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ABSTRACT

Approximating parameter posteriors in likelihood-free settings is a practical chal-
lenge common to many scientific disciplines. While recent advances in both
computer simulation and generative modeling have paved the way for tractable
inference in high-fidelity environments, they often require prohibitively large sam-
ple sizes in practice. Sequential posterior estimation methods attempt to mitigate
this by iteratively producing proposal distributions that refine the inverse model,
but they lack explicit selection mechanisms for reducing information overlap in
proposed simulations. In this work, we introduce a mutual information-based
acquisition scheme for identifying informative simulation parameters, operating
on disagreement in the parameter space across a weighted posterior ensemble of
atomic proposals. Our approach crucially leverages only an inverse model, making
it compatible with existing direct posterior estimation procedures. We demon-
strate the potential of this method on several common simulation-based inference
(SBI) benchmark tasks, and observe performance advantages over non-ensemble
counterparts in low-data regimes.

1 INTRODUCTION

The intractability of likelihood functions is a common barrier to Bayesian inference in complex, real-
world settings. While high-fidelity simulators may be readily available as models of the underlying
generative process, they often do not admit a closed-form likelihood. Simulation-based inference
(SBI) methods work around this limitation by assuming such models can only generate noisy samples,
and attempt to compute or learn a posterior distribution from the resulting simulation data Cranmer
et al. (2020).

Early success in this direction involved easy-to-use methods like extensions of kernel density estima-
tion or Approximate Bayesian Computation (ABC) Rubin (1984); Beaumont et al. (2002). These
methods struggle to scale with the dimensionality of most real-world applications, however, and
neural network-based methods Papamakarios & Murray (2016); Lueckmann et al. (2017); Greenberg
et al. (2019) have since been proposed to better address this challenge. Newer methods offer greater
flexibility in the approximated probabilistic form used by the inference pipeline, (e.g., the posterior
Papamakarios & Murray (2016), the likelihood Papamakarios et al. (2019), and likelihood ratio Her-
mans et al. (2020); Durkan et al. (2020)), as well as the underlying neural density estimator (NDE),
including mixture density networks Bishop (1994) and normalizing flows Rezende & Mohamed
(2016); Papamakarios et al. (2021), along with popular extensions (e.g., Real NVP Dinh et al. (2017),
MAE Germain et al. (2015), MAF Papamakarios et al. (2018), etc).

Background Simulation-based inference seeks to approximate the posterior distribution p(θ|x) under
a stochastic model p(x|θ). We assume p(x|θ) is defined implicitly via a simulation-based program,
and while samples x ∼ p(x|θ) can be drawn, direct evaluation of the likelihood value p(x|θ) is
not possible. We further focus on the sequential (non-amortized) case, wherein an observational
data point of interest xo is known ahead of time, and we place particular emphasis on learning a
high-quality approximation of p(θ|xo).

Neural Posterior Estimation (NPE) methods approximate the posterior distribution directly by training
an NDE qϕ(θ|x) via maximum likelihood on samples {(θi, xi)}Ni=1, where θi ∼ p(θ) and xi ∼
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p(x|θi), i.e., by minimizing the loss

L(ϕ) = Eθ∼p(θ)Ex∼p(x|θ) [− log qϕ(θ|x)] ,

where ϕ are the model’s learnable parameters. So long as qϕ is sufficiently expressive, by Proposition
1 of Papamakarios & Murray (2016) qϕ(θ|x) will converge to the true posterior p(θ|x) in the limit as
N → ∞.

Sequential Neural Posterior Estimation (SNPE) methods divide the inference process into multiple
iterations of NPE, improving sample efficiency by leveraging the observation that p(θ|x = xo) is
typically much narrower than p(θ). A fully amortized method producing accurate p(θ|x) for any
x ∈ X often requires impractically large numbers of simulation samples, including those from
parameter values with low posterior density under xo. Such an approximation is warranted in some
settings, but when xo is known, SNPE methods address this practical challenge by drawing θ values
expected to be more informative about p(θ|xo), using a proposal distribution p̃(θ) at each round that
reflects the model’s current posterior approximation qϕ(θ|x = xo).

