
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CRADLE: EMPOWERING FOUNDATION AGENTS
TOWARDS GENERAL COMPUTER CONTROL

Anonymous authors
Paper under double-blind review

Everyday
Software

Professional
Software

Digital
Games

Memory

Information
Gathering

Self-Reflection

Task Inference

Skill Curation Action
Planning

Figure 1: The CRADLE framework empowers nascent foundation models to perform complex computer tasks
via the same unified interface humans use, i.e., screenshots as input and keyboard & mouse operations as output.

ABSTRACT

Despite the success in specific scenarios, existing foundation agents still strug-
gle to generalize across various virtual scenarios, mainly due to the dramatically
different encapsulations of environments with manually designed observation and
action spaces. To handle this issue, we propose the General Computer Con-
trol (GCC) setting to restrict foundation agents to interact with software through
the most unified and standardized interface, i.e., using screenshots as input and
keyboard and mouse actions as output. We introduce CRADLE, a modular and
flexible LMM-powered framework, as a preliminary attempt towards GCC. En-
hanced by six key modules: Information Gathering, Self-Reflection, Task Infer-
ence, Skill Curation, Action Planning, and Memory, CRADLE is able to under-
stand input screenshots and output executable code for low-level keyboard and
mouse control after high-level planning, so that CRADLE can interact with any
software and complete long-horizon complex tasks without relying on any built-
in APIs. Experimental results show that CRADLE exhibits remarkable generaliz-
ability and impressive performance across four previously unexplored commercial
video games, five software applications, and a comprehensive benchmark, OS-
World. To our best knowledge, CRADLE is the first to enable foundation agents
to follow the main storyline and complete one-hour-long real missions in the com-
plex AAA game Red Dead Redemption 2 (RDR2). CRADLE can also create a city
with nearly a thousand people in Cities: Skylines, farm and harvest parsnips in
Stardew Valley, and trade and bargain with a maximum weekly total profit of 87%
in Dealer’s Life 2. CRADLE can not only operate daily software, like Chrome,
Outlook, and Feishu, but also edit images and videos using Meitu and CapCut.
With a unified interface to interact with any software, CRADLE greatly extends
the reach of foundation agents by enabling the easy conversion of any software,
especially complex games, into benchmarks to evaluate agents’ various abilities
and facilitate further data collection, thus paving the way for generalist agents.
Video demos and code can be found at https://cradle2024acc.github.io/Cradle.

1 INTRODUCTION

Artificial General Intelligence (AGI) has long been a north-star goal for the AI community (Mor-
ris et al., 2023). The recent success of foundation agents, i.e., agents empowered by large mul-
timodal models (LMMs) and advanced tools, in various environments, e.g., web browsing (Zhou
et al., 2023; Deng et al., 2023; Gur et al., 2023; Zheng et al., 2024b;a; He et al., 2024), operating
mobile applications (Yang et al., 2023b; Wang et al., 2024b) and desktop software (Zhang et al.,
2024; Wu et al., 2024), crafting and exploration in Minecraft (Wang et al., 2023b; 2024a; 2023a),
and some robotics scenarios (Huang et al., 2022; Brohan et al., 2023b; Driess et al., 2023; Brohan

1

https://cradle2024acc.github.io/Cradle

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction: place_water_pumping_station(x=100, y=700) Previous Task: place a water pumping station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecuteet al., 2023a), have shown promise. However, current foundation agents still struggle to generalize
across different scenarios, primarily due to the dramatic differences in the encapsulation of environ-
ments with human-designed observation and action space. Therefore, developing foundation agents
applicable to various environments remains extremely challenging.

Computers, as the most important and universal interface that connects humans and the increasing
digital world, provide countless rich software, including applications and realistic video games for
agents to interact with, while avoiding the challenges of robots in reality, such as hardware require-
ments, constraints of practicability, and possible catastrophic failures (Raad et al., 2024). Mastering
these virtual environments is a promising path for foundation agents to achieve generalizability.
Therefore, we propose the General Computer Control (GCC) setting 1:

Building foundation agents that can master ANY computer task via the universal human-style
interface by receiving input from screens and audio and outputting keyboard and mouse actions.

There are many challenges to achieving GCC: i) good alignment across multi-modalities for better
understanding and decision-making; ii) precise control of keyboard and mouse to interact with the
computer, which has a large hybrid action space, including not only which key to press and where the
mouse to move, but also the duration of the press and the speed of the mouse movement; iii) long-
horizontal reasoning due to the partial observability of complex GCC tasks, which also leads to the
demand for long-term memory to maintain past useful experiences; and iv) efficient exploration in
a structured manner to discover better strategies and solutions autonomously, i.e., self-improving,
which can allow agents to generalize across the various tasks in the digital world.

