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Abstract

Adaptive optimization methods (such as Adam) play a major role in LLM pretraining, significantly
outperforming Gradient Descent (GD). Recent studies have proposed new smoothness assumptions
on the loss function to explain the advantages of adaptive algorithms with structured preconditioners,
e.g., coordinate-wise or layer-wise, and steepest descent methods w.r.t. non-euclidean norms, e.g.,
£~ norm or spectral norm, over GD. However, it remains unclear how these smoothness assumptions
manifest in language modelling tasks. In this work, we aim to analyze the benefit of /,,-norm
descent (a.k.a. sign descent) directly from properties of the data distribution, namely, heavy-tailed
class imbalance. We propose a minimal yet representative setting of next-token prediction, where we
can provably show faster convergence of coordinate-wise algorithms such as Sign descent (steepest
descent w.r.t. £, norm) over normalized GD (steepest descent w.r.t. to £5 norm) in the presence of
heavy tail class imbalance.

1. Introduction

Adaptive coordinate-wise methods are the go-to class of optimizers for modern deep learning prob-
lems [2]. In particular, the Adam optimizer [5] and its variants [11] are prevalent in LLM pretraining,
where they significantly surpass the performance of conventional rotationally invariant SGD methods
[8, 16]. Despite this remarkable empirical success, we still lack a complete theoretical understanding
of why Adam converges faster than SGD for language modelling tasks.

Recently, a growing body of work has explored new assumptions under which adaptive coordinate-
wise algorithms and non-euclidean steepest descent methods achieve faster convergence than SGD
[3, 4, 10, 16]. Specifically, these studies introduce new smoothness assumptions on the loss function,
typically expressed as an upper bound on its Hessian. However, it remains unclear how these
smoothness assumptions manifest in language modelling tasks and what properties of the dataset
or network architecture they emerge from.

Recently, Kunstner et al. [8] identified heavy-tailed class imbalance in language datasets as a key
property that induces a performance gap between Adam and SGD. In language data, word frequency
typically follows Zipf’s law; the k-th most frequent word has frequency py % [13]. Next token
prediction suffers from heavy-tailed class imbalance because word frequency is inherited by the
tokens. Under such conditions, SGD makes slow progress on low-frequency classes, which dominate
the loss, resulting in poor overall performance. On the other hand, Adam is less sensitive to this issue
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and reduces loss on all classes, regardless of their frequency, leading to faster overall convergence.
Interestingly, Adam outperforms GD even when training just the classification head of a simple
one-layer transformer (embedding and attention weights frozen) in the full-batch setting [8].

In this work, we take the initial steps towards providing a complete analysis that explains the
benefit of coordinate-wise adaptive algorithms over GD on language tasks. We avoid going down
the route of proposing intermediate smoothness assumptions. Instead, we analyze the benefit of
sign-based methods and non-Euclidean steepest descent directly from the properties of network
architecture and data distribution, namely, heavy-tailed class imbalance. Inspired by the simple
transformer setting in Kunstner et al. [8], we aim to design the simplest possible language modelling
problem where we can provably show faster convergence of coordinate-wise algorithms such as Sign
descent (steepest descent w.r.t. £, norm) over GD.
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Figure 1: GD and NormGD struggle to optimize a simple softmax unigram model with heavy-
tail class imbalance . This result holds on a real-world dataset and synthetically generated data
following a power-law distribution pj o< %

In summary, our main contributions are:

1. We introduce a simple convex, smooth problem with heavy-tail class imbalance, as shown in
Figure 1, where coordinate-wise algorithms such as Adam outperform GD by a large margin.

2. Within this minimal setting, we show that sign descent with weight decay provably converges
faster than normalized GD with weight decay.