Training the NDE qϕ on samples θ ∼ p̃(θ) when p̃ differs from the true prior results in convergence
to a “proposal posterior,”

p̃(θ|x) = p(θ|x) p̃(θ)p(x)
p̃(x)p(θ)

(1)

rather than the true posterior (where p̃(x) =
∫
Θ
p(x|θ)p̃(θ)dθ). Different SNPE variants correct

for this in distinct ways: SNPE-A Papamakarios & Murray (2016) trains qϕ(θ|x) to approximate
p̃(θ|x) at each round and applies importance reweighting afterward; SNPE-B Lueckmann et al. (2017)
minimizes an importance-weighted loss directly alongside calibration kernels and Bayesian MDNs;
and SNPE-C Greenberg et al. (2019), also known as Automatic Posterior Transformation (APT),
enables directly training posterior models under flexible atomic proposals.

Contributions We introduce two variations of the Automatic Posterior Transformation (APT) scheme
for sequential simulation-based inference, namely 1) importance-weighted posterior ensembles as a
stable SBI approach and a tractable means of maintaining a posterior over model parameters p(ϕ|D),
and 2) a mutual information-based adjustment to atomic proposals, prioritizing parameters expected
to reduce model uncertainty while preserving convergence guarantees. We provide theoretical
foundations for this approach and describe how it can be implemented in practice. We further
demonstrate the method against APT without the proposed extensions in low-sample settings across
several common SBI benchmarks.

2 METHODOLOGY

Atomic proposals with APT Greenberg et al. (2019) observe that minimizing the loss L̃(ϕ) =

−
∑N

i=1 log q̃ϕ(θi|x), where

q̃ϕ(θ|x) =
qϕ(θ|x) (p̃(θ)/p(θ))∫

Θ
qϕ(θ|x) (p̃(θ)/p(θ)) dθ

(2)

produces qϕ(θ|x) → p(θ|x) as N → ∞. This is (again) by virtue of Prop. 1 of Papamakarios &
Murray (2016); L̃(ϕ) is minimized only when q̃ϕ(θ|x) = p̃(θ|x), and thus qϕ(θ|x) = p(θ|x) by Eq.
1.

The authors further extend this scheme to arbitrary “atomic proposals,” subverting the need for
closed-form normalization constants in q̃ϕ(θ|x). The atomic loss scheme sets a uniform proposal
prior p̃(θ) = UΘ over a fixed batch of parameters Θ = {θ1, . . . , θM}, producing a categorical
q̃ϕ(θ|x):

q̃ϕ(θ|x) =
qϕ(θ|x)/p(θ)∑

θ′∈Θ qϕ(θ′|x)/p(θ′)

The loss L̃ now no longer relies on any earlier choice of proposal prior (once Θ has been fixed), and
as before, Eθ∼UΘ,x∼p(x|θ)[L̃], is minimized when q̃ϕ(θ|x) is the true proposal posterior p̃(θ|x).
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Figure 1: Visualization of the final-round posterior approximations under regular APT/SNPE-C (left)
and the proposed MI-based ensembled APT variant (right) on the Two Moons task. Both runs were
executed under the same random seed (and thus draw identical initial samples from the prior), and
took place over four rounds, with 64 samples per round. These plots represent the final posterior
models produced by each method from a randomly selected trial in the benchmark evaluations
discussed in Section 3.

Importance Weighted Posterior Ensembles While APT ensures the NDE model converges to the
true posterior in the limit as N → ∞, in practice we often face several challenges: the NDE can get
“stuck” in certain regions of the parameter space (and miss modes, for instance), or simply require
many samples before the true posterior shape begins to emerge. Inspired by extreme variability
in early rounds of SNPE-C (especially in low-data settings), we seek to stabilize round-by-round
posterior estimates by ensembling several posterior approximations.

