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Abstract

Extending large language models to effectively001
handle long contexts requires instruction fine-002
tuning on input sequences of similar length. To003
address this, we present LongAlign—a recipe004
of the instruction data, training, and evaluation005
for long context alignment. First, we construct006
a long instruction-following dataset using Self-007
Instruct. To ensure the data diversity, it covers008
a broad range of tasks from various long con-009
text sources. Second, we investigate different010
strategies to speed up supervised fine-tuning011
on datasets with uneven length distribution,012
namely packing and sorted batching. Addition-013
ally, we develop a loss weighting method to bal-014
ance the contribution to the loss across differ-015
ent sequences during packing training. Third,016
we introduce the LongBench-Chat benchmark017
for evaluating instruction-following capabili-018
ties on queries of 10k-100k in length. Experi-019
ments show that LongAlign outperforms exist-020
ing recipes for LLMs in long context tasks by021
up to 30%, while also maintaining their profi-022
ciency in handling short, generic tasks.023

1 Introduction024

Large language models (LLMs) with large context025

windows facilitate tasks such as summarization,026

question answering on long text and code (Bai et al.,027

2023a). Importantly, they may form the founda-028

tional support for life-long conversations and com-029

plex agent scenarios (Xiao et al., 2023; Liu et al.,030

2023). Existing works to build long-context LLMs031

predominantly focus on context extension (Chen032

et al., 2023a; Xiong et al., 2023; Peng et al., 2023),033

that is, position encoding extension and continual034

training on long text.035

In this work, we instead focus on the perspec-036

tive of long context alignment, i.e., instruction037

fine-tuning LLMs to handle long user prompts.038

However, several challenges are required to ad-039

dress. First, there is an absence of long instruction-040

following datasets for supervised fine-tuning (SFT),041

Figure 1: Test results on LongBench-Chat, which con-
tains real-world queries of 10k-100k in length1.

and by extension the lack of methods for construct- 042

ing such data. Second, the varied length distribu- 043

tion of long-context data drastically reduces the 044

training efficiency of traditional batching methods 045

in a multi-GPU setup, as GPUs processing shorter 046

inputs have to stay idle until those handling longer 047

inputs complete their tasks. Third, there is a crucial 048

need for a robust benchmark to evaluate LLMs’ 049

long-context capacities against real-world queries. 050

To address them, we present the LongAlign 051

recipe, covering data, efficient training, and eval- 052

uation, respectively. Data-wise, to construct a di- 053

verse long instruction-following dataset, we collect 054

long sequences from nine sources and use Self- 055

Instruct (Wang et al., 2022) to generate 10k instruc- 056

tion data of 8k-64k length. 057

Training-wise, to address the inefficiency un- 058

der uneven batching, we adopt the packing strat- 059

egy (Krell et al., 2021) that packs sequences to- 060

gether up to the maximum length before dispatch- 061

ing them to GPUs. However, we identified a bias 062

in loss averaging during this packing training, as 063

1LongAlign-6B-64k, LongAlign-7B-64k and LongAlign-
13B-64k are trained based on ChatGLM3-6B, Llama-2-7B
and Llama-2-13B, respectively.
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packs containing different numbers of sequences064

are assigned equal weight in the final loss calcu-065

lation. To mitigate this bias, we propose a loss066

weighting strategy to balance contributions to the067

loss across different sequences. In addition, we068

introduce sorted batching that groups sequences of069

similar lengths to reduce the intra-batch idle time.070

Evaluation-wise, we develop LongBench-Chat,071

a benchmark compromising open-ended questions072

of 10k-100k length annotated by Ph.D. students.073

It covers diverse aspects of instruction-following074

abilities such as reasoning, coding, summarization,075

and multilingual translation over long contexts.076

GPT-4 (OpenAI, 2023b) is employed to score the077

machine-generated responses based on our anno-078

tated groundtruths and few-shot scoring examples.079

Extensive experiments show that LongAlign ef-080

fectively aligns models to handle contexts of up to081

64k tokens in length while maintaining their per-082

formance on general tasks without degradation. In083

addition, we have the following findings:084

• Impact of Data Quantity and Diversity: Both085

the quantity and the diversity of the long in-086

struction data significantly influence the aligned087

model’s ability to handle long contexts, impact-088

ing final performance by up to 30%.089

• Benefits of Long Instruction Data: The amount090

of long instruction data positively affects the per-091

formance on long-context tasks while does not092

hurt the models’ general capacities.093

• Effectiveness of Training Strategies: The pack-094

ing and sorted batching strategies adopted can095

accelerate training by over 100% without perfor-096

mance compromise. Furthermore, the proposed097

loss weighting technique improves long context098

performance by 10%.099

2 Related Work100

Long Context Scaling. Long context scaling aims101

to expand the limited context length of existing102

LLMs to support long context tasks (Xiong et al.,103

2023). The current methods for long context scal-104

ing can be divided into two categories: those that105

require fine-tuning or continual training on longer106

sequences and those that do not. Methods that do107

not require fine-tuning often employ techniques108

such as sliding window attention (Han et al., 2023;109

Xiao et al., 2023) or neighboring token compres-110

sion (Jiang et al., 2023; Zhang et al., 2024; Jin et al.,111

2024) to handle the positional O.O.D. problem in112

Task type 
(summary)

Long Doc

Generated 
Task & Ans

[{“role”: “user”, “content”: Long Doc + Task}, 
{“role”: “assistant”, “content”: Answer}]

User:
In my younger and more vulnerable years my father gave me 
some advice that I've been turning over in my mind ever since.  
…

Given the above text, please propose 5 English questions that 
require summarization or integration from multiple parts, 
make sure they are diverse and cover all parts of the text, in 
the following format: “1: ”, “2: ”, ...

Assistant:
1. Summarize the plots between Gatsby and Daisy…

Figure 2: Data construction example.

attention computation for long contexts. These 113

methods, although capable of extending the context 114

length of LLMs in a plug-and-play manner, still 115

cannot match the performance of the fine-tuned 116

approaches. Prominent fine-tuned approaches for 117

long context scaling (Chen et al., 2023a; Peng et al., 118

2023; Xiong et al., 2023; Chen et al., 2023b; Zhu 119

et al., 2023; Fu et al., 2023) typically involve posi- 120

tion encoding extension and continual pretraining 121

on longer sequences. 122

LLM Alignment. Following the previous steps 123

of long context scaling, it is vital to also align the 124

model with instruction-following data to ensure 125

that it can interact with various user requests in a 126

chat interface (Wang et al., 2023). This phase, often 127

referred to as supervised fine-tuning or instruction- 128

tuning, has been extensively studied in short con- 129

text scenarios (Wang et al., 2022; Taori et al., 2023; 130

Wang et al., 2023; Tunstall et al., 2023). How- 131

ever, the introduction of long sequences presents 132

unique challenges in terms of data, training meth- 133

ods, and evaluation for alignment. Xiong et al. 134

(2023) proposes generating long instruction data 135

by concatenating short instruction data, yet their 136

dataset and model weight are not open-sourced. 137

On the other hand, while Chen et al. (2023b) has 138

made their long instruction data, LongAlpaca-12k, 139

available and employed LoRA (Hu et al., 2022) for 140

efficient fine-tuning, it lacks in-depth discussion 141

and comparative analysis of the influence of data 142

and training methodologies. Our work aims to find 143

an optimal solution for supervised (full parameter) 144

fine-tuning on long context with full attention, by 145

tuning data, training methods, and evaluating the 146

aligned models on a wide range of tasks. 147

3 LongAlign 148

In this section, we discuss the methodology in Lon- 149

gAlign, involving the data construction process, 150

training method, and evaluation benchmark. 151
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Figure 3: Under a long-tailed data length distribution (visualized on ShareGPT+LongAlign-10k data), packing or
sorted batching can reduce idle time and speed up the training process. Loss weighting is required during packing to
balance the loss contribution across sequences.