As shown in Figure 1, we introduce CRADLE, a novel modular LMM-powered framework that
empowers foundation agents towards GCC. CRADLE consists of six key modules: 1) information
gathering, to extract the relevant information from multimodal observations; 2) self-reflection, to
rethink past experiences about whether the actions and tasks are successfully completed and reasons
for possible failures; 3) task inference, to determine whether to continue current tasks or propose a
new task given the current situation; 4) skill curation, to generate, update, and retrieve useful skills
for the current task; 5) action planning, to generate specific executable operations for keyboard and
mouse control via skills; and 6) memory, for storage, summary, and retrieval of past experiences.

As illustrated in Figure 2, tasks in GCC can be broadly divided into two categories: video game
playing and software application manipulation. Video games offer the most challenging tasks in
GCC due to several key factors. First, the complexity of game environments requires sophisticated
problem-solving and adaptive strategies. Second, long-term reasoning is essential to navigate and
succeed in these intricate virtual worlds. Third, understanding and mastering new, complex mechan-
ics within games demand rapid learning and cognitive flexibility. Finally, video games test a player’s
ability to react quickly and perform precise control and operations, which together create a unique
and demanding computational challenge. In addition to the typical embodied control, classical UI
manipulation, like menu use and inventory management, is also common during gameplay, which is
similar to the other software applications (Raad et al., 2024). Therefore, video games provide rich
comprehensive and challenging testbeds to evaluate and improve agents’ various abilities.

In this work, we conduct extensive experiments to demonstrate the generalizability of CRADLE in
such complex environments, while also mastering diverse everyday software applications in distinct
domains. We managed to prove that commercial software is out-of-box testbeds under our frame-
work. The four selected representative games are: epic AAA 3D role-playing game, RDR2, 2D
pixel-art farming simulation game, Stardew Valley, pawn shop simulation game, Dealer’s Life 2,
and 3D, top-down view, city-building game, Cities: Skylines. The target set of diverse software ap-
plications for evaluation includes: Chrome, Outlook, CapCut, Meitu, and Feishu, as well as one
comprehensive software benchmark, OSWorld (Xie et al., 2024). We provide a brief introduction
to these games in Appendix A, and representative designed tasks for measuring the various abilities
of the agent comprehensively in both games and software applications in Appendix Figure 9.

Experimental results show that CRADLE exhibits remarkable generalization ability and impressive
performance across the four previously unexplored commercial video games, the five target software
applications, and the comprehensive contemporaneous OSWorld benchmark. To our best knowl-
edge, CRADLE is the first to enable LMM-based agents to follow the main storyline and complete
one-hour-long real missions in a complex AAA game, RDR2. CRADLE also manages to create a
city with nearly a thousand people in Cities: Skylines, farm and harvest parsnips in Stardew Valley,

1This setting can be seamlessly extended to other digital devices, i.e., mobile phones, game controllers, and
virtual reality headsets with standard input and output.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

General
Computer

ControlApplications Games

Path towards
AGI

OSWorld

Figure 2: Taxonomy of GCC and the games and software investigated in this work.
trade and bargain with a maximal weekly total profit of 87% in Dealer’s Life 2. Besides, CRADLE
can not only operate daily software, like Chrome and Outlook, but also edit images and videos using
Meitu and CapCut, and perform office tasks in Feishu. Able to interact with software in a unified
manner, CRADLE greatly extends the reach of AI agents by making it easy to convert any software,
especially complex games, into benchmarks to evaluate agents’ various abilities and facilitate further
data collection, paving the way for generalism. We hope CRADLE can accelerate the development
of more powerful foundation agents, thereby advancing the path towards AGI.

2 RELATED WORK

Agents for Software Applications. While previous LLM-based web agents (Deng et al., 2023;
Zhou et al., 2023; Gur et al., 2023; Zheng et al., 2024b) show some promising results in effectively
interacting with content on webpages, they usually use raw HTML code and DOM tree as input and
interact with the available element IDs, ignoring the rich visual patterns with key information, like
icons, images, and spatial relations. Multimodal web agents (Hong et al., 2023; Furuta et al., 2023;
Yan et al., 2023; He et al., 2024; Zheng et al., 2024a) and mobile app agents (Yang et al., 2023b;
Wang et al., 2024b) have also been explored. Though using screenshots as input, they still need
to use built-in APIs to get the available interactive element IDs to execute corresponding actions.
Several recent works (Cheng et al., 2024; Zhang et al., 2024; Wu et al., 2024; Kapoor et al., 2024)
aim to apply web agents to more applications by using keyboard and mouse for control. However,
they primarily focus on the static websites and lack the generalizability to other domains.

