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Figure 1: The CRADLE framework empowers nascent foundation models to perform complex computer tasks
via the same unified interface humans use, i.e., screenshots as input and keyboard & mouse operations as output.

ABSTRACT

Despite the success in specific scenarios, existing foundation agents still strug-
gle to generalize across various virtual scenarios, mainly due to the dramatically
different encapsulations of environments with manually designed observation and
action spaces. To handle this issue, we propose the General Computer Con-
trol (GCC) setting to restrict foundation agents to interact with software through
the most unified and standardized interface, i.e., using screenshots as input and
keyboard and mouse actions as output. We introduce CRADLE, a modular and
flexible LMM-powered framework, as a preliminary attempt towards GCC. En-
hanced by six key modules: Information Gathering, Self-Reflection, Task Infer-
ence, Skill Curation, Action Planning, and Memory, CRADLE is able to under-
stand input screenshots and output executable code for low-level keyboard and
mouse control after high-level planning, so that CRADLE can interact with any
software and complete long-horizon complex tasks without relying on any built-
in APIs. Experimental results show that CRADLE exhibits remarkable generaliz-
ability and impressive performance across four previously unexplored commercial
video games, five software applications, and a comprehensive benchmark, OS-
World. To our best knowledge, CRADLE is the first to enable foundation agents
to follow the main storyline and complete one-hour-long real missions in the com-
plex AAA game Red Dead Redemption 2 (RDR2). CRADLE can also create a city
with nearly a thousand people in Cities: Skylines, farm and harvest parsnips in
Stardew Valley, and trade and bargain with a maximum weekly total profit of 87%
in Dealer’s Life 2. CRADLE can not only operate daily software, like Chrome,
Outlook, and Feishu, but also edit images and videos using Meitu and CapCut.
With a unified interface to interact with any software, CRADLE greatly extends
the reach of foundation agents by enabling the easy conversion of any software,
especially complex games, into benchmarks to evaluate agents’ various abilities
and facilitate further data collection, thus paving the way for generalist agents.
Video demos and code can be found at https://cradle2024acc.github.io/Cradle.

1 INTRODUCTION

Artificial General Intelligence (AGI) has long been a north-star goal for the AI community (Mor-
ris et al., 2023). The recent success of foundation agents, i.e., agents empowered by large mul-
timodal models (LMMs) and advanced tools, in various environments, e.g., web browsing (Zhou
et al., 2023; Deng et al., 2023; Gur et al., 2023; Zheng et al., 2024b;a; He et al., 2024), operating
mobile applications (Yang et al., 2023b; Wang et al., 2024b) and desktop software (Zhang et al.,
2024; Wu et al., 2024), crafting and exploration in Minecraft (Wang et al., 2023b; 2024a; 2023a),
and some robotics scenarios (Huang et al., 2022; Brohan et al., 2023b; Driess et al., 2023; Brohan
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Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction:   place_water_pumping_station(x=100, y=700)    Previous Task: place a water pumping              station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecuteet al., 2023a), have shown promise. However, current foundation agents still struggle to generalize
across different scenarios, primarily due to the dramatic differences in the encapsulation of environ-
ments with human-designed observation and action space. Therefore, developing foundation agents
applicable to various environments remains extremely challenging.

Computers, as the most important and universal interface that connects humans and the increasing
digital world, provide countless rich software, including applications and realistic video games for
agents to interact with, while avoiding the challenges of robots in reality, such as hardware require-
ments, constraints of practicability, and possible catastrophic failures (Raad et al., 2024). Mastering
these virtual environments is a promising path for foundation agents to achieve generalizability.
Therefore, we propose the General Computer Control (GCC) setting 1:

Building foundation agents that can master ANY computer task via the universal human-style
interface by receiving input from screens and audio and outputting keyboard and mouse actions.

There are many challenges to achieving GCC: i) good alignment across multi-modalities for better
understanding and decision-making; ii) precise control of keyboard and mouse to interact with the
computer, which has a large hybrid action space, including not only which key to press and where the
mouse to move, but also the duration of the press and the speed of the mouse movement; iii) long-
horizontal reasoning due to the partial observability of complex GCC tasks, which also leads to the
demand for long-term memory to maintain past useful experiences; and iv) efficient exploration in
a structured manner to discover better strategies and solutions autonomously, i.e., self-improving,
which can allow agents to generalize across the various tasks in the digital world.

As shown in Figure 1, we introduce CRADLE, a novel modular LMM-powered framework that
empowers foundation agents towards GCC. CRADLE consists of six key modules: 1) information
gathering, to extract the relevant information from multimodal observations; 2) self-reflection, to
rethink past experiences about whether the actions and tasks are successfully completed and reasons
for possible failures; 3) task inference, to determine whether to continue current tasks or propose a
new task given the current situation; 4) skill curation, to generate, update, and retrieve useful skills
for the current task; 5) action planning, to generate specific executable operations for keyboard and
mouse control via skills; and 6) memory, for storage, summary, and retrieval of past experiences.

As illustrated in Figure 2, tasks in GCC can be broadly divided into two categories: video game
playing and software application manipulation. Video games offer the most challenging tasks in
GCC due to several key factors. First, the complexity of game environments requires sophisticated
problem-solving and adaptive strategies. Second, long-term reasoning is essential to navigate and
succeed in these intricate virtual worlds. Third, understanding and mastering new, complex mechan-
ics within games demand rapid learning and cognitive flexibility. Finally, video games test a player’s
ability to react quickly and perform precise control and operations, which together create a unique
and demanding computational challenge. In addition to the typical embodied control, classical UI
manipulation, like menu use and inventory management, is also common during gameplay, which is
similar to the other software applications (Raad et al., 2024). Therefore, video games provide rich
comprehensive and challenging testbeds to evaluate and improve agents’ various abilities.

In this work, we conduct extensive experiments to demonstrate the generalizability of CRADLE in
such complex environments, while also mastering diverse everyday software applications in distinct
domains. We managed to prove that commercial software is out-of-box testbeds under our frame-
work. The four selected representative games are: epic AAA 3D role-playing game, RDR2, 2D
pixel-art farming simulation game, Stardew Valley, pawn shop simulation game, Dealer’s Life 2,
and 3D, top-down view, city-building game, Cities: Skylines. The target set of diverse software ap-
plications for evaluation includes: Chrome, Outlook, CapCut, Meitu, and Feishu, as well as one
comprehensive software benchmark, OSWorld (Xie et al., 2024). We provide a brief introduction
to these games in Appendix A, and representative designed tasks for measuring the various abilities
of the agent comprehensively in both games and software applications in Appendix Figure 9.

Experimental results show that CRADLE exhibits remarkable generalization ability and impressive
performance across the four previously unexplored commercial video games, the five target software
applications, and the comprehensive contemporaneous OSWorld benchmark. To our best knowl-
edge, CRADLE is the first to enable LMM-based agents to follow the main storyline and complete
one-hour-long real missions in a complex AAA game, RDR2. CRADLE also manages to create a
city with nearly a thousand people in Cities: Skylines, farm and harvest parsnips in Stardew Valley,

1This setting can be seamlessly extended to other digital devices, i.e., mobile phones, game controllers, and
virtual reality headsets with standard input and output.
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Figure 2: Taxonomy of GCC and the games and software investigated in this work.
trade and bargain with a maximal weekly total profit of 87% in Dealer’s Life 2. Besides, CRADLE
can not only operate daily software, like Chrome and Outlook, but also edit images and videos using
Meitu and CapCut, and perform office tasks in Feishu. Able to interact with software in a unified
manner, CRADLE greatly extends the reach of AI agents by making it easy to convert any software,
especially complex games, into benchmarks to evaluate agents’ various abilities and facilitate further
data collection, paving the way for generalism. We hope CRADLE can accelerate the development
of more powerful foundation agents, thereby advancing the path towards AGI.

2 RELATED WORK

Agents for Software Applications. While previous LLM-based web agents (Deng et al., 2023;
Zhou et al., 2023; Gur et al., 2023; Zheng et al., 2024b) show some promising results in effectively
interacting with content on webpages, they usually use raw HTML code and DOM tree as input and
interact with the available element IDs, ignoring the rich visual patterns with key information, like
icons, images, and spatial relations. Multimodal web agents (Hong et al., 2023; Furuta et al., 2023;
Yan et al., 2023; He et al., 2024; Zheng et al., 2024a) and mobile app agents (Yang et al., 2023b;
Wang et al., 2024b) have also been explored. Though using screenshots as input, they still need
to use built-in APIs to get the available interactive element IDs to execute corresponding actions.
Several recent works (Cheng et al., 2024; Zhang et al., 2024; Wu et al., 2024; Kapoor et al., 2024)
aim to apply web agents to more applications by using keyboard and mouse for control. However,
they primarily focus on the static websites and lack the generalizability to other domains.

Agents for Video Games. Several attempts try to develop foundation agents for complex video
games, such as Minecraft (Wang et al., 2023b;a; 2024a), Starcraft II (Ma et al., 2023) and
Civilization-like game (Qi et al., 2024) with textual observations obtained from internal APIs and
pre-defined semantic actions. Although JARVIS-1 (Wang et al., 2023a) claims to interact with the
environment in a human-like manner with the screenshots as input and mouse and keyboard for
control, its action space is predefined as a hybrid space composed of keyboard, mouse, and API.
The game-specific observation and action spaces prohibit the generalization of them to other novel
games. SIMA(Raad et al., 2024) trained embodied agents to complete 10-second-long basic tasks
over ten 3D video games, and the results are promising to be scaled up.

Due to the space limitation, we provide a detailed discussion of the related work in Appendix B.

3 THE CRADLE FRAMEWORK

To pursue GCC, we propose CRADLE, illustrated in Figure 3, a modular and flexible LMM-powered
framework that can properly handle the challenges GCC presents. The framework should have the
ability to understand and interpret computer screens and dynamic changes between consecutive
frames from arbitrary software and be able to generate reasonable computer control actions for
precise execution. This suggests that a multimodal model with powerful vision and reasoning capa-
bilities, in addition to rich knowledge of computer UI and control, is a requirement. In this work,
we leverage GPT-4o (OpenAI, 2024b) as the framework’s backbone model.

3.1 ENVIRONMENT IO

Observation and Action Space. CRADLE only takes a video clip, recording the execution of
the last action, as input and outputs keyboard and mouse operations to interact with environments.
The observation space is made up of complete screen videos with different lengths. For the action
space, it includes all possible keyboard and mouse operations, including key_press, key_hold,
key_release, mouse_move, and wheel_scroll, where keys include both keyboard keys

3
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Add

Figure 3: An overview of the CRADLE framework. CRADLE takes video from the computer screen as input
and outputs computer keyboard and mouse control determined through inner reasoning.

and mouse buttons. These operations can be combined in various ways to form combos and short-
cuts, execute rapid key sequences, or coordinate timings. We choose to use Python code to simulate
these operations and encapsulate them into an io_env class.

Information Gathering. Provided with a video clip as input, it is critical for CRADLE to capture
and extract all useful visual and textual information to understand the recent situation and perform
further reasoning. Visual information includes layout, imagery, animations, and UI elements which
pose high spatial perception and visual understanding requirements for LMM models. Moreover, we
depend on their OCR capabilities to extract textual information in images, which usually includes
content (headings and paragraphs), navigation labels (menus and links), notifications, and instruc-
tions to convey messages and guide users. For each environment, we enhance LMMs’ abilities with
different tools such as template matching (Brunelli, 2009), Grounding DINO (Liu et al., 2023), and
SAM (Kirillov et al., 2023) to provide additional grounding for object detection and localization.

Skill and Action Generation As shown in Figure 4, to bridge the gap between semantic actions
generated by LMMs and OS-level executable actions, CRADLE uses LMMs to generate code func-
tions as semantic-level skills, which encapsulate lower-level keyboard and mouse control. Similar
to how humans improve while playing, these skills can be developed from scratch according to in-
game tutorials and guidance, game manuals and settings, or through self-exploration as the game
progresses. These skills can also be pre-defined or composited to solve more complex tasks. An ac-
tion usually consists of a single or multiple skills instantiated with any necessary parametric aspects,
such as duration, position, and speed. An Executor will be triggered to map these semantic actions
to the OS-level keyboard and mouse commands to interact with the environment.

3.2 MEMORY

CRADLE stores and maintains all the useful information from the environment or outputted by each
module through a memory mechanism, consisting of episodic memory and procedural memory.

Episodic Memory. Episodic memory is used to maintain current and past experiences, including key
screenshots from each video observation, and everything useful outputted by LMMs and advanced
tools, e.g., textual and visual information, actions, tasks, and reasoning from each module. To
facilitate retrieval and storage, periodical summarization is conducted to abstract recently added

def access_map():
"""
Press "M" to access map.
"""
io_env.key_press('M‘)

def move_up(duration = 1):
"""
Press "W" to move up.
"""
io_env.key_press('W', duration)

...

def place_residential_zone(x1, y1, x2, y2):
"""
Click residential zone icon and place.
"""
# Move mouse to the icon and click.
io_env.mouse_move(700, 950)
io_env.mouse_click_button('left button‘)

# Place the residential zone.
io_env.mouse_move(x1, y1)
io_env.mouse_hold('left button‘)
io_env.mouse_move(x2, y2)

def view_stored_weapons():
"""
Press "tab" to view your stored weapons.
"""
io_env.key_hold('tab')

def talk_to_tennessee_walker():
"""
Press "right mouse button" to talk to 

tennessee walker.
"""
io_env.mouse_click('right button')

Figure 4: Examples for skill generation according to in-game guidance in RDR2 (left), in-game manual in
Stardew Valley (middle), self-exploration in Cities: Skylines (right). Code and comments are shown in brevity.
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Information Gathering Action PlanningTask Inference Skill CurationSelf-Reflection

Retrieved Skills: 
['aim','follow','turn','move_for
ward','show_weapon_wheel'...]

Last Action: take_cover()
Previous Task: Press [Q] to take cover.

The last action was executed
successfully, and the task is completed 
since new guidance appears. 

Hold [TAB] to show 
the Weapon Wheel.

show_weapon_wheel()

Hold [TAB] to show the Weapon Wheel.

Generated Skill:
def show_weapon_wheel():

 io_env.key_hold('tab')

Guidance: 

# Selects parsnip seeds from the toolbar.
select_tool(key='6') 
# Plants parsnip seeds on the tilled soil.
do_action()

Retrieved Skills: 
['move_up','move_down','move_left','mo
ve_right','select_tool','do_action'...]

Last Action: use_tool()
# Till the soil using the hoe.
Previous Task: use the hoe to till the soil.

The last action was executed successfully. 
The hoe is actively being used aiming 
toward the soil and the soil becomes darker. 
Therefore, the task is completed.

The new task is to plant the parsnip 
seeds in the tilled soil.

1. Axe 2. Hoe (Selected) …
6. Parsnip Seeds (15) … Toolbar:

Retrieved Skills: 
['place_water_pumping_station','place_w
ater_drain_pipe','place_water_pipe'...]

Error Message: Cannot be built on water

Last Action: 
  place_water_pumping_station(x=100, y=700)
    Previous Task: place a water pumping          
    station near the river.
The last action was not executed successfully.
As the water pumping station cannot be built 
on the water as shown in the error message. 
Therefore, the task is not completed. 

The current task is to continue the 
previous task.

place_water_pumping_station
(x=400, y=600)

E
xe

cu
te

E
xe

cu
te

E
xe

cu
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Figure 5: Illustrative examples of CRADLE’s complete workflow in RDR2 (left), Stardew Valley (middle) and
Cities: Skylines (right). Prompts are shown partially for brevity.

multimodal information into long-term summaries. The incorporation of episodic memory enables
CRADLE to effectively retain crucial information over extended periods.

Procedural Memory. This memory is specific to storing and retrieving skills in code form, which
can be learned from scratch as shown in Figure 4, or pre-defined in procedural memory. Skills
can be added, updated, or composed to the procedural memory in the skill curation module. Same
as Voyager (Wang et al., 2024a), skills are retrieved according to the similarities between their
corresponding embedding and task description.

3.3 REASONING

Based on the extracted information from observations and memory, CRADLE conducts high-level
reasoning and then makes the next decision. This process is analogous to “reflect on the past, sum-
marize the present, and plan for the future”, which is broken down into the following modules.

Self-Reflection. The reflection module initially evaluates whether the last executed action was suc-
cessfully carried out and whether the task was completed. Sequential key screenshots from the last
video observation, along with the previous context for action planning and task inference are fed
to the LMM for reasoning. Additionally, we also request the LMM to provide an analysis of any
failure. This valuable information enables CRADLE to remedy inappropriate decisions or less-than-
ideal actions. Furthermore, reflection can also be leveraged to inform re-planning of the task and
bring the agent closer to target task completion, better understand the factors that led to previous
successes, or suggest how to update or improve specific skills.

Task Inference. After reflecting on the outcome of the last executed action, CRADLE needs to
analyze the current situation to infer the most suitable task for the current moment. We let LMMs
determine the highest priority task to perform and when to stop an ongoing task and start a new one.

Skill Curation. As the task is specified, CRADLE needs to prepare the tactics to accomplish it,
by retrieving useful skills from the procedural memory, updating existing skills, or generating new
ones. The new skill will be stored in the procedural memory for future utilization.

Action Planning. CRADLE needs to select the appropriate skills from the curated skill set and
instantiate these skills into a sequence of executable actions by specifying any necessary parametric
aspects (e.g., duration, position, and target) according to the current task and history information.
The generated action is then fed to the Executor for interaction with the environment.
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Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction:   place_water_pumping_station(x=100, y=700)    Previous Task: place a water pumping              station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecute4 EMPIRICAL STUDIES
In this section, we first introduce the practical implementation of the current Cradle framework and
then present the empirical results of deploying CRADLE across various challenging environments
representative of GCC settings, demonstrating its comprehensive capabilities.

4.1 GENERAL IMPLEMENTATIONS

Input. CRADLE applies gpt-4o-2024-05-13 as backbone. It only takes a video clip, which records
the execution progress of the last action, as input. To lower the frequency of interaction with back-
bone models and reduce the strain on the computer, video is recorded at 2 fps, which proves to be
sufficient in most cases for information gathering without missing any important information.

Skills. CRADLE uses Python code to simulate keyboard and mouse operations, which is encap-
sulated by an io_env class to achieve OS-agnostic interface. Skills are generated based on these
basic operations. We use OpenAI’s text-embedding-ada-002 model (OpenAI, 2022) to generate em-
beddings for each skill, stored in the procedural memory and retrieved according to the similarities.

Prompts. Prompts used by each module are initialized by the corresponding templates in
Markdown-style format. These prompt templates provide a minimal workflow with basic rules for
the module to run and use placeholders of each key for input and output. CRADLE automatically re-
trieves the corresponding value for each key in the input from the episodic memory and forms valid
requests to query LMMs with the values and templates. After receiving responses from LMMs,
CRADLE automatically extracts the keys in the output and stores them in the episodic memory.
Users can freely customize their own prompts without writing any code.

Apply to new environments. Theoretically, CRADLE can be directly deployed to new video games
or other software applications with the default prompt templates and empty procedural memory. Due
to the limited ability of current LMMs and the complexity of challenging environments and tasks,
prompt engineering may need to be applied to every module to enhance LMMs’ reasoning ability
and introduce domain knowledge. Additional tools can also be applied to provide extra grounding
and domain knowledge as part of the prompt input. Procedural memory can be initialized with hand-
craft skills to mitigate the incomplete tutorials provided by the software and the complexity of tasks.
Users may need to analyze the task-specific issue and choose a suitable solution. We provide all the
implementation details and prompts we use for each software in Appendices D to K.

Experimental Settings. If not specifically mentioned, all experiments are conducted in five runs
under a maximum step limit. For each video game, we hired five human players, who never played
the corresponding game before, to do the evaluation. Before they start the experiments, they will
read the prompts used by Cradle agents for fair comparison. Every player played the task once.
We apply human evaluation to all tasks, except for OSWorld, which provides automatic evaluation
scripts. Estimated experimental cost of the time and API usage is provided in Appendix C.

Task Introduction. As shown in Figure 6 and 7, for RDR2, we mainly focus on evaluating agents
on the first two complete missions of the main storyline in Chapter I, which can be divided into 13
tasks according to the in-game checkpoints, including but not limited to navigation, NPC interaction,
inventory management, house exploration, and combat. It usually takes a human player about an
hour to complete these missions. Few previous studies tackle such long-duration tasks and rich
semantic environments. It is an ideal scenario to emulate a novice player learning to play the game
from scratch according to the rich in-game tutorials and hints. For Stardew Valley, we propose
three essential tasks at the stage of the game, i.e., Farm Clearup: Clear the obstacles on the farm,
such as weeds, stones, and trees, as much as possible to prepare for farming; 2) Cultivation: Plant
the parsnip seed, water every day and harvest at least one mutual parsnip; 3) Shopping: Go to the
general store in the town, which is out of the scope of the current map, to buy more seeds and return
home. For Dealer’s Life, the agent is tasked with managing a pawn shop for a week, appraising item
values and haggling with the customers to secure deals. For Cities: Skylines, the task is to build a
reasonable city ending in as much population as possible, with the initial starting funds of ₡70,000,
and basic road, water and electricity facilities. Moreover, we define five representative domain-
specific tasks for each of the five Software Applications in our diverse target set. We provide an
overview of all the tasks for both games and software applications in Appendix Figure 9.

4.2 PERFORMANCE ACROSS ENVIRONMENTS

Red Dead Red Redemption 2. Figure 6 shows that CRADLE can efficiently complete simple
navigation tasks with a few steps like following an NPC or going to specific locations on the ground
(e.g., Follow Dutch, Go to Town and Go to Barn). Another following task, Follow Javier, and
the searching task, Search John, are dangerous for the rugged and winding path up to the snow
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Mission 2: Enter, Pursued by a MemoryMission 1: Outlaws from the West

MISSION1: OUTLAWS
FROM THE WEST

MISSION2: ENTER, 
PURSUED BY A MEMORY

Hitch Horse,
Take Cover

Peek out of Cover, Show Weapon Wheel, 
Switch Weapons, Equip, Reload, Aim

Pick up Items, Eat Item, Open Cabinet, 
Close Cabinet, Restore Health Core

Grab,
Interrogate,
Spare, Beat

Calm Horse,
Pat Horse,
Lead Horse

Select Item,
Inspect Camp,
View Stored 

Weapons

Climb,
Crouch

Put Away Weapon

Generated
Skills

Slow Horse Down,
Ride Faster

Call for Animals, Shot
Wolves, Mount Horse

Figure 6: The first row demonstrates the trajectory of 13 sequential tasks in the two main storyline missions.
The second row shows the cumulative steps CRADLE takes to complete each task in the two missions, starting
from the beginning of the game. If a task fails, CRADLE can select the ’retry checkpoint’ option to retry the
task. Skills generated during the task completion are also illustrated in the figure. We only provide key skills
for brevity. Error bars represent the standard deviation of steps needed to complete each task separately.

Figure 7: The first row sequentially shows farm clearup, cultivation and shopping in Stardwe Valley and hag-
gling and deal in Dealer’s Life 2. The second row sequentially shows road construction, water pipe laying,
wind turbine building, zoning and the display of the city built by CRADLE in Cities: Skylines.

mountain with cliffs. Note that Cradle is able to retry the checkpoint automatically according to the
game guidance if the task fails. Therefore, CRADLE takes more steps for retrying the task in these
dangerous areas. In addition, Cradle spends about one-fourth of the total steps in the task of Protect
Dutch, which is a long-horizontal task with nighttime combat. Many key skills are generated in this
task for weapon management and shooting movement. The visibility is poor due to the snow falling
in the dark, preventing GPT-4o from accurately recognizing and locating enemies or objects and
precisely timing decisions, even equipped with Grounding DINO as an additional detection tool.
More times of retry, combined with the need for frequent interactions during combat and the long
horizon of the task, lead to this task requiring a large number of steps to complete. The success rate
of the combat has significantly improved during the day with much fewer steps for completion, as
shown by tasks like Keep Wolves away. Additionally, indoor tasks like Search for Supplies are also
challenging due to GPT4-o’s limited spatial perception, which finds it difficult to locate target objects
and ends up circling aimlessly around the house. Moreover, the room contains numerous interactive
items unrelated to the task, resulting in much more steps for the agent to complete the task. Overall,
CRADLE requires approximately 8,000 steps to complete both missions, taking around 98 minutes
of in-game time, compared to the average of 67 minutes for human players. It is the first time for
LMM-powered AI agents to exhibit comparable performance in complex AAA games.

Stardew Valley. As shown in Table 1, we surprisingly find that GPT-4o struggles with accurately
recognizing and locating objects near the player in this pixel-art game. This leads to difficulties for
the agent to interact with objects or people, as it requires the player to stand precisely in front of them
in the grid (e.g., when entering doors, using a pickaxe to break stones). It explains the inefficiency
in the farming task though the agent manages to clear up most of the obstacles in front of the house
within 100 steps and poor performance in the shopping task. On the other hand, relying on episodic
summarization and task inference, CRADLE manages to obtain the parsnip by watering the seed for
four days and harvesting. Given GPT-4’s limited visual capabilities in this game, there is still room
for improvement in narrowing the gap between CRADLE and human players.
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Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction:   place_water_pumping_station(x=100, y=700)    Previous Task: place a water pumping              station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecute Table 1: CRADLE’s and human
players’ performance in Stardew
Valley, Dealer’s Life 2 and Cites:
Skylines with each trial run for at
most 100, 500, 1000 steps respec-
tively. 1/5 indicates one successful
run out of five runs.

Stardew Valley

Task Cradle Human

Farm Clearup
(Grids Num.)

14.8
± 5.0

35.2
± 14.5

Cultivation 4/5 5/5
Shopping 1/5 5/5

Dealer’s Life 2

Metrics Cradle Human

Avg. Haggling
Count

1.95
± 0.43

1.63
± 0.53

Turnover
Rate (%)

93.6
± 6.9

68.4
± 22.2

Item Profit
Rate (%)

37.8
± 19.1

21.1
± 13.6

Total Profit
Rate (%)

39.6
± 27.3

17.3
± 15.1

Cities: Skylines

Metrics Cradle Human

Closed-loop Road 4/5 5/5
Water Supply 1/5 3/5
Power Supply 5/5 5/5

Zoning Coverage 4/5 4/5

Population 450
±224

415
±416

Dealer’s Life 2. Table 1 shows that CRADLE demonstrates
robust performance and efficient profit-making on the Weekly
Shop Management task, successfully finalizing 93.6% of poten-
tial transactions, with an average of 2 negotiation rounds per cus-
tomer, and generally aiming for a profit rate of over 50% at the
initial offer. It consistently generates profit across all runs, main-
taining a total profit rate of +39.6%, peaking at +87.4% in a sin-
gle run. In this game, CRADLE significantly outperforms human
players. The achievements are mainly attributed to its cautious
strategy, by bargaining within a smaller range of price variation
but haggling more frequently, resulting in a significantly higher
turnover rate. In contrast, human players usually fail the deal due
to their aggressive strategy by proposing an unreasonable price
and sometimes confusing buying and selling.

Cities: Skylines. Table 1 shows that CRADLE is able to com-
plete most of the city design with the averaged maximal popu-
lation of 450 and the highest single population exceeding 860.
CRADLE manages to build the roads in a closed loop to ensure
smooth traffic flow, place multiple wind turbines to provide suf-
ficient electricity supply and cover more than 90% of available
area with residential, commercial and industrial zones, but fails
to provide sufficient water supply for all the regions reliably. The
most common failure arises from the missing of water pipes.
CRADLE often fail to connect them with each other to cover
all zones, resulting in localized water shortages in the city, and
preventing new residents from moving in. The issue also arises
from GPT-4o’s limited visual understanding, making it difficult
to accurately recognize which areas are already covered by the
water pipes. We empirically observed that these mistakes usually
could be fixed within three unit operations (building or removing
a road/facility/a place of zones is counted as one unit operation).
Then cities built by CRADLE can eventually reach a population
of more than one thousand. We provide a detailed case study in
Appendix H.5.2. Overall, as shown in Table 1, without the man-
ual fixes, CRADLE still beats human players even though it suffers from local water storage. Human
players typically pay insufficient attention to budget management and tend to allocate a dispropor-
tionate amount of funds to the construction of wind turbines for electricity, resulting in limited road
construction and residential areas to attract residents.

Software Applications. Figure 8 shows CRADLE’s performance across tasks on five applications.
Multiple tasks remain challenging. Even with a well-known GUI, like Chrome and Outlook, GPT-4o
still cannot recognize specific UI items to interact with and also struggles with visual context. For ex-
ample, forgetting to press the Save button in an open dialog, or not distinguishing between a nearby
enabled button vs. a distant and disabled one (e.g., when posting on Twitter). The phenomenon is
more severe in the UI with non-standard layouts, like CapCut, Meitu, and Feishu. Lacking prior
knowledge by GPT-4o leads to the failure of task inference and selecting the correct skills.

Chrome Outlook CapCut Meitu Feishu

Figure 8: Cradle’s performance in software applications. Each task is run for 5 trials.
Table 2: Success rates (%) of different methods in OSWorld.

Method Office
(117)

OS
(24)

Daily
(78)

Workfl-
ow(101)

Professi-
onal (49)

All
(369)

GPT-4o 3.58 8.33 6.07 5.58 4.08 5.03
GPT-4o+SoM 3.58 20.83 3.99 3.60 2.04 4.59

CRADLE 3.58 16.67 6.55 5.48 20.41 7.81

OSWorld. Table 2 shows that CRADLE
achieves the overall highest success rate in
OSWorld, compared to the baselines with-
out relying on any internal APIs to provide
extra grounding labels, e.g., Set-of-Mark
(SoM) (Yang et al., 2023a). The informa-
tion gathering module improves ground-
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Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction:   place_water_pumping_station(x=100, y=700)    Previous Task: place a water pumping              station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecuteing for more precise action execution, increasing the performance. The self-reflection module en-
ables Cradle to predict infeasible tasks and subsequently fix mistakes, shown in the Professional
domain results, where it achieves a 20.41% success rate, significantly surpassing the baselines.
4.3 BASELINE COMPARISON

Since no existing methods are fully applicable to the GCC setting, we select several representative
methods with necessary adaptions to make them applicable to GCC, labeling them as "like" in Table
3. Compared to CRADLE, React (Yao et al., 2023)-like method only has gather information, skill
curation, action planning and procedural memory module, while Reflextion (Shinn et al., 2023)-like
method adds a self-reflection and episodic memory, compared to React-like. To show the neces-
sity of multimodal input without access to APIs, we let GPT-4o describe the image and then feed
the textual description to Voyager (Wang et al., 2024a)-like as input. Additionally, experiments
with GPT-4o and Claude 3 Opus (Anthropic, 2024) as backbone are conducted. Due to the limita-
tion of requests per minute, other prompting methods like self-consistency (Wang et al., 2022) and
TOT (Yao et al., 2024) are not considered. Note that methods here refer to the agents initialized by
the corresponding framework with game-specific implementations.

Table 3: Baseline comparison for five task in RDR2 and one task in Stardew Valley (Cultivation). Numbers
before the brackets are average steps for completion. N/A indicates failure for all trials. Every task is run 5
times. Each trial is run for at most 500 steps in RDR2 and 100 steps in Stardew Valley.

Method Follow
Dutch

Follow
Micah

Hitch
Horse

Protect
Dutch

Search
for Supplies Cultivation

React-like (GPT-4o) 15± 2 (5/5) 74± 0 (1/5) N/A N/A N/A N/A
Reflextion-like (GPT-4o) 19± 4 (5/5) 58± 14 (2/5) N/A N/A N/A N/A
Voyager-like (GPT-4o) 32± 12 (3/5) N/A N/A N/A N/A N/A

CRADLE (Claude 3 Opus) 30± 7 (5/5) 52± 17 (4/5) N/A N/A N/A N/A

CRADLE (GPT-4o)
(Ours)

13± 3
(5/5)

33± 3
(5/5)

26± 5
(4/5)

461± 0
(1/5)

134± 0
(1/5)

24± 4
(4/5)

As shwon in Table 3, all the baseline methods can only complete simple and straightforward tasks
without complex targets and time delays. Compared to React-like method, Reflextion-like method
has better performance in the task of Follow Micah and still fails to complete more complex tasks,
emphasizing the importance of task inference and procedural memory. Voyager-like method that
loses vision suffers to accomplish tasks and are the worst of all comparison methods. CRADLE
with GPT-4o always has the best performance across all tasks. CRADLE with GPT-4o has the best
performance, while Claude 3 Opus fails frequently due to unreliable OCR ability of the guidance,
leading to incorrect skill generation and failures of complex tasks.

Table 4: Performance of each method in task
Cultivation. The Y-axis shows the stage of
parsnip. Only if the mutual parsnip (shown
on the top of the y-axis) is obtained will this
trial be counted as a success.