3.1 Preliminary152

Large language models can learn alignment by su-153

pervised fine-tuning on high-quality pairs of in-154

struction x and response y (Ouyang et al., 2022;155

Chung et al., 2022). During training, the instruction156

and response are typically concatenated to form a157

sequence [x, y], which is then processed through an158

auto-regressive language model π to maximize the159

probability Pπ(y|x). The loss is similar to a lan-160

guage modeling loss, while only accounting for the161

loss associated with the tokens in y (target tokens):162

L([x, y]) = −
|y|∑
i=1

logPπ(yi | [x, y<i]). (1)163

3.2 Dataset Construction164

Long instruction data typically involves long con-165

text material, such as a book, an extensive docu-166

ment, or a lengthy code, accompanied by a task167

query that requires summarizing, reasoning, or168

computing based on the material. During construc-169

tion, we first collect long articles and documents170

from 9 varied sources, covering books, encyclope-171

dias, academic papers, codes, etc. We then employ172

Claude 2.1 (Anthropic, 2023) to generate tasks and173

answers according to a given long context, as illus-174

trated in Figure 2. To foster a diverse range of gen-175

erated tasks, we incorporate task type descriptions176

into the prompts, such as queries for summaries,177

information extraction, reasoning, etc. Using this178

methodology, we create tasks and answers for 10k179

lengthy texts, yielding a total of 10k instances of180

supervised data, of which 10% is in Chinese. The181

length of these data ranges from 8k to 64k, mea-182

sured by ChatGLM tokenizer (Zeng et al., 2023)183

due to its higher compression rate for Chinese char-184

acters. Details regarding the prompts and the data185

construction process can be found in Appendix A.186

3.3 Efficient Long-Context Training 187

To ensure that the model retains the ability to han- 188

dle both long and short texts (general capability) 189

after SFT, we mix the long instruction data with a 190

general instruction dataset for training. The mix- 191

ture of a large amount of general short data with a 192

relatively smaller amount of long instruction data 193

results in a long-tail data length distribution. As 194

shown in Figure 3 left, the majority of the data falls 195

within the 0-8k length range, while the remaining 196

data is fairly evenly distributed in the 8k-64k length 197

interval. Under this distribution, during training, 198

a data batch typically contains mostly short data, 199

yet these batches also include a few longer texts 200

which necessitate much more computation times, 201

resulting in considerable idle times. To minimize 202

these idle times, the most effective approach is to 203

concatenate or sort the data in a manner that en- 204

sures a more uniform length and computational 205

time within each batch. Bearing this in mind, we 206

explore the packing and sorted batching strategies. 207

Packing. It involves concatenating data of vary- 208

ing lengths together until reaching the maxi- 209

mum length. The resulting packed data, whose 210

lengths are generally close to the maximum length, 211

are then batched and processed on multi-GPUs. 212

This approach effectively minimizes the idle time 213

within each batch, as depicted in the upper right 214

of Figure 3. Additionally, to prevent cross- 215

contamination between different sequences within 216

the same pack during self-attention calculation, 217

we pass a list containing the starting and ending 218

positions of different sequences and utilize the 219

flash_attn_varlen_func from FlashAtten- 220

tion 2 (Dao et al., 2022; Dao, 2023), which supports 221

efficient computation of block diagonal attention 222

(see Appendix B for more details). It requires less 223

computation and IO time compared to the tradi- 224

3



tional use of a 2D attention mask.225

However, we notice that the packing strategy226

leads to a bias towards longer sequences and se-227

quences containing more target tokens. This is228

because different packs, each contributing equally229

to the final loss, contain varying numbers of se-230

quences with different numbers of target tokens.231

Consequently, when calculating the mean loss for232

each batch, sequences in packs with fewer se-233

quences (typically the longer ones) or those con-234

taining more target tokens, have a greater influence235

on the final loss. Formally, consider M sequences236

packed into a batch of K packs where the i-th pack237

consists of the sequences with indices in [Pi−1, Pi),238

thus it holds that P0 = 1, PK = M + 1. Let Li239

denote the total summation of loss over Ni target240

tokens in the i-th sequence. If we weigh each se-241

quence equally, the loss should be242

L =
1

M

M∑
i=1

Li

Ni
, (2)243

while the loss calculated under packing is244

L′ =
1

K

K∑
k=1

(

Pk−1∑
i=Pk−1

Li/

Pk−1∑
i=Pk−1

Ni) ̸= L. (3)245

Compared with Eq. 2, this equates to assigning a246

weight of (Nj/
∑Pk−1

i=Pk−1
Ni) to sequence j in the247

loss, i.e., in favor of sequences with more target248

tokens and sequences in smaller packs. To address249

this inequality, we propose to scale the loss in the250

i-th sequence by K/(NiM) and instead take the251

sum of the scaled loss on each pack, which results252

in an equal loss to Eq. 2:253

L′ =
1

K

K∑
k=1

(

Pk−1∑
i=Pk−1

LiK

NiM
) =

1

K

M∑
i=1

LiK

NiM
= L.