Agents for Video Games. Several attempts try to develop foundation agents for complex video
games, such as Minecraft (Wang et al., 2023b;a; 2024a), Starcraft II (Ma et al., 2023) and
Civilization-like game (Qi et al., 2024) with textual observations obtained from internal APIs and
pre-defined semantic actions. Although JARVIS-1 (Wang et al., 2023a) claims to interact with the
environment in a human-like manner with the screenshots as input and mouse and keyboard for
control, its action space is predefined as a hybrid space composed of keyboard, mouse, and API.
The game-specific observation and action spaces prohibit the generalization of them to other novel
games. SIMA(Raad et al., 2024) trained embodied agents to complete 10-second-long basic tasks
over ten 3D video games, and the results are promising to be scaled up.

Due to the space limitation, we provide a detailed discussion of the related work in Appendix B.

3 THE CRADLE FRAMEWORK

To pursue GCC, we propose CRADLE, illustrated in Figure 3, a modular and flexible LMM-powered
framework that can properly handle the challenges GCC presents. The framework should have the
ability to understand and interpret computer screens and dynamic changes between consecutive
frames from arbitrary software and be able to generate reasonable computer control actions for
precise execution. This suggests that a multimodal model with powerful vision and reasoning capa-
bilities, in addition to rich knowledge of computer UI and control, is a requirement. In this work,
we leverage GPT-4o (OpenAI, 2024b) as the framework’s backbone model.

3.1 ENVIRONMENT IO

Observation and Action Space. CRADLE only takes a video clip, recording the execution of
the last action, as input and outputs keyboard and mouse operations to interact with environments.
The observation space is made up of complete screen videos with different lengths. For the action
space, it includes all possible keyboard and mouse operations, including key_press, key_hold,
key_release, mouse_move, and wheel_scroll, where keys include both keyboard keys

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Information Gathering Action Planning

Memory

Episodic
Memory

Procedural
Memory

Video (Sequences of screenshots)

Task Inference Skill CurationSelf-Reflection

Key screenshots

Reflect on what happened

LMM

Select next task Given the task, generate skills

Given ,
generate next action

retrieved skills

LMM LMM

LMM
Executor

Extract important visual
and text information

LMM
Text info

1. Navigation
2. Notification
3. Instruction
4. Content

Visual info
1. UI elements
2. Layout
3. Imagery
4. Animations

skill_1(a, b)
skill_2(c, d)

The action to execute is:
skill_1(a=0.1, b=0.5)

1.Last action succeeds/fails
The error is due to …
2.The task succeeds/fails.
The reason is …

Given reflection results
and current observations,
the next task is: “...” [skill_1,skill_2,

skill_a,skill_b,
skill_c,...] Retrieve

Add

Figure 3: An overview of the CRADLE framework. CRADLE takes video from the computer screen as input
and outputs computer keyboard and mouse control determined through inner reasoning.

and mouse buttons. These operations can be combined in various ways to form combos and short-
cuts, execute rapid key sequences, or coordinate timings. We choose to use Python code to simulate
these operations and encapsulate them into an io_env class.

Information Gathering. Provided with a video clip as input, it is critical for CRADLE to capture
and extract all useful visual and textual information to understand the recent situation and perform
further reasoning. Visual information includes layout, imagery, animations, and UI elements which
pose high spatial perception and visual understanding requirements for LMM models. Moreover, we
depend on their OCR capabilities to extract textual information in images, which usually includes
content (headings and paragraphs), navigation labels (menus and links), notifications, and instruc-
tions to convey messages and guide users. For each environment, we enhance LMMs’ abilities with
different tools such as template matching (Brunelli, 2009), Grounding DINO (Liu et al., 2023), and
SAM (Kirillov et al., 2023) to provide additional grounding for object detection and localization.

Skill and Action Generation As shown in Figure 4, to bridge the gap between semantic actions
generated by LMMs and OS-level executable actions, CRADLE uses LMMs to generate code func-
tions as semantic-level skills, which encapsulate lower-level keyboard and mouse control. Similar
to how humans improve while playing, these skills can be developed from scratch according to in-
game tutorials and guidance, game manuals and settings, or through self-exploration as the game
progresses. These skills can also be pre-defined or composited to solve more complex tasks. An ac-
tion usually consists of a single or multiple skills instantiated with any necessary parametric aspects,
such as duration, position, and speed. An Executor will be triggered to map these semantic actions
to the OS-level keyboard and mouse commands to interact with the environment.

3.2 MEMORY

CRADLE stores and maintains all the useful information from the environment or outputted by each
module through a memory mechanism, consisting of episodic memory and procedural memory.