2. Background and Preliminaries

Notations. We say a function f is L-smooth w.r.t. norm || - || if for all z,y € R? we have
[IVf(x) =V f(y)llx < L||z — y|| where || - ||« denotes the dual norm. Let the smallest such constant

be denoted by L. (f). We use | - ||, to denote the the £, norm for p € [1, co]. For a positive semi-

definite matrix A, the induced matrix norm is ||z|| , = VT Az. We denote the set of minimizers of
f as arg min f. We denote the softmax activation with o : R? — R,

Steepest Descent. Steepest descent with respect to a norm || - || is a general algorithm which iter-
atively minimizes a local quadratic upper bound on the loss i.e. 711 = argmin,cpa V f(z)? (2 —
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x)+ 2—71% ||z —2¢||?. If we constrain the update direction to have unit norm, we obtain normalized steep-
est descent (NSD). The update step of NSD with weight decay factor \is ;41 = (1 — A )y — ey
where A, is the normalized steepest descent direction. Sign Descent and Normalized GD are instances
of normalized steepest descent w.r.t. /o, and {5 norms, respectively. We restate the convergence
result for normalized steepest descent with weight decay (NSD-WD) provided by Xie and Li [15] in
the next theorem. In Section 3, it will be useful in comparing different normalized steepest descent
on a specific problem once x, and L are obtained.

Theorem 2.1 For any minimizer x, suppose we run normalized steepest descent with weight decay

of A < ||T1*H and learning rate of n, = ﬁ Suppose B = max{3, ||zo||}. Then the iterates

{2} | satisfy,
2L(1 + B))?

fer) =1 = a7y

In particular, if we initialize xo = 0 and select X optimally, i.e., A\ = 1/ ming carg min f ||«
have,

, we

< G )

flzr) — 7 < T12

where we define C)|.) (f) £ 8L miny, carg min £ ||« |* as the complexity of convex function f under
norm || - ||.

3. Softmax Unigram Model

In this section, we construct a convex and smooth problem where we can provably show that Sign
descent converges faster than normalized GD. Although this problem is simple, it effectively captures
the advantage of sign-based methods and ¢, smoothness over GD in the presence of language
data with heavy-tailed class imbalance. Concretely, let the vocabulary consist of d tokens, and let
p € R? denote the vector of token proportions (sorted in decreasing order), where pj, represents the
proportion of token k in the dataset. We impose the following assumption on p, which characterizes
the notion of heavy-tailed class imbalance.

Assumption 3.1 For k € [d], we assume that py, = Zki]l_l i.e pp X %
J

Now, let’s consider the following minimization problem,

| £(0) = KL(p || softmax(0)) | (1)

Minimizing f corresponds to learning a unigram model of the data where the tokens are observed
from a categorical distribution specified by p. In fact, it is equivalent to learning a “transformer’
model with zero attention layers where every token is mapped to the same embedding vector. Despite
this simplification, it captures the optimization difficulty that rotation-invariant algorithms such as
GD face when training on language data. In Figure 1, we compare the performance of sign-based
methods and GD when p satisfies Assumption 3.1 with d = 10 and observe a significant gap in
performance. Now that we have this minimal setting, we benefit from being able to determine tight
lower and upper bounds on the smoothness constants as presented in the following lemma.
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Lemma 3.1 We have the following bounds on the L. (f) and Ly._(f) smoothness constants of
finEg. I,
< L||.H2(f) <1, and LH'”oc(f) =1.

Loss

0 100 200 300 400 500

NormGD+wd = Sign+wd

Figure 2: Performance of NSD with weight decay when minimizing f with d = 103. For each
2

. . _ 1 . _
optimizer, we set A = TP — and use a learning rate of n; = PYCSIE

To have a complete theoretical justification of the convergence rates, we must compute the
optimal weight decay factor A for each norm. Thus, in the following lemma, we establish the minimal
norm solution for the ., and ¢ norms.

Lemma 3.2 For the optimal set of 0, of f, we have that,

. 1 )
min [0, = 5log(d), and  win [10,]l, = \/d Varg g log(k)

0. E€arg min f 6, €arg min f

For language modelling problems, the vocabulary size d tends to be very large. We use this fact
to prove the following lemma, which will allow us to estimate the minimal £ norm of the optimal

solution ming, carg min # ||0x |-
Lemma 3.3 For large d, we have that,
Varunif(q [log (k)] = O(1).

With Lemma 3.1 characterizing Ly, (f) and Ly (f) and Lemma 3.2 characterizing the minimal
norm solutions ||6,|| ., and [|0,||,, we can compare the complexity of f under the £, and /5 norms.
The next theorem demonstrates that for large d, the complexity of f under the £, norm is much
smaller than the complexity of f under the /2 norm.

Theorem 3.1 Suppose we have f defined in Equation (1). Then for large d,

Cpy (f) =2log(d)* < d ~Cpy, (f)-
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Using Theorem 2.1 together with Theorem 3.1, we show that the convergence rate bound for
normalized GD with weight decay is much smaller than that for Sign descent with weight decay.