(4)254

As demonstrated in our experimental section, the255

loss weighting strategy results in a 10% improve-256

ment in downstream tasks.257

Sorted batching. We also consider an efficient258

sorted batching strategy for training (lower right259

of Figure 3). To ensure that the sequences within260

each batch are of similar lengths, we sort the data261

by length and select a random consecutive group262

of data for each batch, with no repetition. However,263

this strategy inevitably introduces a bias in the data264

distribution across different batches, where batches265

consist either of all long sequences or all short266

sequences. This can be potentially disastrous for 267

SGD optimization. In our experiments, we observe 268

that sorted batching significantly accelerates the 269

process without a noticeable negative impact on 270

performance. This might be attributed to our use 271

of large gradient accumulation steps and the strong 272

adaptability of the optimizer. 273

3.4 LongBench-Chat 274

Although there are existing benchmarks for evalu- 275

ating LLMs’ long context understanding (An et al., 276

2023; Bai et al., 2023a; Li et al., 2023b), their 277

queries are not sufficiently open-ended and could 278

not truly test a model’s ability to follow instructions 279

in real tasks. Furthermore, their reliance on auto- 280

matic metrics for evaluation limits the assessment 281

of aligned models’ longer and more diverse outputs 282

to real-world queries, and how their responses align 283

with human preference. 284

To this end, we propose LongBench-Chat, a 285

benchmark consisting of 50 high-quality real- 286

world queries with long contexts ranging from 287

10k to 100k tokens. Each query is paired with 288

an expert-annotated groundtruth answer averag- 289

ing 200 words in length. This benchmark cov- 290

ers key user-intensive scenarios such as document 291

QA, summarization, and coding, and includes 40 292

tasks in English and 10 in Chinese. We catego- 293

rize the tasks in LongBench-Chat into four types 294

based on their requirements for handling long con- 295

texts: I. Information Extraction, II. Multi-segment 296

Integration, III. Multi-segment Reasoning, and IV. 297

Full-text Comprehension. Each category comprises 298

approximately one-quarter of the total task data. 299

We provide examples of each type of task in Ap- 300

pendix C. We avoid using popular long texts that 301

are likely to have been seen and memorized by 302

the model during pretraining. We also avoid pos- 303

ing questions that the model could answer without 304

reading the long text. 305

For evaluation, following previous works that 306

have shown the effectiveness of using LLM as an 307

evaluator (Bai et al., 2023b; Zheng et al., 2023; Ke 308

et al., 2023), we employ GPT-4 (OpenAI, 2023b) 309

to score the model’s response in 1-10 based on a 310

given human-annotated referenced answer and few- 311

shot scoring examples for each question. We only 312

pass the short query (without the long document) 313

to the evaluator, as currently there is no model 314

capable of evaluating the quality of responses under 315

long context inputs. To ensure that the evaluator 316
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F1 ROUGE-L GPT-4 GPT-4+FS Human

Spearman 0.129 0.370 0.788 0.844 0.817
Kendall 0.093 0.273 0.656 0.716 0.694

Table 1: Correlations between different metrics and
human.

can make informed judgments based solely on the317

groundtruth and few-shot scoring examples, we318

steer clear of overly open-ended questions, such as319

“Write a poem based on the preceding text”.320

To validate the reliability of using GPT-4 as an321

evaluator on LongBench-Chat, we conduct a hu-322

man evaluation study (more details in Appendix C).323

In Table 1, we present the correlation between tra-324

ditional F1 and ROUGE-L metrics, GPT-4’s assess-325

ments using zero-shot prompting, which involves326

only the referenced answer, and its evaluations with327

additional few-shot scoring examples, compared to328

crowdsourced human judgments. We also show the329

inter-annotator correlation in the last column. We330

find that with few-shot prompting, GPT-4’s corre-331

lation with human annotations not only aligns but332

also surpasses the level of agreement among human333

annotators, proving the reliability of such a metric334

on LongBench-Chat. We further discover that the335

overall average scores (1-10) obtained using GPT-336

4+Few-shot differ by an average of 0.1 or less from337

the scores given by human experts. Additionally,338

we do not observe a significant bias in GPT-4’s339

scoring toward the length of responses — in fact, it340

even penalizes excessively lengthy responses.341

Leaderboard. Figure 1 reports the test results of342

current long context (16k+) instruction fine-tuned343

models (chat models) and our most competent344

models trained with LongAlign on LongBench-345

Chat. We include API-based Commercial mod-346

els: GPT-4-1106-preview (OpenAI, 2023a) (GPT-347

4 Turbo), GLM-4-128k2, and Claude-2.1 (An-348

thropic, 2023); as well as open-sourced models:349

InternLM2-7b-200k, InternLM2-20b-200k (Team,350

2023), ChatGLM3-6B-32k (Du et al., 2022; Zeng351

et al., 2023), Vicuna-7b-v1.5-16k (Zheng et al.,352

2023), Orion-14b-LongChat (Chen et al., 2024),353

LongChat-7b-v1.5-32k (Li et al., 2023a), and354

Mixtral-8x7b-Instruct-v0.2 (Jiang et al., 2024).355

Note that we employ middle truncation for inputs356

surpassing the model’s context window. Our evalu-357

ation result reveals that the performance of current358

open-sourced models still significantly lags behind359

commercial models, which can be attributed to the360

2https://open.bigmodel.cn/pricing

scale difference between these models, as well as 361

their long context scaling effectiveness. Addition- 362

ally, we observe that models with a context length 363

of 32k or less tend to underperform on LongBench- 364

Chat, indicating that a longer context window is 365

necessary to complete these long tasks. 366

4 Experiments 367

In this section, we aim to answer the following 368

research questions through a series of experiments: 369

RQ1. During SFT, how does the quantity and di- 370

versity of the long instruction data influence the 371

model’s performance in downstream tasks. 372

RQ2. Whether incorporating long instruction data 373

during training affects the model’s general capa- 374

bilities and instruction-following / conversational 375

abilities in short context scenarios. 376

RQ3. The impact that the packing and sorted batch- 377

ing training methods have on the training efficiency 378

and the final performance of the models. 379

We also incorporate discussions on the scalability 380

of LongAlign on model size and context length, 381

and the learning curve in long context alignment. 382

4.1 Experimental Setup 383

Data. To maintain the model’s general capabilities 384

and its proficiency in following short instructions, 385

we utilize the entire 76k ShareGPT data (Chiang 386

et al., 2023) (empty assistant responses are filtered 387

out) as the source of short instruction data in our 388

training data. To compare the impact of different 389

aspects of long instruction data on model training, 390

we incorporate the following five suites of long 391

instruction data in our experiment. ‘LongAlign- 392

0k’, ‘LongAlign-5k’, ‘LongAlign-10k’, ‘LongAlign- 393

20k’: 0, 5k, 10k, and 20k instances of data con- 394

structed according to the procedure in Sec 3.2 (for- 395

mer ones are randomly sampled subsets of latter 396

ones); ‘LongAlpaca-12k’: 12k data from the Lon- 397

gAlpaca dataset (Chen et al., 2023b). LongAlpaca 398

includes 9k long QA data and 3k short QA data, 399

where the long QA data is generated based only 400

on academic papers and books, offering less diver- 401

sity in source and question type compared to our 402

LongAlign data. We use this dataset to study the 403

impact of the diversity of long instruction data. 404

Model. We include three model variants, namely 405

ChatGLM3-6B (Du et al., 2022; Zeng et al., 2023), 406

Llama-2-7B, and Llama-2-13B (Touvron et al., 407

2023) (all base models). Given their 8k and 4k con- 408

text windows, we first perform context extension 409
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SFT on LongAlign-0k SFT on LongAlign-5k SFT on LongAlign-10k

Data scaling effect on Needle-in-a-haystack test

Figure 4: Performance of ChatGLM3-6B-64k after training on different quantities of long instruction data. Left:
LongBench-Chat, LongBench, and MT-Bench; Right: Needle-in-a-haystack.