Figure 4 provides the detailed performance of each base-
line method in the Cultivation task in Stardew Valley.
Without task inference and episodic memory for sum-
marization, even React-like and Reflexion-like methods
sometimes managed to get the parsnip to sprout from the
ground, they failed to harvest it because GPT-4o failed to
recognize the mature parsnip. Episodic memory can help
CRADLE record the days of watering and know when
the crop can be harvested. Voyager-like method strug-
gles with getting out of the house and returning home due
to the lack of visual input. Claude 3 Opus also has diffi-
culties in localizing the position of the character and the
crop. Moreover, it prefers moving characters much more
frequently than GPT-4, resulting in the failure to position
the character in front of the crop.
4.4 ABLATION STUDY

Besides comparing with other baseline methods, we provide a complete ablation study by system-
atically removing each module of Cradle to show the effectiveness in Table 5. We mainly show the
results of 6 consecutive subtasks at the beginning of the main storyline, separated from the tasks of
Follow Micah, Hitch Horse and Protect Dutch in RDR2. Note that the combination of skill curation,
action planning and procedural memory is the minimal unit of our framework. Without any of them,
the agent cannot generate and execute valid actions successfully. So these modules are not ablated.

The most significant decline in agent capabilities arises from the absence of the information gather-
ing module. Without this module, the agent is unable to extract key information in the observation,
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Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction:   place_water_pumping_station(x=100, y=700)    Previous Task: place a water pumping              station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecute

which is critical for all other modules to function effectively. The second largest impact comes from
the lack of the self-reflection module, which is instrumental in correcting mistakes and recognizing
when the agent is stuck, such as in the subtask of Go to Shed. Third, the task inference module is
vital for tasks that require strict adherence to guidance, like Switch Weapon. In these cases, the in-
game instructions appear only at the beginning of the task, as seen in Follow Micah and Go to Shed.
Lastly, episodic memory becomes increasingly important as tasks grow more complex, requiring
more steps to complete, such as in Go to Shed and Combat, which involve far more steps than other
subtasks. Overall, each module plays a crucial and distinct role in the Cradle framework. Removing
or isolating any of them significantly reduces the agent’s effectiveness, underscoring the importance
of their integrated function.
Table 5: Success rates of each variant by systematically removing Cradle’s module on six consecutive subtasks
in RDR2. Every subtask is run 5 times. Each of subtasks are run for at most 500 steps.

Subtask w/o Information
Gathering

w/o Self-
Reflection

w/o Task
Inference

w/o Episodic
Memory CRADLE

Follow Micah 0% 0% 40% 80% 100%
Hitch Horse 0% 100% 100% 100% 100%
Go to Shed 0% 20% 40% 20% 80%

Peek out of Cover 60% 100% 80% 100% 100%
Switch Weapon 0% 80% 60% 80% 100%

Combat 0% 0% 0% 0% 20%

5 LIMITATIONS AND FUTURE WORK
Despite CRADLE’s encouraging performance across games and software, several limitations re-
main. i) Due to the limited ability of current LMM models, CRADLE struggles in recognizing out-
of-distribution (OOD) icons and completing OOD tasks, such as games with non-realistic styles, i.e.,
Stardew Valley. As LMMs evolve, they can further improve CRADLE’s performance. ii) Another
general bottleneck for LMM-based agents is the latency caused by the limited inference speed of
LMMs, which can also be alleviated as LMMs evolve (e.g., Realtime API (OpenAI, 2024a)). iii)
Audio, as an important modality, often plays an important role in games and software; which has
not been considered in this work. The future work will be enabling CRADLE to process the audio
and graphical input simultaneously. iv) As the preliminary attempt towards GCC, most CRADLE’s
modules need to call LMM explicitly to process the input for best performance, resulting in frequent
interactions with LMM and potentially high costs and long delays. The six modules represent a
problem-solving mindset; as LMM capabilities improve, some or even all of these modules may be
combined into a single request. Exploring other potential GCC frameworks is also promising. v)
In this work, we mainly focus on enabling foundation agents to interact with various software in a
unified manner without taking training into consideration. As SIMA (Raad et al., 2024) has already
shown promising results in a similar setting with trained agents, we will let CRADLE autonomously
explore and improve over environments through RL (Tan et al., 2023) or collect expert demonstra-
tions for supervised learning (Raad et al., 2024). vi) Though CRADLE is broadly applicable to any
computer task, only a few selected tasks are investigated in this work. We plan to expand its appli-
cation to a wider range of targets, delve deeper into complex games, and enhance its adaptability
for users. vii) Due to the large scope of the experiments conducted in this work, the number of
runs for each task and human participants are limited. A more comprehensive evaluation can be
beneficial. CRADLE holds great potential to improve effective general computer task completion
and boost research and deployment of foundation agents. However, there is also a risk of unintended
or unsuitable usage, including developing game cheats, incorrect operations of software with harm-
ful failures, or other negative agent behavior. Therefore, additional regulations or safeguards are
required for secure and responsible deployments across digital and physical environments.

6 CONCLUSION
We introduce GCC, a general and challenging setting to control diverse video games and software
with a unified and standard interface, paving the way towards general foundation agents across all
digital world tasks. To properly address the challenges GCC presents, we propose a novel frame-
work, CRADLE, which exhibits strong performance in reasoning and performing actions to accom-
plish various missions in a set of complex video games and common software applications. To the
best of our knowledge, CRADLE is the first framework that enables foundation agents to succeed in
such a diverse set of environments without relying on any built-in APIs. The success of CRADLE
greatly extends the reach of foundation agents and demonstrates the feasibility of converting any
software, especially complex games, into benchmarks to evaluate agents’ general intelligence and
facilitate further data collection for self-improvement. Although CRADLE still faces difficulties in
certain tasks, it serves as a pioneering work to develop more powerful LMM-based agents towards
GCC, combining both further framework enhancements and new advances in LMMs.
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Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. RT-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023a.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2023b.

Roberto Brunelli. Template matching techniques in computer vision: theory and practice. John
Wiley & Sons, 2009.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. arXiv preprint
arXiv:2401.10935, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
ai using procedural generation. Advances in Neural Information Processing Systems, 35:5982–
5994, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2Web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
erative multi-agent reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.
net/forum?id=5OjLGiJW3u.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=5OjLGiJW3u
https://openreview.net/forum?id=5OjLGiJW3u


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, et al. ASSISTGUI: Task-oriented desktop graphical user
interface automation. arXiv preprint arXiv:2312.13108, 2023.

Xiaofeng Gao, Ran Gong, Tianmin Shu, Xu Xie, Shu Wang, and Song-Chun Zhu. Vrkitchen: an
interactive 3d virtual environment for task-oriented learning. arXiv preprint arXiv:1903.05757,
2019.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of Minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. CogAgent: A visual language model for GUI agents.
arXiv preprint arXiv:2312.08914, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3D multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859–865, 2019.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo platform for artifi-
cial intelligence experimentation. In Ijcai, pp. 4246–4247, 2016.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. OmniACT: A dataset and benchmark for enabling multimodal gener-
alist autonomous agents for desktop and web, 2024.

Christian Kauten. Super Mario Bros for OpenAI Gym. GitHub, 2018. URL https://github.
com/Kautenja/gym-super-mario-bros.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.
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A GAME & TASK INTRODUCTION

The four selected representative games are:

• Red Dead Redemption 2 (RDR2), an epic AAA 3D role-playing game (RPG) with rich story-
lines, realistic scenes, and an immersive open-ended world; where players can complete missions
by following the instructions, freely explore the world, interact with non-player characters (NPCs)
and engage in a variety of activities such as hunting and fishing, in a first- or third-person perspec-
tive. This game offers great challenges in 3D embodied navigation and interaction.

• Stardew Valley, a 2D pixel-art farming simulation game where players can restore and expand
a farm through carefully planned activities such as planting crops, mining, fishing, and crafting.
Players can build relationships with the villagers, participate in seasonal events, and uncover the
mysteries of the valley. The game encourages strategic planning and time management, as each
day brings new opportunities and challenges. Players have to balance their energy and resources
to maximize their farm’s productivity and profitability.

• Dealer’s Life 2, a simulation game where players manage a pawn shop. They must assess the
value of items, haggle with customers, and make strategic decisions to grow their business. The
game offers a dynamic market influenced by trends, customer preferences, and random events,
requiring players to adapt and refine their negotiation tactics.

• Cities: Skylines, a 3D, top-down view, city-building game where players take on the role of
a city mayor, tasked with the development and management of a thriving metropolis, engaging
in urban planning by controlling zoning, road placement, taxation, public services, and public
transportation in an area. They must balance the needs and desires of the population with the
city’s budget, addressing issues such as traffic congestion, pollution, and citizen satisfaction. The
game provides a sandbox environment where creativity and strategic thinking are key to building
efficient and aesthetically pleasing urban landscapes. It also requires highly precise mouse control.

Open-ended
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Figure 9: Overview of all game tasks (left) in RDR2, Stardew Valley, Cities: Skylines, and Dealer’s Life 2 and
application tasks (right) in Chrome, Outlook, CapCut, Meitu, and Feishu.

B EXTENDED RELATED WORK

B.1 ENVIRONMENTS AND BENCHMARKS FOR COMPUTER CONTROL

Environments and Benchmarks on Software Applications. Simulated environments on com-
puters have been popular benchmarks and testbeds for the research community. Earlier computer
control environments primarily focused on web navigation tasks (Shi et al., 2017; Liu et al., 2018;
Yao et al., 2022; Deng et al., 2023; Zhou et al., 2023; Koh et al., 2024). Recent benchmarks start
to include various common software (Kapoor et al., 2024; Xie et al., 2024), aiming to develop a
generalist agent in the digital world. However, none of them takes video games into consideration,
missing a key component of computer control.
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Environments and Benchmarks on Video Games. On the other side, many research environ-
ments are built on top of video games, significantly advancing the study of decision-making, espe-
cially, reinforcement learning (RL). Examples include but are not limited to Atari games (Bellemare
et al., 2013), Super Mario Bros (Kauten, 2018), Google Research Football (Kurach et al., 2020),
Minecraft (Johnson et al., 2016; Guss et al., 2019; Fan et al., 2022), Dota II (Berner et al., 2019),
StarCraft II (Vinyals et al., 2019; Samvelyan et al., 2019; Ellis et al., 2023), Quake III (Jaderberg
et al., 2019), Gran Turismo (Wurman et al., 2022), Diplomacy (Bakhtin et al., 2022) and Civiliza-
tion (Qi et al., 2024). Additionally, many custom-built environments, especially grid world and
embodied scenarios, are created from scratch in a game-like manner to facilitate agent development,
such as BabyAI (Chevalier-Boisvert et al., 2019), Melting Pot (Leibo et al., 2021), Overcooked (Car-
roll et al., 2019; Wu et al., 2021; Xiao et al., 2022), VRKitchen (Gao et al., 2019), VirtualHome (Puig
et al., 2018), iGibson (Shen et al., 2021; Li et al., 2021), ProcTHOR (Deitke et al., 2022), Habi-
tat (Manolis Savva* et al., 2019; Szot et al., 2021; Puig et al., 2023), and Generative agents (Park
et al., 2023).

Each of these environments highly relies on the accessibility of the open-source code or provided
built-in APIs. Significant human efforts are required for implementation and encapsulation, enabling
agent interaction. Therefore, despite the abundance of software and games available for human use,
only a limited number are accessible to agents, especially for commercial closed-source games and
software applications. Additionally, the lack of consensus on environment standards further com-
plicates the interaction, as each environment has specific observation and action spaces, tailored to
its unique requirements. This variation exacerbates the challenge of enabling agents to interact with
diverse environments and collect data with a consistent level of fine-grained semantics to improve
the agent’s capabilities. Few agents can complete tasks across multiple environments so far.

Similar to OpenAI Universe (OpenAI, 2016) and SIMA (Raad et al., 2024), our goal is to explore
a unified way that allows agents to interact for measuring and training agents’ abilities across a
wide range of games, websites, and other applications without heavy human efforts needed. This
approach aims to prove that diverse software applications and games can serve as out-of-the-box
environments for AI development.

B.2 LMM-BASED AGENTS FOR COMPUTER TASKS

Agents for Software Manipulation. Agents for software applications are developed to complete
tasks such as web navigation (Zhou et al., 2023; Deng et al., 2023; Mialon et al., 2023) and software
application control (Rawles et al., 2023; Yang et al., 2023b; Kapoor et al., 2024). While previous
LLM-based web agents (Deng et al., 2023; Zhou et al., 2023; Gur et al., 2023; Zheng et al., 2024b)
show some promising results in effectively interacting with content on webpages, they usually use
raw HTML code and DOM tree as input and interact with the available element IDs, ignoring the rich
visual patterns with key information, like icons, images, and spatial relations. Recently, multimodal
web agents (Yan et al., 2023; Gao et al., 2023; He et al., 2024; Zheng et al., 2024a; Niu et al.,
2024; Zhang et al., 2024; Wu et al., 2024) and mobile app agents (Yang et al., 2023b; Wang et al.,
2024b) have been explored. Though using screenshots as input, they still rely on built-in APIs
and advanced tools to get internal information, like available interactive element IDs, to execute
corresponding actions, which greatly limits their applicability. Other train-based agents (Hong et al.,
2023; Furuta et al., 2023; Cheng et al., 2024) also suffer from generalizing to unseen software and
tasks. Moreover, all of these works primarily focus on static websites and software, which greatly
reduces the need for timeliness and simplifies the setting by ignoring the dynamics between adjacent
screenshots, i.e., animations, and incomplete action space without considering the duration of the
key press and different mouse mode. It results in the failure of deployment to the tasks with rapid
graphics changes, e.g., game playing.

Agents for Game Playing. Several attempts try to develop foundation agents for complex video
games, such as Minecraft (Wang et al., 2023b;a; 2024a), Starcraft II (Ma et al., 2023) and
Civilization-like game (Qi et al., 2024) with textual observations obtained from internal APIs and
pre-defined semantic actions. Although JARVIS-1 (Wang et al., 2023a) claims to interact with the
environment in a human-like manner with the screenshots as input and mouse and keyboard for
control, its action space is predefined as a hybrid space composed of keyboard, mouse, and API.
The game-specific observation and action spaces prohibit the generalization of them to other novel
games. Pre-trained with videos with action labels, VPT (Baker et al., 2022) manages to output mouse
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and keyboard control with raw screenshots as input without any additional information. However,
collecting videos with action labels is time-consuming and costly, which is difficult to generalize
to multiple environments. Another concurrent work, SIMA (Raad et al., 2024) trained embodied
agents to complete 10-second-long tasks over ten 3D video games. Though their results are promis-
ing to scale up, they focus on behavior cloning with gameplay data from human experts, resulting in
a high expense.

In both targeting complex video games and diverse software applications, CRADLE attempts to
explore a new way to efficiently interact with different complex environments in a unified manner
and facilitate further data collection. In a nutshell, to our best knowledge, there are currently no
agents under the GCC setting, reported to show superior performance and generalization in complex
video games and across computer tasks. In this work, we make a preliminary attempt to explore
and benchmark diverse environments in this setting, applying our framework to diverse challenging
environments under GCC and proposing an approach where any software can be used to benchmark
agentic capabilities in it.

C EXPERIMENTAL COST

Table 6: Financial and time-related costs of running all the tasks once in each environment or domain.

RDR2 Cities:
Skylines

Stardew
Valley

Dealer’s
Life 2

Software
Apps OSWorld Total

Tasks Num. 14 1 3 1 25 369 -
Input Tokens 600M 150M 60M 25M 45M - -

Output Toekns 20M 7.5M 4M 1M 2.5M - -
Cost (USD) $3300 $862.5 $345 $140 $262.5 $500 $5410

Time 240 hrs 60 hrs 30 hrs 20 hrs 50 hrs 240 hrs 640 hrs

Table 6 shows the approximate cost of experiments in Section 4.2 with gpt-4o-2024-05-13. Base-
lines comparison and ablation studies are not included. Since all the tasks were run 5 times except
for OSWorld once, the total cost of getting all the results shown in Section 4.2 is approximately
5400 USD. claude-3-opus-20240229 will roughly use 3X more money and 2X more time compared
to gpt-4o-2024-05-13, due to its higher price and longer latency. We also want to note that with the
latest model, gpt-4o-2024-08-06, the cost will be halved. We estimate that costs will decrease by
one or two orders of magnitude in the coming few years. Then the cost will be affordable to every
researcher and developer.

D GENERAL IMPLEMENTATION

Here we introduce the general implementation details of CRADLE. For specialized implementations
addressing issues unique to their own environment, please refer to the corresponding section.

Hardware. All software and games can be run on regular Windows 10 machines, except for RDR2,
which is tested on machines with RTX-4090 GPU separately.

Backbone Model. We employ GPT-4o (OpenAI, 2024b), currently one of the most capable LMM
models, as the framework’s backbone model. If not mentioned explicitly, all the experiments are
done with gpt-4o-2024-05-13. Temperature is set to 0 to lower the variance of the text generation.
Same as Voyager (Wang et al., 2024a), we use OpenAI’s text-embedding-ada-002 model (OpenAI,
2022) to generate embeddings for each skill, stored in the procedural memory and retrieved accord-
ing to the similarities.

Evaluation Methods. Unlike conventional research benchmarks, which usually provide grounding
signals for evaluation, it is difficult to have a unified and general method to determine whether a task
is completed automatically in diverse software, especially in video games. Similarly to SIMA (Raad
et al., 2024), we apply human evaluation to all tasks across application software and games. More-
over, to provide more quantitative results and a comparison baseline, we provide results for the
OSWorld (Xie et al., 2024) benchmark, a contemporaneous benchmark that provides evaluation
scripts for at least one solution per task.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Observation Space. CRADLE only takes a video clip, which records the progress of execution of
the last action, as input. To lower the frequency of interaction with backbone models and reduce the
strain on the computer, video is recorded at 2 fps (a screenshot every 0.5 seconds), which proves
to be sufficient in most cases for information gathering without missing any important information.
It is important to note that, due to the dynamism of the RDR2 and Stardew Valley and the LMM
inference and communication latency, we must pause those game environments while waiting for
backbone model responses. Other environments execute continuously.

Action Space. For the action space, it includes all possible keyboard and mouse operations, includ-
ing key_press, key_hold, key_release, mouse_move, mouse_click, mouse_hold,
mouse_release, and wheel_scroll, which can be combined in different ways to form com-
bos and shortcuts, use keys in fast sequence, or coordinate timings. We choose to use Python code
to simulate these operations and encapsulate them into an io_env class. Skill code needs to be
generated by the agent in order to utilize such functions and affordances so executed actions take
effect. Table 7 illustrates CRADLE’s action space.

Table 7: Action space in the CRADLE framework, including action attributes. Coordinate system is either
absolute or relative. Actions with durations can be either synchronous or asynchronous.

Type Action Attributes

Keyboard

Key Press Key name (string),
Key press duration (seconds:float)

Key Hold Key name (string)
Key Release Key name (string)

Key Combo
Key names (strings),
Key combo duration (seconds:float),
Wait behaviour (sync/async)

Hotkey
Key names (strings),
Hotkey sequence duration (seconds:float),
Wait behaviour (sync/async)

Text Type String to type (string),
Typing duration (seconds:float)

Mouse

Button Click Mouse button (left/middle/right),
Button click duration (seconds:float)

Button Hold Mouse button (left/middle/right)
Button Release Mouse button (left/middle/right)

Move

Mouse position (width:int, height:int),
Mouse speed (seconds:float),
Coordinate system (relative/absolute),
Tween mode (enum) 2

Scroll
Orientation (vertical),
Distance (pixels:int),
Duration (seconds:float)

Wait Noop -

It is important to note that, while some works (e.g., AssistantGUI (Gao et al., 2023), Omni-
ACT (Kapoor et al., 2024) and OSWorld (Xie et al., 2024)) use PyAutoGUI 3 for keyboard and
mouse control, this approach does not work in all applications, particularly in modern video games
using DirectX 4. Moreover, such work chooses to expose a subset of the library functionality in its
action space, ignoring dimensions like press duration and movement speed, which are critical in
many scenarios (e.g., RDR2, for opening the weapon wheel and changing view).

3Python library that provides a cross-platform GUI automation module - https://github.com/
asweigart/pyautogui

4Microsoft DirectX graphics provides a set of APIs for high-performance multimedia apps - https://
learn.microsoft.com/en-us/windows/win32/directx
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To ensure wide game and software compatibility and accommodate different operating systems, in
our current implementation we use the similar PyDirectInput library 5 and PyAutoGUI for keyboard
control, utilize AHK 6 and write our own abstraction (using the ctypes library 7) to send low-level
mouse commands to the operating system for mouse control. For increased portability and ease of
maintenance, all keyboard and mouse control is encapsulated in a class, called IO_env.

Notably, our low-level control wrapper is adapted for both MacOS and Windows systems, mak-
ing the OS transparent to us. At the software window level, we implemented automatic switching
between the target software window and the window running the agent (using Python ctypes for
Windows and AppleScript for MacOS 8).

Procedure Memory. This memory stores pre-defined basic skills and the generated skills captured
from the Skill Curation. However, as we continuously obtain new skills during game playing, the
number of skills in procedural memory keeps increasing, and it is hard for GPT-4o to precisely select
the most suitable skill from the large memory. Thus, similar to Voyager (Wang et al., 2024a), we
use OpenAI’s text-embedding-ada-002 model (OpenAI, 2022) to generate embeddings for each skill
and store pre-defined basic skills and any generated skills captured from Skill Curation, along with
their embeddings in a procedural memory. We retrieve a subset of skills, that are relevant to the
given task, and then let GPT-4o select the most suitable one from the subset. In the skill retrieval,
we pre-compute the embeddings of the documentations (code, comments and descriptions) of skill
functions, which describe the skill functionality, and compute the embedding of the given task.
Then we compute the cosine similarities between the skill documentation embeddings and the task
embedding. The higher similarity means that the skill’s functionality is more relevant to the given
task. We select the top K skills with the highest similarities as the subset. Using similarity matching
to select a small candidate set simplifies the process of choosing skills.

Episodic Memory. This memory stores all the useful information provided by the environment and
LMM, which consists of short-term memory and long-term summary.

The short-term memory stores the screenshots within the recent k interactions in game playing and
the corresponding information from other modules, e.g., screenshot descriptions, task guidance,
actions, and reasoning. We set k to five, and it can be regarded as the memory length. Information
stored over k interactions ago will be forgotten from direct short-term memory. Empirically, we
found that recent information is crucial for decision-making, while a too-long memory length would
cause hallucinations. In addition, other modules continuously retrieve recent information from short-
term memory and update the short-term memory by storing the newest information.

For some long-horizon tasks, short-term memory is not enough. This is because the completion of
a long-horizon task might require historical information from a long steps ago. For example, the
agent might do a series of short-horizon tasks during a long-horizon task, which makes the original
long-horizon task forgotten in short-term memory. To maintain the long-term valuable information
while avoiding the long-token burden of GPT-4o, we propose a recurrent information summary as
long-term memory, which is the text summarization of experiences in game playing, including the
ongoing task, the past entities that the player met, and the past behaviors of the player and NPCs.

In more detail, we provide GPT-4o with the summarization before the current screenshot and the
recent screenshots with corresponding descriptions, and GPT-4o will make a new summarization
by organizing the tasks, entities, and behaviors in the time order with sentence number restriction.
Then we update the summarization to be the newly generated one, which includes the information
in the current screenshot. The recurrent summarization update, inspired by RNN, achieves linear-
time inference by preserving a hidden state that encapsulates historical input. This method ensures

5Python library encapsulating Microsoft’s DirectInput calls for convenience manipulating keyboard keys -
https://github.com/learncodebygaming/pydirectinput

6A fully typed Python wrapper around AutoHotkey to keyboard and mouse control - https://github.
com/spyoungtech/ahk

7Python library that provides C compatible data types, and allows calling functions in DLL/.so binaries -
https://docs.python.org/3/library/ctypes.html

8AppleScript is a scripting language created by Apple, which allows users to directly control scriptable
applications, as well as parts of MacOS - https://developer.apple.com/library/archive/
documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/
ASLR_intro.html
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the compactness of summarization token lengths and recent input data. Furthermore, the incorpora-
tion of long-term memory enables the agent to effectively retain crucial information over extended
periods, thereby enhancing decision-making capabilities.

Information Gathering. Given the video clip as input, we mainly depend on GPT-4o’s OCR capa-
bilities to extract textual information in the keyframes, which usually contain critical guidance and
notifications for the current situation. We also rely on GPT-4o’s visual understanding to analyze the
visual information in the frames. Besides, we augment LMMs’ visual understanding via some tools,
like template matching (Brunelli, 2009), Grounding DINO (Liu et al., 2023), and SAM (Kirillov
et al., 2023), to provide additional grounding for object detection and segmentation. Some visual
prompting tricks, like drawing axes and colorful directional bands, are also applied to enhance the
GPT-4o’s visual ability.

Task Inference. After reflecting on the outcome of the last executed action, We let GPT-4o analyze
the current situation to infer the most suitable task for the current moment and estimate the highest
priority task to perform and when to stop an ongoing task and start a new one.

Skill Curation. GPT-4o is required to strictly follow the provided interfaces and examples to gen-
erate the corresponding code for new skills. Moreover, GPT-4o is required to include documenta-
tion/comments within the generated code, delineating the functionality of each skill. Procedural
Memory where skills are stored will then check whether the code is valid, whether the format of
documentation is right, and whether any skill with the same name already exists. If all conditions
are passed, the newly generated skill is persisted for future utilization.

Action Planning. GPT-4o needs to select the appropriate skills from the curated skill set and in-
stantiate these skills into a sequence of executable actions by specifying any necessary parametric
aspects (e.g., duration, position, and target) according to the current task and history information.
The generated action is then fed to the Executor for interaction with the environment.

E RED DEAD REDEMPTION II

E.1 INTRODUCTION TO RDR2

Red Dead Redemption II (RDR2) is an epic AAA Western-themed action-adventure game by Rock-
star Games. As one of the most famous and highest-selling games in the world, it is widely ac-
knowledged for its movie-like realistic scenes, rich storylines, and immersive open-ended world.
The game applies a typical role-playing game (RPG) control system, played from a first- or third-
person perspective, which uses WASD for movement, mouse control for view changing, first- or
third-person shooting for combat, and inventory and manipulation.

For most of the game, players need to control the main character, Arthur Morgan, upon choosing
to complete mission scenarios following the main storyline. Otherwise, they can freely explore the
interactive world, such as going hunting, fishing, chatting with non-player characters (NPCs), train-
ing horses, witnessing or partaking in random events, and participating in side quests. As the main
storyline progresses, different skills are gradually unlocked. As a close-source commercial game,
no APIs are available for obtaining additional game-internal information nor pre-defined automation
actions. Following its characteristics, this game serves as a fitting and challenging environment for
the GCC setting and a comprehensive benchmark for embodiment.

E.2 OBJECTIVES

In Chapter 1 of RDR2, the first two missions of the main storyline are Outlaws from the West
and Enter, Pursued by a Memory. These missions serve as the tutorial content for RDR2, guiding
players step-by-step into the role of Arthur. They immerse the player in the story’s development
while teaching the game’s controls and mechanics.

We divided Mission 1 and Mission 2 into 8 and 5 tasks respectively based on the checkpoints within
each mission. Each checkpoint may present failure scenarios. For example, in Mission 1, there are
six failure scenarios: i) Assaults, kills, or abandons Dutch or Micah; ii) Allows Dutch or Micah to be
killed; iii) Abandons the homestead; iv) Assaults, kills, or abandons their horse; v) Assaults, kills,
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Mission 2: Enter, Pursued by a MemoryMission 1: Outlaws from the West Open-ended Mission: Buy Supply

Figure 10: Trajectory and success rates of 13 main storyline tasks and 1 open-world task in RDR2. Each task is
run 5 times and each trial is run for at most 500 steps. Long horizontal and challenging tasks like Protect Dutch
and Search for Supplies usually need several times of retry to complete, resulting in the demand for more steps.
It explains the low success rate of these tasks within 500 steps.

or abandons the horse in the barn; vi) Dies. We categorized each sub-task as either "Easy" or "Hard"
based on the likelihood of failure at each checkpoint and the need to retry the checkpoint.

To evaluate CRADLE’s capabilities in an open-world environment, Mission 3 is designed as a hard
open-ended task. Unlike the first two tutorial missions, it does not include any checkpoints. Conse-
quently, the entire Mission 3 is treated as a single, comprehensive task. Although we do not subdi-
vide Mission 3 into finer tasks, we aim to identify key points to facilitate a clearer understanding of
Mission 3 for the reader.

Tables 8 and 9 provide a brief introduction of each task in the first two missions of the main storyline
and an open-ended mission, along with approximate estimates of their difficulty. Due to GPT-4o’s
poor performance in spatial understanding and fine-manipulation skills, it can be challenging for
our agent to perform certain actions, like entering or leaving a building, or going to precise indoor
locations to retrieve specific items. Additionally, the high latency of GPT-4o’s responses also makes
it harder for an agent to deal with time-sensitive events, e.g., during combat.

E.3 IMPLEMENTATION DETAILS

Our experiments are based on the latest version of RDR2, ‘Build 1491.50’. As shown in Figure
14, strictly following the GCC setting, our agent takes the video of the screen as input and outputs
keyboard and mouse operations to interact with the computer and the game. An observation thread
is responsible for the collection of video frames from the screen and each video clip records the
whole in-game process since executing the last action.

Information Gathering. To extract keyframes from the video observation, we utilize the VideoSub-
Finder tool 9, a professional subtitle discovery and extraction tool. These keyframes usually contain
rich meaningful textual information in the game, which are highly relevant to the completion of
tasks and missions (such as character status, location, dialogues, in-game prompts and tips, etc.) We
use GPT-4o to extract and categorize all the meaningful contexts in these keyframes and perform
OCR, and call this processing "gathering text information". Then, to save interactions with GPT-4o,
we only let GPT-4o provide a detailed description of the last frame of the video.

While GPT-4o exhibits impressive visual understanding abilities across various CV tasks, we find
that it struggles with spatial reasoning and recognizing some game-specific icons. To address these
limitations, we add a visual augmentation sub-module within our Information Gathering module.
This augmentation step serves two main purposes: i) utilize Grounding DINO (Liu et al., 2023), an
open-set object detector, to output precise bounding boxes of possible targets in an image and serve
as spatial clues for GPT-4o; and ii) perform template matching (Brunelli, 2009) to provide icon
recognition grounding truth for GPT-4o when interpreting instructions or menus shown on screen.
As LMM capabilities mature, it should be possible to disable such augmentation.

9VideoSubFinder standalone tool - https://sourceforge.net/projects/videosubfinder/
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Table 8: Tasks in the first two missions of RDR2. In the tutorial guide, the prompt text Start Dialogue signifies
the end of the previous checkpoint and the beginning of the current checkpoint. Difficulty refers to how hard to
accomplish the corresponding tasks. Figures 11 and 12 showcase snapshots of each task (specific sub-figures
marked in parenthesis in the table). The maximal number of steps (agent takes one action) for each task is 500.

Mission 1: Outlaws from the
West

Description Start Dialogue Difficulty

Follow Dutch (Fig. 11a) Arthur follows Dutch on horseback into the snow to find
their scouting gang members.

Use [W] to Follow Dutch Easy

Go to Town (Fig. 11b) Arthur rides his horse, following Micah to the vicinity of
a little homestead Micah discovered.

Hold [W] to match speed
with Dutch and Micah

Easy

Hitch Horse (Fig. 11c) Arthur hitches the horse to the hitching post, then goes to
the old shed and takes cover.

Hold [E] to hitch your horse Easy

Protect Dutch (Fig. 11d) Arthur uses his gun to shoot all of the O’Driscolls inhab-
iting the house and protect Dutch.

Use [W] to peak out of cover Hard

Search for Supplies (Fig.
11e)

Arthur follows Dutch to the house to search for supplies. Hold [R] near items to
pick the up while searching
house.

Hard

Go to Barn (Fig. 11f) Arthur follows Dutch’s directions and goes to the barn to
see if there’s anything inside.

Dutch: Micah, Arthur, keep
looking for stuff

Easy

Search Barn (Fig. 11g) Arthur searches the barn and defeats the O’Driscoll hid-
ing inside.

[F] Attack the O’Driscoll Hard

Lead Horse (Fig. 11h) Arthur calms the horse and takes it out of the barn. Hold [Right Mouse Button]
to focus on the horse

Easy

Mission 2: Enter, Pursued
by a Memory

Description Start Dialogue Difficulty

Follow Javier (Fig. 12a) Arthur rides his horse following Javier up the mountain
through the blizzard searching for John’s trail.

Follow Javier Hard

Search John (Fig. 12b) After dismounting, Arthur followed Javier over slopes
and ledges to find John and carry him away.

Javier: Down this way Hard

Keep Wolves away (Fig.
12c)

Arthur manages to shoot all of the wolves before they can
attack Javier and John.