In particular, we define some number of NDE models K to treat as individual atomic proposals. The
distribution from which each round’s parameters are drawn i.i.d. is then the weighted ensemble of
these proposals. That is, for round r + 1, we have the proposal prior

q̄
(r+1)
Φ (θ|x) =

K∑
j=1

wjqϕj
(θ|x)

where the component weight

wj =

∏Nr

i qϕj

(
θ
(r)
i |x(r)

i

)
∑K

k=1

∏Nr

i qϕk

(
θ
(r)
i |x(r)

i

) ,
i.e., the self-normalized joint support of the jth “component posterior” on the observed simulation
data {(θi, xi)}Nr

i=1 from the previous round (where Nr is the number of samples observed at round r).

Note that we generally view this scheme as an approximation of a true “marginal posterior”

q(θ|x,D) =

∫
Φ

qϕ(θ|x)p(ϕ|D)dϕ,

independent of any particular selection of model weights ϕ, conditional on all observed simulation
data D. Rather than explicitly maintain a model weight posterior p(ϕ|D), we effectively importance
re-weight our K fixed atomic proposal samples ϕj according to how likely they would be under
p(ϕ|D(r)) at each round r.

Once samples are drawn and simulation results are collected for a given round, the shared, fixed
batch Θ is used to update each model independently according to the standard APT loss. The
shared parameter “suggestion” step takes place when the ensembled proposal prior is constructed
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pre-simulation, and the collective “wisdom” is disseminated back to each model post-simulation.
By Eq. 2 we know that each model converges to the true posterior, but due to variability in ϕj , this
may take place at different rates. Figure 1 highlights this in part, empirically demonstrating how
several underlying models can contribute to a steady rate of convergence while any singular model
may converge more slowly on its own. We discuss this in greater detail in Section 3.

We additionally note that the primary cost of maintaining several independent posterior NDEs is
the increased training burden. Round-by-round model re-training is a bottleneck generally in the
inference process, however, as we can’t proceed to the next round until the NDE re-training is
entirely complete. Training several models in parallel during this stage is thus a fairly simple way to
minimize the runtime impact of additional models, and yields virtually identical wallclock times as
single-model APT when K is reasonably small (e.g., K = 4 or K = 8, for instance, the latter being
used in reported results from Section 3).

Prospective Mutual Information As noted by the APT authors Greenberg et al. (2019), training
with an atomic loss can be intuitively likened to “quizzing” the model qϕ(θ|x) with multiple choice
questions. This can be seen with Eq. 2: given the M possible options in the batch Θ, the model must
learn to correctly assign the most mass to the “correct” provided (θ, x) pair.

As an extension to this analogy, we posit the following: which questions are the best to ask? Put
another way, which questions stand to “teach” our model the most about the target posterior p(θ|xo)?
Here we turn to mutual information as a general measure of how much we expect to learn from
certain observations, and weight the prospective impact of those outcomes by how likely the model
currently believes them to be.

In particular, we want to calculate

I[ϕ; θ|xo, D
′] = Ep(ϕ|xo,D′) [DKL (p(θ|ϕ, xo, D

′)||p(θ|xo, D
′))] (3)

= H [θ|xo, D
′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]] , (4)

i.e., the mutual information between simulation parameters θ and posterior model parameters ϕ,
conditional on observational data of interest xo and a prospective new dataset D′ = D ∪ {(θ′, xo)}.
This term in part mirrors the “active SBI” motivations of Griesemer et al. (2024), but we crucially
aim to approximate the mutual information directly as a strategy for sampling guidance (as opposed
to strict acquisition optimization of an alternative objective). By calculating this term under various
simulation parameter candidates θ′, we’re attempting to identify those points that leave relatively
little remaining information to learn about ϕ through subsequent draws of θ. We additionally note
the direct connection (additional details in Appendix A.1) between the mutual information and the
expected divergence between the ensemble posterior p(θ|xo, D

′) and component models p(θ|xo, ϕ);
parameters θ′ that cause a significant shift represent regions of the parameter space where component
models disagree about how to assign posterior density. This coincides with our aims of identifying
valuable “questions” to pose when training via an atomic loss, as model disagreement indicates some
difficulty in assigning a stable likelihood to that region across NDE models.