to extend their context window to 64k, resulting in410

ChatGLM3-6B-64k, Llama-2-7B-64k, and Llama-411

2-13B-64k. This involves expanding the base fre-412

quency b of the RoPE position encoding (Su et al.,413

2024) by 200 times (from 10,000 to 2,000,000) and414

continual training on pretraining data with lengths415

under 64k, for a total of 10 billion tokens3.416

Training. All models are trained with 8xA800417

80G GPUs and DeepSpeed+ZeRO3+CPU offload-418

ing (Rasley et al., 2020). The models can be trained419

with a maximum length of 64k tokens without GPU420

memory overflow. Consequently, we set the max-421

imum length of the training data to 64k, with any422

data exceeding this length being truncated from the423

right. For packing training, each pack consists of424

12 sequences on average, we set the total batch size425

to 8, resulting in a global batch size of 96. For a426

fair comparison, we set the batch size to 8, with427

a gradient accumulation step of 12 for other non-428

packing training methods. We train 2 epochs on429

the training data (approximately 1500-2000 steps).430

Evaluation. We involve both long tasks and short431

tasks in evaluation. For short context tasks, we432

use MT-Bench (Zheng et al., 2023), a multi-turn433

chat benchmark, to measure the models’ ability to434

follow short instructions. For long context tasks,435

we use our proposed LongBench-Chat to evaluate436

the models’ long context alignment proficiency and437

employ LongBench (Bai et al., 2023a) to test the438

model’s general long context understanding abili-439

ties. LongBench is a bilingual, multi-task long con-440

text benchmark. We conduct evaluations on three441

types of tasks within it: Single-Doc QA, Multi-Doc442

QA, and Summarization. Since the aligned models443

typically produce longer responses with complete444

sentences and frequently provide explanations, in-445

stead of using the original metrics (ROUGE, F1)446

3Continual training on 10B tokens is sufficient for context
extension, as suggested in Fu et al. (2023).

to score the models’ replies, we use GPT-4 to 447

rate the model’s outputs based on their align- 448

ment with the groundtruth answers on LongBench. 449

We also evaluate on four general tasks on Open 450

LLM Leaderboard (Beeching et al., 2023), includ- 451

ing ARC (Clark et al., 2018), HellaSwag (Zellers 452

et al., 2019), Truthful QA (Lin et al., 2022), and 453

MMLU (Hendrycks et al., 2021). We follow the 454

evaluation settings in the Open LLM Leaderboard 455

and utilize lm-evaluation-harness framework (Gao 456

et al., 2023) for evaluation. We also conduct the 457

“Needle in A HayStack” (NIAH) experiment4 to 458

test the model’s ability to utilize information from 459

10 different positions within long contexts of vary- 460

ing lengths between 1k-60k. Specifically, this task 461

asks for the model to retrieve a piece of fact (the 462

‘needle’) that is inserted in the middle (positioned 463

at a specified depth percent) of a long context win- 464

dow (the ‘haystack’). To ensure the most stable 465

evaluation results, we use GPT-4 to score twice 466

on LongBench-Chat and MT-Bench, and average 467

these scores to obtain the final score. 468

4.2 Influence of Data 469

We conduct SFT on ChatGLM3-6B-64k using 470

ShareGPT data mixed with different suites of long 471

instruction data to study the influence of data. All 472

models except LongAlign-0k are trained using the 473

more efficient packing with loss weighting. 474

Data scaling effect. We report the performance of 475

ChatGLM3-6B-64k trained on different amounts of 476

long instruction data in Figure 4. For LongBench- 477

Chat and MT-Bench, the reported results are av- 478

eraged over GPT-4’s rating (1-10) across all test 479

instances, while results on LongBench are normal- 480

ized between 0-100 and averaged over all 12 sub- 481

sets. We find that: More long instruction data 482

enhances the performance in long tasks, and 483

4https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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Figure 5: Models’ performance on LongBench-Chat:
ChatGLM3-6B-64k trained with different long datasets.

without compromising the performance in short484

tasks. From the variation in the performance of485

each task with the amount of long data, it is evi-486

dent that more data helps improve the model’s per-487

formance on long tasks (LongBench-Chat, Long-488

Bench, NIAH). This upward trend reaches satura-489

tion at a data size of 10k. Meanwhile, more long490

data does not compromise the model’s performance491

on short tasks (MT-Bench). We also report the492

model’s performance on four Open LLM Leader-493

board tasks in Table 3, which shows no negative494

impact as well. Additionally, given the inferior per-495

formance of LongAlign-0k in long tasks, this also496

indicates that merely performing context extension497

on the base model is insufficient to ensure good498

performance on downstream long tasks. It is nec-499

essary to incorporate a substantial amount of long500

data covering various lengths during SFT.501

Data diversity effect. We present a radar chart502

in Figure 5 showing the performance of models503

trained on different datasets on LongBench-Chat.504

We find that: Diversity of long instruction data is505

beneficial for the model’s instruction-following506

abilities. LongAlign-10k shows significantly better507

results in all task types in LongBench-Chat, com-508

pared to LongAlpaca-12k. Data with low diversity509

will cause the model to improve only in specific510

types of tasks. For instance, after adding LongAl-511

paca data (LongAlpaca-12k vs. LongAlign-0k), the512

model shows no improvement in multi-segment513

integration tasks. In contrast, LongAlign-10k data514

helps the model to achieve more well-rounded im-515

provements in long instruction tasks.516

4.3 Impact of Training Methods517

We compare different training methods on518

ChatGLM3-6B-64k, Llama-2-6B-64k, and Llama-519

2-13B-64k, including naïve batching, packing (w/520
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Figure 6: Training time (hrs) on 8xA800 80G GPUs
under different training methods.

LongBench-Chat LongBench

ChatGLM3-6B-64k
Naïve batching 5.87 51.7
Sorted batching 5.40 52.1
Packing 5.76 50.9

+loss weighting 6.21 (+7.8%) 51.1 (+0.4%)

Llama-2-7B-64k
Naïve batching 5.95 48.5
Sorted batching 6.38 49.0
Packing 5.89 48.0

+loss weighting 6.10 (+3.6%) 48.4 (+0.8%)

Llama-2-13B-64k
Sorted batching 7.02 51.8
Packing+loss weighting 6.79 50.6

Table 2: Performance of ChatGLM3-6B-64k, Llama-2-
7B-64k, and Llama-2-13B-64k under different training
methods.

and w/o loss weighting), and sorted batching, to 521

assess their impact on training efficiency, as well as 522

their influence on downstream task performance.5 523

All models are trained on LongAlign-10k. Figure 6 524

displays a comparison of the training time required 525

for each method. Table 2 presents the performance 526

on downstream tasks. Our findings are as follows. 527

1. Packing and sorted batching double the 528

training efficiency while exhibiting good per- 529

formance. From Figure 6, we can see that the 530

training efficiency of packing and sorted batching 531

is comparable, both requiring less than half the 532

time needed under naïve batching. Moreover, ac- 533

cording to table 2, models trained with the two effi- 534

cient methods perform comparably to those trained 535

with naïve batching on LongBench-Chat and Long- 536

Bench. The efficient training methods also perform 537

similarly to naïve batching on short tasks, includ- 538

5Naïve batching and sorted batching consume more GPU
memory compared to packing, due to their use of gradient
accumulation. We truncate all data to 56k length for ChatGLM
with these two methods to ensure no GPU memory overflow.
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ing MT-Bench and four Open LLM leaderboard539