Episodic Memory. Episodic memory is used to maintain current and past experiences, including key
screenshots from each video observation, and everything useful outputted by LMMs and advanced
tools, e.g., textual and visual information, actions, tasks, and reasoning from each module. To
facilitate retrieval and storage, periodical summarization is conducted to abstract recently added

def access_map():
"""
Press "M" to access map.
"""
io_env.key_press('M‘)

def move_up(duration = 1):
"""
Press "W" to move up.
"""
io_env.key_press('W', duration)

...

def place_residential_zone(x1, y1, x2, y2):
"""
Click residential zone icon and place.
"""
Move mouse to the icon and click.
io_env.mouse_move(700, 950)
io_env.mouse_click_button('left button‘)

Place the residential zone.
io_env.mouse_move(x1, y1)
io_env.mouse_hold('left button‘)
io_env.mouse_move(x2, y2)

def view_stored_weapons():
"""
Press "tab" to view your stored weapons.
"""
io_env.key_hold('tab')

def talk_to_tennessee_walker():
"""
Press "right mouse button" to talk to

tennessee walker.
"""
io_env.mouse_click('right button')

Figure 4: Examples for skill generation according to in-game guidance in RDR2 (left), in-game manual in
Stardew Valley (middle), self-exploration in Cities: Skylines (right). Code and comments are shown in brevity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Information Gathering Action PlanningTask Inference Skill CurationSelf-Reflection

Retrieved Skills:
['aim','follow','turn','move_for
ward','show_weapon_wheel'...]

Last Action: take_cover()
Previous Task: Press [Q] to take cover.

The last action was executed
successfully, and the task is completed
since new guidance appears.

Hold [TAB] to show
the Weapon Wheel.

show_weapon_wheel()

Hold [TAB] to show the Weapon Wheel.

Generated Skill:
def show_weapon_wheel():

 io_env.key_hold('tab')

Guidance:

Selects parsnip seeds from the toolbar.
select_tool(key='6')
Plants parsnip seeds on the tilled soil.
do_action()

Retrieved Skills:
['move_up','move_down','move_left','mo
ve_right','select_tool','do_action'...]

Last Action: use_tool()
Till the soil using the hoe.
Previous Task: use the hoe to till the soil.

The last action was executed successfully.
The hoe is actively being used aiming
toward the soil and the soil becomes darker.
Therefore, the task is completed.

The new task is to plant the parsnip
seeds in the tilled soil.

1. Axe 2. Hoe (Selected) …
6. Parsnip Seeds (15) … Toolbar:

Retrieved Skills:
['place_water_pumping_station','place_w
ater_drain_pipe','place_water_pipe'...]

Error Message: Cannot be built on water

Last Action:
 place_water_pumping_station(x=100, y=700)
 Previous Task: place a water pumping
 station near the river.
The last action was not executed successfully.
As the water pumping station cannot be built
on the water as shown in the error message.
Therefore, the task is not completed.

The current task is to continue the
previous task.

place_water_pumping_station
(x=400, y=600)

E
xe

cu
te

E
xe

cu
te

E
xe

cu
te

Figure 5: Illustrative examples of CRADLE’s complete workflow in RDR2 (left), Stardew Valley (middle) and
Cities: Skylines (right). Prompts are shown partially for brevity.

multimodal information into long-term summaries. The incorporation of episodic memory enables
CRADLE to effectively retain crucial information over extended periods.

Procedural Memory. This memory is specific to storing and retrieving skills in code form, which
can be learned from scratch as shown in Figure 4, or pre-defined in procedural memory. Skills
can be added, updated, or composed to the procedural memory in the skill curation module. Same
as Voyager (Wang et al., 2024a), skills are retrieved according to the similarities between their
corresponding embedding and task description.

3.3 REASONING

Based on the extracted information from observations and memory, CRADLE conducts high-level
reasoning and then makes the next decision. This process is analogous to “reflect on the past, sum-
marize the present, and plan for the future”, which is broken down into the following modules.

Self-Reflection. The reflection module initially evaluates whether the last executed action was suc-
cessfully carried out and whether the task was completed. Sequential key screenshots from the last
video observation, along with the previous context for action planning and task inference are fed
to the LMM for reasoning. Additionally, we also request the LMM to provide an analysis of any
failure. This valuable information enables CRADLE to remedy inappropriate decisions or less-than-
ideal actions. Furthermore, reflection can also be leveraged to inform re-planning of the task and
bring the agent closer to target task completion, better understand the factors that led to previous
successes, or suggest how to update or improve specific skills.

Task Inference. After reflecting on the outcome of the last executed action, CRADLE needs to
analyze the current situation to infer the most suitable task for the current moment. We let LMMs
determine the highest priority task to perform and when to stop an ongoing task and start a new one.

Skill Curation. As the task is specified, CRADLE needs to prepare the tactics to accomplish it,
by retrieving useful skills from the procedural memory, updating existing skills, or generating new
ones. The new skill will be stored in the procedural memory for future utilization.