Keep the wolves away from
Javier and John

Hard

Kill Wolves (Fig. 12d) Three people ride horses down the mountain. Arthur
eliminate the wolves, protecting Javier and John ahead.

Javier: Come on, let’s get
back to the others

Hard

Return to Camp (Fig. 12e) Arthur followed Javier on horseback back to camp. Yea. . . c’mon. Let’s push
hard and get back

Easy

Table 9: Key points in the open-ended mission, Buy Supply in RDR2. Figure 13 showcases snapshots of key
points (specific sub-figures marked in parenthesis in the table).

Mission 3: Buy Supply Description

Find Horse (Fig. 13a) Find and mount the horse in the camp.
Prepare to Navigate to Saloon (Fig. 13b) Open map, find the saloon and create waypoint.
Go to Saloon (Fig. 13c) Ride horse to the saloon.
Prepare to Navigate to Shop (Fig. 13d) Open map, find the general store and create waypoint.
Go to Shop (Fig. 13e) Ride horse to the shop.
Enter Shop (Fig. 13f) Dismount the horse and enter the shop.
Talk to Shopkeeper(Fig. 13g) Approach the shopkeeper and talk.
Buy Target Product (Fig. 13h) Open the menu, find and buy the target product.

Self-Reflection. The reflection module mainly serves to evaluate whether the previously executed
action was successfully carried out and whether the current executing task is finished. To achieve
this, we uniformly sample at most 8 sequential frames from the video observation since the execution
of the last action and use GPT-4o to estimate the success of its execution. Additionally, we expect
GPT-4o can also provide analysis for any failure of the last action (e.g., the move-forward action
failed and the cause could be the agent was blocked by an obstacle). With such valuable information
as input for Action Planning, including the failure/success of the last action and the corresponding
analysis, the agent is capable of attempting to remedy an inappropriate decision or action execution.

Moreover, some actions require prolonged durations, such as holding down specific keys, which can
coexist or interfere with other actions decided by subsequent decisions. Consequently, the reflection
module must also decide whether an ongoing action should continue to be executed. Furthermore,
self-reflection can be leveraged to dissect why the last action failed to bring the agent close to the
target task completion, better understand the factors that led to the successful completion of the
preceding task, and so on.
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(a) Follow Dutch (b) Go to Town (c) Hitch Horse

(d) Protect Dutch (e) Search for Supplies (f) Go to Barn

(g) Search Barn (h) Lead Horse

Figure 11: Image examples of tasks in the first mission of Outlaws from the West. (The picture has been
brightened for easier reading.)

(a) Follow Javier (b) Search John (c) Keep Wolves Away

(d) Kill Wolves (e) Return to Camp

Figure 12: Image examples of tasks in the second mission of Enter, Pursued by a Memory.

Besides, we observe that instead of providing GPT-4o with sequential high-resolution images for
self-reflection, low-resolution images make it easier for GPT-4o to understand the relation among
the sequential screenshots and capture dynamic changes, resulting in a significantly higher success
rate of detecting whether the action is executed successfully and take any effect. We hypothesize that
since a high-resolution image can cost as many as 2000 tokens, too many high-resolution images
make GPT-4o fail to capture the overall changes across screenshots and be caught up in the local
details.

Task Inference. During gameplay, we let GPT-4o propose the current task to perform whenever it
believes it is time to start a new task. GPT-4o also outputs whether the task is a long- or short-horizon
task when proposing a new task. Long-horizon tasks, such as traveling to a location, typically require
multiple iterations, whereas short-horizon tasks, like picking up an item or conversing with someone,
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(a) Find Horse (b) Prepare to Navigate to Saloon (c) Go to Saloon

(d) Prepare to Navigate to Shop (e) Go to Shop (f) Enter Shop

(g) Talk to Shopkeeper (h) Buy Target Product

Figure 13: Image examples of key points in the open-ended task of Buy Supply.

Memory

Episodic 
Memory

Procedural
Memory

Self-Reflection Task Inference Skill Curation

def lead_horse(duration):
    # Lead the horse.

    press_key(‘E’, duration)

“Lead the horse”

def turn(degree):
    # Turn the character a certain angle.

    move_mouse(degree)

Add/Update

Action Planning

lead_horse(duration=2)

Environment

Observe Execute

def move_forward(duration):
    # Move ahead for a duration time.
    press_key(‘W’, duration)

Information Gathering

def show_info(duration):
    # Show the information.

    press_key(‘Q’, duration)

Generated

Retrieved

1. The previous action 
check_shire() took effect 
since the secondary menu 
of further actions appeared. 
2. The task of leading the 
horse is not completed yet. 

Figure 14: The detailed illustration of how CRADLE is instantiated as a game agent to play RDR2.

involve fewer iterations. The agent will follow the newly generated task for the next 3 interactions.
After 3 interactions, the agent returns to the last long-horizon task in the stack. Deciding on a binary
task horizon is much easier and more robust for GPT-4o, than re-planning at every iteration. Since
a long-horizon task frequently includes multiple short-horizon sub-tasks, this implementation also
helps avoid forgetting the long-horizon tasks under execution.

Skill Curation. As shown in Figure 16, during gameplay, instructions often appear on the screen,
such as "press [Q] to take over" and "hold [TAB] to view your stored weapons", which serve as
essential directives for completing current and future tasks proficiently. To save interactions with
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GPT-4o, we implement a simple version of this module inside Information Gathering to reduce
interactions with GPT-4o. When GPT-4o detects and classifies some instructional text in the recent
observation, which usually contains key and button hints, it will directly generate the corresponding
code and description.

Action Planning. Upon execution of this module, we first retrieve the top k relevant skills for the
task from procedural memory, alongside the newly generated skills. We then provide GPT-4o with
the current task, the set of retrieved skills, and other information collected in Information Gathering
that may be helpful for decision-making (e.g., recent screenshots with corresponding descriptions,
previous decisions, and examples) and let it suggest which skills should be executed. We also request
that GPT-4o provide the reasons for choosing these skills, which increases the accuracy, stability,
and explainability of skill selection and thus greatly improves framework performance. While GPT-
4o sometimes may generate a sequence of actions, we currently only execute the first one, and
perform Self-Reflection, since we observe a tendency for the second action to usually suffer from
severe hallucinations.

Action Execution. Unlike the conventional mouse operation in standard software, where the cursor
is restricted to a 2D grid and remains visible on the screen to navigate and interact with elements,
the utilization of the mouse in 3D games like RDR2 introduces a varied control scheme. In menu
screens, the mouse behaves traditionally, offering familiar point-and-click functionality. However,
during gameplay, the mouse cursor disappears, requiring players to move the mouse according to
specific action semantics. For example, to alter the character’s viewpoint, the player needs to map
the actual mouse movement to in-game direction angle changes, which differ in magnitude in the X
and Y axes. Another special transition applies to shooting mode, where the front sight is fixed at the
center of the screen, and players must maneuver the mouse to align the sight with target enemies.
This nuanced approach to mouse control in different contexts adds an extra layer of challenge to
general computer handling, showcasing the adaptability required in game environments, compared
to regular software applications.

Procedural Memory. In our target setting, We intend to let the agent learn all skills from scratch, to
the extent possible for the main storyline missions. The procedural memory is initialized with only
preliminary skills for basic movement, which are not clearly provided by the in-game tutorial and
guidance.

• turn(degree), move_forward(duration): Since the game does not precisely introduce how
to move in the world through in-game instructions, we provide these two basic actions in
advance, so GPT-4o can perform basic mobility, while greatly reducing the number of calls
to the model.

• shoot(x, y): RDR2 also does not provide detailed instructions on how to aim and shoot.
Moreover, due to limitations with GPT-4o spatial reasoning and the need to sometimes
augment images with object bounding boxes, we provide such basic skill for the agent to
complete relevant tasks.

• select_item_at(x, y): Similarly to shoot(), due to the lack of instructions, we provide such
skill for the agent to move the mouse to a certain place to select a given item.

Beyond these basic atomic low-level actions, we introduce a few composite skills to facilitate the
game playing progress. The agent should be able to complete tasks using only the basic skills above
and the skills it learns, but these composite skills streamline the process by greatly reducing calls to
the backend model.

• turn_and_move_forward(degree, duration): This skill is just a simple composition of turn()
and move_forward() to save frequent calls to GPT-4o in a common sequence.

• follow(duration) and navigate_path(duration): In RDR2, tasks often guide players to fol-
low NPCs or generated paths (red lines) in the minimap to certain locations. This can be
reliably accomplished via the basic movement skills, but requires numerous interactions
with GPT-4o. To control both cost and time budgets involving GPT-4o’s responses, we
leverage the information shown in the minimap to implement a composite skill to follow
target NPCs or red lines for a short set of game iterations. The default duration is 20
iterations. Increasing the duration can dramatically improve the performance in task Fol-
low Dutch, Follow Javier and Killing Wolves but significantly decrease the success rate of
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Search John since this task requires frequent exchange of the skills between climbing and
following.

• fight(): As output of an interaction with GPT-4o, the agent will only take one action per
step. However, though the action is generated correctly, specifically in fight scenarios, the
action frequency may not be high enough to defeat an opponent. In order to allow sub-
second punches, we provide a pre-defined action that wraps this multi-action punching,
which can be selected by GPT-4o to effectively win fights.

For the open-ended mission, since the agent skips all the tutorials in Chapter I, we provide all the
necessary skills in the procedural memory at the beginning of the mission.

Episodic Memory. This module stores all the useful information, e.g., input and output of GPT-
4o. In each iteration, after the self-reflection, we will request GPT-4o to summary the event that
happened in the last action and the past experiences.

Game Pause. To prevent in-game time from passing in real-time games like RDR2, we have to
pause the game while waiting for LMMs’ response. The time interval between two consecutive
actions can be as long as one minute. In RDR2, after the agent finishes executing outputted actions,
esc will be automatically pressed to pause the game and when the agent determines the next action,
esc will be automatically pressed again to unpause the game. Note that there will be an animation
lasting up to 0.5 seconds for both pausing and unpausing. During this animation, we can not control
the character, but the dynamics of the game world keep changing, e.g., the wolves are still moving.
It introduces additional challenges for the tasks that require precise timing, like combat.

E.4 CASE STUDIES

Here we present a few game-specific case studies for more in-depth discussion of the framework
capabilities and the challenges of the GCC setting.

E.4.1 SELF-REFLECTION

Self-reflection is an essential component in CRADLE as it allows our framework reasoning to correct
previous mistakes or address ineffective actions taken in-game. Figure 15 provides an example of
the self-reflection module. The task requires the agent to select a weapon to equip, in the context
of the “Protect Dutch” task. Initially, the agent selects a knife as its weapon by chance, but since
the game requires a gun to be chosen, this is incorrect and the game still prompts the player to re-
open the weapon wheel. The self-reflection module is able to determine that the previous action was
incorrect and on a subsequent iteration the agent successfully opts for the gun, correctly fulfilling
the task requirement and advancing to the next stage in the story.

E.4.2 SKILL CURATION

For skill curation, we first provide GPT-4o with examples of general mouse and keyboard control
APIs, e.g., io_env.key_press and io_env.mouse_click. Figure 16 shows that GPT-4o can capture
and understand the prompts appearing on screenshots, i.e., icons and text, and strictly follow the
provided skill examples using our IO interface to generate correct skill code. Moreover, GPT-4o
also generates comments in the code to demonstrate the functionality of this skill, which are essential
for computing similarity and relevance with a given task during skill retrieval. The quality of the
generated comment directly determines the results of skill retrieval, and further impacts reasoning
to action planning. Curation can also re-generate code for a given skill, which is useful if GPT-4o
wrongly recognized a key or mouse button in a previous iteration.

E.4.3 ACTION EXECUTION AND FEEDBACK

Proper reasoning about environment feedback is critical due to the generality of the GCC setting
and the level of abstraction to interact with the complex game world. The semantic gaps between
the execution of an action, its effects in the game world, and observing the relevant outcomes for
further reasoning lead to several potential issues that CRADLE needs to deal with. Such issues can
be categorized into four major cases:
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Use [Mouse] to select a weapon and 
release [TAB] to equip.

1

2

Action Planning
show_weapon_wheel()

Skill Curation
Retrieved Skills: [‘aim’, ‘follow’, ‘turn’, 

‘move_forward’, ‘show_weapon_wheel’, etc.]

Task Inference
Hold Tab to show the Weapon Wheel.

Ex
ec
ut
e

def select_weapon_at(x, y):
# Move the mouse to select the weapon
io_env.mouse_move(x, y)

select_weapon_at(0.6, 0.68)
Decision Reasoning: The red box is selected 
as it is near the currently selected weapon.

Retrieved Skills: [‘aim’, ‘follow’, ‘turn’, 
‘move_forward’, ‘show_weapon_wheel’, etc.]

Task Inference

Skill Curation

Action Planning

Ex
ec
ut
e

3

1. The frame does not change, therefore, 
the task is not finished yet.
2. The selected weapon is wrong, 
therefore, I need to change the weapon.

show_weapon_wheel()

Hold Tab to show the Weapon Wheel.

Task Inference

Skill Curation

Action Planning

Ex
ec
ut
e

4

select_weapon_at(0.5, 0.27)

Decision Reasoning: The weapon in 
green box is slightly more relevant to the 
target due to the last self-reflection.

Retrieved Skills: [‘aim’, ‘select_weapon_at’, 
‘turn’, ‘move_forward’, ‘show_weapon_wheel’, etc.]

Use [Mouse] to select a weapon and 
release [TAB] to equip.

Task Inference

Skill Curation

Action Planning

Ex
ec
ut
e

5

Self-Reflection
1. The last executed action was to select a weapon, 
and it was executed successfully.
2. In this frame, the ammo count is 6 in the upper 
right corner, so the character is ready to fire.

Figure 15: Case study of self-reflection on re-trying a failed task. Task instruction and context require the agent
to equip the gun. A wrong weapon (knife) is first selected, but the agent equips the gun after self-reflection.
Only relevant modules are shown for better readability, though all modules (Figure 3) are executed per iteration.
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def take_cover(duration = 2):
    """
    press "Q" to take cover
    """
    io_env.key_press('q', duration)

def focus_on_horse():
    """
    hold "right mouse button" to focus on horse
    """
    io_env.mouse_hold('right button')

def view_stored_weapons():
    """
    press "tab" to view your stored weapons
    """
    io_env.key_hold('tab')

Figure 16: Skill code generation based on in-game instructions. As the storyline progresses, the game will
continually provide prompts on how to use a new skill via keystrokes or utilizing the mouse.

Lack of grounding feedback. In many situations, due to the lack of precise information from the
environment, it can be difficult for the system to deduce the applicability or outcome of a given
action. For example, when picking an item from the floor, the action may fail due to the distance to
the object not yet being close enough. Or, if within pick up range, the chosen action may not exactly
apply due to other factors (e.g., character’s package is full).

Even if the right action is selected and executed successfully, the agent still needs to figure out its
results from the partial visual observation of the game world. If the agent needs to pick or manipulate
an object that is occluded from view, the action may execute correctly, but no outcome can be seen.

A representative example in RDR2 happens when the agent tries to pick up its gun from the floor
after a fight. Getting to the right distance, without completely occluding the object, can lead to
multiple re-trials. Figure 17a showcases a situation where, though the character is already standing
near the gun (as seen in the minimap), it’s still not possible to pick it up.

Previous efforts (Wang et al., 2023b; 2024a) that utilize in-game state APIs unreasonably bypass
such issues by leveraging internal structured information from the game and the full semantics of
responses (data) or failures (error messages).

Imprecise timing in IO-level calls. This issue is caused by the ambiguity in the game instructions
or differences in specific in-game action behaviors, where even the execution of a correct action may
fail due to minor timing mismatches. For example, when executing an action like ‘open cabinet’,
which requires pressing the [R] key on the keyboard, if the press is too fast, no effect happens in the
game world. However, as there is no visual change in the game nor other forms of feedback, it can
be difficult for GPT-4o to figure out if an inappropriate action was chosen at this game state or if the
minor timing factor was the problem. Pressing the key for longer triggers an animation around the
button (only if the helper menu is on screen), but this is easily missed and any key release before the
circle completes also results in no effect. Figure 17b illustrates the situation.

The same problem also manifests in other situations in the game, where pressing the same key for
longer triggers a completely different action (e.g., lightly pressing the [Left Alt] key vs. holding it
for longer).

Change in the semantics of key and button. A somewhat similar situation occurs when the same
keyboard key or mouse button gets attributed different semantics in different situations (or even in a
multi-step action). GPT-4o may decide to execute a given skill, but the original semantics no longer
hold. The lack of in-game effect parallels the previous situations. Worse yet, an undesired effect
will confuse the system regarding the correct action being selected or not.

For example, when approaching a farm in the beginning of the game, the agent needs to hitch the
horse to a pole to continue. The operation to perform the action consists of pressing the [E] key near
a hitching post (as shown in Figure 17c). However, the same [E] key press is the only constituting
step in other actions with different semantics, like dismount the horse or open the door. Wrongly
triggering a horse dismount at the situation shown in the figure can lead to undesired side effects,
i.e., it may mislead the system about the actual effects of the action or affect the planning of which
next actions to perform.
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(a) ‘Pick gun’ unavailable (b) ‘Open cabinet’ press timing (c) ‘Hitch horse’ re-use of [E] key

Figure 17: Examples of action execution uncertainty. Lack of environmental feedback to actions and semantic
gaps between action intent and game command can lead to challenging situations for agent reasoning.

Interference issues. Lastly, completion of some actions requires the correct execution of multiple
steps sequentially, which could be interrupted in many ways not related to the agent’s own actions.
Without the use of APIs that expose internal states or other forms of feedback, it is much harder for
the agent to decide when to repeat sub-actions or try different strategies. For example, if the agents
gets shot and loses aim while in combat, or an unrelated in-game animation is triggered mid-action,
canceling it.

Since there is no direct environment feedback, the agent needs to carefully analyze the situation and
try to infer if any action step needs re-execution.

E.5 LIMITATIONS OF GPT-4O AND GPT-4V

Deploying CRADLE in a complex game like RDR2 requires the backbone LMM model to handle
multimodal input, which revealed several limitations of both GPT-4V and GPT-4o, necessitating ex-
ternal tools to enhance overall framework performance. Initial tests and exploration were performed
using GPT-4V, as GPT-4o was not yet available. These tests highlighted significant weaknesses
in spatial perception, icon understanding, history processing, and world understanding. Upon the
release of GPT-4o, further testing demonstrated some notable improvements in spatial perception.
However, enhancements in other areas remained marginal, while some regressions were also ob-
served, all indicating the need for additional tools to aid decision-making.

Spatial Perception. As shown in Figure 18a and 19a, GPT-4V’s spatial-visual recognition capability
is insufficient for precise fine-grained control, particularly in detecting whether the character is being
or going to be blocked and in estimating the accurate relative positions of target objects. In contrast,
GPT-4o exhibits a significant enhancement in spatial perception, capable of recognizing obstacles
ahead and estimating the approximate relative positions between objects. However, both models
require supplementary information, such as bounding boxes of potential target objects, to make
fine-grained decisions. These led to the need to augment certain images to provide auxiliary visual
clues for decision-making, i.e., bounding boxes of possible target objects.

Icon Understanding. Both GPT-4o and GPT-4V struggle with domain-specific concepts, such as
unique icons within the game, which may represent specific targets or refer to certain mouse and
key actions. As shown in Figure 18b and 19b, GPT-4V and GPT-4o fail to recognize the left shift,
right mouse button, and space icons. Attempts to incorporate few-shot learning to improve image
understanding cannot be generalized. Therefore, we match prepared pattern templates, e.g., icon
images, against each screenshot to continuously detect and highlight any appearing icons.

Figure 18c and Figure 19c also demonstrate that although GPT-4o performs better than GPT-4V in
understanding the mini-map, it still fails to consistently interpret this crucial information regarding
the position and direction of the character. This failure in localization leads the agent to sometimes
get lost in the town and miss the task target. While the aforementioned issues can be slightly al-
leviated by providing additional few-shot examples, a significant improvement is only achieved by
cropping the image and providing GPT-4o with the exact region containing the icon to be recognized.
This dependency on precise input makes the issue challenging and unreliable for decision-making.
Although the above issues can be slightly alleviated by providing additional few-shot examples, it
can only have an obvious effect if we crop the image and provide the GPT-4o with the region exactly
containing the icon to be recognized, which makes the issue intractable.
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Based on the provided game screenshot, I've 
identified the following control prompt:
- “Hold L⬆ to ride faster"
This control suggests that holding a certain key 
(which seems to be an upward arrow key, often 
associated with the 'W' key for forward movement 
in many games) will make the character ride faster.

From the provided image screenshot from the game, 
I can identify the following keyboard and mouse 
control prompts:
1. "Toggle View" - The key for this action is "V".
2. "Zoom" - The key for this action is "O".
3. "Flip" - The key for this action is "L".
4. "Back" - The key for this action is "ESC".

The central white arrow is facing towards the left. The central white arrow with the white arrowhead is 
facing towards the left.

There are no immediate obstacles directly in front
of the character in the image. The character has a
clear path ahead on a muddy street in what appears
to be a Western-style town setting.

The shopkeeper in the image is on the right side,
behind the counter.

(a) GPT-4V fails to recognize obstacles in the environment and the position of the shopkeeper.

Based on the provided game screenshot, I've 
identified the following control prompt:
- “Hold L⬆ to ride faster"
This control suggests that holding a certain key 
(which seems to be an upward arrow key, often 
associated with the 'W' key for forward movement 
in many games) will make the character ride faster.

From the provided image screenshot from the game, 
I can identify the following keyboard and mouse 
control prompts:
1. "Toggle View" - The key for this action is "V".
2. "Zoom" - The key for this action is "O".
3. "Flip" - The key for this action is "L".
4. "Back" - The key for this action is "ESC".

The central white arrow is facing towards the left. The central white arrow with the white arrowhead is 
facing towards the left.

There are no immediate obstacles directly in front
of the character in the image. The character has a
clear path ahead on a muddy street in what appears
to be a Western-style town setting.

The shopkeeper in the image is on the right side,
behind the counter.

(b) GPT-4V struggles to recognize the icons for keys on keyboard and mouse buttons.

Based on the provided game screenshot, I've 
identified the following control prompt:
- “Hold L⬆ to ride faster"
This control suggests that holding a certain key 
(which seems to be an upward arrow key, often 
associated with the 'W' key for forward movement 
in many games) will make the character ride faster.

From the provided image screenshot from the game, 
I can identify the following keyboard and mouse 
control prompts:
1. "Toggle View" - The key for this action is "V".
2. "Zoom" - The key for this action is "O".
3. "Flip" - The key for this action is "L".
4. "Back" - The key for this action is "ESC".

The central white arrow is facing towards the left. The central white arrow with the white arrowhead is 
facing towards the left.

There are no immediate obstacles directly in front
of the character in the image. The character has a
clear path ahead on a muddy street in what appears
to be a Western-style town setting.

The shopkeeper in the image is on the right side,
behind the counter.

(c) GPT-4V cannot understand the correct direction of arrow points, i.e., character, towards in the mini-
map.

Figure 18: Example situations of GPT-4V’s limitations in understanding visual information from the game.
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There is an obstacle in front of the character. It 

appears to be a small wooden railing or barrier along 

the edge of the platform. The character would need 

to navigate around it or find a way over it to proceed 

forward.

The shopkeeper in the image is on the left side

(a) GPT-4o can recognize obstacles in the environment and the position of the shopkeeper.

Based on the provided image, the control prompt 

shown is:

• "Hold L to ride faster’.

The 'L' refers to the left analog stick on a controller, 

indicating that the player should hold the left analog 

stick in a forward position to increase the speed of 

their character's movement, typically while riding a 

horse.

From the provided image screenshot from the game, 

I can identify the following keyboard and mouse 

control prompts:

1. Toggle View: V

2. Zoom: Mouse Scroll Wheel

3. Flip: R

4. Back: Esc

5. Photograph: (No specific key assigned, just a 

label)

(b) GPT-4o struggles to recognize the icons for keys on keyboard and mouse buttons.

The central white arrow in the mini-map is facing 

to the right.

The central white arrow on the mini-map is facing 

down.

(c) GPT-4o occasionally accurately determines the direction of arrow points, i.e., character, towards in the
mini-map.

Figure 19: Example situations of GPT-4o’s limitations in understanding visual information from the game.
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History Processing. Moreover, both GPT-4o and GPT-4V can easily get distracted by irrelevant in-
formation in longer contexts, resulting in hallucinations. For example, when action planning utilizes
too many historical screenshots, they may confuse past and present frames. Additionally, perfor-
mance fluctuates and both model versions frequently generate output not adhering to the rules in the
provided prompts. To mitigate the issue of hallucinations, we more strictly control input information
by further summarizing long-term memory.

World Understanding. Lastly, the absence of an RDR2 world model limits GPT-4V and GPT-4o’s
understanding of the consequences of its actions in the game. This often results in inappropriate
action selection, such as overestimating the necessary adjustments for aligning targets or misjudging
the duration required for certain actions. To alleviate this problem, we introduced extra prompt rules
regarding action parameters and more flexibility into the self-reflection module.

F STARDEW VALLEY

F.1 INTRODUCTION TO STARDEW VALLEY

Stardew Valley is an open-ended country-life RPG game developed by ConcernedApe, which has a
98% positive rating on Steam and is rated as Overwhelmingly Positive. Players take on the role of
a character disillusioned with city life who inherits a dilapidated farm from their late grandfather.
Initially, the farmland is overrun with boulders, trees, stumps, and weeds, which players must clear
to make way for crops, buildings, and placeable items. The main goal is to restore and expand the
farm through activities such as planting crops, raising animals, mining, fishing, and crafting. Addi-
tionally, players can interact with NPCs in town, forming relationships that can lead to marriage and
children. Players complete quests for money or to restore the town’s Community Center by complet-
ing "bundles," which reward items like seeds and tools and unlock new areas and game mechanics.
All activities are balanced against the character’s health, energy, and the game’s clock. Food pro-
vides buffs, health, and energy. The game features a simplified calendar with four 28-day months
representing each season, affecting crop growth and activities. Compared to RDR2, this game is
more lightweight and easy to control. This game features a wealth of production and social activi-
ties, presenting a comprehensive test of an agent’s abilities, which is an ideal platform to observe and
evaluate agents’ comprehensive behaviors and abilities, like in the Generative Agents (Park et al.,
2023). We use the latest version (1.6.8) of the game to conduct all the experiments.

F.2 OBJECTIVES

We find that GPT-4o surprisingly struggles with accurately recognizing and locating objects near the
player in this 2D game. This leads to difficulties for the agent to interact with objects or people, as
it requires the player to stand precisely in front of them in the grid (e.g., when entering doors, using
a pickaxe to break stones). Even some basic tasks are already challenging enough for current agents
in this game. Therefore, as shown in Figure 20, we evaluate three essential tasks in the early stages
of the game:

• Farm Clearup. Clear the obstacles on the farm, such as weeds, stones, and trees, as much
as possible to prepare for farming. This task requires agents to move precisely to be in front
of the obstacles, identify the type of obstacles correctly and select corresponding tools to
deal with them.

• Cultivation. Use the hoe to till the soil, use a parsnip seed packet on the tilled soil to
sow a crop, water the crop every day and harvest at least one parsnip. This task requires
long-horizontal memory and reasoning.

• Shopping. Go to the general store in the town, which is on the other map, to buy more seeds
and return home. This task is used to evaluate agents’ long-distance navigation ability.

For each task, the maximal steps is 100.

F.3 IMPLEMENTATION DETAILS

Visual Prompting. As a cartoon-style pixel game, the game screen of Stardew is quite different
from the real world. Although GPT-4o can observe coarse-grained information from screenshots,
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(a) Before Farm Clear-up (b) After Farm Clear-up

(c) Cultivation (d) Shopping

Figure 20: Three tasks in Stardew Valley.

more fine-grained information is required to complete tasks. Therefore, as shown in Figure 21, we
divide each screenshot into 3× 5 grids and require GPT-4o to describe the screenshot in a grid-by-
grid format. We empirically find that it can result in a more precise and accurate description. And
GPT-4o can also make better control based on the grids. In addition, we also augment the image
with two blue and yellow bands on the left and right sides, respectfully, with the prompt, "The blue
band represents the left side and the yellow band represents the right side". Our empirical results
show that this method significantly improves GPT-4o’s ability to accurately distinguish left from
right.

Figure 21: Augmented screenshot via visual prompting. The full screenshot is divided into 3 × 5 grids and
each grid has a unique white coordinate. Additionally, we augment all input images with color bands, with
the prompt, "The blue band represents the left side and the yellow band represents the right side", which
significantly improves GPT-4o’s ability to accurately distinguish left from right.
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Information Gathering. As mentioned in the introduction of visual prompting, we let GPT-4o
describe the image grid by grid, which is helpful in locating the position of the character, surrounding
objects and buildings and facilitates the understanding of the relative positions among them for GPT-
4o. Besides, while compared to GPT-4V, GPT-4o is able to recognize most of the icons and their
quality in the toolbar shown at the bottom of the screenshot, GPT-4o cannot output the items in the
inventory sequentially one by one as it always skips a few in between. We have to clip the box
for each item out of the toolbar and feed them to GPT-4o independently, augmented with template
matching, for recognition, which turns out to be more accurate. The success of recognition of the
tools in the toolbar is critical to tasks like Farm Clearup and Cultivation.

Self-Reflection. The duration of actions in Stardew is usually much shorter than in RDR2, so we
only use the first and last frame from the video observation to reduce the number of tokens used
per request. Additionally, we provide some helpful prior information for GPT-4o. For example, a
screenshot of the inside of the store is provided to check whether the store was successfully entered.
This is useful because there are many other buildings near the store, and sometimes GPT-4o controls
the character to enter the wrong one. However, this is not realized if the screenshot is not provided.

Skill Curation. For skill curation, as mentioned in Figure 4, we mainly rely on the in-game manual
to generate atomic skills, like move_up(), do_action() and use_tool(). In addition, to handle the
challenges of locating objects, especially doors, we have a special set of composite skills specifically
for Stardew. e.g., go_through_door, buy_item, get_out_of_house and enter_door_and_sleep. With
the restrictions of GPT-4o in fine-grained control, we designed go_through_door composite skills for
the agent to control the game character to accurately reach various doors and successfully enter, such
as the house and the store door. and in order to buy certain items such as parsnip seeds, we designed
the composite skills buy_item to control the game character to interact with the salesman and buy
parsnip seeds. similarly, we designed the get_out_of_house and enter_door_and_sleep composite
skills to accurately exit the house from the bed and enter the house and walk to the bed.

Action Planning. In this game, we let GPT-4o output at most two skills in a single action every
time, which turns out to be efficient. The agent usually needs to select the correct tool first and then
use the tool or do action.

Procedure Memory. Procedure Memory is used to store and retrieve skills in code form. In order
for agents to quickly get started and complete some special tasks in Stardew, we have predefined
skills in Procedure Memory. These skills are divided into atomic and composite skills. atomic skill
consists of basic operations such as moving, selecting tools, etc. The description of all the atomic
skills is listed as follows:

• do_action(): The function to perform a context-specific action on objects or characters.

• use_tool(): The function to execute an in-game action commonly assigned to using the
character’s current selected tool.

• move_up(duration): The function to move the character upward (south) by pressing the ’w’
key for the specified duration.

• move_down(duration): The function to move the character downward (north) by pressing
the ’w’ key for the specified duration.

• move_left(duration): The function to move the character left (west) by pressing the ’w’ key
for the specified duration.

• move_right(duration): The function to move the character right (east) by pressing the ’w’
key for the specified duration.

• select_tool(key): The function to select a specific tool from the in-game toolbar based on
the given tool number.

and the composite skills are designed for the agent to complete a variety of special tasks. The
description of all the composite skills is listed as follows:

• buy_item(): The function to interact with the salesman and buy the item.

• enter_door_and_sleep(): The function to enter the house and walk to the bed.

• get_out_of_house(): The function to accurately exit the house from the bed
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• go_through_door(): The function to reach and enter all kinds of doors.

Game Pause. The game will pause automatically when the game window is not focused. So when
the character finishes executing actions, we will activate another window, e.g., code window, to
pause the game and stop the passage of the time in the game.

F.4 CASE STUDIES

Here we present a few game-specific case studies to further discuss CRADLE’s self-reflection and
task-inference processes in the GCC setting.

1. The characters' positions in these frames are identical.

2. The most probable cause is that the character was 

blocked by seen or unseen obstacles.1

Action Planning

move_left(duration=5)

Skill Curation

Retrieved Skills: [‘move_left’, 

‘move_right’, ‘move_up’, ‘move_down’, etc.]

Task Inference

Move left to exit town.

Task Inference

move_up(duration=0.5)

Decision Reasoning: The most suitable 
action now is to try moving slightly to fine 
tune the character’s position and then 
attempt move_left() again if required..