tasks, as shown in Table 4. An additional finding540

is that the effectiveness of these two training meth-541

ods varies with different models. For instance, the542

model trained on ChatGLM3-6B-64k using pack-543

ing with loss weighting shows significantly better544

performance on LongBench-Chat, whereas sorted545

batching performs the best for Llama-2-7B-64k and546

Llama-2-13B-64k. Therefore, we recommend prac-547

titioners adaptively choose between sorted batch-548

ing and packing with loss weighting based on the549

model and data for practical use.550

2. Loss weighting significantly improves per-551

formance on long instruction task for packing552

training. By comparing the performance of mod-553

els with and without loss weighting strategy during554

packing training, it’s evident that incorporating the555

loss weighting strategy greatly improves the ca-556

pability in LongBench-Chat (by about 5%). We557

believe that this is primarily because, without loss558

weighting, different long instruction data contribute559

variably to the loss — longer data tend to contribute560

more to the loss (refer to Eq. 3). Such an unnat-561

ural weighting bias is often detrimental to model562

training, potentially leading to training instability,563

deviating it from the optimal learning trajectory.564

4.4 Discussion565

Scalability of LongAlign. We explore two scaling566

directions on our LongAlign framework: larger567

model size and longer context window. To do so,568

we fine-tune Llama-2-13B-64k using LongAlign-569

10k dataset with the two efficient training meth-570

ods, and the evaluation results are shown in Ta-571

ble 2. Compared to the 7B-scale model, the 13B572

model shows a 10% improvement on LongBench-573

Chat, setting a new record among open-sourced574

models (LongAlign-13B-64k in Figure 1). This575

indicates that our alignment method scales effec-576

tively to larger-scale models. We also construct577

SFT data up to 128k in length with human annota-578

tion and successfully align ChatGLM3-6B under a579

128k context window using packing training with580

loss weighting, resulting in ChatGLM3-6B-128k581

(performance shown in Figure 1).582

Learning curve on long task v.s. short task. To583

compare the learning processes of alignment under584

long context and short context, we present in Fig-585

ure 7 the relative performance curves on long and586

short instruction-following tasks (on LongBench-587

Chat and MT-Bench, respectively) during model588
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Figure 7: Relative performance on long and short tasks
throughout the training process of ChatGLM3-6B-64k.

training, illustrating how performance varies with 589

the number of training steps. We use exponen- 590

tial moving average to smooth the original perfor- 591

mance curves (dotted lines), and display them as 592

solid lines. We observe that the trends of the two 593

learning curves are strikingly similar — both show 594

rapid improvement between 0-500 steps, followed 595

by a slow rise, and stabilize after 1000 steps. This 596

may imply a deeper connection between long and 597

short alignment. They might be jointly determined 598

by shared latent factors, which are optimized dur- 599

ing training to help the model align to both long 600

and short instructions simultaneously. 601

In Appendix E, we provide case analyses 602

of different LongAlign-tuned models on out-of- 603

distribution (OOD) long context query, that is, 604

query that the models have not encountered in the 605

long context SFT data. We find that models trained 606

with LongAlign can generalize to OOD long con- 607

text queries, such as writing a review for a research 608

paper, and that larger-scale models have stronger 609

generalization capabilities. 610

5 Conclusion 611

This paper aims to find the best practice for long 612

context alignment in the scope of data, training 613

method, and evaluation. Our proposed solution, 614

namely LongAlign, uses Self-Instruct to construct 615

diverse long instruction data, and efficiently fine- 616

tune the model with packing combined with loss 617

weighting or sorted batching. Moreover, we in- 618

troduce LongBench-Chat to facilitate reliable as- 619

sessment of LLM’s instruction-following ability 620

on practical long context interactions. Through 621

controlled experiments, we find that the amount, 622

diversity of data, as well as the correct training 623

method, are crucial to the final performance. 624
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6 Limitations625

Our work in exploring long context alignment has626

its limitations. From a data perspective, we primar-627

ily cover long instruction data for categories like628

long context QA, summarization, and reasoning in629

data construction. In reality, there are many other630

types of long instruction tasks that heavily rely631

on the ability to understand extended texts, such632

as multi-turn dialogues (hundreds or thousands of633

turns, even life-long dialogues), long-term role-634

playing, and long-history agent tasks, etc. We find635

that collecting available data for these tasks is chal-636

lenging because the current performance of LLMs637

on these tasks does not yet meet human needs. Con-638

sequently, users rarely interact with LLMs in this639

manner. Additionally, since current LLMs, whether640

API-based or open-sourced models, perform poorly641

on these tasks, it’s difficult to automatically con-642

struct such data using a Self-Instruct like approach.643

We hope to explore more types of long context data,644

enabling models to align with human expectations645

across various long context tasks in future works.646

From a training perspective, due to the limita-647

tions of the DeepSpeed framework and our GPU648

resources that only support SFT for 10B level mod-649

els with a maximum length of 64k, we do not con-650

duct massive experiments on longer data or larger651

models. Some current frameworks, such as Mega-652

tron (Shoeybi et al., 2019), support more paral-653

lelization methods including model parallelism and654

sequence parallelism, but are difficult to use and655

reproduce due to the complexity of their code struc-656

ture. We hope to explore long context alignment657

on longer sequences and larger-scale models using658

more advanced training frameworks. Additionally,659

exploring RLHF in long context alignment is also660

a promising direction.661

We hope to expand the amount of LongBench-662

Chat evaluation data in the future to make the eval-663

uation results more stable and to increase the diver-664

sity and challenge of the evaluation data. However,665

due to our high standards for data quality, it is dif-666

ficult to expand the test data in a short period of667

time. We are open to collaboration in improving668

this long context alignment benchmark.669
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A Dataset Construction Details907

Data sources. The 9 sources of the documents in our constructed LongAlign dataset are listed below6,908

along with their copyright information:909

• Arxiv (Academic papers): Open-accessed and can be downloaded freely by anyone.910

• Books3 (Books): From The Pile, currently it is not licensed to be downloaded.911

• C4 Dataset (Various types of articles): Publicly available dataset with ODC-BY license.912

• CLUECorpus2020 (Various types of Chinese articles): Extracted Chinese instances from the Common-913

Crawl corpus by Xu et al. (2020).914

• CommonCrawl corpus (Various types of articles): Publicly available dataset and can be downloaded915

freely by anyone.916

• Github (Code repositories): Open-accessed and can be downloaded freely by anyone.917

• Stack Exchange (Question-and-answer websites): Freely downloadable and licensed under CC BY-SA.918

• Wikipedia (Encyclopedias): Grant free access and licensed under CC BY-SA.919

• WuDaoCorpora (Various types of articles): open-accessed dataset.920

We sample articles with lengths under 64k (measured by ChatGLM3-6B tokenizer) from these datasets.921

Note that we upsample longer articles to ensure our dataset covers more long texts.922

Prompts for data generation. During the data generation process, we employ four types of task prompts923

to encourage Claude to produce a more diverse set of instruction data:924

• General type task925

{Long Doc}

Given the above text, please propose 5 English questions that are diverse and cover all
parts of the text, in the following format: "1: ", "2: ", ...

926

• Summary type task927

{Long Doc}

Given the above text, please propose 5 English questions that require summarization or
integration from multiple parts, make sure they are diverse and cover all parts of the text, in the
following format: "1: ", "2: ", ...

928

• Reasoning type task929

{Long Doc}

Given the above text, please propose 5 English questions that require multi-hop reason-
ing, make sure they are diverse and cover all parts of the text, in the following format: "1: ", "2: ",
...930

• Information extraction type task931

{Long Doc}

Given the above text, please propose 5 English information-seeking questions, make sure
they are diversed and cover all parts of the text, in the following format: "1: ", "2: ", ...