Corollary 3.1 Consider optimizing f in Equation (1) with large d and initialized at 09 = 0. Then
the iterates of Sign descent with weight decay Ao = ﬁ and learning rate n; = m satify,

2log(d)?

f(HT)_f*STi_’_l-

1
/A Vary, unigq [log (k)]

Furthermore, the iterates of normalized GD with weight decay Ao = and

learning rate ny = m satisfy,

d
*

FOr) =" < 7y
Our theoretical investigation predicts that Sign descent should converge much faster than normalized
GD (with weight decay). In Figure 2, we verify our results by showing the empirical performance
of sign descent against normalized GD (with weight decay) when optimizing f using theoretically
justified learning rates and A according to Theorem 2.1. As suggested by Theorem 3.1, sign descent
with weight decay significantly outperforms normalized GD with weight decay. We also show that
our analysis and experimental results hold for a modified softmax example in Appendix C.

4. Challenges in Extending to Adam

Prior works have constructed simple, ill-conditioned, diagonal quadratic functions where Adam and
sign descent outperform (normalized) GD [8, 15, 16]. Our work is motivated by distilling transformer
models on language data to a minimal setting where we can provably show faster convergence
of adaptive coordinate-wise methods. Although diagonal quadratics may appear simpler than our
formulation, we argue that they are less representative of language modeling. In particular, our
construction incorporates the softmax projection, a core component of transformer architectures.
Thus, our setting is simple but also serves as an abstraction of training on language data with
heavy-tailed class imbalance.

Adaptive smoothness. Xie et al. [16, 17] propose another explanation of the gap between
coordinate-wise algorithms and GD. Namely, they argue that the commonly assumed ¢ smoothness
in convergence analysis is not a tight enough characterization of the loss function to explain the
optimization benefits of Adam over SGD. To rectify the existing gap in theory, they generalize the
notion of smoothness to adaptive methods with general structured preconditioners, including Adam,
blockwise Adam, and one-sided shampoo.

Definition 4.1 (Adaptive Smoothness) The adaptive smoothness of a function f w.r.t. a subalgebra
KC is defined as the smallest smoothness of f w.rt. all norm || - || o where A € I, A = 0, Tr(A) < 1,
that is,

Li(f)= min Ly, (f) = min Tr(A). @)
A>0 Vr,—A=V2f(z)<A
Tr(A)<1
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In particular, when the subalgebra IC is the set of diagonal matrices, we call the above smoothness
notion the diagonal adaptive smoothness, and it is the minimal trace of the diagonal matrix that
dominates the Hessian:

Cau(f)=  mn  THA) ®
Vo, V2 f(x)<A

The diagonal adaptive smoothness of f is equivalent to anisotropic smoothness [10], i.e. 1-smoothness
under the norm induced by A* where A* is the matrix that achieves the minimum trace in Equa-
tion (2). The convergence analysis for convex problems in Xie et al. [17] suggests that adaptive
coordinate-wise algorithms such as Adam optimize faster than rotationally-invariant SGD meth-
ods when Lgiag(f) < dLy., (f). The following lemma provides a lower bound for the adaptive
smoothness constant of f in Equation (1).

. . . . . d
Lemma 4.1 Consider [ defined in Eq. 1. Then the diagonal adaptive smoothness of f is at least 5.

This lemma demonstrates that adaptive smoothness is not much smaller than dL., (f) for f
given in Equation (1). Consequently, adaptive smoothness alone cannot account for the advantages
of Adam over rotationally invariant algorithms such as SGD in this setting. This is a key distinction
between the softmax unigram model and potentially simpler diagonal quadratics setups. For instance,
consider the simple diagonal quadratic example proposed in Kunstner et al. [8], g(f) = ZZ:1 pke,%
where p € R satisfies Assumption 3.1. The Hessian of g is V2g(#) = diag(p), and its adaptive
smoothness is Laiag(9) = 1, which is much smaller than dL | (f) for large d. Thus, while adaptive
smoothness predicts faster convergence of Adam over SGD for diagonal quadratics with heavy-tailed
class imbalance, it fails to do so for the softmax unigram model, highlighting the difference of our
setup from quadratic models. We leave the theoretical explanation of why Adam outperforms GD
empirically on this softmax unigram model to future work.