Action Planning

2

3

Self-Reflection

1. The last executed action was to move up, and it 

was executed successfully. 

2. In this frame, the character successfully 

surmounted the obstacle. 

Skill Curation

Retrieved Skills: [‘move_left’, 

‘move_right’, ‘move_up’, ‘move_down’, etc.]

Figure 22: Case study of self-reflection on re-trying a failed task. Task instruction and context require the agent
to exit town. A wrong direction is first selected, but the agent moves up after self-reflection. Only relevant
modules are shown for better readability, though all modules (Figure 3) are executed per iteration.

F.4.1 SELF-REFLECTION

The Self-reflection module plays an important role in the completion of game missions in Stardew,
giving our framework the ability to determine if the actions performed are complete and effective
and to correct the errors of invalid actions. In the "Purchasing Seeds" task, the Agent is asked to
return home from the store after purchasing items. At the "Home is on the left side of the store"
prompt, the Agent controls the character to go left, but there are obstacles to keep going left, and
the character must go up to circumnavigate the obstacles. As shown in the Fingure 22, the role will
initially be stuck at the obstacle and cannot continue to the left. Through Self-Reflection, the Agent
can judge that it is currently in a state of obstruction, and moving to the left cannot be implemented
smoothly. Therefore, the agent can adjust the direction upward to bypass the obstacle and enable the
role to continue to the left until it returns home.
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F.4.2 TASK-INFERENCE

Task Inference is a very effective module for completing game quests in Stardew. Its function is to
decompose a vague and grand task into a specific sub-task, which effectively guides the Agent to
complete the overall task. For example, in the Farming task, as shown in Figure 23, the task that the
character needs to complete is "cultivate and harvest a parsnip." This is a complete but vague task.
Through the Task Inference module, the Agent breaks down the task into (1) till the soil with the
hoe, (2) plant the parsnip seeds, (3) water the planted seeds once daily for four days, (4) harvest the
fully grown parsnip. This enables the Agent to know more clearly the steps needed to complete and
finish the task successfully.

Cultivate and 

harvest a parsnip. 

Task 

Inference

Information 

Gathering

Task 

Inference
Action 

Planning

Toolbar: 5. Scythe 

(Selected)

The next subtask 

is to till the soil 

with the hoe

select_tool(key="2")

use_tool()

Toolbar: 2. Hoe 

(Selected)

The next step is 

to plant the 

parsnip seeds.

select_tool(key="6")

do_action()

(1) Till the soil with the hoe.

(2) Plant the parsnip seeds.

Toolbar: 6. 

Parsnip Seeds (11) 

(Selected)

The next step is 

to water the 

planted seeds.

select_tool(key="3“)

use_tool()

(3) Water the planted seeds once daily for four days.

Toolbar: 3. Watering 

Can (Selected)

the next step is 

to harvest the 

parsnip.

do_action()

(4) Harvest the fully grown parsnip. 

Figure 23: Case study of task inference on decomposing a task into specific sub-tasks. The complete task is
to cultivate and harvest a parsnip. CRADLE decomposes the task into four sub-tasks by task inference. Only
relevant modules are shown for better readability, though all modules (Figure 3) are executed per iteration.

F.5 LIMITATIONS OF GPT-4O

Fine-grained Control. Stardew Valley requires that players are positioned precisely to interact with
objects, such as doors and NPCs. However, it is difficult for GPT-4o to take a pixel-level precise
action. For example, GPT-4o can not take a precise movement even though the speed at which the
figure moves is known. To alleviate this problem, we make some composite skills that use template-
matching to complete some complex interaction tasks, such as purchasing items.

Perception in a 2D virtual world . In Stardew Valley, it’s common for a character to be blocked by
rocks or trees, and GPT-4o fails to tell if a character is blocked by looking at the image once, and
can’t predict if the next move will be blocked, which is very easy for a human to do by looking at the
image. This indicates that GPT-4o is relatively weak in perceiving the virtual world in this game. In
order to solve this problem, we compare the successive frames before and after in Self-Reflection to
enable GPT-4o to judge the corresponding changes.
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G DEALER’S LIFE 2

G.1 INTRODUCTION TO DEALER’S LIFE 2

Dealer’s Life 2 is a captivating indie simulation game developed by Abyte Entertainment. Renowned
for its intricate negotiation mechanics and humorous portrayal of a pawn shop environment, the
game is celebrated for its engaging gameplay that combines strategy with a quirky, cartoonish art
style. As a simulation game with role-playing elements, Dealer’s Life 2 is played from a first-person
perspective, utilizing a mouse for point-and-click interactions and a keyboard for price inputs. This
interface facilitates item appraisals, customer interactions, and comprehensive shop management.

In the game, players assume the role of a pawn shop manager, tasked with acquiring and selling
various items to make a profit while managing their store’s reputation and inventory. Players engage
with a wide range of unique non-player characters (NPCs), each with their own distinct behaviors
and negotiation styles. Whether bartering over the price of a rare collectible or managing unfore-
seen shop events, players must hone their haggling and strategic decision-making skills to succeed.
Dealer’s Life 2 operates in a closed-source format with no APIs available for accessing in-game
data or automating gameplay functions. This setup ensures a hands-on experience where players are
immersed in the day-to-day challenges of running a pawn shop. This game environment provides
a unique and entertaining setting for testifying the GCC’s haggling and strategic decision-making
abilities. We run our experiments using the latest version, V. 1.013_W96 of the game.

G.2 OBJECTIVES

We concentrate on evaluating the sustained management skills required to maximize profits through
buying and selling a diverse range of items from customers. Therefore, the task in this game is de-
fined as Weekly shop management, i.e., managing a shop for a week automatically. This game could
effectively demonstrate the negotiation ability of the LMM in a trade and bargain. For example,
giving an unacceptable price to the customers, i.e., a pretty low price for a seller customer or a very
high price for a buyer customer, could cause the deal to fail directly, which brings no profit in this
situation. The key is to carefully analyze the description of the item, e.g., the rarity and condition of
the item, and more importantly, the response of the customer, i.e., the customer’s mood changes.

Contrary to many games that feature detailed tutorials highlighting specific operations and objectives
through each crucial step, Dealer’s Life 2 does not provide such guidance. This absence transforms
the game into a zero-shot, hard open-world task, where the LMM must directly apply its prior
knowledge of haggling and strategic decision-making to a new and unfamiliar environment. To
provide readers with a clear and straightforward understanding of the task, we illustrate the typical
flow of a day’s shop management through several key steps, presented in Table 10.

Table 10: Key points in the open-ended mission, Weekly shop management in Dealer’s Life 2. Figure 24
showcases snapshots of key points (specific sub-figures marked in parenthesis in the table).

Task: Weekly shop management Description

Open shop (Fig. 24a) Start a new day shop management.
Dialog (Fig. 24b) Choose an option in a dialog.
Item Description (Fig. 24c) View the item information
Haggle (Fig. 24d) Give a price for the item.
Deal Result (Fig. 24e) View the deal results.
Stats (Fig. 24f) View shop stats.

G.3 IMPLEMENTATION DETAILS

The implementation of Dealers’ Life 2 also strictly follows the GCC framework, which includes
Information Gathering, Self-Reflection, Task Inference, Skill Curation, Action Planning, and Ac-
tion Execution. The details are described in Appendix D. Therefore, we emphasize the specific
implementations for Dealers’ Life 2.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

(a) Open Shop (b) Dialog (c) Item Description

(d) Haggle (e) Deal Result (f) Stats

Figure 24: Image examples of key points in the open-ended task of Dealers’ Life 2.

Procedural Memory. Due to the absence of a new-user guide, the LMM cannot directly and accu-
rately know the operation method or effect of an action in the game, e.g., giving the price can only
use the keyboard to input an integer in an abstract box in the bottom right of the haggle screen as
shown in Figure 24d, by directly observing the screen. Unless the player executes an action and ob-
serves what is happening, the player cannot know what its effect is. However, this could easily cause
severe errors in an open-world environment. For example, if the player gives a price at $100,000 for
an item without knowing what the box is, it could cause the player to lose all the money. Besides,
this game is very simplified with finite types of screen content and fixed buttons positions for pro-
cessing the deal, where we could categorize the screen types and design general atomic skills for
them. Thus, with a focus on evaluating the LMM’s zero-shot haggling and strategic decision-making
ability in managing a shop, we believe it is reasonable to skip the skill curation by directly setting
several atomic skills as the initialization of the procedural memory, such as "process_dialog()" for
clicking on the option of a dialog screen to keep the deal going on as shown in Figure 24b. The
description of all the atomic skills is listed as follows:

• open_shop(): The function to open the dealer’s shop to start dealing for today.
• give_price(price): The function to give a price for the item in the deal. The price must be

an integer number.
• process_dialog(): The function to click on to choose the first option of the dialog to make

the game go on.
• close_description_page(): The function to close a description page showing information

about the item details, daily stats, or the traits of the buyer or seller.
• accept_deal(): The function to click on the check mark to accept the deal on the confirma-

tion dialog.
• reject_deal(): The function to click on the cross mark to reject the deal on the confirmation

dialog.
• finish_buy(): The function to click on the ok button to finish the deal on the confirmation

dialog.
• finish_sell(): The function to click on the ok button to finish the selling on the confirmation

dialog.

Self-Reflection. Additionally, as Dealers’ Life 2 has no heavy need for a long-term reflection, so
we only use the first and last frame of the video as input to reduce the number of tokens used per
request. Finally, this self-reflection module could help to keep the game going, instead of sticking
to the same point in the game.

Action Planning. In this game, we restrict GPT-4 to output only one skill per action because it is
a round-based game that does not require frequent execution of actions, and the state of the next
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(a) Agent: Given that the customer is a seller
and the item on offer is in bad condition with
an estimated price of $ 280, it would be wise
to offer around $150 to leave room for nego-
tiation.

(b) Agent: Given the item’s bad condition
and $280 estimate, A reasonable starting
counteroffer would be 50-60% of its esti-
mated value, and $160 is a reasonable coun-
teroffer.

(c) Agent: A reasonable next offer could
be $180 or $190, aiming to reach a middle
ground. I would still risk with $160 to see if
the offer is cut further.

(d) Agent: The customer is proposing her fi-
nal offer at $205. It will be necessary to ac-
cept the offer as this is still a profitable mar-
gin.

Figure 25: The reasoning of CRADLE in a successful deal with haggling. The price provided by CRADLE is
keyed in by keyboard and mouse operations in the digital display box in the bottom-right corner.

time-step after an action is executed is highly uncertain, e.g., the unpredictable mood changes in a
customer’s response.

G.4 CASE STUDIES

Here we present a few game-specific case studies to further discuss CRADLE’s reasoning and
decision-making process in the GCC setting.

G.4.1 SUCCESSFUL NEGOTIATION

Figure 25 illustrates a successful negotiation by CRADLE with an NPC seller over an item valued
at $280. CRADLE determines a strategic starting offer by considering both the item’s quality and
the customer’s initial proposal. Throughout subsequent negotiation rounds, CRADLE leverages its
memory to maintain an offer close to the initially assessed $160, applying pressure on the customer
to reduce their expectations. However, CRADLE also demonstrates flexibility, adapting its strategy
when faced with the customer’s final offer—signaled by their incline to leave. This allows CRADLE
to secure a final agreement that still yields a profitable deal.

G.4.2 UNSUCCESSFUL NEGOTIATION

Figure 26 illustrates a scenario where CRADLE engages in an unsuccessful negotiation. The seller
consistently demands a price above the estimated value of the item, while CRADLE, aiming to secure
a profit, steadfastly offers a price below the estimated value. A common price cannot be arrived at
after rounds of negotiation. Consequently, the negotiation fails to reach an agreement, resulting in
the departure of the high-expectation customer.
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(a) Agent: I will offer an initial price of $100
to reflect the poor condition while allowing
room for negotiation since the condition is
poor.

(b) Agent: The buyer suggests higher than
the estimated price.I should offer a price
lower than the item’s estimated value. I will
offer $110.

(c) Agent: The seller has countered several
times already, suggesting that further nego-
tiations could result in a mutually acceptable
price, possibly just a little bit below $164.

(d) Agent: The negotiation failed. My next
step is to acknowledge the failure and con-
tinue the game-play to interact with other
customers to profit.

Figure 26: The reasoning of CRADLE in an unsuccessful deal with haggling. The price provided by CRADLE
is keyed in by keyboard and mouse operations in the digital display box in the bottom-right corner.

G.4.3 ACQUIRING AND SELLING OF A COUNTERFEIT ITEM

Figure 27 depicts a complete buying and selling cycle involving an item later identified as counterfeit
by a buyer. Notably, CRADLE initially acquires the item without a known price estimate, basing its
purchase solely on the seller’s initial offer. In subsequent transactions, although CRADLE recognizes
the item’s potential forgery, it continues to trade the item in pursuit of maximizing profit. This
strategy yields a substantial profit margin of 145%. However, it also poses a risk to the in-game
character’s reputation, highlighting a strategic decision made under the directive to prioritize profit.

G.5 QUANTITATIVE EVALUATION

The effectiveness of CRADLE in terms of game performance is evaluated through experiments con-
ducted over a 7-day gaming scenario using nine quantitative financial metrics. A comprehensive
description of these metrics is provided in Section G.6.

G.6 EVALUATION METRICS

Assuming the buying price for item i is denoted by Bi, the selling price by Si, the market valuation
by Vi, and the number of successfully traded items is n. To evaluate CRADLE’s profitability and
performance in Dealer’s Life 2, we use the following evaluation metrics:

• Turnover Rate (TR) can be calculated as the ratio of the number of successfully traded items
to the total number of items considered (both successfully and unsuccessfully traded). It reflects
the Agent’s ability to successfully complete transactions and can indicate operational efficiency,
market competitiveness, and negotiation effectiveness. The calculation formula is TR = n

n+m .

• Gross Profit Margin (GPM) is the ratio of gross profit to sales revenue, reflecting the dealer’s
direct profit capability after selling items. The calculation formula is GPM =

∑n
i=1 Si−Bi∑n

i=1 Si
.
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(a) Agent: Given that we do not know the
estimated price, I proceed with 70%-80% of
the asked price, around $4,200 to $4,480.

(b) Agent: Since the seller is willing to lower
the price, the current counteroffer may still
be negotiated.

(c) Agent: The counteroffer of $4,900 seems
reasonable, but I can go further for the best
possible price.

(d) Agent: The response will be final. Given
this, accepting the deal is a sensible to secure
the item.

(e) Agent: As I am selling the item, I’ll try
for a higher price for higher profits.

(f) Agent: I note that the customer rejected
my counter-offer, calling the item fake.

(g) Agent: The seller is in an urgent need to
buy the jeweled necklace.

(h) Agent: From the warning window, I am
told that this necklace is fake.

(i) Agent: Though the jeweled necklace is
fake, accepting this offer provides substan-
tial profit with the buyer’s offer at $11,400.

(j) Agent: Despite the successful sale at a
good price, the item is revealed as a fake.
The added profit is good (+145%)

Figure 27: Case in acquiring and selling an item for multiple attempts with reasoning, and dealing with unex-
pected information on the authenticity. The price provided by CRADLE is keyed in by keyboard and mouse
operations in the digital display box in the bottom-right corner.
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• Return on Investment (ROI) is the ratio of profit to investment, used to measure the dealer’s
return on investment for items. The calculation formula is ROI =

∑n
i=1 Si−Bi∑n

i=1 Bi
.

• Valuation Deviation (VD) reflects the difference between the selling price and the market val-
uation, used to evaluate the reasonableness of the pricing strategy. It is denoted as V D =∑n

i=1 Si−Vi∑n
i=1 Vi

.

• Buying Price to Valuation Ratio (BPVR) can help determine whether the buying price is lower
than the market valuation, reflecting the success of the procurement. The calculation formula is
BPV R =

∑n
i=1 Bi∑n
i=1 Vi

.

• Selling Price to Valuation Ratio (SPVR) reflects the selling price relative to the market valuation,
helping to assess the success of the sales. The calculation formula is SPV R =

∑n
i=1 Si∑n
i=1 Vi

.

• Average Profit Rate (APR) reflects the overall profitability of the dealer on items. Assuming
the return rate for item i is Si−Bi

Bi
, the calculation formula of average return rate is denoted as

APR = 1
n

∑n
i=1

Si−Bi

Bi
.

• Maximum Return Rate (MRR) is the highest return rate among all items. The calculation for-
mula is MRR = max(S1−B1

B1
, S2−B2

B2
, . . . , Sn−Bn

Bn
).

• Minimum Return Rate (mRR) is the lowest return rate among all items. The calculation formula
is mRR = min(S1−B1

B1
, S2−B2

B2
, . . . , Sn−Bn

Bn
).

Table 11: Performance of CRADLE with GPT-4o in Dealer’s Life 2 gameplay. “# attempts” represents the total
number of all negotiation attempts on items, including both successful and unsuccessful transactions.

Exp # attempts TR↑ GPM↑ ROI↑ VD↑ BPVR↓ SPVR↑ APR↑ MRR↑ mRR↑
01 13 92.86 20.38 25.60 13.17 90.10 113.17 42.97 105.56 0.00
02 12 91.67 18.89 23.30 23.30 100.00 123.30 17.98 97.76 0.00
03 12 83.33 26.81 36.63 34.39 98.36 134.39 38.68 127.27 -8.06
04 9 100.00 49.35 87.45 80.69 93.53 165.74 66.45 145.16 0.00
05 12 100.00 20.61 25.25 25.25 100.00 125.25 23.08 44.33 0.00

Avg. 11.6 93.57 27.21 39.65 35.36 96.40 132.37 37.83 104.02 -1.61

H CITIES: SKYLINES

H.1 INTRODUCTION TO CITIES: SKYLINES

Cities: Skylines is a single-player open-ended city-building simulation game developed by Colossal
Order. In the game, players assume the role of a city planner, tasked with building and managing
various aspects of a city to ensure its growth and prosperity. Players engage with a wide range of
urban challenges, from managing traffic flow to balancing the budget, and from providing essential
services to fostering a vibrant economy. Each decision impacts the city’s development, requiring
players to hone their planning and strategic decision-making skills to succeed. Effective city man-
agement leads to thriving neighborhoods, a growing economy, and high citizen satisfaction, while
mismanagement can result in traffic congestion, service shortages, and a decline in population and
reputation. Proper planning and responsive governance are crucial for a city that flourishes and
remains appealing to its residents and visitors.

As the city’s infrastructure and various supporting resources are well-developed, it can attract more
people. And a larger population brings more tax revenue and also brings greater expenses to the
city’s operations. If operated properly, the increasing population can continuously unlock richer ur-
ban facilities; if operated improperly, such as road congestion, insufficient services, housing short-
age, water and electricity shortage, noise pollution, water pollution, excessive garbage, disease, fire
Situation, etc., will all lead to population decline.

This game could be used to evaluate agents’ strategies in managing urban development and resource
allocation. By simulating different scenarios, agents can experiment with various policies and infras-
tructural changes to see their impacts on the city’s growth and sustainability. Effective strategies may
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involve optimizing public transportation systems to reduce road congestion, investing in renewable
energy sources to prevent power shortages, and implementing comprehensive waste management
programs to handle excessive garbage. It offers a risk-free environment to test innovative ideas
and learn from the consequences of their actions, ultimately promoting a deeper understanding of
sustainable urban development.

Though this game is ranked very positive on Steam, it is notorious for its extremely high difficulty
for beginners, as it lacks a detailed tutorial in the beginning, which introduces more challenges for
CRADLE to deal with. On the other side, Although the successor, Cities: Skylines 2, simplified the
controls and provided a detailed tutorial for beginners, it became notorious for poor optimization
and frequent crashes that caused computer blue screens. As a result, we had to back to using Cities:
Skylines 1 instead of 2. And we do not apply any modes to the game. We use the latest version of
the game (version 1.17.1-f4).

H.2 OBJECTIVES

Our mission is to build cities so that they can support as many people as possible. Maps in this game
are usually very large, which usually costs human players dozens of hours to cover all areas. Besides,
the technology tree unlocks as the population grows, which requires multiple turns of planning and
building. In this work, we simplified the problem by starting the game near the water and fixing the
viewpoint (as shown in Figure 28), so that CRADLE can leverage the pixel position in the screenshot
to locate the position of placed buildings and facilities. Agents start with a plot of land, which is
equipped with an entry and an exit from a major highway, providing crucial access for future traffic
flow, and proximity to the water source, which is essential for the city’s water supply needs. And we
focus on the first turn of planning, i.e., pause the game and stop the passage of the in-game time, use
the initial starting funds of ₡70,000 and the most basic road, water, and electricity facilities provided
at the beginning of the game, which is enough to achieve the first milestone, Little Hamlet with the
population of 440 in the game. Then what kind of city can CRADLE create? Can this city ensure
water and electricity supply to keep functioning normally while reasonably dividing residential,
commercial, and industrial zones? A run is terminated when it reaches the maximal steps, 1000, or
the budget is used up (less than ₡ 1000).

Figure 28: Demonstration for the initialization loca-
tion of our mission in City: Skylines, which is near the
river and contains the entry and exit of the highways.

Figure 29: Visual prompting methods used in Cities:
Skylines. The full screenshot is divided into 3×5 grids
and each grid is assigned a unique white coordinate.

H.3 EVALUATION METRIC

To measure the completeness of the city built by the agent, we design the following preliminary
metrics:

• Roads in closed loop: Whether the road is a closed loop, which is crucial for ensuring
smooth traffic flow and is beneficial for the city’s future development.

• Sufficient water supply: To ensure a sufficient water supply, the player needs to construct
a water pumping station at the shoreline and then use water pipes to cover every district
along the roads. To manage the effluent effectively, the other end of the water pipe network
must be equipped with the water drain pipe which is also required to be placed near the
shoreline.
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• Sufficient electricity supply: Both zones and water facilities need electricity to power.
To provide sufficient electricity supply, the player can build a coal power plant or wind
turbine. Considering coal power plants cost too much and will create heavy pollution,
wind turbines combined with the power lines are a better choice at the beginning. The
electricity area extends automatically based on the presence of buildings and infrastructure
that consume electricity.

• Zones Coverage > 90%: The built two-lane road will provide empty space for the devel-
opment of zones, i.e., residential zone, commercial zone and industrial zone. Residential
zones provide houses for people to live in, which is the most essential zone to increase
the population. Commercial zones provide places for small businesses, shops, and services
produced in the industrial zones or imported. Industrial zones provide jobs for the residents
and products for commercial buildings, which is also important to attract more people to
move to the city. This metric is used to evaluate whether 90% of the available areas are
covered by the zones. The agent needs to reasonably allocate the areas and proportions of
various zones to achieve better city development and attract a larger population.

• Maximal population: After CRADLE finishes building, we will unpause the game and
start the simulation. Then houses start to be built and residents start to move in. We will
record the maximal population during the simulation as the value for this metric.

• Maximal population with assistance: We find that cities built by CRADLE manage to
meet most of the requirements but suffer a significant population loss due to a few easy-to-
fix mistakes. So after CRADLE finishes the design of the city, we apply human assistance
that attempts to address these small mistakes within 3 unit operations (building or removing
a road/facility/a place of zones is counted as one unit operation). We will also record the
maximum population during the simulation in the city with human assistance.

H.4 IMPLEMENTATION DETAILS

The implementation of Cities: Skylines also strictly follows the GCC framework, which includes
Information Gathering, Self-Reflection, Task Inference, Skill Curation, Action Planning and Action
Execution. The details are described in Appendix D. Therefore, we emphasize the specific design
for Cities: Skylines.

Pause. Since the game is stopped before starting the simulation, there is no need to unpause and
pause the game while executing actions.

Visual Prompting. As shown in Figure 29, similar to Stardew Valley, we divide each screenshot
into 3 × 5 grids with an axis based on the resolution of the game screen. Then CRADLE can utilize
the pixel-level position in the screenshot to locate the building and facility. We empirically find that
this visual prompting method can result in a more precise control of GPT-4o.

Information Gathering. In Cities: Skylines, the game’s perspective is typically adjustable, al-
lowing players to zoom in and out, rotate, and pan across their cityscape to get a detailed view of
their urban development. To ensure consistency and ease of navigation for GPT-4o, we have locked
the camera angle and applied a visual prompting method to enhance GPT-4o’s visual understand-
ing. Besides, we use GPT-4o to extract key information, such as budget, population, construction
information and error messages, in the game.

It is worth noting that in this module, we feed the original screenshot to GPT-4o, rather than the
augmented screenshot with axis and coordinates. We find that the numbers and lines may cover some
key information and result in wrong OCR recognition. For example, the construction information,
"Estimated Production: 120,000m3/week" may be mistakenly interpreted as "Estimated Production:
000,000m3/week" by GPT-4o, due to interference from the lines and numbers. This construction
information is a key signal for the suitable place of the water pumping station. For the other modules,
we feed GPT-4o with the augmented screenshots.

Self-Reflection. Since actions in this game are very short, and each of them has a significant effect
shown in the last screenshot. We only use the first screenshot and the last screenshot of the video clip
as input to this module, which is proved to be enough for not missing any important information.

Task Inference. Due to the lack of a detailed tutorial, we have to provide a draft blueprint for
the GPT-4o as the plan at the beginning to help GPT-4o to determine the next step to do. This

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

plan provides guidance to the orders of building each facility and how to build a closed road, how
to ensure water and electricity supply and zone placement. Even so, we find that GPT-4o failed
frequently to follow the plan, resulting in the lack of building some important facilities, like water
pumping stations.

Skill Curation. Due to the lack of detailed tutorials in the game, we generate the skills through
self-exploration in this game. The skill generation basically involves manipulating the toolbar to
understand the items on it. The pseudo-code for skill generation is described in Algorithm 1. This
process leverages SAM for objective grounding and GPT-4o to gather information about the objects
provided by the game, subsequently generating skills based on a predefined template. An example
of the process is shown in Fig 30, 31, 32, 33, 34 and 35.

Figure 30: The toolbar in Cities: Skylines

Figure 31: The grounding result of the toolbar in Cities: Skylines

Figure 32: When hovering the mouse over a
toolbar item, the pop-up description is "Water
& Sewage". The skill generated is then called
"open_water_sewage_menu".

Figure 33: When hovering the mouse over a toolbar
item, the pop-up description is "Education - Reach a
population of 440". As this is not selectable for now,
GPT-4o does not generate a new skill for it.

Action Planning. In this game, we only let GPT-4o output one skill for each action since we observe
that GPT-4o tends to output try_place and confirm placement together if we allow it to output and
execute multiple skills in one action, which is against the intention of our design for the try_place
action.

Procedure Memory. Skills generated through self-exploration are listed below:

• open_roads_menu(): The function to open the roads options in the lower menu bar for
further determination of which types of roads to build.

• open_electricity_menu(): The function to open the electricity options in the lower menu
bar for further determination of which types of power facility to build.

• open_water_sewage_menu(): The function to open the water and sewage options in the
lower menu bar for further determination of which types of water and sewage to build.

• open_zoning_menu(): The function to open the zoning options in the lower menu bar for
further determination of which types of zonings to build.

• try_place_two_lane_road(x1, y1, x2, y2): Previews the placement of a road between two
specified points, (x1, y1) and (x2, y2), with x1, y1 being the coordinate of start point of the
road, and (x2, y2) being the coordinate of end point of the road. This function does not
actually construct the road, but rather displays a visual representation of where the road
would be placed if confirmed.
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Figure 34: The Water & Sewage menu is opened by
executing the new skill "open_water_sewage_menu".
The Agent then hovers the mouse over a second-
level toolbar item, the pop-up description is
"Water Pipe", and the generated skill is called
"try_place_water_pipe".

Figure 35: The Roads menu is opened by executing the
new skill "open_roads_menu". The Agent then hovers
the mouse over a second-level toolbar item, the pop-
up description is "Two-Lane Road", and the generated
skill is called "try_place_two_lane_road".

Algorithm 1: Skill Generation
Input: Toolbar with objects, Skill template
Output: Procedure memory with generated skills

1 Initialize procedure memory;
2 for each object in the toolbar do
3 Hover the mouse on the object to get the description;
4 Generate skill using GPT-4o based on the object description and the skill template;
5 Store generated skill in procedure memory;
6 Execute the generated skill to enter the second-level toolbar;
7 for each object in the second-level toolbar do
8 Hover the mouse on the object to get the description;
9 Generate skill using GPT-4o based on the object description and skill template;

10 Store generated skill in procedure memory;

11 return procedure memory

• try_place_wind_turbine(x, y): Previews the placement of a wind turbine on point, (x, y).
This function does not actually construct the wind turbine, but rather displays a visual
representation of where the wind turbine would be placed if confirmed.

• try_place_water_pumping_station(x, y): Previews the placement of a water pumping sta-
tion on point, (x, y). This function does not actually construct the water pumping station,
but rather displays a visual representation of where the water pumping station would be
placed if confirmed.

• try_place_water_pipe(x1, y1, x2, y2): Previews the placement of a water pipe between two
specified points, (x1, y1) and (x2, y2). This function does not actually construct the water
pipe, but rather displays a visual representation of where the water pipe would be placed if
confirmed.

• try_place_water_drain_pipe(x, y): Previews the placement of a water drain pipe on point,
(x, y). This function does not actually construct the water drain pipe, but rather displays a
visual representation of where the water drain pipe would be placed if confirmed.

• try_place_commercial_zone(x1, y1, x2, y2): Previews the placement of a commercial zone
within a rectangular region with diagonal corners at (x1, y1) and (x2, y2). This function
does not actually construct the commercial zone, but rather displays a visual representation
of where the commercial zone would be placed if confirmed.

• try_place_industrial_zone(x1, y1, x2, y2): Previews the placement of a industrial zone
within a rectangular region with diagonal corners at (x1, y1) and (x2, y2). This function
does not actually construct the industrial zone, but rather displays a visual representation
of where the industrial zone would be placed if confirmed.
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• try_de_zone(x1, y1, x2, y2): The function to remove the zone in the game. The zone must
cover the road.

• confirm_placement(): The function to confirm the placement and build the object after the
try_place_[object] function.

• cancel_placement(): The function to cancel the placement of the object after the
try_place_[object] function.

Episodic Memory. Besides the common information to store in the episodic memory. We initialize
the memory with the coordinates of the entry and exit of the highway. Then CRADLE is able to
extend the roads according to these two points at the beginning. When a road or a facility such
as wind turbine, water pumping station, water drain pipe and water pipe is placed on the map, the
corresponding coordinates will also be stored in the memory for future development of the city.

H.5 CASE STUDIES

H.5.1 FAILURE FOR ROAD BUILDING.

As shown in Figure 36, sometimes GPT-4o will build a long road, which ends on the top of water.
The recorded endpoint of the road is actually the projection of the road on the sea level, resulting
in the offset from the projection point and the real endpoint of the road. It leads to the failure of
extending the road to the other places.

Figure 36b, 36c, 36d and 36e tells a story that GPT-4o sometimes forgets to confirm the placement
(from 36c to 36d) and directly moves to the next step of building the next road (from 36d to 36e),
resulting in the disconnection of the roads.

(a) (b) (c)

(d) (e)

Figure 36: Failure cases of building roads in a closed loop. Figure 36a shows that the road is built over the
water and is difficult to continue. Figure 36b, 36c, 36d and 36e tells a story that GPT-4o sometimes forgets
to confirm the placement (from 36c to 36d) and directly moves to the next step of building (from 36d to 36e),
resulting in the disconnection of the roads.

H.5.2 FAILURE FOR SUFFICIENT WATER SUPPLY.

Figure 37 displays three cases where CRADLE fails to ensure the water supply due to the discon-
nection of water pipes and the missing water pumping station. All of them can be fixed within three
unit operations. As shown in Figure 37b and 37f, we observe a significant increase in the population
if these mistakes are fixed, which proves that CRADLE already has the ability to build a reasonable
city but some minor adjustments are needed.
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(a) CRADLE’s craftwork I. The upper left corner of the city is experiencing a severe local water shortage since
the water pipes there are not connected. Population: 800+.

(b) CRADLE’s craftwork I with assistant within three unit operations to develop the idle area in the upper right
corner of the city into a residential zone and put two water pipes to ensure all the water pipes connected and
cover the whole city. Population: 1150+.

(c) CRADLE’s craftwork II. The left side of the city a localized area on the right suffers from water shortage
because of the water pipes connected issues. Population: 640+.

(d) CRADLE’s craftwork II with assistant within three unit operations by selling the redundant water pumping
station and the independent water pipe on the right to get some budget and using the budget to get the water
pipes connected. Population: 730+.

(e) CRADLE’s craftwork III. The entire city is experiencing a severe water shortage due to the lack of the water
pumping station. Population: 200+.

(f) CRADLE’s craftwork III with assistant within three unit operations to place the water pumping station, lay
water pipe on the right side and develop the bottom area with industrial zones. Population: 780+.