Action Planning. CRADLE needs to select the appropriate skills from the curated skill set and
instantiate these skills into a sequence of executable actions by specifying any necessary parametric
aspects (e.g., duration, position, and target) according to the current task and history information.
The generated action is then fed to the Executor for interaction with the environment.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction: place_water_pumping_station(x=100, y=700) Previous Task: place a water pumping station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecute4 EMPIRICAL STUDIES
In this section, we first introduce the practical implementation of the current Cradle framework and
then present the empirical results of deploying CRADLE across various challenging environments
representative of GCC settings, demonstrating its comprehensive capabilities.

4.1 GENERAL IMPLEMENTATIONS

Input. CRADLE applies gpt-4o-2024-05-13 as backbone. It only takes a video clip, which records
the execution progress of the last action, as input. To lower the frequency of interaction with back-
bone models and reduce the strain on the computer, video is recorded at 2 fps, which proves to be
sufficient in most cases for information gathering without missing any important information.

Skills. CRADLE uses Python code to simulate keyboard and mouse operations, which is encap-
sulated by an io_env class to achieve OS-agnostic interface. Skills are generated based on these
basic operations. We use OpenAI’s text-embedding-ada-002 model (OpenAI, 2022) to generate em-
beddings for each skill, stored in the procedural memory and retrieved according to the similarities.

Prompts. Prompts used by each module are initialized by the corresponding templates in
Markdown-style format. These prompt templates provide a minimal workflow with basic rules for
the module to run and use placeholders of each key for input and output. CRADLE automatically re-
trieves the corresponding value for each key in the input from the episodic memory and forms valid
requests to query LMMs with the values and templates. After receiving responses from LMMs,
CRADLE automatically extracts the keys in the output and stores them in the episodic memory.
Users can freely customize their own prompts without writing any code.

Apply to new environments. Theoretically, CRADLE can be directly deployed to new video games
or other software applications with the default prompt templates and empty procedural memory. Due
to the limited ability of current LMMs and the complexity of challenging environments and tasks,
prompt engineering may need to be applied to every module to enhance LMMs’ reasoning ability
and introduce domain knowledge. Additional tools can also be applied to provide extra grounding
and domain knowledge as part of the prompt input. Procedural memory can be initialized with hand-
craft skills to mitigate the incomplete tutorials provided by the software and the complexity of tasks.
Users may need to analyze the task-specific issue and choose a suitable solution. We provide all the
implementation details and prompts we use for each software in Appendices D to K.

Experimental Settings. If not specifically mentioned, all experiments are conducted in five runs
under a maximum step limit. For each video game, we hired five human players, who never played
the corresponding game before, to do the evaluation. Before they start the experiments, they will
read the prompts used by Cradle agents for fair comparison. Every player played the task once.
We apply human evaluation to all tasks, except for OSWorld, which provides automatic evaluation
scripts. Estimated experimental cost of the time and API usage is provided in Appendix C.

Task Introduction. As shown in Figure 6 and 7, for RDR2, we mainly focus on evaluating agents
on the first two complete missions of the main storyline in Chapter I, which can be divided into 13
tasks according to the in-game checkpoints, including but not limited to navigation, NPC interaction,
inventory management, house exploration, and combat. It usually takes a human player about an
hour to complete these missions. Few previous studies tackle such long-duration tasks and rich
semantic environments. It is an ideal scenario to emulate a novice player learning to play the game
from scratch according to the rich in-game tutorials and hints. For Stardew Valley, we propose
three essential tasks at the stage of the game, i.e., Farm Clearup: Clear the obstacles on the farm,
such as weeds, stones, and trees, as much as possible to prepare for farming; 2) Cultivation: Plant
the parsnip seed, water every day and harvest at least one mutual parsnip; 3) Shopping: Go to the
general store in the town, which is out of the scope of the current map, to buy more seeds and return
home. For Dealer’s Life, the agent is tasked with managing a pawn shop for a week, appraising item
values and haggling with the customers to secure deals. For Cities: Skylines, the task is to build a
reasonable city ending in as much population as possible, with the initial starting funds of ₡70,000,
and basic road, water and electricity facilities. Moreover, we define five representative domain-
specific tasks for each of the five Software Applications in our diverse target set. We provide an
overview of all the tasks for both games and software applications in Appendix Figure 9.

4.2 PERFORMANCE ACROSS ENVIRONMENTS

Red Dead Red Redemption 2. Figure 6 shows that CRADLE can efficiently complete simple
navigation tasks with a few steps like following an NPC or going to specific locations on the ground
(e.g., Follow Dutch, Go to Town and Go to Barn). Another following task, Follow Javier, and
the searching task, Search John, are dangerous for the rugged and winding path up to the snow

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Mission 2: Enter, Pursued by a MemoryMission 1: Outlaws from the West