5. Related Works

Prior work provides both convergence analyses and empirical evidence aimed at explaining the
performance gap between Adam and SGD. Zhang et al. [18] suggests that SGD struggles more with
heavy-tailed gradient noise, while Kunstner et al. [7] shows that the gap persists even in the full-batch
setting, with deterministic Adam resembling sign descent [1]. Kunstner and Bach [6] proves scaling
laws for sign and gradient descent on a linear bigram model with quadratic loss. Other explanations
include coordinate-wise clipping reducing directional sharpness [12] and block-wise Hessian het-
erogeneity in transformers, favoring Adam [19]. Finally, Levy et al. [9], Ward et al. [14] show that
Adam can achieve optimal convergence rates without relying on problem-dependent constants.

6. Conclusion and Future Works

We focus on a simplified setting of language modelling where we can provably show that non-
Euclidean steepest descent methods converge faster than GD with weight decay. Future work
includes extending the analysis to more complex setups, such as the softmax linear bigram model,
which we already have some initial results in Appendix B. It also remains to develop adaptive
smoothness assumptions that better capture the gap between Adam and SGD.
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Appendix A. Proofs for Unigram Model
A.1. Proof of Lemma 3.1

First, we can express f as,

d d
=" |pilog(p:) — pibi + pilog | Y exp(6;)
i—1 j=

Computing the derivative of f w.r.t to 6, and using the fact that ) ?:1 p; = 1 we obtain,
8 exp(6y) d
k)
— =— - 0 i =0(0)k — pk.
Pk+§ Zexp e+ 0(0) E pi =0(0)k — pk

Therefore, V f(0) = o(0) — p. Thus, the Hessian of f is simply the Jacobian of the softmax function.
It’s not too hard to compute,

Jdo;
00;

Therefore, V2 f(6) = diag(c(#)) — a(8)o () .

do;
00;

= 0(0);(1 — 5(6);), and

= —U(@)iU(H)j, for Z;ﬁ j

A.1.1. UPPER BOUNDS

Now we can compute the upper bounds on the smoothness constants of f. Firstly, note that,

Ly (f) = sup sup u' V2f(0)u.
R [|ul|,<1

Then, V2f(6) < diag(c(6)) < Ig. Thus u' V2f(0)u < uTu = |ju||3. Therefore, Ly, (f) < 1.
For ||ul|, <1,

d d
u' V2 f(O)u < u' diag(o(0))u=) o(@)rui <Y o(@)lurl < llo(@)];llull <1
k=1 k=1

Since |luf,, < 1 we have that u} < |ug|. The second-to-last inequality is because of Cauchy-
Schwarz, and then we note that ||o(6)]|; = 1.

A.1.2. LOWER BOUNDS

Next, we compute the lower bounds on L (f) and Ly _(f). Consider (¢) : R — R? as follows
O(t)=1[tt —t --- —t]. Then, define,

et

s(t) = o (00 = o002 = 5 ri o

For any r € R? with ||r|, = 1 defineuw = [r; 720 --- 0] € R% Let,

s(t)(1 — s(t)) —s(t)
A(t) = —s(t)? s(t)(1—s(t))
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Then, u”' V2 £(0(t))u = r7 A(t)r. Since r is arbitrary, we see that,

sup u! VEf(O(t))u > sup T A(t)r.
f[ully=1 lI7{ls=1

Therefore, we must compute the largest eigenvalue of A (t). Solving the equation det(A.(¢)—AI) = 0,
we get the following characteristic polynomial,

N —2Xs(t) (1 — s(t)) + s(t)* — 2s(t)® = 0.
Solving for A\, we get the following two solutions,
A =s(t)(1—s(t)+s(t)?=s(t), and Ao = s(t)(1 — s(t)) — s(t)* = s(t) — 2s(t)°.
Since s(t) > 0, it is clear that A\; = s(t) is the greatest eigenvalue of A(¢). Observe that

limy_, $(t) = 3. Now, we apply the following reasoning,

Ly, (f) = sup sup uI'VEf(O)u > lim sup I V2F(O(t))u
OER? [[ull;=1 709 flufl,=1
> lim sup T A(t)r
720 |l =1

1
= lim s(t) = 3

t—o0
Now, we compute the lower bound for L||_||Oo (f). We follow the same steps as above but instead

consider 7 € R? with ||r[|, = 1. Again, u' V2f(6(t))u = r " A(t)r. Therefore,

sup uIV2F(O(t))u> sup L A(t)r.

l[ull o =1 7/l oo =1

Of course, 71,79 € {—1,1} and A(t) is symmetric, so it is easy to determine the supremum. In fact,
it is achieved with 7 = [1, —1], 7' A(t)7 = 2s(t). Applying the same inequalities as before,

Ly (f)=sup sup wI'V2f(@)u > lim sup ul V2f(O(t))u

R [|ul| =1 E200 ||| =1

> lim sup 7T A(t)r

E=00 |1p|| =1

= tlggo%(t) =1.