932
6Arxiv, Books3, CC, Github, Stack Exchange, and Wikipedia are sampled from The Pile (Gao et al., 2020).
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For each long article, we randomly select one of the four task prompts and have Claude generate five 933

questions to ensure that the questions cover content from multiple spans within the long text. We then 934

randomly choose one of these questions and request Claude for its answer, resulting in instruction data as 935

illustrated in Figure 2. For long Chinese documents, we translate the corresponding prompts into Chinese 936

and obtain Chinese instruction data. 937

B Training Method Details 938

Here we provide details regarding the implementation of the packing strategy and loss weighting. During 939

packing training, for each batch of data, we pass a special one-dimensional attention mask. In this mask, 940

the ith element represents the starting index of the ith sequence in the batch. The first element of the 941

mask is 0, and the last element is equal to batch_size × seq_len. During the attention computation, we 942

use the flash_attn_varlen_func function from FlashAttention 2 and pass the attention mask to 943

the function’s cu_seqlens_q and cu_seqlens_k parameters. This function performs attention 944

calculation within sequences between start and end indices from adjacent elements in the mask. Thus, 945

during the computation, the query of each sequence can only attend to the key within the same sequence. 946

For the implementation of the loss weighting strategy, we first preprocess the training data to produce 947

a weighted 1D mask for each pack of sequences, where the weight is set to 1/N (N is the number 948

of target tokens in the current sequence) on the position corresponding to target tokens, otherwise 0. 949

During training, we set M and K, i.e., the number of sequences and packs in the current batch, on the fly 950

according to its configuration. Then the loss is calculated as the summation of the cross entropy loss at 951

each token scaled by K/MN . 952

C Evaluation Details 953

C.1 LongBench-Chat 954

Evaluation data. 30 question data in LongBench-Chat are proposed by our author team to best mimic 955

real user queries, these include 20 English and 10 Chinese questions. The remaining 20 questions in 956

LongBench-Chat are selected from long dependency QA tasks in the LooGLE dataset (Li et al., 2023b) 957

and re-annotated. The long texts for these data are sourced from Wikipedia pages and movie scripts 958

post-2022, ensuring the information is relatively new and less likely to be already known by LLMs. We 959

aim to select questions that resemble real user inquiries, can be answered from the text, and ensure a 960

diverse type of questions. For the questions in LongBench-Chat, we invite experts to read the entire 961

material and write groundtruth answers, where each answer is verified by at least two experts. The test 962

instances are categorized into four types, namely Information Extraction, Multi-segment Integration, 963

Multi-segment Reasoning, and Full-text Comprehension. Here is an example for each type. 964

I. Information Extraction 965

{A long list of people and their professions.}
Question: What was Robert Geddes’ profession?
Answer: Robert Geddes was an architect and dean of the Princeton University School of Architecture.

966

II. Multi-segment Integration 967

{A Bercelona history book}
Question: During the 19th and 20th centuries, which new types of urban transportation emerged in
Barcelona?
Answer: Railway, tramway, buses, taxis, underground metro.

968

III. Multi-segment Reasoning 969

{The code of Transformer and RETRO Transformer}
Question: Summarize the code changes that the RETRO transformer made to the original transformer.

970
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Answer: According to the provided code, the RETRO transformer makes the following major changes
from the standard transformer model: 1. Chunkwise Attention: In the ‘ParallelRetroTransformer-
Layer‘ class... 2. Cross Attention Integration: ... 3. Retriever Integration... These changes reflect
the ability of RETRO transformer to use retrieval mechanisms to improve model performance, thus
enabling it to handle large amounts of data more efficiently and to improve the quality of generation
of specific knowledge points. These changes involve modifications to the model architecture, data
flow, and training dynamics.

971

IV. Full-text Comprehension972

{Given paper: Effective Long-Context Scaling of Foundation Models (Xiong et al., 2023)}
Question: What aspects of the LLAMA Long model proposed above have changed relative to the
LLAMA-based model? What improvements have been made?
Answer: The LLAMA Long model makes the following major improvements and changes over
the base LLAMA model: 1. Processing of Long Sequences: ... 2. Continuous Pre-training: ... 3.
Adjustment of Positional Encoding...

973

Evaluation prompts. For each question, we manually score on three responses as few-shot scoring974

examples, shuffle their order in each evaluation run, and use the following prompt to get GPT-4’s975

evaluation:976

[Instructions] You are asked to evaluate the quality of the AI assistant’s answers to user questions as
an impartial judge, and your evaluation should take into account factors including correctness (high
priority), helpfulness, accuracy, and relevance. The scoring principles are as follows: 1. Read the
AI assistant’s answer and compare the assistant’s answer with the reference answer. 2. Identify all
errors in the AI Assistant’s answers and consider how much they affect the answer to the question. 3.
Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions and
providing the information the user needs. 4. Examine any additional information in the AI assistant’s
answer to ensure that it is correct and closely related to the question. If this information is incorrect
or not relevant to the question, points should be deducted from the overall score.
Please give an overall integer rating from 1 to 10 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".
[Question] {}
[Reference answer begins] {} [Reference answer ends]
Below are several assistants’ answers and their ratings:
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
Please rate the following assistant answers based on the scoring principles and examples above:
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating:

977

Here is the zero-shot prompt used as the baseline in our metric evaluation study:978

[Instructions] You are asked to evaluate the quality of the AI assistant’s answers to user questions as
an impartial judge, and your evaluation should take into account factors including correctness (high
priority), helpfulness, accuracy, and relevance. The scoring principles are as follows: 1. Read the
AI assistant’s answer and compare the assistant’s answer with the reference answer. 2. Identify all
errors in the AI Assistant’s answers and consider how much they affect the answer to the question. 3.
Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions and

979
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providing the information the user needs. 4. Examine any additional information in the AI assistant’s
answer to ensure that it is correct and closely related to the question. If this information is incorrect
or not relevant to the question, points should be deducted from the overall score.
Please give an overall integer rating from 1 to 10 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".
[Question] {}
[Reference answer] {}
[Assistant’s answer] {}
Rating:

980

Human evaluation. Here we provide more details for the human evaluation study on LongBench-Chat. 981

We select responses to the 50 questions on LongBench-Chat from six different models, creating a data 982

pool of 300 instances. We invite two human experts (both are Ph.D. students from Tsinghua University) 983

to each score 200 responses based on the instruction and referenced answer, on a scale from 1 to 10. The 984

scoring criteria provided to the human experts are as follows: 985

Please score the assistant’s response based on the question and the reference answer, with 1 986

being the lowest and 10 the highest. The annotation must adhere to the following requirements: 987

1. Focus primarily on whether the response covers the key points in the reference answer. 988

2. For reference answers containing multiple key points, look for how many of these the response 989

accurately addresses and score accordingly. 990

3. If the response includes points not found in the reference answer, check the original text for 991

evidence. Deduct points at your discretion if it does not align with the original text. 992