MISSION1: OUTLAWS
FROM THE WEST

MISSION2: ENTER,
PURSUED BY A MEMORY

Hitch Horse,
Take Cover

Peek out of Cover, Show Weapon Wheel,
Switch Weapons, Equip, Reload, Aim

Pick up Items, Eat Item, Open Cabinet,
Close Cabinet, Restore Health Core

Grab,
Interrogate,
Spare, Beat

Calm Horse,
Pat Horse,
Lead Horse

Select Item,
Inspect Camp,
View Stored

Weapons

Climb,
Crouch

Put Away Weapon

Generated
Skills

Slow Horse Down,
Ride Faster

Call for Animals, Shot
Wolves, Mount Horse

Figure 6: The first row demonstrates the trajectory of 13 sequential tasks in the two main storyline missions.
The second row shows the cumulative steps CRADLE takes to complete each task in the two missions, starting
from the beginning of the game. If a task fails, CRADLE can select the ’retry checkpoint’ option to retry the
task. Skills generated during the task completion are also illustrated in the figure. We only provide key skills
for brevity. Error bars represent the standard deviation of steps needed to complete each task separately.

Figure 7: The first row sequentially shows farm clearup, cultivation and shopping in Stardwe Valley and hag-
gling and deal in Dealer’s Life 2. The second row sequentially shows road construction, water pipe laying,
wind turbine building, zoning and the display of the city built by CRADLE in Cities: Skylines.

mountain with cliffs. Note that Cradle is able to retry the checkpoint automatically according to the
game guidance if the task fails. Therefore, CRADLE takes more steps for retrying the task in these
dangerous areas. In addition, Cradle spends about one-fourth of the total steps in the task of Protect
Dutch, which is a long-horizontal task with nighttime combat. Many key skills are generated in this
task for weapon management and shooting movement. The visibility is poor due to the snow falling
in the dark, preventing GPT-4o from accurately recognizing and locating enemies or objects and
precisely timing decisions, even equipped with Grounding DINO as an additional detection tool.
More times of retry, combined with the need for frequent interactions during combat and the long
horizon of the task, lead to this task requiring a large number of steps to complete. The success rate
of the combat has significantly improved during the day with much fewer steps for completion, as
shown by tasks like Keep Wolves away. Additionally, indoor tasks like Search for Supplies are also
challenging due to GPT4-o’s limited spatial perception, which finds it difficult to locate target objects
and ends up circling aimlessly around the house. Moreover, the room contains numerous interactive
items unrelated to the task, resulting in much more steps for the agent to complete the task. Overall,
CRADLE requires approximately 8,000 steps to complete both missions, taking around 98 minutes
of in-game time, compared to the average of 67 minutes for human players. It is the first time for
LMM-powered AI agents to exhibit comparable performance in complex AAA games.

Stardew Valley. As shown in Table 1, we surprisingly find that GPT-4o struggles with accurately
recognizing and locating objects near the player in this pixel-art game. This leads to difficulties for
the agent to interact with objects or people, as it requires the player to stand precisely in front of them
in the grid (e.g., when entering doors, using a pickaxe to break stones). It explains the inefficiency
in the farming task though the agent manages to clear up most of the obstacles in front of the house
within 100 steps and poor performance in the shopping task. On the other hand, relying on episodic
summarization and task inference, CRADLE manages to obtain the parsnip by watering the seed for
four days and harvesting. Given GPT-4’s limited visual capabilities in this game, there is still room
for improvement in narrowing the gap between CRADLE and human players.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction: place_water_pumping_station(x=100, y=700) Previous Task: place a water pumping station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecute Table 1: CRADLE’s and human
players’ performance in Stardew
Valley, Dealer’s Life 2 and Cites:
Skylines with each trial run for at
most 100, 500, 1000 steps respec-
tively. 1/5 indicates one successful
run out of five runs.

Stardew Valley

Task Cradle Human

Farm Clearup
(Grids Num.)

14.8
± 5.0

35.2
± 14.5

Cultivation 4/5 5/5
Shopping 1/5 5/5

Dealer’s Life 2

Metrics Cradle Human

Avg. Haggling
Count

1.95
± 0.43

1.63
± 0.53

Turnover
Rate (%)

93.6
± 6.9

68.4
± 22.2

Item Profit
Rate (%)

37.8
± 19.1

21.1
± 13.6

Total Profit
Rate (%)

39.6
± 27.3

17.3
± 15.1

Cities: Skylines

Metrics Cradle Human

Closed-loop Road 4/5 5/5
Water Supply 1/5 3/5
Power Supply 5/5 5/5

Zoning Coverage 4/5 4/5

Population 450
±224

415
±416

Dealer’s Life 2. Table 1 shows that CRADLE demonstrates
robust performance and efficient profit-making on the Weekly
Shop Management task, successfully finalizing 93.6% of poten-
tial transactions, with an average of 2 negotiation rounds per cus-
tomer, and generally aiming for a profit rate of over 50% at the
initial offer. It consistently generates profit across all runs, main-
taining a total profit rate of +39.6%, peaking at +87.4% in a sin-
gle run. In this game, CRADLE significantly outperforms human
players. The achievements are mainly attributed to its cautious
strategy, by bargaining within a smaller range of price variation
but haggling more frequently, resulting in a significantly higher
turnover rate. In contrast, human players usually fail the deal due
to their aggressive strategy by proposing an unreasonable price
and sometimes confusing buying and selling.