A.2. Proof of Lemma 3.2

Of course, for a given # € arg min f we must have that o(f) = p. We note that o is invariant up to a
constant shift. Since py, = k~!/ > i1, the set of optimal solutions is described by,

0, = —log(k) + ¢, fork € [d],

where ¢ € R is a fixed constant. Now, we find the ¢ that minimizes ||, || for §, € argmin f. Since

log is an increasing function, it is not too hard to see that the value of ||, || ., = max{|c|, |—log(d) + c|}
is achieved in the first or last entry. Therefore, the c that minimizes this quantity must be the midpoint

: _ log(d) : _ log(d)

i.e. ¢ = =5=. Thus, ming, carg min f [|Oxllc = =5

10
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Next, we find the ¢ that minimizes ||, ||, for 6, € arg min f. Define v : R — R as follows,

M&

log H9 Hz

B
Il
—

Then,
d
22 (c —log(k)), and ~"(c) = 2d.
k=1

Solving for 7/(c) = 0, we find that the optimal solution ¢ = % S>4_ log(k). Since 7" (c) > 0, we
indeed confirm that it is a minimum. Therefore,

d

d

. 1 .

min 0., = | D7 | ~log(k) + 2 > 1og(j) | = y/d Vary.umria log(k)
j=1

0 €argmin f 1

A.3. Proof of Lemma 3.3
Let Vy = Varg unit(a)[log(k)]. Now, observe that,

1 1 ’
= > log(k)? - (d Zlog(k)) .
k=1 k=1

Let,
d d d d
A= Z:log(/f)2 = Zlog(kz)Z, and B = Zlog(k:) = Zlog(k:)
k=1 k=2 k=1 k=2
For increasing function g : R — R, we have that fl ) < Zk 2 9(k) < d+1 g(k). Then note,

/log(az)dm = zlog(z) — x, and /log(az)de = zflog(z)? — 2log(x) + 2].
Now, we compute upper and lower boundson 4; < A < A, and B; < B < By:

Ay = d[log(d)? — 2log(d) + 2] — 2

Ay = (d+1)[log(d + 1)? — 2log(d + 1) + 2] — 2[log(2)? — 21log(2) + 2]
B; =dlog(d) —d+1

B, = (d+1)log(d+1) — (d+1) — (2log(2) — 2)

11
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1 1.\?
Vi< -A,— | =B
o< ta (1)

<d+1
- d

1
:bgd+n2—bg@Q—2mgd+n+2mg@+2—1+gmgu+1ﬁ—2bgd+n+2]

log(d + 1)* — 2log(d + 1) + 2] — (log(d) — 1)*

1
gmgd+32—mg@2+1+gmgd+n2

1
= [log(d + 1) + log(d)][log(d + 1) — log(d)] + 1 + p log(d + 1)*
< 2log(d + 1)log(1 + %) +1+ élog(d +1)2

1 1
gz*d*g+1+gmgd+m2

<3+2=5

The last inequality is because maxgsq 5 log(d + 1)? = 2.

Vi > éAz — (%Bu)z
> log(d)? — 2log(d) + 2 — 2 — ~[(d+ 1) log(d + 1) — (d + 1) — (2log(2) — 2)]2

d d&?
1
>log(2)? — 2log(2) +2 — 1 — 1[310g3—3—210g2+2]2 >0

when d > 2 because the function is an increasing function of d when d > 1.