4. Also consider deducting points for overly verbose responses or those that are excessively 993

generalized. 994

Evaluation cost. On LongBench-Chat, a run of evaluation requires approximately 32,000 tokens on 995

average (almost entirely as input tokens). Therefore, using GPT-4 for evaluation would cost about $0.96 996

per run. 997

Justification for the absence of input text during evaluation. One may wonder whether the scoring 998

model’s evaluation is accurate in the absence of the long input text. To avoid requiring the scoring model 999

to refer to the original long text when scoring the responses, we ensure that the reference answers we 1000

write are as complete as possible. This means they contain all the necessary information from the original 1001

text needed to answer the questions. Nevertheless, for some summarization-type questions, such as 1002

summarizing NVIDIA’s financial report, we cannot include all relevant information (numbers, plans, 1003

etc.) in the reference answer. For these questions, the scoring model may not be able to verify specific 1004

information in the responses without input from the original text. We find that 3 out of 50 test cases 1005

potentially face this issue, which has a minimal impact on the final overall score. 1006

C.2 LongBench 1007

Evaluation prompts. We use GPT-4 to score the responses from our aligned models in Single-Doc QA, 1008

Multi-Doc QA, and Summarization tasks on LongBench. For the first two QA tasks, the prompt for the 1009

GPT-4 evaluator is as follows. 1010

You are asked to evaluate the quality of the AI assistant’s answers to user question as an impartial
judge, and your evaluation should take into account factors including correctness (high priority), and
comprehensiveness (whether the assistant’s answer covers all points). Read the AI assistant’s answer
and compare it against the reference answer, and give an overall integer rating in 1, 2, 3 (1 = wrong or
irrelevant, 2 = partially correct, 3 = correct and comprehensive) based on the above principles, strictly
in the following format:"[[rating]]", e.g. "[[2]]".

Question:
1011
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{Question}
Reference answer:
{Groundtruth}
Assistant’s answer:
{Response}
Rating:

1012

The prompt for GPT-4 evaluation on summarization tasks is as follows.1013

You are asked to evaluate the quality of the AI assistant’s generated summary as an impartial
judge, and your evaluation should take into account factors including correctness (high priority),
comprehensiveness (whether the assistant’s summary covers all points), and coherence. Read the AI
assistant’s summary and compare it against the reference summary, and give an overall integer rating
on a scale of 1 to 5, where 1 is the lowest and 5 is the highest based on the evaluation criteria, strictly
in the following format:"[[rating]]", e.g. "[[3]]".

Reference summary:
{Groundtruth}
Assistant’s summary:
{Response}
Rating:

1014

Evaluation cost. On LongBench, a run of GPT-4 evaluation on 12 datasets in Single-Doc QA, Multi-Doc1015

QA, and Summarization tasks requires approximately 800,000 tokens on average (almost entirely as input1016

tokens). Therefore, using GPT-4 for evaluation would cost about $24 per run.1017

C.3 Needle Test1018

For the “Needle in A Haystack” evaluation, following the original configuration in the original github1019

repository, we use “The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on1020

a sunny day.” as the needle fact, and Paul Graham’s essays as the long haystack context. We use the1021

query prompt from Claude 2.17: “What is the best thing to do in San Francisco? Here is the most relevant1022

sentence in the context:”.1023

D More Experimental Results1024

We provide the full experimental result tables here. Table 3 reports the performance of ChatGLM3-6B-64k1025

trained on different suites of long instruction data. Table 4 reports the performance of ChatGLM3-6B-64k1026

and Llama-2-7B-64k under different training strategies.1027

Training Data Long Tasks Short Tasks

(Long) LongBench-Chat S-Doc QA M-Doc QA Summ MT-Bench ARC HellaSwag TruthfulQA MMLU

LongAlign-0k 3.73 58.7 41.1 38.4 5.34 50.3 74.7 51.6 45.5
LongAlign-5k 5.99 61.8 42.1 42.0 5.50 50.3 75.1 52.5 46.6
LongAlign-10k 6.28 64.0 44.4 44.2 5.51 50.5 74.9 52.5 45.5
LongAlpaca-12k 4.58 65.8 45.6 44.1 4.93 51.5 75.4 53.2 47.1

Table 3: Performance of ChatGLM3-6B-64k after training on different quantities and types of long instruction data.

E Case Studies on OOD Queries1028

As part of our research on aligning LLMs on long context, we come up with an intriguing and practical1029

case study: Can we evaluate the long context understanding capability of our trained models using this1030

paper as the long input? Hence we use the paper as input (of course, to prevent recursive nesting, the1031

7https://www.anthropic.com/news/claude-2-1-prompting
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Training Method Long Tasks Short Tasks

LongBench-Chat S-Doc QA M-Doc QA Summ MT-Bench ARC HellaSwag TruthfulQA MMLU

ChatGLM3-6B-64k
Naïve batching 5.87 65.4 45.0 44.8 5.61 50.7 74.7 52.8 46.0
Sorted batching 5.40 66.2 46.3 43.7 5.76 51.3 74.8 51.9 46.3
Packing 5.76 65.0 45.1 42.8 5.64 50.9 74.8 50.5 47.2

+loss weighting 6.21 64.5 44.5 44.2 5.50 50.5 74.9 52.5 45.5

Llama-2-7B-64k
Naïve batching 5.95 62.8 41.2 41.6 5.52 48.9 74.8 45.3 43.6
Sorted batching 6.38 63.4 42.2 41.3 5.51 49.5 74.8 48.0 44.3
Packing 5.89 61.7 40.4 42.0 5.58 48.1 74.9 46.1 43.9

+loss weighting 6.10 60.8 41.3 43.1 5.60 48.4 74.5 47.4 43.3

Table 4: Performance of ChatGLM3-6B-64k and Llama-2-7B-64k under different training methods.

input paper does not include this section). We consider using OOD query, that is, query that the model 1032

has not encountered in the long context SFT data. Our queries include “From a professional reviewer’s 1033

perspective, identify the strengths and weaknesses of this paper” and “Use rap to tell about this paper”. 1034

Let’s see how the model variants response:8 1035

!!!Disclaimer: The below contents regarding this paper are generated by AI and DOES NOT reflect the 1036

true views of the authors or readers of this paper. Please be aware and identify any misinformation. 1037

g User: From a professional reviewer’s perspective, identify the strengths and weaknesses of this
paper.

3 LongAlign-6B-64k (ChatGLM3-6B-64k trained on LongAlign-10k using packing + loss
weighting):
As an AI language model, I cannot provide a subjective review as I lack the ability to evaluate the
quality of the paper based on personal biases or predispositions. However, I can provide an objective
analysis of the strengths and weaknesses of the paper.
Strengths:
1. Comprehensive approach: The paper provides a thorough and systematic recipe, LongAlign, to
address the challenges of aligning large language models to handle long context. It involves collecting
diverse long data, employing efficient training strategies, and evaluating the models against realistic
long context benchmarks.
2. Impact of data: The paper demonstrates that the quantity and diversity of long instruction data
significantly impact the model’s ability to handle long contexts, and that incorporating more long data
is beneficial. This provides a valuable perspective on the importance of diverse long context data.
3. Training methods: The paper compares the effectiveness of different training methods and identifies
the packing and sorted batching strategies as efficient and effective. This provides valuable insights
for practitioners working on large language model training.
Weaknesses:
1. Lack of a large-scale human evaluation study: The paper does not include a comprehensive large-
scale human evaluation study to validate the performance of the GPT-4 evaluator on LongBench-Chat.
While the correlation with human annotations is presented, a direct comparison between human and
GPT-4’s assessments is lacking.
2. Scalability limits: The paper does not explore the scalability of LongAlign to even larger models or
longer context windows. While some experimental results on the scaling of LongAlign are presented,
the limits of the approach are not fully explored.
3. Learning curve analysis: The paper does not provide a thorough analysis of the learning curve
under long context alignment, comparing the performance on short and long context tasks throughout

1038

8We remove the Abstract, Conclusion, and Limitations sections in the input to prevent the model from simply copying content
from these sections without demonstrating its own understanding.
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training. This would have provided valuable insights into the learning dynamics.
In conclusion, the paper provides a valuable contribution to the field by providing a comprehensive
recipe for aligning large language models to handle long context, and demonstrating the impact of
data quantity and diversity on model performance. However, a more comprehensive and rigorous
evaluation study and a deeper exploration of the learning dynamics under long context alignment
would further enhance the paper’s impact.