Figure 37: Demonstrations of three cities built by CRADLE in zoning view (left), water view (middle) and elec-
tricity view (right). Figures 37b, 37d, 37f show the cities with human assistance to address construction issues
(shown in red arrow). Populations shown in the figures are close to but not exactly the maximal population
since they are changed dynamically.
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I SOFTWARE APPLICATIONS

I.1 SELECTED SOFTWARE APPLICATIONS

Besides targeting complex digital games, CRADLE also includes an initial benchmark task set across
diverse software applications. The selected applications include Chrome, Outlook, Feishu, CapCut,
and Meitu. These applications cover popular applications for daily tasks in different usage cate-
gories, such as web browsing, communication, work, and media manipulation. Table 12 shows the
exact application versions benchmarked in this paper. Five distinct tasks were designed for each ap-
plication to represent their target domains and explore the difficulties posed to LMM-based agents
and analyze their limitations. Figure 9 shows an overview of all tasks across applications and Ta-
bles 13 and 14 detail each task.

Chrome and Outlook were selected as common representatives for web browsing and e-mail, with
well-known functionality and UI design. CapCut and Meitu are two popular media editing applica-
tions for video/image editing with their own interaction styles. Lastly, Feishu (also known as Lark)
is an office collaboration and productivity application, which includes messaging, calendar/meet-
ings, and approval workflows. It represents a complex business application that doesn’t strictly
follow OS-specific UI guidelines. To the best of our knowledge, this is the first agent targeting
applications like CapCut, Meitu, and Feishu.

I.1.1 BRIEF DESCRIPTIONS

Table 12: Exact software versions utilized in
the described experiments. Similar versions
should behave similarly.

Software Version
Chrome 125.0.6422.142
Outlook 1.2024.529.200
CapCut 4.0.0
Meitu 7.5.6.1
Feishu 7.19.5

Chrome is a web browser developed by Google. It allows
users to access and utilize online resources through activ-
ities such as browsing websites, streaming videos, and us-
ing web applications. Additionally, users can customize
their browsing experience with various extensions, man-
age bookmarks and passwords, and synchronize their data
across multiple devices for seamless access.

Outlook is an application by that allows users to manage
emails, calendars, contacts, and tasks. It includes tools
for communication and scheduling through features such
as sending and receiving emails, setting up meetings, and
keeping track of appointments. Additionally, users can customize their experience and integrate
Outlook with other Microsoft Office applications.

CapCut is a popular video editing application developed by ByteDance. It provides easy-to-use
editing tools and and enables users to create quality videos with a range of advanced features. Cap-
Cut offers a set of editing tools, including trimming, cutting, merging, and splitting video clips; the
application of various effects, filters, and transitions; as well as adjusting speed, and adding music
or text overlays.

Meitu is a photo editing application. It is designed to cater to a broad audience and enables users
to enhance and transform their photos with minimal effort. Meitu offers editing tools, including
basic adjustments like cropping, rotating, and resizing, as well as advanced features such as beauty
retouching, filters, and special effects. Additionally, Meitu offers a wide range of stickers, frames,
and text options to further personalize photos.

Feishu, also known as Lark, is a business communication and collaboration platform by ByteDance.
It integrates various tools for office workflows and project management. Feishu offers a wide array
of functionalities, including instant messaging, video conferencing, file sharing, and collaboration
within the app. It also includes an integrated calendar, which helps users schedule and manage
meetings and events, and task management tools that allow users to assign and track tasks.

I.2 SOFTWARE TASKS

For each of the five applications, we selected a set of representative tasks for their respective do-
mains. For example, search, navigation, and settings tasks on Chrome; sending, searching, and
deleting emails, plus changing settings on Outlook; basic video and image editing operations on
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Table 13: Task Descriptions for Chrome, Outlook, and CapCut. Difficulty refers to how hard it is for our agent
to accomplish the corresponding tasks. Figures 38, 39, and 40 illustrate each task (specific sub-figures marked
in parenthesis in the left-most column along with task name).

Software Description Difficulty
Chrome
Download Paper (Fig. 38a) Search for an article with a title like {paper_title}

and download its PDF file.
Hard

Post in Twitter (Fig. 38b) Post "It’s a good day." on my Twitter. Hard
Open Closed Page (Fig. 38c) Open the last closed page. Easy
Go to Profile (Fig. 38d) Find and navigate to {person_name}’s homepage

on GitHub.
Medium

Change Mode (Fig. 38e) Customize Chrome to dark mode. Medium

Outlook
Send New E-mail (Fig. 39a) Create a new e-mail to {email_address} with

subject "Hello friend" and send it.
Medium

Empty Junk Folder (Fig. 39b) Open the junk folder and delete all messages in
it, if any.

Medium

Reply to Person (Fig. 39c) Open an e-mail from {person_name} in the in-
box, reply to it with "Got it. Thanks.", and click
send.

Medium

Find Target E-mail (Fig. 39d) Find the e-mail whose subject is "Urgent meet-
ing" and open it.

Easy

Setup Forwarding (Fig. 39e) Set up email forwarding for every email received
to go to {email_address}.

Medium

CapCut
Create Media Project (Fig. 40a) Create a new project, then import

{video_file_name} to the media, click the
"Audio" button to add music to the timeline, and
finally export the video.

Hard

Add Transition (Fig. 40b) Open the first existing project. Switch to Transi-
tions panel. Drag a transition effect between the
two videos, and then export the video.

Medium

Crop by Timestamp (Fig. 40c) Delete the video frames after five seconds and
then before one second in this video, and then
export the video.

Medium

Add Sticker (Fig. 40d) Open the first existing project. Switch to Stickers
panel. Drag a sticker of a person’s face to the
video, and then export the video.

Hard

Crop by Content (Fig. 40e) Crop the video when the ball enters the goal, and
then export the video.

Very hard

CapCut and Meitu (e.g., adding special effects and creating a collage); and communication and or-
ganization operations on Feishu. Tables 13 and 14 describe in detail the 25 tasks CRADLE performs
and analyzes on the five selected applications; also illustrated in Figures 38, 39, 40, 41, 42, and 9.

It is worth noting that we add a special task on CapCut to demonstrate the agent’s ability for tool
use. In this task, a pre-defined skill uses GPT-4o as a tool for video understanding capabilities. The
skill can be selected to answer content-based questions about a video (e.g., "when the ball enters the
goal") and the response be used during task completion. This task is illustrated in detail in Figure
49.
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Table 14: Task Descriptions for: Meitu, and Feishu. Difficulty refers to how hard it is for our agent to accom-
plish the corresponding tasks. Figures 41, and 42 illustrate each task (specific sub-figures marked in parenthesis
in the left-most column along with task name).

Software Description Difficulty
Meitu
Apply Filter (Fig. 41a) Apply a filter from Meitu to {pic-

ture_file_name} and save the project.
Easy

Cutout (Fig. 41b) Cutout a person from {picture_file_name} and
save the project.

Easy

Add Sticker (Fig. 41c) Add a flower sticker to {picture_file_name}
and save the picture.

Middle

Create Collage (Fig. 41d) Make a collage using 3 pictures and save the
project.

Hard

Add Frame (Fig. 41e) Add a circle-shaped frame to {pic-
ture_file_name} and save the picture.

Hard

Feishu
Create Appointment (Fig. 42a) Create a new appointment in my calendar any-

time later today with title "Focus time".
Hard

Message Contact (Fig. 42b) Please send a "Hi" chat message to {con-
tact_name}.

Easy

Send File (Fig. 42c) Send the AWS bill file at {pdf_path} in a chat
with {contact_name}.

Hard

Set User Status (Fig. 42d) Open the user profile menu and set my status
to "In meeting".

Medium

Start Video Conference (Fig. 42e) Create a new meeting and meet now. Easy

(a) Download Paper (b) Post in Twitter (c) Open Closed Page

(d) Go to Profile (e) Change Mode

Figure 38: Screenshots of Chrome tasks.
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(a) Send New E-mail (b) Empty Junk Folder (c) Reply to Person

(d) Find Target E-mail (e) Setup Forwarding

Figure 39: Screenshots of Outlook tasks.

(a) Create Media Project (b) Add Transition (c) Crop by Timestamp

(d) Add Sticker (e) Crop by Content

Figure 40: Screenshots of CapCut tasks.

(a) Apply Filter (b) Cutout (c) Add Sticker

(d) Create Collage (e) Add Frame

Figure 41: Screenshots of Meitu tasks.
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(a) Create Appointment (b) Message Contact (c) Send File

(d) Set User Status (e) Start Video Conference

Figure 42: Screenshots of Feishu tasks.

Chrome Outlook CapCut Meitu Feishu

Figure 43: Success rates for tasks in software applications

I.3 QUANTITATIVE EVALUATION

We calculate CRADLE’s performance over the 25 tasks in the applications set. Each task is executed
five times and performance is measured in three metrics: success rate, average number of steps
taken by the agent (and variance over the five runs), and efficiency. Efficiency is defined as the ratio
between the expected number of steps in a given task and the total number of steps taken by the
agent. The expected number of steps per task is calculated by having humans perform each task.

Table 15 and Figure 43 show the details of the evaluation. CRADLE presents overall good perfor-
mance over the diverse tasks and applications (compared to Expected Steps, CRADLE achieves an
overall efficiency of 50%). However, performance for certain tasks can vary considerably due to
different factors. The main reason for the higher number of task step during agent execution is the
frequent incorrect positioning decisions for the mouse, i.e., the backbone model chooses a position
of bounding box tag that does not correspond to the UI item described in the model reasoning. We
discuss examples of task-specific issues in Sections I.5 and I.6 below.

It is worth noting that in Chrome’s task 3 ("Open the last closed page"), CRADLE knows how to
use the shortcut key directly, calling the key_press skill directly with the correct keyboard shortcut:
‘Ctrl + Shift + T’, whereas humans typically do not know this.

To further evaluate the performance of CRADLE in diverse software applications scenarios, we
provide quantitative results over OSWorld, a new contemporaneous benchmark with similar charac-
teristics to our settings. More details in Appendix J and overview of the results in Table 16.

I.4 IMPLEMENTATION DETAILS

The implementation of CRADLE targeting all five software applications follows the GCC setting and
framework modules (which include Information Gathering, Self-Reflection, Task Inference, Skill
Curation, Action Planning, and Action Execution). Implementation details of the overall framework
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Table 15: Application Software results. Success Rate determines the ratio of successful completions over five
runs. Average Steps refers to the number of actions the agent takes to fulfil a task, if successful. Expected Steps
represents the number of steps as estimated by humans performing the task. Efficiency represents the ratio
between the expected number of steps and the total number of steps taken by the agent.

Software Success Rate Average Steps Expected Steps Efficiency

Chrome 88% 8.23 ± 6.75 4.20 48.05%

Download Paper 80% 16.00 ± 5.52 6 37.50%
Post in Twitter 80% 11.75 ± 5.26 7 61.14%
Open Closed Page 100% 1.00 ± 0 3 300.00%
Go to Profile 100% 4.00 ± 0.63 1 25.00%
Change Mode 80% 11.25 ± 4.71 4 35.56%

Outlook 60% 7.13 ± 5.61 4 48.48%

Send New E-mail 40% 11.00 ± 4 5 45.45%
Empty Junk Folder 40% 8.50 ± 3.50 3 35.29%
Reply to Person 60% 8.33 ± 4.71 4 48.02%
Find Target E-mail 100% 1.40 ± 0.80 1 71.43%
Setup forwarding 60% 12.00 ± 4.90 7 58.33%

CapCut 56% 10.87 ± 5.56 4.80 44.16%

Create Media Project 60% 13.67 ± 5.25 7 51.20%
Add transition 60% 10.67 ± 4.03 4 37.49%
Crop by Timestamp 60% 11.00 ± 5.66 5 45.45%
Add Sticker 40% 12.00 ± 8.00 4 33.33%
Crop by Content 60% 7.00 ± 1.41 4 57.14%

Meitu 44% 12.36 ± 3.34 8.00 64%

Apply Filter 60% 14.67 ± 2.36 7 47.72%
Cutout 60% 9.33 ± 1.89 5 53.59%
Add Sticker 40% 9.50 ± 0.50 8 84.21%
Create Collage 40% 16.00 ± 2.00 12 75.00%
Add Frame 20% 13.00 ± 0.00 7 53.85%

Feishu 56% 7.50 ± 4.50 4.00 46.07%

Create Appointment 40% 8.00 ± 1.00 4 50.00%
Message Contact 40% 6.00 ± 1.00 3 50.00%
Send file 20% 11.00 ± 0.00 7 63.64%
Set User Status 100% 14.60 ± 7.50 3 20.55%
Start Video Conference 80% 4.50 ± 2.60 3 46.15%

are described in Appendix D. Therefore, here we emphasize any application-specific differences or
customization.

To apply CRADLE to the target application set described in this appendix, we start with base com-
mon prompts, and customize those prompts for specific modules, if necessary, to handle application-
specific characteristics. For example, for CapCut we add few-shot examples for Self-Reflection, to
let it properly perform success detection, as the application UI by itself is non-standard and some-
times provides little post-action feedback to users, making it harder for the backend model to deter-
mine action success.

Information Gathering. Noticeably, GPT-4o presents the same limitations in both spatial reasoning
(e.g., confusing up/down, left/right) and image understanding identifying specific UI items or the
state of the forefront GUI, across all applications.

To help mitigate such issues, we perform augmentation on the captured screenshots similarly to the
Set-of-Mark (SoM) approach Yang et al. (2023a), by only utilizing SAM Kirillov et al. (2023) to
generate potential UI items bounding boxes and assign them numerical tags. Our SoM-like augmen-
tation differs from recent agent-related work (e.g., (Zhang et al., 2024; Xie et al., 2024)), which use

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

OS-specific APIs to draw ground-truth bounding boxes for interactable elements (plus UI structure
info, like types and element tree) to the results, while CRADLE relies only on image input and the
segmentation output as augmentation. To make this distinction explicit, we call our augmentation
approach SAM2SOM 10. Figure 47 illustrates the difference. While our approach produces many
more potential bounding boxes, it is more general by relying only on a screenshot (or video frame).

To ensure all bounding box labels are consistently positioned, CRADLE’s SAM2SOM implements
two rendering styles, as shown in Figure 45 first and second rows. In the standard style, we pad the
SAM2SOM-enhanced image when showing the label IDs in the upper left corner of the bounding
boxes (to prevent labels from hiding the contents of small areas), so no numerical label ID is drawn
outside the image area). In the uniform style, all bounding boxes utilize single-color borders with
labels in black text over white background, placed within the bounding box area (top left corner).

Moreover, in specific situations we may still need to refine SAM2SOM’s output further. For exam-
ple, in the Feishu case, we observe that watermarks generated by the software affect the segmen-
tation negatively, complicating GPT-4o’s selection of the correct bounding boxes to interact with.
Therefore, we implement a simple filtering method for such watermarks. This filter is enabled only
in the Feishu benchmark and, as shown in Figure 46, can greatly reduce the number of unnecessary
bounding boxes (from 216 to 166, in this example).

Figure 44: Sample augmented image w/ drawn mouse
pointer. Zoom overlay shows the image difference.

In addition to using the SAM2SOM method for
image augmentation, we also redraw the mouse
pointer not present in captured screenshots in
a more prominent magenta color based on its
screen position, to emphasize both its presence
and position for image understanding (e.g., Fig-
ure 44). The augmentation process in Informa-
tion Gathering can then result in four versions
of a screenshot: a) base image, b) SAM2SOM
image, c) base image with mouse pointer, and
d) SAM2SOM image with mouse pointer.

Self-Reflection. As the applications in the soft-
ware set are much less dynamic than complex
games, there is no need to send multiple video
frames to Self-Reflection. For the software ap-
plications, pre- and post-action screenshot usually suffice, i.e., one image before and one image after
an action is executed. Digital games often have continuous and dynamic environments that require
multiple frames to properly capture the full context and thus help the backbone LMMs understand
what happened. In contrast, software operations are typically more discrete and static, where the
state before and after an action provides sufficient information for most analysis.

Nonetheless, we find that irrespective of images used, GPT-4o sometimes can have difficulty deter-
mining the success of certain tasks. For example, when downloading a file on Chrome, after either
pressing ‘Ctrl + S’, or using a ‘Save’ menu, the agent must also press ‘Enter’ or click the ‘Save’
button to complete the task. However, GPT-4o often assumes the task is complete when the dialog
opens and before this final step. Similar cases of incorrect conclusion happen when an action cor-
rectly closes a new panel or dialog. To address this category of issues, we add mandatory reasoning
rules in the prompt for the Self-Reflection module to help mitigate such mistakes. If for specific
applications this still remains an issue, we can use few-shot image examples to reinforce how the
backend model should correctly judge success.

10We do not claim the method itself as a core contribution. SAM2SOM is used to illustrate a possible extra
capability of the backend model, as mitigation for current spatial reasoning issues.
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(a) CapCut: Base image (b) CapCut: Base image w/ SAM2SOM

(c) Meitu: Base image (d) Meitu: Base image w/ SAM2SOM

Figure 45: Image examples of the two SAM2SOM augmentation styles. As CapCut’s UI (top row) has very
dark background, we utilize single-color borders with IDs in black text over white background, placed within
the bounding box area. Other application software and OSWorld use the "standard" SAM2SOM multi-color
style, as shown for Meitu (bottom row).

(a) SAM2SOM image w/ watermarks (b) SAM2SOM image w/o watermarks

Figure 46: Examples of filtering watermark in Feishu. The number of labels is greatly reduced from 216 to
166.
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(a) Chrome window (b) CRADLE SAM2SOM output (c) OSWorld SOM image output

(d) GIMP window (e) CRADLE SAM2SOM output (f) OSWorld SOM image output

Figure 47: Comparison of CRADLE’s visual-only SAM2SOM and OSWorld’s API-based SOM image results.
Chrome: 78 vs. 53 bounding boxes; GIMP: 227 vs. 98 bounding boxes.
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Figure 48: Shortcuts screen in CapCut.

Skill Curation. In software tasks, direct skill
generation was not necessary, as UI operations
generally map closely to specific mouse or key-
board actions, making them more straightfor-
ward. In contrast, digital game environments
involve continuous interactions and decision-
making, raising new previously undiscovered
information, and requiring the development of
new skills to handle novel scenarios and adapt
to changing contexts.

However, we do add some additional pre-
defined skills, on a per-application basis, for
specific knowledge like less-widely known key-
board shortcuts which could be learnt from the
application. For example, CapCut’s shortcuts
screen, shown in Figure 48, or toolbar/icon
processing output similarly to the process de-
scribed for Cities: Skylines. Moreover, we also
introduce pre-defined complex skills to demonstrate CRADLE’s capability to leverage tools into
novel functionality, such as using GPT-4o as a tool to extract information from a video to complete
task 5 in CapCut.

When dealing with shortcuts, e.g., as alternatives to mouse operations, it may be the case that specific
shortcuts require "calibration". For example, using the keyboard to navigate the timeline in CapCut
(as seen in the bottom area of Figure 45b) requires mapping the keyboard shortcut (‘Alt + arrow
keys’) to pixels or time, which we perform a priori and use the mapping in the pre-defined skill
go_to_timestamp(seconds).

Task Inference. During the execution of an application task, we let GPT-4o decompose the execu-
tion strategy for the next step based on the overall task description and the subtask description. If
the previous task decomposition is found to be unreasonable, a new decomposition plan should be
proposed and this is evaluated at each iteration round.

Action Planning. To enable usage of SAM2SOM, for Action Planning, we insert new mouse skills,
which mirror existing coordinates-based mouse skills (i.e., that use x,y coordinates), but take a
bounding box numerical label as an argument.

Furthermore, unlike in game playing, which focuses on performing one action per turn, when ma-
nipulating software CRADLE can be configured to perform two actions in sequence and thus lower
interaction frequency requirements to the backend model. We find that GPT4-o can usually correctly
output two-step compound actions. For example, when performing a search in the browser, it can
typically output two consecutive action steps, e.g., type_text(text=‘{user_query}’), followed by the
required press_key(key=‘enter’).

Action Execution. While atomic and composite skills can involve complex operations, Action
Execution happens over the regular CRADLE action space, as shown in Table 7. For example,
during Action Execution, a post-processing step converts the bounding box calls into regular mouse
actions, using the centroid of a given bounding box as its coordinates for regular mouse operations.

Tool usage, like calling GPT-4o separately to analyze the contents of a media file, is not considered
as an action, as tools do not operate on the environment, only as code steps inside a composite skill.

I.5 CASE STUDIES

I.5.1 TASK HARDNESS

It is well known that the difficulty of task completion can vary widely between humans and agents.
The results in Table 15 help illustrate some such cases. While many application operation issues
may be attributed to UI variety or non-conformity, that is not necessarily the main source of task
hardness (i.e., how unexpectedly complex performing an operation is).

61



3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Here we use Outlook, a well-known e-mail client, as a case study to discuss how different factors
affect CRADLE task completion in real-world application situations (the exact version used is listed
in Table 12). Taking task 1 ("Create a new e-mail to {email_address} with the subject ‘Hello friend’
and send it.") as an example, a success rate of 40% and efficiency of 45.45% may seem lower than
expected.

Such a task could be reasonably broken down into steps like: a) Create new e-mail, b) Add recipient,
c) Write title, and d) Send e-mail. And the Task Inference module performs such decomposition
consistently. However, Action Planning needs to define specific actionable operations with mouse
and keyboard to execute each step.

Firstly, CRADLE needs to decide based on the knowledge and visual understanding capabilities
available to it to either use a known keyboard shortcut (e.g., ‘Ctrl + N’) or to click at the "New mail"
button. In our experiments, CRADLE tends to chose clicking on the button, which is then affected by
the previously discussed issues that led to the integration of SAM2SOM into the framework. Issues
in spatial reasoning issues or icon/image understanding may cause a few incorrect click attempts.

Adding the recipient to the e-mail requires typing an address at the appropriate location, i.e., the
typical "To" field. This can be accomplished in multiple ways, mainly by typing the address on the
UI next to the "To" item or choosing a pre-existing contact.

Clicking on the "To" button triggers the UI to search and select a pre-existing contact e-mail address
(with no option of adding a new contact entry, which requires first accessing the "Contacts" menu,
outside of "Mail"). Moreover, the UI interaction sequence to select an existing contact can be unin-
tuitive even to experienced users, requiring a minimum of four steps, at each step offering multiple
UI options that go away from contact selection. Attempting this flow usually leads CRADLE to
exceed the maximum number of allowed step as it gets confused by the UI design.

Nonetheless, choosing the simpler alternative of typing the e-mail address (assuming the correct text
field is selected) triggers assistive UI pop-ups (as shown in Figure 50), which lead GPT-4o to falsely
conclude the e-mail address is either already typed at the correct location or that it is duplicated
and needs to be edited/removed. Furthermore, the pop-ups partially hide the subject area, making it
harder for CRADLE to choose the next UI item to interact with for the next task step.

Similar issues with positioning and correctly identifying the typed subject text can also occur, but at
a much smaller frequency.

Lastly, completing the task and sending the e-mail requires step similar to creating a new message.
But determining send success requires additional attention/reflection as not all cases of the "Send
mail" interface disappearing indicate a successful send (e.g., clicking on an unrelated e-mail on the
Inbox or closing the current window pop-up).

The Self-Reflection module plays a key role in moving task completion forward by detecting failed
attempts at executing each sub-task and providing rationale for failures, even if Information Gath-
ering and Action Planning make repeated mistakes. Such feedback from Self-Reflection and allows
Action Planning to tune its process and move ahead.

I.5.2 TOOL USE IN CAPCUT

Some general computer control tasks may require additional capabilities during execution prepara-
tion that can benefit from external tools to enhance agent abilities.

When performing video editing, like in CapCut, a user may need to determine the precise frames
to operate on based on video content. For such scenarios, CRADLE can easily leverage tool-using
skills, like the LMM’s ability to understand actions in a sequence of video frames, enabling it to
comprehend video content and identify the exact frames for editing.

We exemplify such tasks with task 5 ("Crop the video when the ball enters the goal, and then
export the video") for CapCut, as illustrated in Figure 49. This means our agent can effectively
execute tool usage to find the specific frame where "the ball enters the goal". After the first
round of Task Inference, CRADLE decomposes the task into three subtasks: 1. Identify the ex-
act frame, 2. Crop the video, and 3. Export the video. Action Planning can then plan to execute
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‘get_information_from_video(event)’ from our curated skills and generate "ball enters the goal" as
its required argument for execution.

In this skill, we input a frame set of the video at 1 fps to identify the specific frame where the event
occurs. The response is then recorded in Episodic Memory to ensure that subsequent operations can
accurately utilize it and target the moment when the action occurs. Across subsequent iterations,
CRADLE can then correctly plan and execute the remaining necessary actions for task completion:
‘go_to_timestamp(seconds=8)’, ‘delete_right()’, and ‘export_project()’].

We have integrated few-shot learning into Self-Reflection to ensure CRADLE recognizes that follow-
ing export_project(), the expected screen is the CapCut application main window. This information
allows it to verify the successful execution of the task, leading to success detection for the overall
task.

Information Gathering Action PlanningTask Inference Skill CurationSelf-Reflection

Last Action: go_to_timestamp(seconds=8)
          delete_right()
The last executed action was successful 
because the portion of the video after the 8th 
second has been deleted as required.
Success Detection Flag: False. The final step 
of exporting the video has not been 
completed yet.

Retrieved Skills: 
['export_project','press_enter','cl
ose_window','go_to_timestamp'...]

The current subtask is to export 
the video to complete the task.

Image Same Flag: False
Mouse Position Same Flag: False
Image Description: The timeline at the 
bottom shows a video clip that is 
currently at the 8-second mark.

export_project()

Last Action: get_information_from_video
  (event="ball enters the goal")
The last executed action was successful 
because it correctly identified the frame where 
the ball enters the goal as the 8th second.
Success Detection Flag: False. The steps to 
crop the video at this point and export it have 
not been completed yet.

Retrieved Skills:
['go_to_timestamp','delete_right','ge
t_information_from_video','mouse_drag
_with_label'...]

The current task is to crop the video at the 
8th second where the ball enters the goal.

Image Same Flag: True
Mouse Position Same Flag: True

Task Description: Crop the video when the ball enters the goal, and then export the video.

1. Identify the exact moment when 
the ball enters the goal in the video.
2. Crop the video at that point.
3. Export the cropped video.

get_information_from_video
(event="ball enters the goal")

Retrieved Skills: 
['get_information_from_video'
,'go_to_timestamp','press_key
','mouse_drag_with_label'... ]

Bounding Boxes Description:
[…, 14: Media,…, 21: Templates,…, 145:…] 

Ex
ec

ut
e

Ex
ec

ut
e

Image Description: CapCut shows 
various UI elements, including a 
timeline, media library, and preview 
windows. It contains a video clip that 
appears to capture a soccer game.

go_to_timestamp(seconds=8)
delete_right()

The second of "ball enters the goal" is 8.

Frame Set at 1fps

Prompt:
… Please answer at which 
frame does "<$event$>" happen, 
only answer with a number …

Ex
ec

ut
e

Figure 49: Showcase of Task 5 ("Crop the video when the ball enters the goal, and then export the new video")
in CapCut.

I.6 LIMITATIONS OF GPT-4O

Besides the previously discussed limitations of GPT-4o, it is important to highlight a couple other
GUI grounding issues.

Non-standard UI and Noise.

Non-standard UI, be it in visual style or in behaviour, can lead GPT-4o to misinterpret UI item
functionality and application context state. The same applies to visual noise in the form of update
pop-up, external contents (e.g., ads), new e-mail/chat messages, etc.
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(a) Pre-existing contact dropdown (b) Contact search dropdown (c) Contact suggestions

Figure 50: Visual behaviour in Outlook that may lead GPT-4o to visual understanding mistakes.

Figure 51: Different CapCut pop-ups

CapCut is affected by both factors, as further illustrated in Figure 51. Moreover, its UI includes non-
standard layouts involving precise positioning and drag/dropping. Lack of such prior knowledge
by GPT4-o and differences in behaviour between similar functions, may also lead to mistakes in
trying to decompose actions to perform. E.g., "Add an effect" requires very different UI-interaction
depending on details. Users can add effects in three different ways: i) dragging an effect to the
timeline; ii) click the plus sign in a given effect in the effects panel, which adds the effect to the
current place on the timeline; and iii) drag an effect directly onto a video and apply the effect to the
entire video.

Visual Context Detail.

GPT-4o still struggles with detailed visual understanding and over-relies on textual information or
hallucinations, which results in insufficient attention to visual context and leads to understanding
and reasoning mistakes.

One such common example is GPT-4o declaring a dialog state to be ready to press a button like
"Save", while ignoring no file name was provided, even if GPT-4o has been prompted to check for
such situations. The same applies to it suggesting keyboard shortcuts to open menus that do not exist
in the image being interpreted, e.g., trying to press ‘Alt + F’ to open the "File" menu on a screenshot
that has no "File" menu.

Lastly, this lack of attention to context details can also affect understanding the outcome of opera-
tions over visual content, leading to incorrect estimation of operation success, e.g., when retouching
an image or deciding between a circle and a heart for a shape form.

J OSWORLD

J.1 INTRODUCTION TO OSWORLD

OSWorld is a scalable, computer environment designed for multimodal agents. This platform pro-
vides a unified environment for assessing open-ended computer tasks involving various applications.

J.2 OSWORLD TASKS

OSWorld is a benchmark suite of 369 real-world computer tasks (mostly on an Ubuntu Linux en-
vironment, but including a smaller set on Microsoft Windows) collected from authors and diverse
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Figure 52: Task instructions distribution in OSWorld Xie et al. (2024)

sources such as forums, tutorials, guidelines. Each task is annotated with a natural language instruc-
tion and a manually crafted evaluation script for scoring.

J.3 IMPLEMENTATION DETAILS

The OSWorld environment uses a virtual machine that takes in Python scripts based on PyAutoGUI
for actions and provides screenshots and an accessibility tree for observations. We strictly follow
the GCC settings. Our agent only uses the screenshot as input and outputs Python scripts using
PyAutoGUI methods to control the keyboard and mouse (these operations are analogous to the
regular action space for CRADLE). All 369 tasks use a same set of prompt templates.

We employ GPT-4o as the framework’s backbone model. We use the default experimental settings,
as in OSWorld’s baseline agent. The executable action space is the same as the OSWorld setting,
the atomic skills are as follows:

• Mouse Actions
– move_mouse_to_position(x, y): Moves the mouse to a specified position on the screen.
– click_at_position(x, y): Performs a click at a specified position.
– mouse_down(button): Presses the specified mouse button.
– mouse_up(button): Releases the specified mouse button.
– right_click(x, y): Right-clicks at the specified position.
– double_click_at_position(x, y): Double-clicks at the specified position.
– mouse_drag(x, y): Drags the cursor to the position.
– scroll(direction, amount): Scrolls the mouse wheel up or down by a specified amount.

• Keyboard Actions
– type_text(text): Types the specified text.
– press_key(key): Presses and releases the specified key.
– key_down(key): Holds a specified key.
– key_up(key): Releases a specified key.
– press_hotkey(keys): Presses a combination of keys and releases them in the opposite

order (e.g., Ctrl+C), useful for shortcuts.
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• Task Status

– task_is_not_feasible(): Indicates that the task cannot be completed, providing feed-
back for scenarios where the agent encounters infeasible tasks.

Many of these basic skills require GPT-4o to directly output an (x,y) position based on a screenshot.
Given that the current GPT-4o is not able to achieve such precise control, we use a grounding tool
to augment the screenshot. This way, GPT-4o only needs to choose an object ID. With the object ID
and the bounding box of the object, we automatically convert it to the (x,y) position needed for skill
execution. Instead of having GPT-4o directly choose the executable skills that require (x,y) position
input, we provide several skills that only require a label ID as input for GPT-4o.

• Actions with Grounding Tools

– click_on_label(label_id): Clicks on a specified label in the grounding result.
– double_click_on_label(label_id): Double-clicks on a specified label in the grounding

result.
– hover_over_label(label_id): Moves the mouse to hover over a specified label in the

grounding result.
– mouse_drag_to_label(label_id): Drags the mouse to a specified label in the grounding

result.

Information Gathering. Tasks in OSWorld require pixel-level mouse control. While GPT-4 ex-
hibits grounding ability, using tools like SAM can further augment the screenshot with the grounding
of icons in complex computer control tasks. The bounding box is helpful for GPT-4 to understand
the occurrence of objects on the screen and can also be used to calculate the precise position for
mouse control.

Figure 53: Augmented screenshot using CRADLE’s SAM2SOM

Self-Reflection. The reflection module evaluates whether previous actions have been successfully
executed and determines if the entire task was successful. The self-reflection module is important
for tasks in OSWorld, which are sequential decision-making problems that require re-planning based
on the current state and previous actions. The self-reflection module also helps to identify infeasible
tasks.
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J.4 APPLICATION TARGET AND SETTING CHALLENGES

Evaluations within OSWorld reveal notable challenges in agents’ abilities, particularly in GUI un-
derstanding and operational knowledge Xie et al. (2024). To further complete tasks in OSWorld,
the agent needs advanced visual capabilities and robust GUI interaction abilities. Furthermore, the
agents face challenges in leveraging lengthy raw observation and action records. The next-level ap-
proach encompasses designing more effective agent architectures that augment the agents’ abilities
to explore autonomously and synthesize their findings.