A.4. Proof of Lemma 4.1

Consider any i < j € [d]. Let 0(6("9)) be the vector where the i-th and j-th entries are 3 and
every other entry is 0. For a diagonal matrix A = diag(ay,--- , ag) to dominate V2 f(8(+7)) =
diag(a(0))) — ¢(84)) T o (609)), it must hold that
r? 4+ aja? > }xz — -xrj + 1332,
7 Iy = 4 7 2 J 4 7
for any z;, z; € R. Itis equivalent to (a; — 1/4)(c; — 1/4) > 1/16. For any ¢ and «; satisfying
this constraint, it always hold that

—

<M+%:%+@M—U®+@w—yg2%+2¢mr4mm%—y@z§+%:L

Furthermore, there is a lower bound of Tr(A) as following

d
1 1 dd-1
TI“(A): E ai:ﬁ E (Oéi—f—Oéj)Zd_12>:d/2
i=1 1<J

12
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9x10°

8x10°

Loss

7x10

6x10°

0 100 200 300 400 500

= GD = Adam = LogitAdam = AdaGD

Figure 3: Rotationally invariant methods such as GD and AdaGD struggle to optimize a softmax
linear bigram model under heavy-tail class imbalance. On the other hand, coordinate-wise adaptive
methods such as Adam and Logit Adam optimize much faster.

Appendix B. Softmax Linear Model

In this section, we take the first steps to extend our theoretical investigation of the softmax unigram
model to more complex setups. Here, we consider learning a softmax linear bigram model under
heavy-tailed class imbalance. Suppose we have a dataset {(z;,y;)}?_; with y; € [c] and z; € R
where c is the number of classes and d, is the embedding dimension. Let wy, be the k-th row of the
weight matrix W and o(+);, be the k-th element of the softmax output. Our objective is to minimize
the cross entropy loss f : R®% — R,

1 n
f(W) =—— D log (W), 4)
=1

In Figure 3, we optimize f on the PennTreeBank dataset. Note that each token in the dataset is
mapped to a fixed random vector sampled from a d.-dimensional standard normal distribution. The
dataset has a vocabulary size of ¢ = 103 and d. = 256. We find that coordinate-wise adaptive
algorithms, such as Adam and Logit Adam, outperform rotationally invariant methods, GD and
AdaGD. Logit Adam i.e. “Logit-wise” Adam, is a variant of blockwise Adam designed for optimizing
the softmax linear model. We partition the weight matrix by the rows and keep track of the EMA of
the /2 norms of the row vectorsi.e. vii1, = Bovpr+(1—0F2) ||V, f(W) ||§ for k € [c]. Interestingly,
Logit Adam performs almost identically to Adam while only keeping track of ¢ learning rates instead
of ¢ X d, learning rates.

Now that we have verified that adaptive coordinate-wise algorithms such as Adam can outperform
GD on a linear bigram model with heavy-tail class imbalance, we follow the steps done for the
softmax unigram model theory. Analagous to Lemma 3.1, Lemma B.1 provides bounds on the
Ly (f) and Ly, (f) smoothness constant of f. Specifically, with Lemma B.1, we can show that
Ly (f) < cdeLy.,(f) assuming that ¢ > de. This is a reasonable assumption to make for the
softmax linear bigram model, as vocabulary sizes in language modelling are quite large. Given that
Ly (f) < cdeLy., (f), we can expect sign-based steepest descent methods to outperform GD.
We provide the statement and proof of Lemma B.1 below.

13
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Lemma B.1 Let f be in Eq. 4. Let 0; := 0(Wx;), g and ®

denote the Kronecker product. Then,

of = o(Wa)p A =231 |l

1. the hessian V? f(W) = L 31 | [(diag(o;) — 030} ) @ wiz]].
2. we have ﬁ < L||H2(f) < A and L”Hoo(f) < deA

Proof Firstly, we can express f as,

Then we compute the derivative w.r.t to wg,

1 n
i=1 i=1

Then, we can compute the Hessian of f. Specifically,

V2 ZO’ (1— oMz,

3

—_

When k # j, we have that,
Vo, Vo, (W Z —ofolwm]

If we look at the structure of the Hessian for each example, we see that it resembles the Hessian of the

unigram softmax model. In fact, each example we see that the Hessian is (diag(o;) — 0, o) ® ;2] .