Note that D′ makes a concrete assumption as to the outcome of any candidate θ′: because we
only assume access to an inverse model qϕ(θ|x), we cannot generate alternative possible simulation
outputs (e.g., x′ ∼ p(x|θ′), as we might if a surrogate likelihood was available, for instance). Instead,
we assume θ′ will yield xo, and simply weight the resulting mutual information estimate according to
qϕ(θ

′|xo), the currently available posterior belief of such an outcome. We can therefore naturally
re-weight this model before its use as a proposal prior in a manner that preserves the full (true) prior
support, e.g.,

p̃(θ′) ∝ qϕ(θ
′|xo)exp (−I[ϕ; θ|xo, D

′]) ,

where we note the negative exponentiation of the mutual information reflects the goal of minimizing
this term in the face of our beliefs. This preserves posterior convergence guarantees broadly applicable
to atomic proposals, as p̃(θ′) > 0 when θ′ is in the prior support.

A critical practical challenge when calculating this term is the need to leverage only the current
model (conditional dependence on D), rather than an explicit dependence on a newly trained model.
That is, terms conditional on D′ are problematic if we can’t expect to re-train NDE models under
every parameter candidate θ′ for which we’d like to estimate the mutual information, and this
becomes quickly infeasible for even small SBI tasks. We provide a detailed way to approach this in
Appendix A.1.
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3 EXPERIMENTS

SBI Benchmarks To quantify the practical impact of our proposed contributions, we compare the
performance of vanilla APT, ensembled APT, and the MI-based selection variant on three common
SBI benchmarks: Two Moons, SLCP Distractors, and Bernoulli GLM Lueckmann et al. (2021).
These tasks vary in difficulty for direct posterior estimation methods, and each present with a known
posterior over which we can calculate key measures that indicate distribution fit. We report the
maximum mean discrepancy (MMD) and a classifier 2-sample test (C2ST) across each method and
setting in Figure 2. Note that smaller values are better for each metric (C2ST ranges between 0.5−1.0).
Appendix B provides additional details of NDE model hyperparameters and software/hardware details
used to carry out experiments.
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Figure 2: C2ST and MMD scores for vanilla APT/SNPE-C, ensembled APT (ESNPE), and MI-based
selection variant (MI-ESNPE) across various SBI benchmark tasks. Subplot (a) shows results for the
Bernoulli GLM task, subplot (b) for the Two Moons task, and subplot (c) for SLCP Distractors. Each
plot depicts the mean and 95% confidence interval for each method and metric calculated across 10
randomly seeded runs.

Discussion Figure 2 reports results across few-sample inference runs: we perform four rounds of
sequential inference and collect just 64 samples per round (256 total samples encountered after the
final round). We repeat this across ten trials, using a fixed set of ten seeds to ensure all methods get
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a “fair start,” each seeing the same initial samples from the prior for a given seed. The ensemble
methods comprised 8 individual NDE models each.

Across all settings and on both metrics, we find the mean score of APT/SNPE-C never once outper-
forms the mean score of either ensemble-based approaches, on any inference round. This demonstrates
a fairly clear performance advantage, and suggests ensembled methods may be a strong choice more
broadly, especially when sample efficiency is a concern: having several posterior models appears to
balance noise encountered in early rounds and facilitate more targeted simulation samples. Although
not reported here, it’s perhaps worth noting the impact of the importance weighting scheme for
updating the ensemble; when just maintaining a uniform mixture of APT proposals and routinely
re-training each round, the resulting method regularly underperforms compared to individual APT
runs. That is to say, drawing samples according to collections of NDE models that each individually
converge to the true posterior is generally not a surefire means of attaining better results.