J.5 CASE STUDIES

J.5.1 INFORMATION GATHERING

Figure 54: Case Study of robust and precise GUI interaction via information gathering

With SAM as the grounding tool, we prompt the agent to identify the objects in each bounding box
to determine the exact position of each object. As shown in Figure 54, the agent recognized the GUI
element in box 32 as the Save button. In the planner, the agent chose to click on box 32 to save the
PDF, resulting in success.

J.5.2 PLANNING WITH SELF-REFLECTION

We showcase how self-reflection combined with planning helps the agent complete a task by coming
up with an alternative plan and validating its success.

The current task instruction is "Copy the file ‘file1’ to each of the directories ‘dir1’, ‘dir2’, ‘dir3’."
As shown in Figure 55, the agent made two attempts at implementing the command but encountered
errors and warnings.

As shown in Figure 56, after observing the errors and warnings in the previous steps, the agent
checked the files in the directory to debug. After confirming the file structure, the agent tried differ-
ent commands.

As shown in Figure 57, after executing the new command without receiving an error message, the
agent checks whether the files have been copied to the folders. After observing the result, it marks
this task as a success.
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Figure 55: The agent fails to copy the files due to using incorrect commands

Figure 56: The agent reflects on the errors, checks the file structure and tries to debug

Table 16: Detailed success rates divided by domains: OS, LibreOffice Calc, LibreOffice Impress, LibreOffice
Writer, Chrome, VLC Player, Thunderbird, VS Code, GIMP, and Workflow (i.e., involves multiple applica-
tions).

Method OS
(24)

Calc
(47)

Impress
(47)

Writer
(23)

VLC
(17)

TB
(15)

Chrome
(46)

VSC
(23)

GIMP
(26)

Workflow
(101)

GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58
GPT-4o+SoM 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60

CRADLE 16.67 0.00 4.65 8.70 6.53 0.00 8.70 0.00 38.46 5.48
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Figure 57: The agent checks if the files have already been copied

J.6 QUANTITATIVE EVALUATION

The detailed success rates for each application are listed in Table 16. We followed the same experi-
mental settings as the OSWorld paper, running the experiment only once. Our results show that our
agent performs better in the Chrome and GIMP domains. However, the difference in performance in
the OS, Writer, and VSC domains is less statistically significant due to the smaller number of tasks.
While improved information gathering and self-reflection empowered the agent in these domains,
the complex pipeline and limitations of current grounding tools and GPT-4 hindered performance in
domains like VLC and VSC. We identify these limitations as future directions for implementing the
agent in real-world scenarios.

K CRADLE PROMPTS

Here we exemplify the utilized prompts, for each module in the framework. All prompts and cus-
tomizations are included in the relevant branch in CRADLE’s open-source repository in GitHub 11.

K.1 PROMPTS FOR RDR2

Prompt 1: RDR2: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. Your advanced capabilities enable you to process and
interpret gameplay screenshots and other relevant information.

<$few_shots$>

<$image_introduction$>

Current task:
<$task_description$>

Target_object_name: Assume you can use an object detection model to
detect the most relevant object for completing the current task if

11https://cradle2024acc.github.io/Cradle
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needed. What object should be detected to complete the task based on
the current screenshot and the current task? You should obey the
following rules:

1. The object should be relevant to the current target or the
intermediate target of the current task. Just give one name without
any modifiers.

2. If no explicit weapon is specified on the weapon radial menu,
prioritize choosing ’gun’ as the weapon.

3. If no explicit shoot target is specified, prioritize choosing ’person’
as the target.

4. If no explicit item is specified, only output ’null’.
5. If the object name belongs to the person type, replace it with ’person

’.
6. If there is no need to detect an object, only output "null".
7. If you are on the trade, map, inventory, or satchel interfaces, only

output ’null’.

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

Description: Please describe the screenshot image in detail. Pay
attention to any maps in the image, if any, especially critical icons
, red paths to follow, or created waypoints. If there are multiple
images, please focus on the last one.

Screen_classification: Please select the class that best describes the
screenshot among "Inventory", "Radial menu", "Satchel", "Map", "Trade
", "Pause", and "General game interface without any menu". Output the
class of the screenshot in the output of Screen_classification.

Reasoning_of_screen: Why was this class chosen for the current screenshot
?

Movement: Does the current task require the character to go somewhere?

Noun_and_Verb: The number of nouns and verbs in the current task.

Task_horizon: Please judge the horizon of the current task, i.e., whether
this task needs multiple or only one interaction.

There are two horizon types: long-horizon and short-horizon. For long-
horizon tasks, the output should be 1. For short-horizon tasks, the
output should be 0. You should obey the following rules:

1. If the task contains only nouns without verbs, it is short-horizon.
2. If the task contains more than one verb, it is long-horizon.
3. If the task requires the character to go somewhere, it is long-horizon

.
Short-horizon tasks are sub-goals during a long-horizon task, which only

need one interaction. There are some examples of short-horizon tasks:
1. Pick up something: To complete this task, the character needs to

execute the action "pick up" only once, so it is short-horizon.
2. Use or press [B] key: The character needs to press the key [B] only

once to talk, so it is short-horizon.
3. Talk to somebody: The character needs to press a certain button once

to complete this task, so it is short-horizon.
Long-horizon tasks are long-term goals, which usually need many

interactions. There are some examples of long-horizon tasks.
1. Go outside: The character should go outside step by step, so it is

long-horizon.
2. Approach something: The character should move closer to the target

step by step, so it is long-horizon.
3. Keep away from something, shoot, take down, or battle with something:

The character must engage in a series of interactions, so it is long-
horizon.

Reasoning_of_task: Why do you make such a judgment of task_horizon?
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You should only respond in the format described below and not output
comments or other information.

Target_object_name:
Name
Reasoning_of_object:
1. ...
2. ...
...
Description:
The image shows...
Screen_classification:
Class of the screenshot
Reasoning_of_screen:
1. ...
2. ...
...
Movement:
Yes or No
Noun_and_Verb:
1 noun 1 verb
Task_horizon:
1
Reasoning_of_task:
1. ...
2. ...
...

Prompt 2: RDR2: Gather Text Information prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. Your advanced capabilities enable you to process and
interpret gameplay screenshots and other relevant information.

<$image_introduction$>

Information: List all text prompts on the screenshot from the top to the
bottom, even the text prompt is one word.

All information should be categorized into one or more kinds of <
$information_type$>. If you think a piece of information is both "A"
and "B" categories, you should write information in both "A" and "B"
categories. For example, "use E to drink water" could both be "Action
Guidance" and "Task Guidance" categories.

Item_status: The helpful information to the current context in the game,
such as the cash, amount of ammo, current using item, if the player
is wanted, etc. This content should be pairs of status names and
their values. For example, "cash: 100$". If there is no on-screen
text and no item status, only output "null".

Environment_information: The information about the location, time,
weather, etc. This content should be pairs of status names and their
values. For example, "location: VALENTINE". If there is no on-screen
text and environment information, only output "null".

Notification: The game will give notifications showing the events in the
world, such as obtaining items or rewards, completing objectives, and
becoming wanted. Besides, it also contains valuable notifications of
the game’s mechanisms, such as "Health is displayed in the lower

left corner". The content must be the on-screen text. If there is no
on-screen text or notification, only output "null".

Task_guidance: The content should obey the following rules:
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1. The content of task guidance must be an on-screen text prompt,
including the menu and the general game interface.

2. The game will give guidance on what should be done to proceed with the
game, for example, "follow Tom". This is task guidance.

3. The game will give guidance on how to perform a task using keyboard
keys or mouse buttons, for example, "use E to drink water". This is
task guidance.

4. If no on-screen text prompt or task guidance exists, only output "null
". Never derive the task guidance from the dialogue or notifications.

Action_guidance: The game will give guidance on how to perform a task
using keyboard keys or mouse buttons; you must generate the code
based on the on-screen text. The content of the code should obey the
following code rules:

1. You should first identify the exact keyboard or mouse key represented
by the icon on the screenshot. ’Ent’ refers to ’enter’. ’RM’ refers
to ’right mouse button’. ’LM’ refers to ’left mouse button’. You
should output the full name of the key in the code.

2. You should refer to different examples strictly based on the word used
to control the key, such as ’use’, ’hold’, ’release’, ’press’, and ’

click’.
3. If ’use’ or ’press’ is in the prompt to control the keyboard key or

mouse button, io_env.key_press(’key’, 2) or io_env.mouse_click(’
button’, 2) must be used to act on it. Refer to Examples 1, 2, and 3.

4. If there are multiple keys, io_env.key_press(’key1,key2’, 2) must be
used to act on it. Refer to Example 4.

5. If ’hold’ is in the prompt to control the keyboard key or mouse button
, it means keeping the key held with io_env.key_hold or the button
held with io_env.mouse_hold (usually indefinitely, with no duration).
If you need to hold it briefly, specify a duration argument. Refer

to Examples 5 and 6.
6. All durations are set to a minimum of 2 seconds by default. You can

choose a longer or shorter duration. If it should be indefinite, do
not specify a duration argument.

7. The name of the created function should only use phrasal verbs, verbs,
nouns, or adverbs shown in the prompt and should be in the verb+noun
or verb+adverb format, such as drink_water, slow_down_car, and

ride_faster. Note that words that do not show in the prompt are
prohibited.

This is Example 1. If "press" is in the prompt and the text prompt on the
screenshot is "press X to play the card", your output should be:

‘‘‘python
def play_card():

"""
press "x" to play the card
"""
io_env.key_press(’x’, 2)

‘‘‘
This is Example 2. If the instructions involve the mouse and the text

prompt on the screenshot is "use the left mouse button to confirm",
your output should be:

‘‘‘python
def confirm():

"""
use "left mouse button" to confirm
"""
io_env.mouse_click("left mouse button")

‘‘‘
This is Example 3. If "use" is in the prompt and the text prompt on the

screenshot is "use ENTER to drink water", your output should be:
‘‘‘python
def drink_water():

"""
use "enter" to drink water

72



3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

"""
io_env.key_press(’enter’, 2)

‘‘‘
This is Example 4. If "use" is in the prompt and the text prompt on the

screenshot is "use W and J to jump the barrier", your output should
be:

‘‘‘python
def jump_barrier():

"""
use "w" and "j" to jump the barrier
"""
io_env.key_press(’w,j’, 3)

‘‘‘
This is Example 5. If "hold" is in the prompt and the text prompt on the

screenshot is "hold H to run", your output should be:
‘‘‘python
def run():

"""
hold "h" to run
"""
io_env.key_hold(’h’)

‘‘‘
This is Example 6. If the instructions involve the mouse and the text

prompt on the screenshot is "hold the right mouse button to focus on
the target", your output should be:

‘‘‘python
def focus_on_target():

"""
hold "right mouse button" to focus
"""
io_env.mouse_hold("right mouse button")

‘‘‘
This is Example 7. If "release" is in the prompt and the text prompt on

the screenshot is "release Q to drop the items", your output should
be:

‘‘‘python
def drop_items():

"""
release "q" to drop the items
"""
io_env.key_release(’q’)

‘‘‘

Dialogue: Conversations between characters in the game. This content
should be in the format of "character name: dialogue". For example, "
Arthur: I’m fine". If there is no on-screen text or dialogue, only
output "null".

Other: Other information that does not belong to the above categories. If
there is no on-screen text, only output "null".

Reasoning: The reasons for classification for each piece of information.
If the on-screen text prompt is an instruction on how to perform a task

using keyboard keys or mouse buttons, it should also classified as
action guidance and task guidance.

For action guidance, which code rules should you follow based on the word
used to control the key or button, such as press, hold, release, and
click?

The information should be in the following categories, and you should
output the following content without adding any other explanation:

Information:
1. ...
2. ...
...
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Reasoning:
1. ...
2. ...
...
Item_status:
Item_status is ...
Environment_information:
Environment information is ...
Notification:
Notification is ...
Task_guidance:
Task is ...
Action_guidance:
‘‘‘python
Python code to execute
‘‘‘
‘‘‘python
Python code to execute
‘‘‘
...
Dialogue:
Dialogue is ...
Other:
Other information is ...

Prompt 3: RDR2: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. Your advanced capabilities enable you to process and
interpret gameplay screenshots and other relevant information. Your
task is to examine these inputs, interpret the in-game context, and
determine whether the executed action takes effect.

Current task:
<$task_description$>

Last executed action:
<$previous_action$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Reasoning for the last action:
<$previous_reasoning$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the last executed action not based on the sequential frames?
2. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the action involves moving forward, it is considered unsuccessful

only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.
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3. If the last action is not executed successfully, what is the most
probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- Not holding enough time should not be considered in this part.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated at the current place.
- If it is a movement action, the most probable cause was that you were

blocked by seen or unseen obstacles.
- If there is an error report, analyze the cause based on the report.

You should only respond in the format as described below:
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 4: RDR2: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. You will be sequentially given <$event_count$> screenshots
and corresponding descriptions of recent events. You will also be
given a summary of the history that happened before the last
screenshot. You should assist in summarizing the events for future
decision-making.

The following are <$event_count$> successive screenshots and
corresponding descriptions:

<$image_introduction$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

Current task:
<$task_description$>

Info_summary: Based on the above input, please make a summary from the
screenshots with descriptions and the history in no less than 10
sentences, following the rules below.

1. Summarize the tasks from the history and the current task, with a
special note on the method of crucial press operations.

2. Summarize the entities and behaviors mentioned in the successive
descriptions.

3. If entities and behaviors in the history and screenshots are missed in
the descriptions, please add them to the summarization.

4. Organize the summarization as a story in order of time, including the
past entities and behaviors.

5. Only give descriptions; do not provide suggestions.

Entities_and_behaviors: Entities and behaviors which are summarized, e.g
., The entities include the player’s character, the target character,
and horses for both the player and the target. The behaviors consist
of the player character riding horseback, following the target on

horseback, and moving forward to maintain a distance behind the
target.

The output should be in the following format:
Info_summary:
The summary is...
Entities_and_behaviors:
The summary is...
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Prompt 5: RDR2: Action Planning prompt.

You are a helpful AI assistant integrated with ’Red Dead Redemption 2’ on
the PC, equipped to handle various tasks in the game. Your advanced

capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current task:
<$task_description$>

Memory examples:
<$memory_introduction$>

<$few_shots$>

<$image_introduction$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$info_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

Minimap information:
<$minimap_information$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the game. You should respond to me with
:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the question number 13:
1. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are open. You should first describe
each item in the screen line by line, from the top left and moving
right. Is the target item in the current screen?
2. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are open. Which item is selected
currently?
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3. Only answer this question when the character is visible in the
screenshot of the current step. Where is the character in the
screenshot of the current step?
4. Where is the target in the screenshot of the current step based on
the task description, on the left side or on the right side? Does it
appear in the previous screenshots?
5. Are there any bounding boxes with coordinates values and object
labels, such as "door x = 0.5, y = 0.5", shown in the screenshot? The
answer must be based only on the screenshot of the current step, not
on any previous steps. If the answer is no, ignore the questions 6

to 8.
6. You should first describe each bounding box, from left to right.
Which bounding box is more relevant to the target?
7. What is the value x of the most relevant bounding box only in the
current screenshot? The value is the central coordination (x,y) of
the central point of the box.
8. Based on the few shots and the value x, where is the relevant
bounding box in the current screenshot? Clearly on the left side,
slightly on the left side, in the center, slightly on the right side,
or clearly on the right side?
9. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are not open. Summarize the contents
of recent history, mainly focusing on the historical tasks and
behaviors.
10. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are not open. Summarize the content
of self-reflection for the last executed action, and do not be
distracted by other information.
11. What was the previous action? If the previous action was a turn,
was it a left or a right turn? If the previous action was a movement,
were you blocked?
12. List conditions in action rule 12 and which condition is
satisfied. Only when you do not satisfy any conditions, summarize the
content of the minimap information.
13. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the

valid action set for the next step? You should analyze the effects of
the action step by step.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and to the previous skills already
executed, if any. You should also pay more attention to the following
action rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move(duration=1)". If it does not have a parameter,
just output the action, like "mount_horse()".
2. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the character
.
3. If the target is not on the radial menu, trade, satchel or
inventory interfaces, you MUST choose the skill ’view_next_page’. For
the map, ignore the skill ’view_next_page’.
4. If the minimap information exists, it may include angle
information for red points, yellow points, or yellow regions. Angle
information specifies the direction of the corresponding point or
area. A negative angle indicates the left side, while a positive
value signifies the right side. If the angle is 30, the corresponding
point or area is 30 degrees to the character’s right. If the angle

is -50, the corresponding point or area is 50 degrees to the
character’s left. Do not doubt the correctness of these angles; you
can refer to them when you approach these points or regions.
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5. When you decide to control the character to move, if the relevant
bounding box is clearly on the left side in the current screenshot,
you MUST turn left with a big degree. If the relevant bounding box is
slightly on the left side in the current screenshot, you MUST turn

left with a small degree. If the relevant bounding box is clearly on
the right side in the current screenshot, you MUST turn right with a
big degree. If the relevant bounding box is slightly on the right
side in the current screenshot, you MUST turn right with a small
degree. If the relevant bounding box is on the central side of the
current screenshot, you can choose to move forward.
6. When you decide to control the character to move, if yellow
regions or yellow points exist in minimap information, they are
related to the current task or instruction. This implies that you
should approach within the yellow region or approach the yellow
points. You can refer to the corresponding angle information when
deciding to approach these regions or points. If red points exist in
the minimap information, they are also related to the current task or
instruction. This implies that you should turn towards them, and you
can also refer to the corresponding angle information.
7. When you decide to control the character to move, if minimap
information does not exist, the ’theta’ you use to turn MUST be more
than 10 degrees and less than 60 degrees.
8. When you decide to control the character to move, if you are in a
normal road condition, the ’duration’ you use to move forward should
be 1 second. If you have bad road conditions, such as snow, and grass
, that can slow you down, the ’duration’ you use to move forward
should be 2 seconds.
9. When you are exploring or searching a place, if you are leaving
the place, you MUST make a sharp turn to face the inside of the place
. Any values for degrees are allowed.
10. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place.
11. If upon self-reflection you think you were blocked, you MUST make
a moderate turn in the same direction as the previous turn action

and move forward, so that you can pass obstacles.
12. The conditions to ignore the minimap information for decision-
making are: 1. When self-reflection implies you were blocked. 2. When
you were inside the highlighted area in the minimap. If any of the

conditions satisfied, you must ignore the minimap information for
decision-making even if it is relevant to the current task.
13. When you are indoors, or the current task does not imply
following, you MUST not use the follow action.
14. When you are outdoors, and the current task implies following,
you MUST use the follow action.
15. If you were dead or the game failed, you MUST retry from the
checkpoint, and MUST NOT restart the mission.

You should only respond in the format described below, and you should not
output comments or other information:

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.2 PROMPTS FOR CITIES: SKYLINES

Prompt 6: Skylines: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Cities: Skylines’
on the PC, equipped to handle a wide range of tasks in the game. Your
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advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in detail
and then provide an overall image description. Pay attention to
anything related to the task. If there are specific features such as
characters or text, mention these as well.

Budget: Bank Balance is shown at the bottom of the screenshot.

Population: The population of the city is shown at the bottom of the
screenshot, next to the budget.

Error_message: If there are some in-game error messages, which are
usually in red color, such as "Space already occupied!", extract the
text, otherwise, only output "null".

Construction_information: If there is some in-game construction
information, which is usually in blue colors, such as "Construction
cost: 2500 Estimated production:0 m^3/week" and "Construction cost:
2500 Shoreline recommended", extract the text, otherwise, only output
"null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
The image shows...
Budget:
The amount of budget
Population:
The amount of population
Error_message:
The text of the error message
Construction_information:
The text of the construction information
Other:
Other information is

Prompt 7: Skylines: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Cities: Skylines’
on the PC, equipped to handle a wide range of tasks in the game. Your
advanced capabilities enable you to process and interpret gameplay

screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

Current coordinates:
<$coordinates$>

Last executed action for completing the subtask:

79



4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2025

<$actions$>

Error message for the last executed action:
<$error_message$>

Construction information:
<$construction_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You MUST answer the following questions step by step to get
some reasoning based on the last action and sequential frames during
the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Is the construction information provided in the information shown
above? If yes, what is it?

3. Was the last executed action successful? Give reasons. You should
refer to the following rules:

- Buildings and roads cannot be built on the river.
- Water pumping station and water drain pipe need to be built as close as

possible to the river.
- If you are try_place a water pumping station and the construction

information provided above shows that the estimated production is 0 m
^3/week, then it means that it is not close enough to the river. So
you need to try_place to place the building to another place. If the
estimated production is not 0 m^3/week, or the construction
information is not provided, regard this action as a success. You
should only refer to the textual construction information instead of
extracting it from the sequential frames.

- If you are try_place a water drain pipe and the construction
information shows that shoreline is recommended. Then it means that
it is not close enough to the river. So you need to try_place to
place the building in another place.

- Roads are prohibited from crossing together and do not build roads on
water.

4. If the last action is not executed successfully, what is the most
probable cause? How to improve this action? You should give only one
cause and refer to the following rules:

- The reasoning for the last action could be wrong.
- If there is an error message for the last executed action provided in

the above information, analyze the cause based on the report,
otherwise, you should regard that there are no error messages. You
are not allowed to guess the error message by yourself.

5. Is the subtask completed? Give your reasons. You MUST remember that
action starts with "try_place" can NEVER complete the subtask. Only "
confirm_placement()" can make the building happen and complete the
task. If you want to make any confirmation, regard it as a success.

6. Do you think the subtask is reasonable? Give your reasons.

Success: You need to output whether the last action was executed
successfully or not.

- If the last action is successful, you should only output ’True’.
Otherwise, you should only output ’False’.

You should only respond in the format described below.
Reasoning:
1. ...
2. ...
3. ...
4. ...
5. ...
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6. ...
...
Success:
True
...

Prompt 8: Skylines: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Cities: Skylines’
on the PC, equipped to handle a wide range of tasks in the game. You
will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current budget:
<$budget$>

Current population:
<$population$>

Last executed action:
<$actions$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Error message for the last action:
<$error_message$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

The task can be decomposed into the following subtasks:
1. Start from the Highway entry: Build a road from the highway entry in

grid (4, 2) vertically northwards towards grid (3,1).
2. Extend Horizontally to the Left (1,1): From the endpoint in grid (1,1)

, construct a road horizontally to the left, spanning across grids
(3,1) and (2,1), and ending at the center of grid (1,1).

3. Build a Road Down to the bottom of Grid (2,2): Start from grid (1,1)
and construct the road to the top of grid (2, 3).

4. Extend Eastward to Grid (3,3): From the bottom of grid (2,2), build a
road eastward to reach the center of grid (3,3).

5. Connect the road to the Highway Exit: Extend the end of the road from
grid (3,3) to the exit of the highway, completing the road loop.

6. Install a Water Pumping Station near the River at the top-left corner
of grid (2,3): Place the water pumping station near the river in grid
(2,3) to ensure an adequate water supply.
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7. Position a Water Drain Pipe near the River at the top-left corner of
grid (2,3): Install a water drain pipe slightly downstream from the
pumping station but within the same grid to prevent water
contamination.

8. Lay Water Pipes: Connect the water pumping station to the water drain
pipe using water pipes. Additionally, ensure all roads built are
covered with water pipes to provide water access across the entire
area.

9. Erect Wind Turbines for Power: Construct several wind turbines near
the water pumping station and along the roads to provide sustainable
electricity to the area.

10. Designate Residential Zones: Allocate spaces adjacent to the roads
for residential zones to foster community living.

11. Establish Industrial Zones: Set aside areas near the roads for
industrial purposes, ideally in parts of the grid further from
residential zones to manage noise and pollution.

12. Create Commercial Zones: Develop commercial zones near the roads to
provide services and retail options for the residents and workers in
the area.

13. Make sure all the zones near roads are built with Residential Zones,
Industrial Zones or Industrial Zones.

14. Build more roads and zones and ensure water and electricity supply.

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task?

2. Which subtask has been completed? Which subtasks are not?

Subtask_reasoning: According to the task decomposition, analyze the
current progress step by step and then decide whether the previous
subtask is finished and whether it is necessary to propose a new
subtask. The subtask should be straightforward, contribute to the
target task and be most suitable for the current situation, which
should be completed within a few actions. You should respond to me
with:

1. What is the previous subtask? Which step it is for in the task
decomposition?

2. According to the reasoning of self-reflection, is the previous subtask
completed? Note that the success of the action does not mean the

success of the subtask. You should strictly follow the reasoning of
whether the subtask is completed in the self-reflection. If yes, you
should move to the next step and propose it as the new subtask. If
not, you should continue the previous subtask without changing
anything. Please do not make any assumptions if they are not
mentioned in the above information. You should assume that you are
doing the task from scratch. Please strictly follow the description
and requirements in the current task.

3. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

4. To enable water supply, you should first build a water pumping station
and then build a water drain pipe near the river, and finally use

water pipes to connect them with the roads. And ensure the water
pipes cover all the roads.

5. The water pumping station and water drain pipe also need electricity
to work. So you also need to provide electricity for them.

6. If you want to build roads for the village at the beginning, make sure
to mention that the road needs to be as long as possible and use

several roads to form a large square for the village.
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Subtask: According to the subtask reasoning, determine and output the
most suitable subtask for the current situation. You MUST output the
subtask in the output.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is ...
Subtask_reasoning:
1. ...
2. ...
3. ...
Subtask:
The current subtask is ...

Prompt 9: Skylines: Action Planning prompt.

You are a helpful AI assistant integrated with ’Cities: Skylines’ on the
PC, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current task:
<$subtask_description$>

Coordinates of constructed buildings:
<$coordinates$>

The latest successful action that builds the building. If you want to
try_place a road, and the endpoint (x2, y2), of the latest successful
action is also try_place a road. Then you MUST use the end point of

the constructed road as the start point of your new road.
<$last_success_try_place_action$>

Current budget:
<$budget$>

Current population:
<$population$>

Last executed action:
<$actions$>

Self-reflection reasoning for the last executed action:
<$self_reflection_reasoning$>

Error message for the last action:
<$error_message$>

Construction information for the last action:
<$consruction_information$>

Summarization of recent history:
<$history_summary$>
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Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. What is the current task? What are the requirements to achieve the
goal?
2. According to the self-reflection reasoning, is the last action
executed successfully?
3. If you want to place anything, do you already open the
corresponding menu? Otherwise, you need to open the right menu first
in this step rather than doing anything else. If you have not already
opened the corresponding menu, skip answering questions 4, 5, 6, 7,

8 and 9.
4. Does the previous action "try_place" something? If there is an
error message showing that the space is already occupied or the last
action failed according to the self-reflection reasoning, you should
use the same action with different parameters as the position of it
to try again. The difference needs to be significant enough with at
least 100 pixels of change for the position of the input points. If
there is no error message, you should only output confirm_placement()
or cancel_placement() to approve or cancel the placement. You should
not call anything else.
5. Does the previous action open any menu? Then you should "try_place
" something according to the task description instead of using "
confirm_placement".
6. If you want to place a building, which grid do you plan to place
the building in? What is the exact pixel position of it?
7. If you want to place a road, which grids do you plan to make it
cross? Which grids are the start point and end point in, respectively
? What are the exact pixel positions of them? You MUST use one of the
endpoints of the constructed road shown in the coordinates

information as the start point of the new road. If you want to
try_place a road, and the endpoint (x2, y2), of the latest successful
action is also try_place a road. Then you MUST use the end point of

the constructed road as the start point of your new road.
8. If you want to place a zone, which grids do you plan to make it
cover? You should only use the vertices coordinates of the
corresponding grids as the parameter for the action. Zones cannot
cover each other.
9. If you want to place a Water Pipe, the start point should be the
position of Water Pumping Station, Water Drain Pipe, the start point
of a built Water Pipe or the end point of a built Water Pipe.
10. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the

valid action set for the next step? You should analyze the effects of
the action step by step. You should not repeat the previous action

again. Do not try to verify whether the previous action succeeded.
11. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
12. If you are placing a road, is the road more than 300 pixels long?
Otherwise, regenerate the action and give reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
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the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the character
.
3. You MUST NOT output more than one skill in the actions.
4. If you want to build a village, you should follow these rules:
4.1 Build roads correctly.
- If you have not opened the road tool, you should open the menu.

If you have already opened the menu, you should not open it again.
- Newly built roads must be connected to the existing roads.
- Determine in which grid the starting point of the newly built

road is located, and identify the pixel position of the starting
point.

- Build the road in the correct direction.
5. You MUST NOT repeat the previous action with the same parameters
again if you think the previous action fails.
6. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.
7. Please do not directly connect the entrance of the highway with
the exit of the highway at the beginning. To make the village as
large as possible. You should build roads in the wild and connect
them with each other.
8. If you are placing a road, the road needs to be at least 300
pixels long.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.3 PROMPTS FOR STARDEW VALLEY

Prompt 10: Stardew: Information Gathering Cultivation prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in a grid-
by-grid format and then provide an overall image description. Pay
attention to anything related to the task. The image is divided into
a 3x5 grid, each cell having its own coordinates. For each grid cell,
describe the contents in detail, focusing on any critical icons, or
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objects present in that particular segment. If there are specific
features such as characters or text, mention these as well. After
completing the description for one cell, proceed to the next, for
example, ’In grid (1,1), [description]. In grid (1,2), [description
].’ and so on until the entire image is covered.

Date_time: The date and time information in the game are shown on the
upper-right of the screenshot, in grid (1, 5). An example of the date
and time information is "Wed 10, 5:10 pm".

Energy: The current energy remains for the character doing actions. The
energy bar is shown on the bottom-right of the screenshot, in grid
(3, 5). The full energy is 270. An example of the energy information
is "150/270".

Weather: The current weather information in the game, the weather is one
from "Sunny", "Rainy", "Windy", "Snowy", "Stormy", "Festival", "
Wedding", and "null". If none of them applies, only output "null".

Dialog: If there are some dialogs shown in the screenshot, extract the
text of the conversation, like "Shopkeeper: What do you want to buy
?", otherwise, only output "null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
In grid (1,1), ...
In grid (1,2), ...
...
In grid (3,5), ...
Overall, the image shows...
Date_time:
Date and time information
Energy:
The number of energy remains showing in the energy bar
Weather:
Weather information
Dialog:
Dialog text
Other:
Other information is ...

Prompt 11: Stardew: Self-Reflection Cultivation prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$previous_action$>
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Reasoning for the last action:
<$previous_reasoning$>

Current date and time:
<$date_time$>

Previous toolbar information:
<$previous_toolbar_information$>

Current toolbar information:
<$toolbar_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Was the executed action successful? Give reasons. You should refer to
the following rules:

- If the action involves moving forward, it is considered unsuccessful
only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

- If you are not 100% sure that the action fails, regard it as success.
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action, the most probable cause was that the

action was unavailable at the current place, then you should move to
a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
4. Is the subtask completed? Give your reasons. If you want to make any

confirmation, regard it as a success.
5. Is the target task completed? Give your reasons.
6. Do you think the subtask is reasonable? Give your reasons.

You should only respond in the format described below.
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 12: Stardew: Task Inference Cultivation prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. You

will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.
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Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to harvest a seed, you

need to water the seed for 4 days. And you have already planted the
seed and watered it for two days.

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.
4. If you are watering a seed. Record how many times you have watered and

calculate how many days you have to water before you can harvest
according to the toolbar information provided above.

Here is an example to follow:
On Thu.4, I dig the dirt with the toe and then plant the parsnip seed and

water the seed. The seed has been watered once. It still needs to be
watered another three times to harvest. On Fri.5, I watered the seed
again. The seed has been watered twice. It still needs to be watered
twice to harvest. Today, Sat.6, I just need to get out of home and

watered the seed again.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? Or is
it improper for the current situation? Then select a new one,
otherwise you should reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.
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5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. The seed only needs to be watered once.
7. Do not mention any grid information in the subtask description.
8. Do not check the growth status of the crop.
9. The seeds only need to be watered ONCE every day. If you have already

watered the seed today, you should return home and go to sleep,
waiting for the next day.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is...
Subtask_reasoning:
1. ...
2. ...
...
Subtask:
The current subtask is

Prompt 13: Stardew: Action Planning Cultivation prompt.