Therefore, we get,
n

V2f(W) = %Z [(diag(ai) — ool ® xeZT]

i=1

Next, we compute the upper bounds on the Hessian. Since,

1 n
V2f(W) = Zdlag o)) @miw, ZO’ZJ @izl = VEf(W) < - Z(diag(ai)@)wix?)
=1 =1 =1

We will compute an upper bound for the following quantity, sup)|,;,<1 u?'V? f(W)u that is inde-
pendent of W, which will give us an upper bound on L., (f). We partition u € R into ¢ blocks:

14
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w=[u' u? - uk] Then for ||ul|2 < 1,

1 n

T T (4; T, T
H(W < d i iT;

u HW)u g u” (diag(o;) ® xiz; Ju

i=1

1
e IO,
1 n C
ki, k
522% [l |[3] |13

i=1 k=1

1 n C 1 n C 1 n
k k
D WIRTEED SIRTE] L) EFS oI
k=1 i=1

i=1 k=1 =1

IN

IN

We use the fact that ||u||> < 1 implies that for each block ||u*||» < 1. We also note that for every
i € [n] we know that Y _%_, ¥ = 1 by a basic property of softmax.

To compute the upper bound on Ly (f), we apply the same reasoning as above but use the
generalized Cauchy-Schwarz inequality,

1 n C
uH(W)u < - DY oWk )
=1 k=1

1 n &
LS S el

i=1 k=1

1 n C L
LSS el

1=1 k=1

1 n C k
= Z HM&ZU@‘
i=1 k=1

1< d &
= gZH%‘H% < gZHmng
i=1 =1

We use the fact that ||u||,, < 1 implies that for each block ||u*||.c < 1. For every i € [n] we
know that > ;_, Uf = 1. In the last step, we employ the following fact about the ¢; and ¢» norms:
llzll2 < [lzll < Vdlz|l2.

Now, we compute the lower bound for L, (f). Select a ¢ € R% such that ¢7x; # 0 for all i
with ||¢||2 = 1. WLOG, we can assume that,

1 n
Sl > 5 3 il
=1

i:qTx; >0

IA

IN

If the above is not true, we can let ¢ := —q, and we know that one side must have at least half the
mass.

15
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Let W(t) : R — R*% define the following weight matrices: w; = wo = tq and wy, = 0 for
k> 2.

Step 1: Compute a lower bound on the operator norm || V2 f (W (t))||o for fixed ¢. Let » € R% be
a unit vector. Define v € R° with ||v||2 = 1 as follows:

1 1
P S
V2 V2
Then, of course, ||[V2f(W (t))|]2 > vTV2f(W (t))v. Now, let’s compute this quadratic form. We

can exploit the fact that the Hessian has a “block” structure composed of ¢ x ¢ blocks. The first block
of vis %r, the second block is —%r and the remaining ¢ — 2 blocks are 0 € R9% . Therefore, we

v=]| o - 0T,

only have to work with the 2 x 2 upper-left block sub-matrix to compute the quadratic form. For this
W (t), we have that for all ¢ € [n],

ol — g2 — eXP(thl‘i) '
‘ =24 2exp(tqT ;)

For clarity, we define s; := O'il. Recall that for computing the quadratic form, we do not need the
values of af for k > 2 because only the upper-left 2 x 2 blocks will matter in the computation.
Evaluating the block computation,

1 -1 1
VIV (W (t))v = - Z §[Si(1 — i) +si(1 = 8;) + 28Tl = 1T [n Z slxzx;r] T.
i=1 i=1
Therefore,
that,

V2ZEW))|l2 > rT [23°7 sjzixl ] r. Take supj|,||,=1 of the right-hand side to get

n
1 n
n

=1

IVEr W @], =

2

Now use the fact that Ap,ax (M) > Tr(dM) for any matrix M. Therefore,

1 n
IV2FW()]l2 > 5— > sillil[3
=1

den —

Step 2: Take ¢ — oo. Observe that s; is really a function of ¢. In order to emphasize this we consider
lim; oo 5;(t). Recall that we specifically chose ¢ such that g7 x; # 0 for all i € [n]. Therefore, we
only need to consider the case where qTxi > 0 or qTxi < 0. It is not too hard to see that,

1T
5 ;i >0
lim s;(t) = | 2 qTﬂfz
t—00 0 qg'z; <0

16
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Therefore,
1 « 1 1
Lo 12— iy 12 4 o 112
fim > sillills = lim in > sillall3 + Jim in > sellail3

i=1 i:qT ;>0 i:qTx; <0

1 1, o
== > el

i:qTx; >0

1
= > il
e

i:qT2; >0
1 n
> 3 el
i=1

Step 3: Chain inequalities. Realize that,

1 n
L= sw IVl > sup V2 (W (@)l > sup 2 > si(o) a3
WeRexd t t el im1
Then,
LS @l > lim =3 s@llanlE > el
slip don 2 Si Zilla = tiglo don 2 S Tillg = Adon - Til|-
Therefore,

