mixing Structure Fig. D.1 shows an extended variant of Fig. 4 in the main manuscript.
The parameters are NX = 10, NZ = 2,K = 2, pZ = 0.4, pG = 0.4, S = 1000, SZ = 5, which are
held fixed while changing one parameter of interest (columns in Fig. D.1), where we run NI = 10
iterations for each parameter configuration. Different choices of the clustering algorithm besides the
GMM, here shown in color for better readability, perform either worse on recovering targeted nodes
(KMEANS, SPECTRAL) or mixing assignments (DBSCAN, HDBSCAN). We observe no noticeable
differences between the clustering metric choices, so we report the AMI in the main manuscript.

Discovering Causal Structure Fig. D.2 shows an extended variant of Fig. 5 in the main manuscript.
The parameters are NX = 10, NZ = 4,K = 2, pZ = 0.5, pG = 0.4, S = 500, SZ = 5, NI = 10.
All structural metrics (SD, S/C, and SHD) show stable performance of the CMM across the settings.
The intuitive score TPR-dir furthermore suggests that our method performs well in distinguishing
causal edge directions, improving as sample size S increases, and as the likelihood of mixing pZ
increases. In particular, the results suggest that "sparse" mixing 0 < pZ < 1 is most beneficial. We
connect this to previous findings in the multi-environment setting [Perry et al., 2022] showing that
identification of edge orientations is possible under the sparse mechanism shift hypothesis. This
could inspire a future work direction generalizing this property from the multi-environment to the
latent-mixed setting.

Discovering Interventional Mixtures Finally, Fig. D.2 extends Fig. 6 to show both mixing
structure (Jacc, F1-iv) and causal structure (SD, S/C, SHD) discovery for the mixture of interventions.
As a well-defined split into observational and interventional datasets exists for this setting, we also
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Figure D.3: Mixtures of Interventions. For data generated from an interventional mixture, we show
the quality of discovered mixing (left) and graphs (right).

include Mixture-UTIGSP in the presentation (dark blue). The parameters NX ∈ {4, 6, 8} are as
in Kumar et al., 2024, while we restrict the setting to up to S = 1000 samples, given that the true
positive rates over G for the CMM (and VARSORT) already approach 1 for S = 1000; we refer to
Kumar et al., 2024 to see the performance of Mixture-UTIGSP with more samples. Compared to
Fig. D.1, the CMM performs much better on discovering whether (Xj ∈ T ) and which (Xj ∈ T i)
variables are mixing targets. A likely reason for this is the fact that the hard interventions β = 0
create a more distinct separation than re-sampling of β with |βjk − βjk′ | > ϵ.

E Ablation Studies

As additions to our main experimental evaluation, we perform ablation studies on two questions.

(i) Choice of Score-Based Algorithm. We address the choice of the score-based causal discovery
algorithm used together with the latent-aware BIC, showing GES alongside TOPIC.

(ii) Effect of Latent Mixing Variables. We take a closer look at how latent mixing affects causal
discovery algorithms in practice. We hypothesize that spurious edges will appear between
mixing targets, and study the extent to which the latent-aware BIC can prune these.

(iii) Choice of Functional Forms. Given that the results presented so far are restricted to linear
settings, we test a proof-of-concept extension to nonlinear functional forms.

E.1 Choice of Score-Based Algorithm

CAUSAL GRAPH

METRIC CMM (TOPIC) CMM (GES) GES

SHD 0.17 ± 0.01 0.31 ± 0.02 0.36 ± 0.04
S/C 0.13 ± 0.03 0.19 ± 0.03 0.26 ± 0.03
SD 0.17 ± 0.02 0.33 ± 0.03 0.48 ± 0.04

Table E.1: Choice of Score-Based Algorithm.
We combine the CMM with different score-based
algorithms (TOPIC, GES) as well as GES itself
on causal discovery (cf. Fig. D.2).

While we used the latent-aware score BICEM
Ẑ

within the topological-ordering-based framework in
the main evaluation, we can also use it within the GES algorithm, compared to GES with vanilla
BIC. We compare these three variants in Table E.1 for the basic experimental parameters (as in
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MIXING ASSIGNMENTS (AMI)

FUNCTION f CMM-LINEAR CMM-NATURAL-SPLINE GMM

linear 0.7624 ± 0.0378 0.7659 ± 0.0296 0.3598 ± 0.0431
quadratic 0.6465 ± 0.0935 0.7163 ± 0.0507 0.3116 ± 0.0452
cubic 0.5984 ± 0.0893 0.6876 ± 0.0589 0.2841 ± 0.0554
exp 0.6345 ± 0.0860 0.7025 ± 0.0544 0.3007 ± 0.0604
log 0.6628 ± 0.0849 0.7100 ± 0.0527 0.3100 ± 0.0615
sin 0.6452 ± 0.0884 0.7035 ± 0.0561 0.3144 ± 0.0603

Table E.2: Choice of Functional Forms. Under different generating
processes f for the synthetic data, we compare the linear and a nonlinear
instantiation of our model, in bold to indicate the best per-row model.