You are a helpful AI assistant integrated with ’Stardew Valley’ on the PC
, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Current date and time:
<$date_time$>

Toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete
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the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. Analyze the information in the toolbar. Does it contain all the
necessary items for completing the task?
2. What is the current selected tool? Do you want to use a tool, such
as axe, hoe, watering can, pickaxe and scythe? And is the character’

s current position a suitable place to use such a tool? Then you
should use use_tool() instead of do_action().
3. Does the character already reach the target place?
4. What was the previous action? If the previous action was a
movement, were you blocked?
5. If your task is to harvest the plant, did you water the seed? The
seeds only need to be watered ONCE every day. If you have already
watered the seed today, you should return home and go to sleep,
waiting for the next day.
6. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the valid
action set for the next step? You should analyze the effects of the

action step by step. You should not repeat the previous action again
except for the movement action. Do not try to verify whether the
previous action succeeded.
7. Is the selected action the same as the last executed action? If
yes, regenerate the action and give the reasons.
8. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
9. Analyze whether the selected action meets the requirements of the
Actions below one by one. Does the generated action meet all the
requirements? If not, regenerate the action and give the reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. You can only output at most two actions in the output.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore character’s

facing direction and output the action in an absolute direction like
right and left.
4. If you want to interact with the objects in the toolbar, you need
to make sure that the target object is already selected. You need to
use select_tool() to select them before executing use_tool() or
do_action().
5. If you want to plant a seed or harvest a mature crop, please use
do_action() instead of use_tool(). If you want to use tools, like axe
, hoe, watering can, pickaxe and scythe, please use use_tool().
6. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place. Please do not
try to execute the same action again.
7. If you want to get out of the house, just use the skill
get_out_of_house(). You MUST NOT output any movement action behind
this skill. And if the last executed action already contains this
skill, do not execute this skill for the current step again.
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8. If upon self-reflection you think you were blocked, you MUST
change the direction of moving, so that you can pass obstacles.
9. You MUST NOT repeat the previous action again if you think the
previous action fails.
10. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Prompt 14: Stardew: Information Gathering Farm Clearup prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in a grid-
by-grid format and then provide an overall image description. Pay
attention to anything related to the task. The image is divided into
a 3x5 grid, each cell having its own coordinates. For each grid cell,
describe the contents in detail, focusing on any critical icons, or

objects present in that particular segment. If there are specific
features such as characters or text, mention these as well. After
completing the description for one cell, proceed to the next, for
example, ’In grid (1,1), [description]. In grid (1,2), [description
].’ and so on until the entire image is covered.

Date_time: The date and time information in the game are shown on the
upper-right of the screenshot, in grid (1, 5). An example of the date
and time information is "Wed 10, 5:10 pm".

Energy: The current energy remains for the character doing actions. The
energy bar is shown on the bottom-right of the screenshot, in grid
(3, 5). The full energy is 270. An example of the energy information
is "150/270".

Weather: The current weather information in the game, the weather is one
from "Sunny", "Rainy", "Windy", "Snowy", "Stormy", "Festival", "
Wedding", and "null". If none of them applies, only output "null".

Dialog: If there are some dialogs shown in the screenshot, extract the
text of the conversation, like "Shopkeeper: What do you want to buy
?", otherwise, only output "null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
In grid (1,1), ...
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In grid (1,2), ...
...
In grid (3,5), ...
Overall, the image shows...
Date_time:
Date and time information
Energy:
The number of energy remains showing in the energy bar
Weather:
Weather information
Dialog:
Dialog text
Other:
Other information is ...

Prompt 15: Stardew: Self-Reflection Farm Clearup prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Current date and time:
<$date_time$>

Previous toolbar information:
<$previous_toolbar_information$>

Current toolbar information:
<$toolbar_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Was the executed action successful? Give reasons. You should refer to
the following rules:

- If the action involves moving forward, it is considered unsuccessful
only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

- If you are not 100% sure that the action fails, regard it as success.
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3. If the last action is not executed successfully, what is the most
probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action, the most probable cause was that the

action was unavailable at the current place, then you should move to
a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
4. Is the subtask completed? Give your reasons. If you want to make any

confirmation, regard it as a success.
5. Is the target task completed? Give your reasons.
6. Do you think the subtask is reasonable? Give your reasons.

You should only respond in the format as described below.
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 16: Stardew: Task Inference Farm Clearup prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. You

will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
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summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to harvest a seed, you

need to water the seed for 4 days. And you have already planted the
seed and watered it for two days.

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.
4. If you are watering a seed. Record how many times you have watered and

calculate how many days you have to water before you can harvest
according to the toolbar information provided above.

Here is an example to follow:
On Thu.4, I dig the dirt with the toe and then plant the parsnip seed and

water the seed. The seed has been watered once. It still needs to be
watered another three times to harvest. On Fri.5, I watered the seed
again. The seed has been watered twice. It still needs to be watered
twice to harvest. Today, Sat.6, I just need to get out of home and

watered the seed again.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? Or is
it improper for the current situation? Then select a new one,
otherwise you should reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. The seed only needs to be watered once.
7. Do not mention any grid information in the subtask description.
8. Do not check the growth status of the crop.
9. The seeds only need to be watered ONCE every day. If you have already

watered the seed today, you should return home and go to sleep,
waiting for the next day.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is...
Subtask_reasoning:
1. ...
2. ...
...
Subtask:
The current subtask is

Prompt 17: Stardew: Action Planning Farm Clearup prompt.

You are a helpful AI assistant integrated with ’Stardew Valley’ on the PC
, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
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from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Current date and time:
<$date_time$>

Toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
MUST NOT miss question 3 and question 11:
1. Analyze the information in the tool bar. Does it contain all the
necessary items for completing the task?
2. Where is the character in the screenshot of the current step?
Where is the house in the screenshot of the current step? The blue
band represents the left side and the yellow band represents the
right side. Where is the character compared with the house? (Is he at
the left edge or right edge of the house?)
3. If your task is to clear obstacles, you MUST NOT miss any question
in this step:
- The blue band represents the left side and the yellow band

represents the right side. Where is the character according to the
house? (Is he at the left edge or right edge of the house?)

- Which grids do the house span in the screenshot? (You MUST answer
one or two grid position. The house does not span over two grids.)

Then, what are the two grids below and near the house? (e.g. If the
house spans from grid (1,3) to (1,4), the CLEARING AREA of character
should be grid (2,3) and (2,4). If the house spans grid (1,3), the
CLEARING AREA of character should be grid (2,2) and (2,3).You MUST
remember this CLEARING AREA precisely IN THIS ROUND.) You should
focus on obstacles in them. You MUST NOT move the character out of
these two obstacle grids.

- In order to clear all obstacles below the house and make the
place suitable for cultivating, you should not target for a specific
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obstacle. Instead, you should try your best to move the character to
pass every patch in the CLEARING AREA. You should clear every
obstacle that blocks the character in this process.

- Every time after you move the character down (or up when being
too far from the house), you should move the character right or left
(based on the character’s position in the CLEARING AREA compared with
the house) to fully explore the CLEARING AREA of the two grids

determined above. You should clear all obstacles the character meets
in this process.

- Is the current row fully explored by the character? If so, your
movement should be moving down. If there is an obstacle beneath the
character, you should clear it first before moving the character down
.

- You should not move too far from the house. You should not move
the character down but should move him up instead if the house is not
in the current screenshot.
- What was the previous action? If the previous action contained

use_tool(), you MUST NOT start with the same use_tool() action in
this round. (You can still use use_tool() by following a movement or
select_tool().)

- If the previous action was a movement, is the position of
character changed? If not, it is the most trustworthy evidence that
there is an obstacle in front of the character that can interact with
.

- If the character is blocked by an obstacle in front of him or if
you think there is an obstacle in front of the character, what type
of obstacle is it? (Usually, weed and grass are green, stone is grey
and branch is brown) What is the suitable tool for clearing it and is
the tool correctly selected?
4. What is the current selected tool? Do you want to use a tool, such
as axe, hoe, watering can, pickaxe and scythe? And is the character’

s current position a suitable place to use such a tool? Then you
should use use_tool() instead of do_action().
5. Does the character already reach the target place?
6. What was the previous action? If the previous action was a
movement, were you blocked?
7. If your task is to harvest the plant, did you water the seed? The
seeds only need to be watered ONCE every day. If you have already
watered the seed today, you should return home and go to sleep,
waiting for the next day.
8. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the valid
action set for the next step? You should analyze the effects of the

action step by step. You should not repeat the previous action again
except for the movement action. Do not try to verify whether the
previous action succeeded.
9. Is the selected action the same as the last executed action? If
yes, regenerate the action and give the reasons.
10. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
11. Analyze whether the selected action meets the requirements of the
Actions below one by one. Does the generated action meet all the

requirements? If not, regenerate the action and give the reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
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2. You can only output at most two actions in the output.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore character’s

facing direction and output the action in an absolute direction like
right and left.
4. If you want to interact with the objects in the toolbar, you need
to make sure that the target object is already selected. You need to
use select_tool() to select them before executing use_tool() or
do_action().
5. If you want to plant a seed or harvest a mature crop, please use
do_action() instead of use_tool(). If you want to use tool, like axe,
hoe, watering can, pickaxe and scythe, please use use_tool().
6. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place. Please do not
try to execute the same action again.
7. If you want to get out of the house, just use the skill
get_out_of_house(). You MUST NOT output any movement action behind
this skill. And if the last executed action already contains this
skill, do not execute this skill for the current step again.
8. If upon self-reflection you think you were blocked, you MUST
change the direction of moving, so that you can pass obstacles.
9. You MUST NOT repeat the previous action again if you think the
previous action fails.
10. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.
11. If you want to clear obstacles, you should follow the order of
thinking as follows:

- You MUST NOT move the character to the house.
- In order to clear all obstacles below the house and make the

place suitable for cultivating, you should not target for a specific
obstacle. Instead, you should try your best to move the character to
pass every patch in the CLEARING AREA. You should clear every
obstacle that blocks the character in this process.

- Every time after you move the character down (or up when being
too far from the house), you should move the character right or left
(based on the character’s position compared with the house) to fully
explore the CLEARING AREA. You should clear all obstacles the
character meets in this process.

- If you think the character has fully explored the current row
of the CLEARING AREA, you should move the character down. If there is
an obstacle beneath the character, you should clear it first before

moving the character down.
- You should not move too far from the house. You should not move

the character down but should move hime up instead if the house is
not in the current screenshot.

- You can take larger steps of moving left or right by adjusting
the action’s parameter. You MUST use a small parameter when doing
move_down() to make sure the character only moves one patch down.

- If you think there is an obstacle in front of the character,
you should determine its type. You should then select the suitable
tool by select_tool() and clear the obstacle by use_tool().

- You should always use_tool() after select_tool(). Do not switch
to another tool without using it.

- If the previous action contained use_tool(), you MUST NOT start
with the same use_tool() action in this round. (You can still use

use_tool() by following a movement or select_tool().)
- If the previous action contained use_tool(), you should

determine whether the obstacle is cleared. If you are not sure that
the obstacle is cleared, you are encouraged to try different tools by
select_tool() and use_tool() before moving the character to other

positions.
- If the previous action was a movement, you should determine

whether there is an obstacle IN FRONT OF the character. If so, you
should select the suitable tool by select_tool() and clear it by
use_tool().
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- If previous action contained use_tool(), you should move the
character to the same direction as before to test if the blocking
obstacle is cleared.

- If the blocking obstacle is not cleared, you should select a
different tool to clear it.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Prompt 18: Stardew: Information Gathering Shopping prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Task overview:
<$task_description$>

Current subtask:
<$subtask_description$>

Description: Please analyze and describe the screenshot image in a grid-
by-grid format from left to right and top to bottom and then provide
an overall image description. Pay attention to anything related to
the current subtask. The image is divided into a 5x3 grid, each cell
having its own coordinates. For each grid cell, describe the contents
in detail, focusing on any critical icons, or objects present in

that particular segment. If there are specific features such as
characters or text, mention these as well. After completing the
description for one cell, proceed to the next, for example, ’In grid
(1,1), [description]. In grid (2,1), [description].’ and so on until
the entire image is covered.

Date_time: The date and time information in the game are shown on the
upper-right of the screenshot, in grid (5, 1). An example of the date
and time information is "Wed 10, 5:10 pm".

Energy: The current energy remains for the character doing actions. The
energy bar is shown on the bottom-right of the screenshot, in grid
(5, 3). The full energy is 270. An example of the energy information
is "150/270".

Weather: The current weather information in the game, the weather is one
from "Sunny", "Rainy", "Windy", "Snowy", "Stormy", "Festival", "
Wedding", and "null". If none of them applies, only output "null".

Dialog: If there are some dialogs shown in the screenshot, extract the
text of the conversation, like "Shopkeeper: What do you want to buy
?", otherwise, only output "null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".
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You should only respond in the format described below and not output
comments or other information.

Description:
In grid (1,1), ...In grid (2,1), ...In grid (3,1), ...In grid (5,3), ...

Overall, the image shows...
Date_time:
Date and time information
Energy:
The number of energy remains showing in the energy bar
Weather:
Weather information
Dialog:
Dialog text
Other:
Other information is ...

Prompt 19: Stardew: Self-Reflection Shopping prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Current Image description:
<$image_description$>

Toolbar information
<$toolbar_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. Are the characters’ positions in these frames identical?
2. What is the executed action? Please answer this question not based on

the sequential frames.
3. Was the executed action successful? Give reasons. You should refer to

the following rules:
- Analyze by observing given sequential frames for detailed information.
- If the action involves moving forward, it is considered unsuccessful

only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

- If you are not 100% sure that the action fails, regard it as success.
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4. If the last action is not executed successfully, what is the most
probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action such as buy_item or do_action, the most

probable cause was that the action was unavailable at the current
place, then you should move to a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
5. If the current subtask involves determining whether to enter the store

, you need to compare the scene in the current screenshot with the
scene in the screenshot from Memory to determine whether the
character has entered the store, if not, then the task of entering
the store is not complete.

6. Is the subtask completed? Give your reasons. If you want to make any
confirmation, regard it as a success. You should observe given
sequential frames, do not rely on the text information.

7. Is the target task completed? Give your reasons.
8. If the current subtask involves purchase something, you should check

the toolbar or purchase menu to see if the purchase was successful.
Do not overbuy or miss the purchase.

9. Do you think the subtask is reasonable? Give your reasons.

You should only respond in the format as described below.
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 20: Stardew: Task Inference Shopping prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. You

will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current Image description:
<$image_description$>

Last executed action:
<$previous_action$>

Decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
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<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to harvest a seed, you

need to water the seed for 4 days. And you have already planted the
seed and watered it for two days.

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? If so,
give evidence that the task was completed. Or is it improper for the
current situation? Then select a new one, otherwise you should reuse
the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. Do not mention any grid information in the subtask description.
7. If the character does not reach the target place, you should propose a

movement task to make him closer to the target.
8. If you want to purchase items, then you should move up to stand in

front of the shopkeeper’s counter, move sligntly to align with the
green counter and buy items. After purchasing, you can move down to
the exit and leave store.

9. If you want to leave town, you should move along gray cobblestone road
to the left of the store and the clinic.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is...
Subtask_reasoning:
1. ...
2. ...
...
Subtask:
The current subtask is

Prompt 21: Stardew: Action Planning Shopping prompt.

You are a helpful AI assistant integrated with ’Stardew Valley’ on the PC
, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
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within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Image description:
<$image_description$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

Grid System Information:
1. Each grid has a coordinate (x,y). A larger x means that the grid is on

the more eastern(right) side, and a larger y means that the grid is
on the more southern(down) side. For example, moving from grid (1,3)
to grid (1,1) requires move_up(duration=2) and moving from grid (1,1)
to grid (2,1) requires move_right(duration=1)

2. The larger the difference between the coordinates of the two grids,
the longer it takes to move. Moving from grid (2,5) to grid (2,3)
takes longer than moving from grid (2,3) to grid (1,3).

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. Does the character already reach the target place? You must move
close enough to the object to be in contact with it in order to
interact with it. Just in the same grid with the target is not enough
.
2. Make use of the above image description, grid system information
and current screenshot. Analyze whether the character has reached the
target place. You must move close enough to the object to be in

contact with it in order to interact with it. Just in the same grid
with the target is not enough.
3. What was the previous action? If the previous action was a
movement, were you blocked?
4. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the valid
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action set for the next step? You should analyze the effects of the
action step by step. You should not repeat the previous action again
except for the movement action. Do not try to verify whether the
previous action succeeded.
5. Is the selected action the same as the last executed action? If
yes, regenerate the action and give the reasons.
6. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
7. Where is the player’s character? Notice that the player’s
character is a brown-haired man wearing a blue jacket.
8. Does the selected action contribute to the current subtask?
9. Analyze whether the selected action meets the requirements of the
Actions below one by one. Does the generated action meet all the
requirements? If not, regenerate the action and give the reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. You can only output at most two actions in the output.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore character’s

facing direction and output the action in an absolute direction like
right and left.
4. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place. Please do not
try to execute the same action again.
5. If you want to get out of the house, just use the skill
go_through_door. You MUST NOT output any movement action behind this
skill. And if the last executed action already contains this skill,
do not execute this skill for the current step again.
6. If upon self-reflection you think you were blocked, you MUST
change the direction of moving, so that you can pass obstacles.
7. You MUST NOT repeat the previous action again if you think the
previous action fails.
8. Your action should be strictly follow the analyze in the reasoning
. Do not output any additional action not mentioned in the reasoning.
9. If the current subtask includes purchasing items, here are some
useful tips for you:
- Pierre’s store is east of the character’s house.
- if you do not see the store, you can move for a longer time each

time, such move_right(duration=5). You can also move more distance to
the left each time to get home faster.
- To successfully enable the purchase transaction, you should stand

directly in front of the green counter, which left to the white
counter with word ’for sale’.
- After aligning with green counter, you should purchase items.
- It is not necessary to positioned very precisely. If you stand

near the green counter, you can try to purchase items.
10. If the current subtask includes exiting town and returning home,
here are some useful tips for you:
- Character’ house is west of Pierre’s store.
- There is a long distance from home to the store, so each movement

should take a long duration, such as move_left(duration=5).
- Don’t stand in the grass, move up and away from the lawn.
- The exit to the town is on the west(left) of Pierre’s store and

clinic. You should move left along the stone road, which has a wooden
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fence below it. If you gets stuck, move up slightly to get over the
obstacle.
11. If you want to enter a building, you should use go_through_door(
door="xxx_entrance"); If you want to leave a building, you should use
go_through_door(door="xxx_exit").
- You can use go_through_door(door="store_entrance") to enter the

store.
- You can use go_through_door(door="store_exit") to leave the store.
- You can use go_through_door(door="home_entrance") to enter your

house.
- You can use go_through_door(door="home_exit") to leave your house.
12. If you want aligh with the target, you MUST move slightly. Each
movement take only 0.1 seconds, such as move_xxx(duration=0.1).

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.4 PROMPTS FOR DEALER’S LIFE 2

Prompt 22: Dealer’s Life 2: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with "Dealer’s Life 2"
on the PC, equipped to handle a wide range of tasks in the game. Your
advanced capabilities enable you to process and interpret gameplay

screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in detail
and then provide an overall image description. Most importantly,
identify the current page type and any relevant information related
to the task. If there are specific features such as characters or
text, mention these as well.

Budget: Bank Balance is shown at the top right of the screenshot.

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
The image shows...
Budget:
The amount of budget
Other:
Other information is ...

Prompt 23: Dealer’s Life 2: Self Reflection prompt.

Assume you are a helpful AI assistant integrated with "Dealer’s Life 2"
on the PC, equipped to handle a wide range of tasks in the game. Your
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advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$actions$>

Reasoning for the last action:
<$decision_making_reasoning$>

Current budget:
<$budget$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Was the executed action successful? Give reasons. You should refer to
the following rules:

- If you are not 100% sure that the action fails, regard it as success.
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action, the most probable cause was that the

action was unavailable at the current place, then you should move to
a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
4. Is the subtask completed? Give your reasons. If you want to make any

confirmation, regard it as a success.
5. Is the target task completed? Give your reasons.
6. Do you think the subtask is reasonable? Give your reasons.

Success: You need to output whether the last action was executed
successfully or not.

- If the last action is successful, you should only output ’True’.
Otherwise, you should only output ’False’.

You should only respond in the format described below.
Reasoning:
1. ...
2. ...
3. ...
Success:
True
...
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Prompt 24: Dealer’s Life 2: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’DealersLife2’ on
the PC, equipped to handle a wide range of tasks in the game. You
will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current budget:
<$budget$>

Current population:
<$population$>

Last executed action:
<$actions$>

Decision-making reasoning for the last executed action:
<$decision_making_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task?

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.
4. If you are watering a seed. Record how many times you have watered and

calculate how many days you have to water before you can harvest
according to the toolbar information provided above.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
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not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? Or is
it improper for the current situation? Then select a new one,
otherwise you should reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. Do not mention any grid information in the subtask description.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is ...
Subtask_reasoning:
1. ...
2. ...
3. ...
Subtask:
The current subtask is ...

Prompt 25: Dealer’s Life 2: Action Planning prompt.

You are a helpful AI assistant integrated with "Dealer’s Life 2" on the
PC, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Current page type:
<$coordinates$>

Current budget:
<$budget$>

Last executed action:
<$actions$>

Reasoning for the last action:
<$decision_making_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>
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Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. Analyze the information in the screenshot. What can you observe in
the screenshot? Please list some key elements.
2. What is the current task? What are the requirements to achieve the
goal?
3. What have you done so far in the game? What are the results of the
previous actions?
4. What is your next step to achieve the goal? What is your plan? Why
do you choose this action? Please explain the reasoning behind your

decision.
5. If you were to respond to the customer’s dialogue on the dialogue
page, which of the listed responses in the screenshot would you
choose? Why?
6. If you are to make an offer to a customer, how would you determine
the price? You should determine the customer’s role here. If the

customer is a "seller", you should offer a price lower than the item’
s value. If the customer is a "buyer", you should offer a price
higher than the item’s value. Please explain your reasoning.
7. If the customer rejects your offer and makes a counteroffer, what
would you do? Would you accept the counteroffer or refuse the deal?
Why?
8. What does the current screen image show? is it a giving price page
(it at least should show price $ in the right bottom of the screen

image) or a non-giving price page and why?

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and the previous skills already executed, if

any. You should also pay more attention to the following action rules
:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the character
.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore the character’s
facing direction and output the action in an absolute direction like
right and left.
4. If you want to run as a successful dealer in conversation with the
customer, you should follow these rules:
4.1 Check the customer’s dialogue.
- If the customer is introducing himself and his purpose of

visiting your shop, you should always respond with "Let’s see" to
make them potential buyers. This will be the first option in the
dialogue and you should select it.
4.2 Check the customer’s response.
- If the customer has shown you the details of the items and you

have completed by closing the item detail page, you should respond
with "Let’s deal" to make an offer. This will be the first option in
the dialogue and you should select it.
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5. If you want to run as a successful dealer in making an offer and
deciding whether to take the offer or counteroffer, you should follow
these rules:
5.1 Check the customer’s role.
- If the customer is a "seller", you should offer a price lower

than the item’s value. You should also consider your budget.
- If the customer is a "buyer", you should offer a price higher

than the item’s value.
5.2 Check the item’s details.
- You should check the item’s "rarity", "condition", and "estimate"

to determine the price you offer.
6. If you have opened up the buyer’s or seller’s character trait page
, you should call the function to close the description page to
proceed with the next action. You should NOT call any other skill
like dialogue().
7. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.5 PROMPTS FOR SOFTWARE APPLICATIONS

Prompt 26: Chrome: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Google Chrome’ on
the PC, equipped to handle a wide range of tasks in the application.
Your advanced capabilities enable you to process and interpret
application screenshots and other relevant information.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, or created
items.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

Description_of_bounding_boxes:
Please provide a list of EVERY bounding box from label ID of 1 to <

$length_of_som_map$> ONE BY ONE. The label IDs are marked in the
upper left corner of the bounding boxes.

For bounding boxes containing text, provide ONLY the text.
For bounding boxes without text, brief description of the function.
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Format your response as follows: ’1: function_a’, ’2: text_b’, ..., ’<
$length_of_som_map$>: function_b’. Don’t write anything you are not
sure about.

Target_object_name: Assume you can use an object detection model to
detect the most relevant object or UI item for completing the current
task if needed. What item should be detected to complete the task

based on the current screenshot and the current task? You should obey
the following rules:

1. Identify an item that is relevant to the current or intermediate
target of the task. If the item is within a bounding box in the
screenshot, please include the corresponding label ID.

2. If no explicit item is specified, only output "null".
3. If there is no need to detect an object, only output "null".

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

You should only respond in the format described below and not output
comments or other information. DO NOT change the title of each item.

Image_Description:
1. ...
2. ...
3. ...

Description_of_bounding_boxes:
Format like: 1: function_a’, ’2: text_b’, ..., ’<$len_of_bound_boxes$>:

function_b

Target_object_name:
label ID, Name

Reasoning_of_object:
...

Prompt 27: Chrome: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Google Chrome’ on
the PC, equipped to handle a wide range of tasks in the application.
Your advanced capabilities enable you to process and interpret
application screenshots and other relevant information. Your task is
to examine these inputs, interpret the in-application and OS context,
and determine whether the executed action has taken the correct

effect.

Overall task description:
<$task_description$>

Image introduction:
<$image_introduction$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

History Summarization
<$history_summary$>
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Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Self_Reflection_Reasoning:
You need to answer the following questions, step by step, to describe

your reasoning based on the history summarization, last action and
sequential screenshots of the application during the execution of the
last action.

1. Please describe what the page is in the current screenshot. Respond in
one sentence.

2. What is the last executed action based on the text information above?
3. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the last action executed was empty, then the previous action is

deemed successful.
- If the action involves moving the mouse, it is considered unsuccessful

when the mouse position remains unchanged or moves in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- If the operation involves type text, it will be considered unsuccessful

when the corresponding text does not appear in the diagram,
regardless of background elements and other items.

- If the action seemed to have no effect, pay attention to the latest
mouse position. Did it move? Did it get closer to the target UI
element? Where are the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
4. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated in the current state.
- If an unrelated change happened in the UI, the most probable cause was

that the action triggered an incorrect UI element.
- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the history summarization, the last action, the current

screenshots and the Success_Detection flag, determine whether the
overall task "<$task_description$>" was successful. This assessment
should consider the overall task’s success, not just individual
actions.

- If the last action executed was an empty list and "<$success_detection$
>" indicates the task is successful, then the overall task has a high
chance of being considered a success.

- If the overall task was unsuccessful, specify the reason of failure and
which steps are missing.

- If the overall task was successful, ONLY output "SUCCESSFUL".
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You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 28: Chrome: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Google Chrome’ on
the the PC, equipped to handle a wide range of tasks in the game. You
will be sequentially given <$event_count$> screenshots and

corresponding descriptions of recent events. You will also be given a
summary of the history that happened before the last screenshot. You
should assist in summarizing the events for future decision-making

and also in proposing the most suitable subtask to execute next,
given the target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.
1. Determine if the task has been completed successfully. If it is
successful, ignore question 2 to 5.
2. Summarize the tasks from the history and the current task. What is
the current progress of the task? For example, to open a file, you
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first need to select the file, then open it by clicking somewhere or
using the keyboard. Subtasks may have other pre-requisites.
3. Record the successful actions and organize them into events, step
by step.
4. Which subtask has been completed? Which subtasks have not? Do not
forget the information and key events in the previous steps of the
overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with the following item.
1. Think about a hotkey related to the overall task and next subtask,
please specify what it is.
2. Based on the current screenshot, identify the most direct and
easiest way to complete the task.
3. Analyze the target task step by step to determine how to complete
it.
4. What is the previous subtask? Has the previous subtask finished
due to self-reflection? Or is it improper for the current situation?
If finished or improper, please select a new one, otherwise you
should reuse the last subtask.
5. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation. Please strictly follow the
description and requirements in the current task.
6. The proposed subtask needs to be precise and concrete within one
sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
1. ...
2. ...
...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 29: Chrome: Action Planning prompt.

You are a helpful AI assistant integrated with ’Google Chrome’ on the PC,
equipped to handle a wide range of tasks in the application. Your

advanced capabilities enable you to process and interpret application
screenshots and other relevant information. By analyzing these

inputs, you gain a comprehensive understanding of the current context
and situation within the application. Utilizing these insights, you

are tasked with identifying the most suitable in-application action
to take next, given the current task. You control the application and
can execute actions from the available action set to manipulate its

UI. Upon evaluating the provided information, your role is to
articulate the precise actions you should perform, considering the
application’s present circumstances, and specify any necessary
parameters for implementing that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>
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Subtask description:
<$subtask_description$>

Few shots:
<$few_shots$>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the application.

Pay attention to all UI items and contents in the image. DO NOT make
assumptions about the layout! If the image includes a mouse cursor,
pay close attention to the coordinates of the pointer tip, not the
centre of the mouse cursor.

You should respond to me with the following information, and you MUST
respond one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" mean the overall task was successful?
If successful, ignore questions 2 to 12.
2. Which skill in the Skill Library "<$skill_library$>" has the
closest semantics to the current subtask "<$subtask_description$>"?
If there is an answer, select it as the output action.
3. Prefer keyboard operation instead of mouse operation. Are there
any keyboard actions, such as using shortcut keys or pressing "enter
", to finish the current step or overall task? If there is, please
specify which it is.
4. Based on the action rules, self-reflection and previous
summarization, what should be the most suitable action in the valid
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action set for the next step? You should analyze the effects of the
action step by step.
5. If the previous action is unsuccessful, DO NOT repeat the previous
action, consider an alternative action if possible. If there is an

alternative action, please specify what it is, such as clicking
different label IDs or using different shortcut keys.
6. Always try pressing "enter" first instead of clicking it with the
mouse, if the button you want to click is active.
7. Check whether the UI element you want to operate exists in the
current screenshot. If not, you can choose to return to the previous
page or reopen a tab.
8. In the current screenshot, identify the label ID of the bounding
box most relevant to the current step. If there is text within this
bounding box, please provide the text.
9. If mouse actions are necessary, use that specific bounding box
label ID (if shown in the current screenshot) as a parameter, rather
than directly generating normalized x and y coordinates. If there is
any relevant label ID, please specify which it is.
10. If a dialog box appears, make sure to check the content of the
dialog box to determine if the task is complete. For instance, when a
download dialog box appears, the task is only completed after

pressing the Enter key or clicking "Save".
11. If you need to use an action outside an open menu or dialog box,
please close the current menu or dialog box before trying the next
action.
12. If you anticipate that the next step involves typing text,
confirm that the last executed action was a click at the appropriate
input box. If not, it is mandatory to click on the corresponding
input box before proceeding with typing.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then the output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid action set. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Before typing text, ensure that the last executed action involved
clicking on the relevant input box. If the last action was not a
click on this input box, the required action MUST be to click on the
corresponding input box before proceeding.
4. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
5. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
6. When you decide to operate on a file, such as downloading it,
please pay attention to the path and name of the current file.

Key_reason_of_last_action: Summarize the key reasons why you output this
action.
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You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below.

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 30: Outlook: Information Gathering prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail. The
screenshots include numerical tags (label IDs) and bounding boxes

marking some UI items.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, open menus
or dialogs, and any instructions for the application user. Focus on
the image contents and the situation in the application.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

4. DO NOT describe overlayed bounding boxes in this description, only the
relevant UI items themselves. Focus on the state of the application

UI and what the key UI items of interest for the task would be.
Describe any relevant open panels, dialogs, menus, etc.

Target_object_name:
As an application expert and a helpful assistant, you can determine the

most relevant UI items for completing the current subtask, if needed.
What item should be detected to complete the task based on the

current screenshot and the current subtask? You should obey the
following rules:

1. The item should be present in the screen and relevant to the current
subtask or overall task. Just name the item, without any modifiers or
extra information.
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2. If the item of itnerest of not on the current screen, only output "
Target items not in current screen".

2. If no explicit item is specified, only output "null".
3. If there is no need to detect a target item in this state, only output

"null". You must output this field in the response.

Reasoning_of_object: Why was this item chosen, or why is there no need to
detect an UI item at this stage?

You should only respond in the format described below and not output
comments or other information. DO NOT change the titles of any
response items.

Image_Description:
1. ...
2. ...
3. ...

Target_object_name:
name

Reasoning_of_object:
...

Prompt 31: Outlook: Self-Reflection prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail.

You MUST examine all inputs, interpret the in-application and OS contexts
, and determine whether the executed action has taken the correct
effect.

Overall task description:
<$task_description$>

Execution step images:
<$image_introduction$>

Current image description:
<$current_image_description$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>
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Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

As the textual history may not completely record some effects of previous
actions, you should closely evaluate every part of the screenshots

to understand what was supposed to happen and what has actually
happened.

Self_Reflection_Reasoning: You need to answer the following questions,
step by step, to describe your reasoning based on the last action and
sequential screenshots of the application during the execution of

the last action. Any action involving x and y coordinates is an
action involving movement.