Appendix C. Additive Logistic Transformation Unigram Model

In this section, we consider a slightly modified version of the problem presented in Equation (1) that

has a unique solution. Specifically, f : R4~1 — R,

f(0) =KL(p || (0)),

where ¢ is the additive logistic transformation. The additive logistic transformation is equivalent to
computing the softmax over [#; 02 --- 0], so it has a unique inverse. This is beneficial because it
allows us to simplify the analysis of f. We first start by providing lower bounds on the smoothness

of f .
Lemma C.1 Consider f in Equation (5). Then,

<Ly, () <1, and - Ly (F) = 1.

In particular, the smoothness constants of f in Equation (1) and f are the same.

17
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Proof Expand f as,
i d—1 d—1 d—1
FO)=>" | —peb +prlog [ 1+ e | | +pglog {14 €
k=1 Jj=1 Jj=1
Then,

8f~ d—1
g6, = Pt ;pka(eﬁ + pat(0); = 5(0); — pi.

Therefore, V f (0) = 5(0)1.4-1 — p1.4—1- Therefore, the Hessian of f is the Jacobian of &, which is
just the d — 1 x d — 1 sublock of the Hessian of f. So,

V2f(0) = diag(6:(0)1:a-1) — 5(0)1:a-15(0) .4,

To compute the smoothness constants of f , we can apply the same reasoning we did to compute the
upper and lower bounds for the smoothness constants of f. |

In the next lemma, we provide the norm of the optimal solution of f .

Lemma C.2 For the optimal set of 0 of f we have that,

min |6, = log(d), and min_ ||64]|, =
0.cargmin f O cargmin f

Proof Suppose p € R? is a probability vector i.e. ;, pi = 1. Then the inverse of the additive logistic
transformation is given by,

o) = [ (2) o (22) v (152

The minimizer of f must satisfy 6(6,) = p. Thus, f has a unique minimizer. Since p = Z%;il*l’
1 2 d—1
0, = |1 -] 1 -] -1 — .
= e () e (3) e (57
Then, it’s not too hard to see that ||6,||, = log(d) and ||6,||, = Zi;% log (%)2. [

The following theorem characterizes the complexity of f under /5 and /., norms.

Theorem C.1 For large d, we have that,

Cllle (f) = 8log(d)? <« 4glog (S)Z <Cy, (f) :
k=1

18
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Proof Use the fact that Ly _( f) = 1and % < Ly, ( f) together with the norms computed in
Lemma C.2. |

Now that we know the complexity of f, we can compare the upper bound on the convergence rate
for sign descent with weight decay and normalized GD with weight decay.

Corollary C.1 Consider optimizing f in Equation (5) with large d and initialized at 0y = 0. Then
the iterates of Sign descent with weight decay Ao = m and learning rate n; = m satify,

. _ 8log(d)®
flzr) — f* < Ti—i—l

1

Furthermore, the iterates of normalized GD with weight decay Ao = — =
k=1 10%(%)

and learning

— 1 ;
rate 1t = 3o satisfy,

I A
flor) — f <T—|—1;10g<d> )

Our theoretical investigation for f suggests that sign descent with weight decay optimizes much
faster normalized GD with weight decay. In Figure 4 we very the results of Corollary C.1.

0 100 200 300 400 500

NormGD+wd = Sign+wd

Figure 4: Performance of NSD with weight decay when minimizing f with d = 103. For each

optimizer, we set \ = and use a learning rate of n; = S -

A(t+1) "

miﬂo* €arg min f ”9* ”

19



	Introduction
	Background and Preliminaries
	Softmax Unigram Model
	Challenges in Extending to Adam
	Related Works
	Conclusion and Future Works
	Acknowledgements
	Proofs for Unigram Model
	Proof of Lemma 3.1
	Upper Bounds
	Lower Bounds

	Proof of main:lemmaunigram2
	Proof of main:unigramnormlemma
	Proof of main:unigramadap

	Softmax Linear Model
	Additive Logistic Transformation Unigram Model