Fig. D.2). Regarding the choice of the algorithm, the topological-ordering-based variant (CMM
(TOPIC)) appears to have better practical performance in our experiments. This experiment also
confirms that regarding the score, BICEM

Ẑ
with MLR fitting (CMM (GES)) provides a benefit over

plain BIC (GES).

E.2 Effect of Latent Mixing Variables
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Figure E.1: Effect of Latent Mixing.

We are also interested in how exactly the pres-
ence of latent mixing variables influences the
graphs G′ returned by causal discovery methods
unaware of mixing. As the latents Z introduce
dependencies between the mixing targets T , we
presume that the reported G′ will contain addi-
tional spurious (FP) edges.

In Fig. E.1 (light gray) we observe that the FPR
in G′ indeed increases as the probability pZ of
Xj ∈ T increases (shown for SCORE and
CAM). Given this trend, we investigate whether
we can correct the result by pruning any FPs that
arise from mixing. Thus, we apply the CMM to
each node Xj given its causes in G′, fit an MLR,
and use the BICEM

Ẑ
to remove any redundant

parents of Xj under this model. This results in a graph G′′, also shown in Fig. E.1 (dark gray).

The shaded regions indicate the extent to which FP edges are removed correctly (green), respectively,
TP edges are removed incorrectly (red). The BICEM

Ẑ
prunes some of the spurious and almost no causal

edges. However, there still remain additional FPs in G′′ when pZ increases. This is perhaps due to
practical limitations of EM in estimating the correct mixing, leaving room for future improvements.

E.3 Choice of Functional Forms

While we consider it reasonable to limit the scope of our work to linear models, we also conducted a
proof-of-concept case study to demonstrate the integration of nonlinear models.

For this, we replace the linear regression mixtures with nonlinear variants, specifically, a natural
spline. We again use the EM algorithm to infer the mixture components and the BIC criterion to pick
their number. Table E.2 shows how well we can reconstruct the mixture components (cf. Fig. 4 in the
main text), measured by Adjusted Mutual Information (AMI) averaged over each node in 10-node
graphs. We show the CMM with the MLR in as our main presentation (left) and the one with a
mixture of natural splines (right) under different true generating functions (rows). The experimental
setting corresponds to the same base parameters that we base Fig. 4 on.
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The results match the expectations, where the models perform very closely in the linear case, but the
MLR degrades in performance under nonlinearity. Replacing it with the mixture of splines allows
covering the nonlinear cases reasonably well.

Conclusions We reach a similar conclusion from our questions in Sections E.1 and E.2: using the
latent-aware BIC, we can expect not a substantial, but at least some improvement in causal discovery
– be it via correcting the outputs of causal discovery algorithms (E.2), as an scoring criterion in GES
replacing vanilla BIC (E.1), or similarly within TOPIC (Fig. D.2) – while in addition being able
to discover the latent structure Z that can point us to subsamples of the data with a distinct causal
generating process. Finally, the proof-of-concept experiment using nonlinear functional forms in
Section E.3 also supports exploring our algorithm with more flexible regression mixtures.

F Limitations

One limitation regards the assumption of oracle MLR parameters; as a result, Alg. 1 is only consistent
under appropriate conditions, such as a good-enough EM initialization regime, and otherwise should
be viewed as a reasonable approximation to the problem. Studying the consistency of the estimates
derived by the EM algorithm is a difficult problem, and the literature is limited to rather strict
scenarios, which is why we cannot easily provide strict guarantees.

Given this, we can still note that the experimental evidence supports the connection we make in
Conjecture3.5. There is also a reasonable mechanism that could theoretically explain the observed
behaviour (asymptotically). Simply put, when the data truly follow the MLR model, it is more likely
for our EM implementation to align with the oracle; when this does not happen, it is likely due to
a faulty model, in which case our downstream process would anyways (asymptotically) reject the
specific MLR hypothesis in favour of the correct alternative.

Furthermore, we limit the scope of the exposition mainly to linear additive noise models. While our
guarantees for the latent-aware oracle BIC can in principle be transferred to a nonlinear setting, this
would however require access to oracle mixture parameters, and the connection to estimates obtained
using EM is less clear under nonlinearity. This point, while we supplement it with a small empirical
analysis, requires a deeper theoretical analysis, which we postpone to future work.
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