Cities: Skylines. Table 1 shows that CRADLE is able to com-
plete most of the city design with the averaged maximal popu-
lation of 450 and the highest single population exceeding 860.
CRADLE manages to build the roads in a closed loop to ensure
smooth traffic flow, place multiple wind turbines to provide suf-
ficient electricity supply and cover more than 90% of available
area with residential, commercial and industrial zones, but fails
to provide sufficient water supply for all the regions reliably. The
most common failure arises from the missing of water pipes.
CRADLE often fail to connect them with each other to cover
all zones, resulting in localized water shortages in the city, and
preventing new residents from moving in. The issue also arises
from GPT-4o’s limited visual understanding, making it difficult
to accurately recognize which areas are already covered by the
water pipes. We empirically observed that these mistakes usually
could be fixed within three unit operations (building or removing
a road/facility/a place of zones is counted as one unit operation).
Then cities built by CRADLE can eventually reach a population
of more than one thousand. We provide a detailed case study in
Appendix H.5.2. Overall, as shown in Table 1, without the man-
ual fixes, CRADLE still beats human players even though it suffers from local water storage. Human
players typically pay insufficient attention to budget management and tend to allocate a dispropor-
tionate amount of funds to the construction of wind turbines for electricity, resulting in limited road
construction and residential areas to attract residents.

Software Applications. Figure 8 shows CRADLE’s performance across tasks on five applications.
Multiple tasks remain challenging. Even with a well-known GUI, like Chrome and Outlook, GPT-4o
still cannot recognize specific UI items to interact with and also struggles with visual context. For ex-
ample, forgetting to press the Save button in an open dialog, or not distinguishing between a nearby
enabled button vs. a distant and disabled one (e.g., when posting on Twitter). The phenomenon is
more severe in the UI with non-standard layouts, like CapCut, Meitu, and Feishu. Lacking prior
knowledge by GPT-4o leads to the failure of task inference and selecting the correct skills.

Chrome Outlook CapCut Meitu Feishu

Figure 8: Cradle’s performance in software applications. Each task is run for 5 trials.
Table 2: Success rates (%) of different methods in OSWorld.

Method Office
(117)

OS
(24)

Daily
(78)

Workfl-
ow(101)

Professi-
onal (49)

All
(369)

GPT-4o 3.58 8.33 6.07 5.58 4.08 5.03
GPT-4o+SoM 3.58 20.83 3.99 3.60 2.04 4.59

CRADLE 3.58 16.67 6.55 5.48 20.41 7.81

OSWorld. Table 2 shows that CRADLE
achieves the overall highest success rate in
OSWorld, compared to the baselines with-
out relying on any internal APIs to provide
extra grounding labels, e.g., Set-of-Mark
(SoM) (Yang et al., 2023a). The informa-
tion gathering module improves ground-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction: place_water_pumping_station(x=100, y=700) Previous Task: place a water pumping station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecuteing for more precise action execution, increasing the performance. The self-reflection module en-
ables Cradle to predict infeasible tasks and subsequently fix mistakes, shown in the Professional
domain results, where it achieves a 20.41% success rate, significantly surpassing the baselines.
4.3 BASELINE COMPARISON

Since no existing methods are fully applicable to the GCC setting, we select several representative
methods with necessary adaptions to make them applicable to GCC, labeling them as "like" in Table
3. Compared to CRADLE, React (Yao et al., 2023)-like method only has gather information, skill
curation, action planning and procedural memory module, while Reflextion (Shinn et al., 2023)-like
method adds a self-reflection and episodic memory, compared to React-like. To show the neces-
sity of multimodal input without access to APIs, we let GPT-4o describe the image and then feed
the textual description to Voyager (Wang et al., 2024a)-like as input. Additionally, experiments
with GPT-4o and Claude 3 Opus (Anthropic, 2024) as backbone are conducted. Due to the limita-
tion of requests per minute, other prompting methods like self-consistency (Wang et al., 2022) and
TOT (Yao et al., 2024) are not considered. Note that methods here refer to the agents initialized by
the corresponding framework with game-specific implementations.

Table 3: Baseline comparison for five task in RDR2 and one task in Stardew Valley (Cultivation). Numbers
before the brackets are average steps for completion. N/A indicates failure for all trials. Every task is run 5
times. Each trial is run for at most 500 steps in RDR2 and 100 steps in Stardew Valley.