While the performance advantage varies across metric and task, it is perhaps most stark on the
Bernoulli GLM task. The marginal difference among the ensemble-based approaches, however, is
relatively minimal by comparison: neither appears to dominate across any particular dimension, and
while the MI-based scheme outperforms on Bernoulli GLM, it is less consistent on the other tasks.

4 CONCLUSION

Recent advances in SBI methods have significantly improved the feasibility of performing accurate
likelihood-free inference in challenging real-world settings. Operating in low-data settings remains
a core practical consideration, however, especially when working with slow/expensive simulation
systems. In this work, we proposed a general ensembling scheme for collectively training and
combining groups of atomic proposal priors across rounds of sequential posterior estimation. We
extended this scheme by proposing a means of approximating the information content of prospective
simulation parameter candidates, further capitalizing on model uncertainty and guiding sampling
toward useful regions of the parameter space. Across several common SBI benchmarks, we observe
the ensemble schemes outperform standard APT on two relevant measures of posterior quality when
operating under tight simulation budgets. These results indicate carefully balanced ensemble methods
may be a strong contender for tackling challenging SBI tasks in a more stable, sample-efficient
manner.
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A APPENDIX

A.1 MUTUAL INFORMATION APPROXIMATION

In this section, we decompose the mutual information as presented in Eq. 3 and arrive at a means of
approximating entropy terms when we only permit a conditional dependence on the current dataset
D (i.e., assuming we can’t explicitly perform model updates under every candidate θ′ in practice).

Let D′ = D ∪ {(θ′, xo)}. Then we have the mutual information between inference parameters θ and
posterior model parameters ϕ:

I[ϕ; θ|xo, D
′] =

∫
Φ

∫
Θ

p(θ, ϕ|xo, D
′) log

(
p(θ, ϕ|xo, D

′)

p(θ|xo, D′)p(ϕ|xo, D′)

)
dθdϕ

=

∫
Φ

∫
Θ

p(θ|ϕ, xo, D
′)p(ϕ|xo, D

′) log

(
p(θ|ϕ, xo, D

′)p(ϕ|xo, D
′)

p(θ|xo, D′)p(ϕ|xo, D′)

)
dθdϕ

=

∫
Φ

p(ϕ|xo, D
′)

[∫
Θ

p(θ|ϕ, xo, D
′) log

(
p(θ|ϕ, xo, D

′)

p(θ|xo, D′)

)
dθ

]
dϕ

=

∫
Φ

p(ϕ|xo, D
′) [DKL (p(θ|ϕ, xo, D

′)||p(θ|xo, D
′))] dϕ

= Ep(ϕ|xo,D′) [DKL (p(θ|ϕ, xo, D
′)||p(θ|xo, D

′))] .

The mutual information can also be expressed in terms of entropies:

I[ϕ; θ|xo, D
′] =

∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log

(
p(ϕ, θ|xo, D

′)

p(ϕ|xo, D′)p(θ|xo, D′)

)
dϕdθ

=

∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log

(
p(ϕ|θ, xo, D

′)p(θ|xo, D
′)

p(ϕ|xo, D′)p(θ|xo, D′)

)
dϕdθ

=

∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log p(ϕ|θ, xo, D

′)dϕdθ −
∫
Θ

∫
Φ

p(ϕ, θ|xo, D
′) log p(ϕ|xo, D

′)dϕdθ

= −H [ϕ|θ, xo, D
′]−

∫
Θ

∫
Θ

p(θ|ϕ, xo, D
′)p(ϕ|xo, D

′) log p(ϕ|xo, D
′)dϕdθ

= −H [ϕ|θ, xo, D
′]−

∫
Θ

p(ϕ|xo, D
′) log p(ϕ|xo, D

′)

[∫
Θ

p(θ|ϕ, xo, D
′)dθ

]
dϕ

= −H [ϕ|θ, xo, D
′] +H [ϕ|xo, D

′]

= H [ϕ|xo, D
′]− Eθ∼p(θ|D′) [H [ϕ|θ, xo]]