3 LongAlign-7B-64k (Llama-2-7B-64k trained on LongAlign-10k using sorted batching):
As an AI language model, I do not have personal opinions or emotions, but I can provide a neutral
evaluation of the paper based on its content and structure.
Strengths:
1. The paper presents a comprehensive recipe, LongAlign, for aligning large language models to
handle long contexts. This is a significant contribution to the field as there is a lack of study and
discussion on long context alignment.
2. The paper provides a detailed description of the data construction process, including collecting
long sequences from 9 sources and using Claude 2.1 to generate tasks and answers for 10k lengthy
texts.
3. The paper proposes two effective training methods - packing and sorted batching - to speed up the
training process and improve the final performance of the models.
4. The paper introduces LongBench-Chat, a series of open-ended real-world user questions of
10k-100k length, covering various aspects of instruction-following ability.
5. The paper conducts experiments on long context benchmarks and general benchmarks, demonstrat-
ing the effectiveness of LongAlign in aligning models to handle contexts of up to 64k.
Weaknesses:
1. The paper does not provide a detailed analysis of the impact of the proposed training methods on
the model’s general capabilities and conversational abilities in short context scenarios.
2. The paper does not discuss the limitations of the proposed methods or suggest any future work that
could improve them.
3. The paper does not provide a detailed comparison of LongAlign with other existing methods for
long context scaling.
4. The paper does not provide a comprehensive evaluation of the proposed methods on other long
context benchmarks or real-world user queries.
Overall, the paper presents a thorough recipe for long context alignment and provides effective
training methods to speed up the training process. However, a more in-depth analysis of the impact on
general capabilities and a comparison with other methods would make the paper more comprehensive.

3 LongAlign-13B-64k (Llama-2-13B-64k trained on LongAlign-10k using sorted batching):
Strengths:
1. The paper presents a comprehensive solution for aligning large language models to handle long
context interactions, including constructing a diverse long instruction dataset, training methods, and
evaluation benchmark.
2. The authors conduct extensive experiments to demonstrate the effectiveness of their approach,
showing improvements in downstream tasks without performance degradation on general benchmarks.
3. The paper provides valuable insights into the challenges and solutions for long context alignment,
which is an important but understudied area.
4. The proposed LongBench-Chat benchmark is a valuable resource for evaluating long context
understanding and instruction-following abilities of large language models.
5. The paper is well-written and easy to follow, with clear explanations and visuals.
Weaknesses:
1. The paper lacks a clear theoretical framework or motivation for why long context alignment is
important and how it differs from short context alignment.

1039
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2. The experiments could benefit from more in-depth analysis and discussion of the results, especially
in relation to the proposed solutions.
3. The evaluation on LongBench-Chat is based on a small number of human-annotated examples,
which may not fully capture the diversity of real-world queries.
4. The paper does not discuss potential limitations or scalability issues with the proposed approach as
the model size and context length increase.
5. The proposed loss weighting strategy is not fully explained and justified, and its impact on training
stability and convergence could be further investigated.

1040

The authors believe LongAlign-13B-64k generates a relatively good review, with only a few flaws. This 1041

case also shows the O.O.D. generalization ability of the model — it can generate reasonable review for a 1042

research paper without encountering such type of data during training. 1043

g User: Use rap to tell about this paper.

3 LongAlign-6B-64k:
This paper presents a recipe for long context alignment, LongAlign, which addresses the challenges
of training large language models (LLMs) to handle longer inputs. The key ideas of LongAlign
include:
1. Data: Collecting diverse long sequences from multiple sources and using Self-Instruct to generate
10k instruction data of 8k-64k length.
2. Training method: Considering a more efficient packing strategy that packs sequences together up
to the maximum length before dispatching them to GPUs for optimization. This is balanced with a
loss weighting strategy to prevent sequences in packs with fewer sequences from disproportionately
affecting the loss. Also proposing a sorted batching strategy that groups sequences of similar lengths
to reduce intra-batch idle time.
3. Evaluation: Introducing LongBench-Chat, a series of open-ended real-world user questions of
10k-100k length, covering aspects of instruction-following like reasoning, coding, and summarization,
as well as being multilingual. GPT-4 is employed to score the model’s responses.
Experiments demonstrate that LongAlign effectively aligns LLMs to handle long contexts of up to
64k length without performance degradation on general benchmarks, showing the impact of data
quantity, diversity, training methods, and evaluation.

3 LongAlign-7B-64k:
This paper presents LongAlign, a recipe for aligning large language models to handle long contexts.
The key challenges in long context scaling include lack of a comprehensive instruction-following
dataset, uneven batching in multi-GPU training, and absence of a reliable benchmark. LongAlign
addresses these challenges by collecting long instruction data from 9 sources, using Self-Instruct
to generate 10k instruction data of 8k-64k length, and constructing LongBench-Chat, a series of
open-ended real-world user questions of 10k-100k length. The paper also proposes packing and
sorted batching training methods, loss weighting for packing training, and a benchmark called
LongBench-Chat to evaluate the aligned models. Experiments show that LongAlign effectively aligns
models to handle contexts of up to 64k without performance degradation on general benchmarks.

3 LongAlign-13B-64k:
Yo, listen up, I got a story to spit
About a paper that’ll make your head spin and flip
It’s called "LongAlign: A Recipe for Long Context Alignment"
And it’s all about enhancing large language models’ capabilities

They tackle the challenge of scaling up models to handle long contexts
1044
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By collecting and constructing a diverse dataset of long instruction data
Training methods like packing and sorted batching are explored
To optimize efficiency and performance without compromising general capabilities

Their evaluation benchmark, LongBench-Chat, is a series of real-world user queries
To assess models’ ability to follow long context instructions and provide relevant answers
They find that incorporating long instruction data during training is crucial And that the proposed
methods can speed up training while improving performance

So if you’re into language models and their capabilities
This paper’s a must-read, it’ll make you think twice
LongAlign, the recipe for long context alignment
Is the key to unlocking the full potential of large language models, that’s for sure, it’s a go!

1045

Although LongAlign-6B-64k and LongAlign-7B-64k make good summaries for our paper, only1046

LongAlign-13B-64k follows the instruction and summarizes our paper in rap. Its rap is in the right form,1047

yet it does not rhyme.1048
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