1. What is the last executed action not based on the sequential
screenshots?

2. Was the last executed action successful? Give reasons. You should
refer to the following rules:

- If the action involved typing text, was it typed correctly at the right
location? Do not trust only the textual information as it may not

provide enough detail. Perform a thorough and detailed inspection of
the provided creenshots! This is a critical check at every step!

- If the action involved moving the mouse, it is considered unsuccessful
when the mouse position remains unchanged or moved in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

location or UI item to move to.
- Are you sure the latest screenshot shows UI items that correspond to

the success of the previous action? For example, if you tried to
click on the "Junk" folder, the latest screenshot should show that
folder, not "Inbox" or others.

- Triggering an action in the last step is not enough to say it was
completely successfully. At least some relevant UI must change. Pay
attention to the application states in the screenshots and any
differences.

- If the action seemed to have no effect, pay attention to the latest
mouse position. Did it move? Did it get closer to the target UI
element? Was the target in the action wrong? The position of the
mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates or destination location
used were incorrect.

- If you already tried the same action more than one time and there was
no effect. DO NOT REPEAT the same action again until you have tried
something else.

- If it is an interaction action, the most probable cause was that the
action was unavailable or not activated at the current state.

- If an unrelated change happened in the UI, the most probable cause was
that the action triggered an incorrect UI element.

- If there is any error report, analyze the cause based on the report.

Success_Detection:
Based on the last action, the current screenshots and the

Success_Detection flag, determine whether the overall task was
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successful. This assessment should consider the overall task’s
success, not just individual actions.

- If the task was unsuccessful, specify the reason of failure and which
steps are missing.

- Pay extra attention to the application state in the latest screenshot.
Is it consistent with the task being completed successfully? Or is
there evidence that the task is still ongoing?

- If the task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 32: Outlook: Task Inference prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail.

You will receive a sequence of <$event_count$> screenshots, corresponding
descriptions of recent events, and a summary of the history of

events before the last screenshot. Please summarize the events for
future decision-making and also propose the most suitable subtasks to
execute next, given the overall target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>
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The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to open a file, you first
need to select the file, then open it by clicking somewhere or using
the keyboard. Subtasks may have other pre-requisites.

2. Record the successful actions and organize them into events, step by
step.

3. Which subtask has been completed? Which subtasks have not?
4. Do not forget the information and key events in the previous steps of

the overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. Use your knowledge of keyboard shortcuts to accomplish
subtasks. You should respond with:

1. How to finish the target task? You should analyze it step by step.
Subtasks can involve keyboard shortcuts, using the mouse, or
executing other skills.

2. What is the current progress of the target task according to the
analysis in question 1? Please do not make any assumptions if needed
information is not mentioned previously. You should assume that you
are doing the task from scratch. Please strictly follow the
description and requirements in the current overall task.

3. What is the previous subtask? Has the previous subtask finished
according to self-reflection? Or is it improper for the current
situation? If the last subtask already finished or now is improper,
please select a new one. Otherwise you should reuse the last subtask.

4. If you propose a new subtask, give the reasons why it is more feasible
in the current situation in the application. Please strictly follow

the description and requirements in the current overall task.
5. The proposed subtask needs to be precise and concrete within one

sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary of past events is...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 33: Outlook: Action Planning prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
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Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail. The
screenshot includes numerical tags (label IDs) and bounding boxes

marking some UI items.
Based on your analysis of screenshots and knowledge of the application,

keyboard shortcuts, and general GUI design, you will identify the
most suitable in-application action to take next, given the current
task. Upon evaluating the provided information, you MUST choose the
precise actions to perform, considering the applications’s present
circumstances, and specify any necessary parameters to execute the
desired action.

Here is some helpful information to help you make the correct decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Few shots:
<$few_shots$>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same: <$image_same_flag$>. Mouse
position in the current screenshot is the same as in the previous
screenshot:<$mouse_position_same_flag$>.

Description of the current screenshot:
<$image_description$>

Potential target UI item and label ID:
<$target_object_name$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation of the application and provide the reasoning behind what
should be the next step to complete the task. Then, you should output
the exact action to be executed in the application. As the textual

history may not completely record some effects of previous actions,
you should closely evaluate every part of the screenshots to
understand what you have done and what you should do next. Pay
attention to your application knowlege and all contents in the image.
You also have great OCR capabilities. DO NOT make assumptions about

the layout! If the image includes a mouse cursor, pay close attention
to the coordinates of the pointer tip, not the center of the mouse
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cursor. Remember you know the common keyboard shortcuts for Microsoft
Outlook on Windows and can use them instead of the mouse. You should
respond with the following information, and you MUST answer them one
by one.

Does "<$success_detection$>" mean the overall task was successful? If
successful, ignore decision making and action questions. No new
action needs to be taken and output action MUST be empty, like ’’. Be
careful to check the task was really successful though!

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Do you know any keyboard shortcuts for Microsoft Outlook on
Windows that can be used to accomplish this subtask? Which one?
2. If the current screenshot is the same as the previous screenshot,
DO NOT output the same action as the last executed action with the
same parameters as in the previous step, as it was not useful!!!
3. Prefer keyboard operations and skills, instead of mouse operations
. Are there any keyboard actions, such as shortcut keys like
press_keys_combined(["ctrl", "s"]) to save, or press_key("enter") to
confirm, that can complete the current step or the overall task? If
yes, please specify what the action is and ignore questions 5 to 8.
4. Which skill in the available Python action set has the closest
semantics to the current subtask? If there is any, select it as the
output action and ignore questions 5 to 8.
5. Carefully identify if there is a bounding box label ID for the UI
item relevant for the current step. Be extra careful to use the
correct label ID and describe why you selected the given ID, if any!
If there is text within this bounding box area, please provide that
text in your reasoning. If there is no text, provide a visual
description of the UI item inside the bounding box. Only directly
generate normalized x, y coordinates if no suitable label ID is
present.
6. If a mouse cursor is present in the image, pay attetion to which
ID-labeled bounding box or unlabelled UI item the cursor’s tip is
located, not the center of the cursor.
7. If not absolutely sure if a UI item or location is correct to
click, you can first just hover the mouse over it and check for more
information. If it is the right item, you can choose to click on it
in the next reasoning step.
8. If there is a dialog or menu opened after the previous action, pay
attention to any missing step before clicking on its buttons. For

example, before clicking "Save", make sure a correct file name is
typed in the correct text field.
9. If the previous action is unsuccessful, consider an alternative
action if possible. If there is an alternative action, please specify
what it is. Such as click a different label ID or use a different

keyboard shortcut.
10. If you think the next step will be to type text, confirm the text
cursor is in the correct location or that the last executed action

was a click at the appropriate input area. If neither is true, you
have to click the corresponding input box before proceeding with
typing.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress towards the task goal. Pay attention to the
names of the available skills, keyboard shortcuts, and the previous
skills already executed. Pay special attention to the coordinates or
bounding box label ID of any action that needs them. Do not make
assumptions about the location of UI elements or their coordinates,
analyse in detail any provided images! You should also pay more
attention to the following action rules:
1. Which keyboard shortcuts do you know for this application that can
be used to accomplish exactly this specific subtask? Be precise to
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the current subtask step. Keyboard shortcuts are more reliable than
using the mouse as you tend to choose the correct UI item, but act on
the wrong label ID or position. If there is no applicable shortcut,

you can choose typing text or other forms of UI interaction. Don’t
recomment a single key press that may not apply in this exact
situation.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid action set. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
4. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose the skill
click_on_label(label_id, mouse_button). Be careful to use the correct
label ID number.
5. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
6. When you decide to operate on a file, such as downloading it,
please pay attention to the file path and to the name of the current
file.
7. If upon self-reflection you think the target coordinates or label
ID were an issue, you MUST pay close attention to choosing new
coordinates or a new label ID that are not the same or too similar to
the previous ones.
8. If upon self-reflection you think the last action was unavailable
at the current state, you SHOULD try to take another action to try to
enable the desired action.
9. If you leave the application incorrectly, you can go back to it
directly using the skill go_back_to_target_application(). No need to
use the mouse.

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below:

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 34: Capcut: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’CapCut’ on the PC,
equipped to handle a wide range of tasks in the application. Capcut

is a video editing software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant

information.
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Image introduction:
<$image_introduction$>

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, or created
items.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

Description_of_bounding_boxes:
Please provide a list of EVERY bounding box from label ID of 1 to <

$length_of_som_map$> ONE BY ONE. The label IDs are marked in the
upper left corner of the bounding boxes.

For bounding boxes containing text, provide ONLY the text.
For bounding boxes without text, brief description of the function.
Format your response as follows: ’1: function_a’, ’2: text_b’, ..., ’<

$length_of_som_map$>: function_b’. Don’t write anything you are not
sure about.

Target_object_name: Assume you can use an object detection model to
detect the most relevant object or UI item for completing the current
task if needed. What item should be detected to complete the task

based on the current screenshot and the current task? You should obey
the following rules:

1. Identify an item that is relevant to the current or intermediate
target of the task. If the item is within a bounding box in the
screenshot, please include the corresponding label ID.

2. If no explicit item is specified, only output "null".
3. If there is no need to detect an object, only output "null".

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

You should only respond in the format described below and not output
comments or other information. DO NOT change the title of each item.

Image_Description:
1. ...
2. ...
3. ...

Description_of_bounding_boxes:
Format like: 1: function_a’, ’2: text_b’, ..., ’<$len_of_bound_boxes$>:

function_b

Target_object_name:
label ID, Name

Reasoning_of_object:
...

Prompt 35: Capcut: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’CapCut’ on the PC,
equipped to handle a wide range of tasks in the application. Capcut

is a video editing software. Your advanced capabilities enable you to
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process and interpret application screenshots and other relevant
information. Your task is to examine these inputs, interpret the in-
application and OS context, and determine whether the executed action
has taken the correct effect.

Overall task description:
<$task_description$>

Image introduction:
<$image_introduction$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

History Summarization
<$history_summary$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Self_Reflection_Reasoning:
You need to answer the following questions, step by step, to describe

your reasoning based on the history summarization, last action and
sequential screenshots of the application during the execution of the
last action.

1. Please describe what the page is in the current screenshot. Respond in
one sentence.

2. What is the last executed action based on the text information above?
3. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the action involves moving the mouse, it is considered unsuccessful

when the mouse position remains unchanged or moves in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the last action executed was empty, then the previous action is
deemed successful.

- If the last action was related to choose panel, pay attention to the
panel you are in. Does the panel is your target panel?

- If the last action was to drag an element onto the timeline, pay
attention to the difference between the current timeline and the
previous timeline. Is there the target element you want on the
timeline now?

- If the last action was related to crop, pay attention to the video
length. If the video length does not change, it is considered
unsuccessful.
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- If the last action executed was ’export_project()’ and the current
screenshot is the Capcut homepage, then the previous action is deemed
successful.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- If the action seemed to have no effect, pay attention to the latest

mouse position. Did it move? Did it get closer to the target UI
element? Where are the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
4. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated in the current state.
- If an unrelated change happened in the UI, the most probable cause was

that the action triggered an incorrect UI element.
- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the history summarization, the last action, the current

screenshots and the Success_Detection flag, determine whether the
overall task "<$task_description$>" was successful. This assessment
should consider the overall task’s success, not just individual
actions.

- If the last action executed was an empty list and "<$success_detection$
>" indicates the task is successful, then the overall task has a high
chance of being considered a success.

- If the overall task was unsuccessful, specify the reason of failure and
which steps are missing.

- If the overall task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 36: Capcut: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’CapCut’ on the the
PC, equipped to handle a wide range of tasks in the game. Capcut is

a video editing software. You will be sequentially given <
$event_count$> screenshots and corresponding descriptions of recent
events. You will also be given a summary of the history that happened
before the last screenshot. You should assist in summarizing the

events for future decision-making and also in proposing the most
suitable subtask to execute next, given the target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>
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Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.

1. Determine if the task has been completed successfully. If it is
successful, ignore question 2 to 5.

2. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to open a file, you first
need to select the file, then open it by clicking somewhere or using
the keyboard. Subtasks may have other pre-requisites.

3. Record the successful actions and organize them into events, step by
step.

4. Which subtask has been completed? Which subtasks have not? Do not
forget the information and key events in the previous steps of the
overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with:

1. How to finish the target task? You should analyze it step by step.
- To add Media, Audio, Text, Stickers, Effects, Transitions, Filters,

Adjustments or Templates, you should first switch to that panel and
then drag the target object to the video in the timeline.

- To get content information of a video, you can use related skills. For
example, you want to know which exactly second you want to operate.

2. What is the current progress of the target task according to the
analysis in question 1? Please do not make any assumptions if they
are not mentioned in the above information. You should assume that
you are doing the task from scratch. Please strictly follow the
description and requirements in the current task.

3. What is the previous subtask? Has the previous subtask finished due to
self-reflection? Or is it improper for the current situation? If

finished or improper, please select a new one, otherwise you should
reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation. Please strictly follow the
description and requirements in the current task.
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5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
1. ...
2. ...
...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 37: Capcut: Screen Classification prompt.

You are an assistant who assesses my progress in playing Red Dead
Redemption 2 on the PC and provides expert guidance. Imagine you are
playing Red Dead Redemption 2 with the keyboard and mouse, the image
is the screenshot of your computer.

Given the classes, please select the class that best describes the
screenshot.

<classes>

You must follow the following criteria:
(1) The output should only be a JSON file. You should not add any other

explanation text along with the JSON.
(2) You should choose one class for the value of "class".
(3) Do not change the "type": "screen_classification" in your output.

The output format should be as follows:
Classes:
map

Prompt 38: Capcut: Action Planning prompt.

You are a helpful AI assistant integrated with ’CapCut’ on the PC,
equipped to handle a wide range of tasks in the application. Capcut
is a video editing software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant

information. By analyzing these inputs, you gain a comprehensive
understanding of the current context and situation within the
application. Utilizing these insights, you are tasked with
identifying the most suitable in-application action to take next,
given the current task. You control the application and can execute
actions from the available action set to manipulate its UI. Upon
evaluating the provided information, your role is to articulate the
precise actions you should perform, considering the application’s
present circumstances, and specify any necessary parameters for
implementing that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>
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Few shots:
<$few_shots$>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success_Detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the application.

Pay attention to all UI items and contents in the image. DO NOT make
assumptions about the layout! If the image includes a mouse cursor,
pay close attention to the coordinates of the pointer tip, not the
centre of the mouse cursor.

You should respond to me with the following information, and you MUST
respond one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" means the overall task was successful
? If successful, ignore questions 2-11.
2. Which skill in the Skill Library "<$skill_library$>" has the
closest semantics to the current subtask "<$subtask_description$>"?
If there is an answer, select it as the output action.
3. Prefer keyboard operation over mouse operation. Is there a direct
skill in the skill library to complete the current action? If there
is, please specify which it is. Or are there any keyboard actions,
such as using shortcut keys or pressing "enter", to finish current
step or overall task? Please specify which it is.
4. Always try pressing "enter" first instead of clicking it with the
mouse, if the button you want to click is active.
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5. If you need to get information from video content, select the
skill get_information_from_video(). For example, you want to know
which exactly second you want to operate.
6. Based on the current screenshot and the description of label IDs
in text, which label ID is most relevant to the current task? You
should never answer this question based on the screenshot.
7. If the previous action is unsuccessful, DO NOT repeat the previous
action, consider an alternative action if possible. Such as click

different label ID or use different shortcut keys. If there is an
alternative action, please specify what it is.
8. In the current screenshot, identify the label ID of the bounding
box most relevant to the current step. If there is text within this
bounding box, please provide the text.
9. If mouse actions are necessary, use that specify bounding box
label ID (if shown in the current screenshot) as parameter, rather
than directly generating normalized x and y coordinates. If there is
any relevant label ID, please specify which it is.
10. If there is a dialog open after the previous action, pay
attention to any missing step before clicking on it’s buttons. For
example, before clicking "Save", make sure the file name is typed in
the correct text field.
11. If you need to use an action outside an open menu or dialog,
please close the current menu or dialog before trying the next action
.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid actions et. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
4. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
5. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose skill click_on_label(
label_id, mouse_button).
6. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
7. When you decide to perform a mouse click, prioritize clicking
icons, instead of text.
8. When there is new dialog box that affects the next step, you
should close it.
9. The material panel includes the Media, Audio, Text, Stickers,
Effects, Transitions, Filters, Adjustments, and Templates tabs.
Choose this skill "switch_material_panel()" to switch between these
tabs one by one.
10. To add media, drag that media to the video in the timeline.

Key_reason_of_last_action: Summarize the key reasons why you output this
action.
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You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below.

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 39: Meitu: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on
the PC, equipped to handle a wide range of tasks in the application.
Meitu Xiuxiu is a user-friendly and powerful image editing and
beautification software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant
information.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, or created
items.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

Description_of_bounding_boxes:
Please provide a list of EVERY bounding box from label ID of 1 to <

$length_of_som_map$> ONE BY ONE. The label IDs are marked in the
upper left corner of the bounding boxes.

For bounding boxes containing text, provide ONLY the text.
For bounding boxes without text, brief description of the function.
Format your response as follows: ’1: function_a’, ’2: text_b’, ..., ’<

$length_of_som_map$>: function_b’. Don’t write anything you are not
sure about.

Target_object_name: Assume you can use an object detection model to
detect the most relevant object or UI item for completing the current
task if needed. What item should be detected to complete the task

based on the current screenshot and the current task? You should obey
the following rules:
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1. Identify an item that is relevant to the current or intermediate
target of the task. If the item is within a bounding box in the
screenshot, please include the corresponding label ID.

2. If no explicit item is specified, only output "null".
3. If there is no need to detect an object, only output "null".

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

You should only respond in the format described below and not output
comments or other information. DO NOT change the title of each item.

Image_Description:
1. ...
2. ...
3. ...

Description_of_bounding_boxes:
Format like: 1: function_a’, ’2: text_b’, ..., ’<$len_of_bound_boxes$>:

function_b

Target_object_name:
label ID, Name

Reasoning_of_object:
...

Prompt 40: Meitu: Self Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on
the PC, equipped to handle a wide range of tasks in the application.
Meitu Xiuxiu is a user-friendly and powerful image editing and
beautification software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant
information. Your task is to examine these inputs, interpret the in-
application and OS context, and determine whether the executed action
has taken the correct effect.

Overall task description:
<$task_description$>

Image introduction:
<$image_introduction$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

History Summarization
<$history_summary$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
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<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Self_Reflection_Reasoning:
You need to answer the following questions, step by step, to describe

your reasoning based on the history summarization, last action and
sequential screenshots of the application during the execution of the
last action.

1. Please describe what the page is in the current screenshot. Respond in
one sentence.

2. What is the last executed action based on the text information above?
3. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the last action executed was empty, then the previous action is

deemed successful.
- If the action involves moving the mouse, it is considered unsuccessful

when the mouse position remains unchanged or moves in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- If the operation involves type text, it will be considered unsuccessful

when the corresponding text does not appear in the diagram,
regardless of background elements and other items.

- If the action seemed to have no effect, pay attention to the latest
mouse position. Did it move? Did it get closer to the target UI
element? Where are the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
4. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated in the current state.
- If an unrelated change happened in the UI, the most probable cause was

that the action triggered an incorrect UI element.
- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the history summarization, the last action, the current

screenshots and the Success_Detection flag, determine whether the
overall task "<$task_description$>" was successful. This assessment
should consider the overall task’s success, not just individual
actions.

- If the last action executed was an empty list and "<$success_detection$
>" indicates the task is successful, then the overall task has a high
chance of being considered a success.

- If the overall task was unsuccessful, specify the reason of failure and
which steps are missing.

- If the overall task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
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...

Prompt 41: Meitu: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on
the the PC, equipped to handle a wide range of tasks in the game.
Meitu Xiuxiu is a user-friendly and powerful image editing and
beautification software. You will be sequentially given <
$event_count$> screenshots and corresponding descriptions of recent
events. You will also be given a summary of the history that happened
before the last screenshot. You should assist in summarizing the

events for future decision-making and also in proposing the most
suitable subtask to execute next, given the target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.
1. Determine if the task has been completed successfully. If it is
successful, ignore question 2 to 5.
2. Summarize the tasks from the history and the current task. What is
the current progress of the task? For example, to open a file, you

first need to select the file, then open it by clicking somewhere or
using the keyboard. Subtasks may have other pre-requisites.
3. Record the successful actions and organize them into events, step
by step.
4. Which subtask has been completed? Which subtasks have not? Do not
forget the information and key events in the previous steps of the
overall task.
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Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with the following item.
1. Based on the unfinished part of overall task and the current
screenshot, identify the most direct and easiest way to complete the
task, considering possible shortcut keys and without making any
assumptions beyond the provided information.
2. Analyze the target task step by step to determine how to complete
it.
3. What is the previous subtask? Has the previous subtask finished
due to self-reflection? Or is it improper for the current situation?
If finished or improper, please select a new one, otherwise you
should reuse the last subtask.
4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation. Please strictly follow the
description and requirements in the current task.
5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
1. ...
2. ...
...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 42: Meitu: Action Planning prompt.

You are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on the PC,
equipped to handle a wide range of tasks in the application. Meitu
Xiuxiu is a user-friendly and powerful image editing and
beautification software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant
information. By analyzing these inputs, you gain a comprehensive
understanding of the current context and situation within the
application. Utilizing these insights, you are tasked with
identifying the most suitable in-application action to take next,
given the current task. You control the application and can execute
actions from the available action set to manipulate its UI. Upon
evaluating the provided information, your role is to articulate the
precise actions you should perform, considering the application’s
present circumstances, and specify any necessary parameters for
implementing that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Few shots:
<$few_shots$>
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Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the application.

Pay attention to all UI items and contents in the image. DO NOT make
assumptions about the layout! If the image includes a mouse cursor,
pay close attention to the coordinates of the pointer tip, not the
centre of the mouse cursor.

You should respond to me with the following information, and you MUST
respond one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" means the overall task was successful
? If successful, ignore questions 2 to 9.
2. Which skill in the Skill Library "<$skill_library$>" has the
closest semantics to the current subtask "<$subtask_description$>"?
If there is an answer, select it as the output action, ignore
questions 3 to 9.
3. Prefer keyboard operation instead of mouse operation. Are there
any keyboard actions, such as using shortcut keys or pressing "enter
", to finish current step or overall task? If there is, please
specify which it is, ignore questions 4 to 9.
4. If the UI element you want to operate doesn’t exist in the current
screenshot. you can choose to scroll mouse to find target UI element

.
5. Always try pressing "enter" first instead of clicking it with the
mouse, if the button you want to click is active.
6. If mouse actions are necessary, use that specify bounding box
label ID (if shown in the current screenshot) as parameter, rather
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than directly generating normalized x and y coordinates. If there is
any relevant label ID, please specify which it is.
7. If the previous action is unsuccessful, don’t reapeat previous
action. If there is an alternative action, please specify what it is.
Such as click different label ID or use different shortcut keys.
8. If you anticipate that the next step involves scrolling mouse,
confirm that the last executed action was a click at the appropriate
ui element. If not, it is mandatory to click on the corresponding ui
element before proceeding with scrolling.
9. If you anticipate that the next step involves typing text, confirm
that the last executed action was a click at the appropriate input

box. If not, it is mandatory to click on the corresponding input box
before proceeding with typing.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid actions et. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Before scrolling mouse, ensure that the last executed action
involved clicking on the relevant input box. If the last action was
not a click on this input box, the required action MUST be to click
on the corresponding input box before proceeding.
4. Before typing text, ensure that the last executed action involved
clicking on the relevant ui element. If the last action was not a
click on this ui element, the required action MUST be to click on the
corresponding ui element before proceeding.
5. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
6. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose skill click_on_label(
label_id, mouse_button).
7. When you want to add a image or effect, use the skill
double_click_on_label(x, y, mouse_button).
8. When you save a project, use the skill save_project().

Key_reason_of_last_action: Summarize the key reasons why you output this
action.

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below.

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...
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Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 43: Feishu: Information Gathering prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ an office communication application on the PC
includign chat, calendar, and other workplace features. You can
handle a wide range of tasks in the application using the keyboard,
shortcut keys, and mouse operations. For each step, you will get one
or more observation images, which are screenshots of the computer
screen. Your advanced capabilities enable you to process and
interpret these application screenshots and other relevant
information in detail. The screenshots include numerical tags (label
IDs) and bounding boxes marking some UI items.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, open menus,
dialogs, and open panels or sections. Focus on the image contents and
the situation in the application.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

4. Make sure to describe the active area of the screen too. The area
where user interaction is probably happening, not only the general
menus or layout of the screenshot.

5. DO NOT describe overlayed bounding boxes in this description, only the
relevant UI items themselves. Focus on the state of the application

UI and what the key UI items of interest for the task would be.
Describe any relevant open panels, dialogs, menus, etc.

Target_object_name:
As an application expert and a helpful assistant, you can determine the

most relevant UI items for completing the current subtask, if needed.
What item should be detected to complete the task based on the

current screenshot and the current subtask? You should obey the
following rules:

1. The item should be present in the screen and relevant to the current
subtask or overall task. Just name the item, without any modifiers or
extra information.

2. If the item of itnerest of not on the current screen, only output "
Target items not in current screen".

2. If no explicit item is specified, only output "null".
3. If there is no need to detect a target item in this state, only output

"null". You must output this field in the response.
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Reasoning_of_object: Why was this item chosen, or why is there no need to
detect an UI item at this stage?

You should only respond in the format described below and not output
comments or other information. DO NOT change the titles of any
response items.

Image_Description:
1. ...
2. ...
3. ...

Target_object_name:
name

Reasoning_of_object:
...

Prompt 44: Feishu: Self Reflection prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ on the PC and can handle a wide range of tasks
in the application using the keyboard, shortcut keys, and mouse
operations. For each step, you will get one or more observation
images, which are screenshots of the computer screen. Your advanced
capabilities enable you to process and interpret these application
screenshots and other relevant information in detail.

You MUST examine all inputs, interpret the in-application and OS contexts
, and determine whether the executed action has taken the correct
effect.

Overall task description:
<$task_description$>

Execution step images:
<$image_introduction$>

Current image description:
<$current_image_description$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>
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Self_Reflection_Reasoning: You need to answer the following questions,
step by step, to describe your reasoning based on the last action and
sequential screenshots of the application during the execution of

the last action. Any action involving x and y coordinates is an
action involving movement.

1. What is the last executed action not based on the sequential
screenshots?

2. Was the last executed action successful? Give reasons. You should
refer to the following rules:

- If the action involves moving the mouse, it is considered unsuccessful
when the mouse position remains unchanged or moved in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- Are you sure the latest screenshot shows UI items that correspond to

the success of the previous action?
- If the action seemed to have no effect, pay attention to the latest

mouse position. Did it move? Did it get closer to the target UI
element? Where the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If you already tried the same action more than one time and there was

no effect. DO NOT REPEAT the same action again until you have tried
something else.

- If it is an interaction action, the most probable cause was that the
action was unavailable or not activated at the current state.

- If an unrelated change happened in the UI, the most probable cause was
that the action triggered an incorrect UI element.

- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the last action, the current screenshots and the

Success_Detection flag, determine whether the overall task was
successful. This assessment should consider the overall task’s
success, not just individual actions.

- If the task was unsuccessful, specify the reason of failure and which
steps are missing.

- If the task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 45: Feishu: Task Inference prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ on the PC and can handle a wide range of tasks
in the application using the keyboard, shortcut keys, and mouse
operations. For each step, you will get one or more observation
images, which are screenshots of the computer screen. Your advanced
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capabilities enable you to process and interpret these application
screenshots and other relevant information in detail.

You will receive a sequence of <$event_count$> screenshots, corresponding
descriptions of recent events, and a summary of the history of

events before the last screenshot. Please summarize the events for
future decision-making and also propose the most suitable subtasks to
execute next, given the overall target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to open a file, you first
need to select the file, then open it by clicking somewhere or using
the keyboard. Subtasks may have other pre-requisites.

2. Record the successful actions and organize them into events, step by
step.

3. Which subtask has been completed? Which subtasks have not?
4. Do not forget the information and key events in the previous steps of

the overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in question 1? Please do not make any assumptions if needed
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information is not mentioned previously. You should assume that you
are doing the task from scratch. Please strictly follow the
description and requirements in the current overall task.

3. What is the previous subtask? Has the previous subtask finished
according to self-reflection? Or is it improper for the current
situation? If the last subtask already finished or now is improper,
please select a new one. Otherwise you should reuse the last subtask.

4. If you propose a new subtask, give the reasons why it is more feasible
in the current situation in the application. Please strictly follow

the description and requirements in the current overall task.
5. The proposed subtask needs to be precise and concrete within one

sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary of past events is...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 46: Feishu: Action Planning prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ on the PC and can handle a wide range of tasks
in the application using the keyboard, shortcut keys, and mouse
operations. For each step, you will get one or more observation
images, which are screenshots of the computer screen. Your advanced
capabilities enable you to process and interpret these application
screenshots and other relevant information in detail.

Utilizing these insights, you will identify the most suitable in-
application action to take next, given the current task. You control
the application and can execute actions from the available actions to
manipulate its UI. Upon evaluating the provided information, you

MUST choose the precise actions to perform, considering the
applications’s present circumstances, and specify any necessary
parameters to execute that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Few shots:
<$few_shots$>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>
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Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation of the application and provide the reasoning behind what
should be the next step to complete the task. Then, you should output
the exact action to be executed in the application.

Pay attention to all UI items and contents in the image. Before changing
values or text in the UI, make sure the values in the screenshot are
not already correct for the subtask. DO NOT make assumptions about
the layout! If the image includes a mouse cursor, pay close attention
to the coordinates of the pointer tip, not the center of the mouse

cursor. You should respond with the following information, and you
MUST answer them one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" means the overall task was successful
? If successful, ignore questions 2-15. No new action needs to be
taken.
2. You should first describe each item in the screen line by line,
from the top left and moving right. Is the target item in the current
screen? Which item is currently selected?
3. Check whether the UI element you want to operate exists in the
current screenshot. If not, you can choose to move to another part of
the application, or close some recently opened menu item. Also

remember that you can use keyboard shortcuts to accomplish actions,
instead of always using the mouse.
4. Are there any keyboard actions, such as using shortcut keys or
pressing "enter", to finish the current step or the overall task? If
so, please specify which one to use. You can always press "enter"
instead of clicking with the mouse, if the button you want to click
on is active.
5. If a mouse cursor is present in the image, describe near which ID-
labeled bounding box or unlabelled UI item the cursor’s tip is
located, not the center of the cursor.
6. If the current screenshot is the same as the previous screenshot,
DO NOT output the same action as in the previous step, as it was very
likely not useful.
7. In the current screenshot, carefully identify the label ID of the
bounding box most relevant to the current step. If there is text
within this bounding box, please provide the text. If there is no
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directly useful bounding box, provide the UI item description or
normalized x, y coordinates.
8. If mouse actions are necessary, specify a bounding box label ID (
if shown in the current screenshot) as parameter. Only directly
generate normalized x, y coordinates if no useful label ID is present
.
9. If not absolutely sure to be clicking at the righ UI item or
location, you can first just move the mouse to it and check for more
information. If it’s the right item, you can click on it in as a
second step.
10. If there is a dialog or menu opened after the previous action,
pay attention to any missing step before clicking on its buttons. For
example, before clicking "Save", make sure a correct file name is

typed in the correct text field.
11. You should not always use the mouse if you know a keyboard
shortcut or a skill to peform the desired action!
12. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the

valid action set for the next step? You should analyze the effects of
the action step by step.
13. If the previous action is unsuccessful, consider an alternative
action if possible. If there is an alternative action, please specify
what it is. Such as click different label ID or use different

shortcut keys.
14 If you think the next step will be to typing tex, confirm that
that there is already a text cursor in it or that the last executed
action was a click at the appropriate input area. If neither is true,
it is mandatory to click on the corresponding input box before

proceeding with typing.
15. If you need to interact with an UI item that has no bounding box
label ID, you can use its x, y coordinates. Use normalized values
from 0 to 1.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and to the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid actions et. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Before typing text, ensure that the last executed action involved
clicking on the relevant input box. If the last action was not a
click on this input box, the required action MUST be to click on the
corresponding input box before proceeding.
4. Given the current situation and task, you should only choose the
most suitable action from the valid action set. If values in the
screen are already correct, no need for a new action.
5. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose skill click_on_label(
label_id, mouse_button).
6. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
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7. When you decide to operate on a file, such as downloading it,
please pay attention to the path and name of the current file.
8. If upon self-reflection you think the target coordinates were an
issue, you MUST pay close attention to choosing new coordinates that
are not the same or too similar to the previous ones.
9. If upon self-reflection you think the last action was unavailable
at the current state, you SHOULD try to take another action to try to
enable the desired action.
10. If you leave the application incorrectly, you can go back to it
directly using go_back_to_target_application(). No need to use the
mouse.

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below:

Decision_Making_Reasoning:
1. ...
2. ...
3. ...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...
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