By symmetry of the joint factorization, we have generally

I[ϕ; θ|xo, D
′] = Ep(θ|xo,D′) [DKL (p(ϕ|θ, xo, D

′)||p(ϕ|xo, D
′))]

= Ep(ϕ|xo,D′) [DKL (p(θ|ϕ, xo, D
′)||p(θ|xo, D

′))]

= H [θ|xo, D
′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]]

= H [ϕ|xo, D
′]− Eθ∼p(θ|D′) [H [ϕ|θ, xo]]

We then seek to approximate

I[ϕ; θ|xo, D
′] = H [θ|xo, D

′]− Eϕ∼p(ϕ|D′) [H [θ|ϕ, xo]]

We first note that, by Bayes’ rule,
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p(ϕ|D′) =
p(θ′|xo, ϕ)p(ϕ|D)

p(θ′|xo, D)
,

which we use to rewrite a posterior dependence on D′ in terms of D:

p(θ|xo, D
′) =

∫
p(θ|xo, ϕ)p(ϕ|D′)dϕ

=

∫
p(θ|xo, ϕ)

[
p(θ′|xo, ϕ)p(ϕ|D)

p(θ′|xo, D)

]
dϕ

=
1

p(θ′|xo, D)

∫
p(θ|xo, ϕ)p(θ

′|xo, ϕ)p(ϕ|D)dϕ

=
1

p(θ′|xo, D)
Eϕ|D [p(θ|xo, ϕ)p(θ

′|xo, ϕ)] ,

The following terms can then be used to approximate the mutual information I[ϕ; θ|xo, D
′] when

we just have access to a model p(θ|xo, D) and model weight posterior p(ϕ|D) trained up to data D
(rather than D′ explicitly). For the “marginal entropy”:

H [θ|xo, D
′] = Eθ|xo,D′ [− log p(θ|xo, D

′)]

= −Eθ|xo,D

[(
p(θ|xo, D

′)

p(θ|xo, D)

)
log p(θ|xo, D

′)

]
= −Eθ|xo,D

[(Eϕ|D [p(θ′|xo, ϕ)p(θ|xo, ϕ)]

p(θ′|xo, D)p(θ|xo, D)

)
log

(Eϕ|D [p(θ′|xo, ϕ)p(θ|xo, ϕ)]

p(θ′|xo, D)

)]
≈ − 1

M

M∑
θi∼θ|xo,D

[(
P ′
K

p(θ′|xo, D)p(θi|xo, D)

)
log

(
P ′
K

p(θ′|xo, D)

)]
,

where

P ′
K =

1

K

K∑
ϕj∼ϕ|D

[p(θ′|xo, ϕj)p(θi|xo, ϕj)] ,

and the “expected conditional entropy”

Eϕ|D′ [H [θ|ϕ, xo]] = Eϕ|D′
[
Eθ|xo,ϕ [− log p(θ|ϕ, xo)]

]
= Eϕ|D

[
p(θ′|xo, ϕ)

p(θ′|xo, D)
Eθ|xo,ϕ [− log p(θ|ϕ, xo)]

]

≈ − 1

MK

K∑
ϕi∼ϕ|D

p(θ′|xo, ϕi)

p(θ′|xo, D)

M∑
θj∼θ|xo,ϕi

log p(θj |ϕi, xo)


B EXPERIMENTAL DETAILS

The NDE model used for all experiments is a conditional masked autoregressive flow (MAF) com-
prised of 5 MADE transforms, each with two 50-unit residual blocks. Each MAF was trained with
10 atoms, and we use most of the training core as implemented in the sbi Python package Tejero-
Cantero et al. (2020). No embedding networks were employed across any of the tasks, and the

9
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sbibm package Lueckmann et al. (2021) was adapted to provide true posterior references and metric
calculations for each reported task.

All experimentation code was written and packaged in Python 3.11. Experiments were performed on
our own local hardware, a Linux-based machine running an Intel(R) Core(TM) i9-10900X CPU @
3.70GHz 64GB memory and NVIDIA GeForce RTX 2080 Ti.
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