Method Follow
Dutch

Follow
Micah

Hitch
Horse

Protect
Dutch

Search
for Supplies Cultivation

React-like (GPT-4o) 15± 2 (5/5) 74± 0 (1/5) N/A N/A N/A N/A
Reflextion-like (GPT-4o) 19± 4 (5/5) 58± 14 (2/5) N/A N/A N/A N/A
Voyager-like (GPT-4o) 32± 12 (3/5) N/A N/A N/A N/A N/A

CRADLE (Claude 3 Opus) 30± 7 (5/5) 52± 17 (4/5) N/A N/A N/A N/A

CRADLE (GPT-4o)
(Ours)

13± 3
(5/5)

33± 3
(5/5)

26± 5
(4/5)

461± 0
(1/5)

134± 0
(1/5)

24± 4
(4/5)

As shwon in Table 3, all the baseline methods can only complete simple and straightforward tasks
without complex targets and time delays. Compared to React-like method, Reflextion-like method
has better performance in the task of Follow Micah and still fails to complete more complex tasks,
emphasizing the importance of task inference and procedural memory. Voyager-like method that
loses vision suffers to accomplish tasks and are the worst of all comparison methods. CRADLE
with GPT-4o always has the best performance across all tasks. CRADLE with GPT-4o has the best
performance, while Claude 3 Opus fails frequently due to unreliable OCR ability of the guidance,
leading to incorrect skill generation and failures of complex tasks.

Table 4: Performance of each method in task
Cultivation. The Y-axis shows the stage of
parsnip. Only if the mutual parsnip (shown
on the top of the y-axis) is obtained will this
trial be counted as a success.

Figure 4 provides the detailed performance of each base-
line method in the Cultivation task in Stardew Valley.
Without task inference and episodic memory for sum-
marization, even React-like and Reflexion-like methods
sometimes managed to get the parsnip to sprout from the
ground, they failed to harvest it because GPT-4o failed to
recognize the mature parsnip. Episodic memory can help
CRADLE record the days of watering and know when
the crop can be harvested. Voyager-like method strug-
gles with getting out of the house and returning home due
to the lack of visual input. Claude 3 Opus also has diffi-
culties in localizing the position of the character and the
crop. Moreover, it prefers moving characters much more
frequently than GPT-4, resulting in the failure to position
the character in front of the crop.
4.4 ABLATION STUDY

Besides comparing with other baseline methods, we provide a complete ablation study by system-
atically removing each module of Cradle to show the effectiveness in Table 5. We mainly show the
results of 6 consecutive subtasks at the beginning of the main storyline, separated from the tasks of
Follow Micah, Hitch Horse and Protect Dutch in RDR2. Note that the combination of skill curation,
action planning and procedural memory is the minimal unit of our framework. Without any of them,
the agent cannot generate and execute valid actions successfully. So these modules are not ablated.

The most significant decline in agent capabilities arises from the absence of the information gather-
ing module. Without this module, the agent is unable to extract key information in the observation,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Information GatheringAction PlanningTask InferenceSkill CurationSelf-ReflectionRetrieved Skills: ['aim','follow','turn','move_forward','show_weapon_wheel'...]LastAction:take_cover()Previous Task: Press [Q] to take cover.The last action was executedsuccessfully, and the task is completed since new guidance appears. Hold [TAB] to show the Weapon Wheel.show_weapon_wheel()Hold [TAB] to show the Weapon Wheel.GeneratedSkill:def show_weapon_wheel(): io_env.key_hold('tab')Guidance: # Selects parsnip seeds from the toolbar.select_tool(key='6') # Plants parsnip seeds on the tilled soil.do_action()Retrieved Skills: ['move_up','move_down','move_left','move_right','select_tool','do_action'...]LastAction:use_tool()# Till the soil using the hoe.Previous Task: use the hoe to till the soil.The last action was executed successfully. The hoe is actively being used aiming toward the soil and the soil becomes darker. Therefore, the task is completed.The new task is to plant the parsnip seeds in the tilled soil.1. Axe 2. Hoe (Selected) …6. Parsnip Seeds (15) … Toolbar:Retrieved Skills: ['place_water_pumping_station','place_water_drain_pipe','place_water_pipe'...]Error Message: Cannot be built on waterLastAction: place_water_pumping_station(x=100, y=700) Previous Task: place a water pumping station near the river.The last action was not executed successfully.As the water pumping station cannot be built on the water as shown in the error message. Therefore, the task is not completed. The current task is to continue the previoustask.place_water_pumping_station(x=400, y=600)ExecuteExecuteExecute

which is critical for all other modules to function effectively. The second largest impact comes from
the lack of the self-reflection module, which is instrumental in correcting mistakes and recognizing
when the agent is stuck, such as in the subtask of Go to Shed. Third, the task inference module is
vital for tasks that require strict adherence to guidance, like Switch Weapon. In these cases, the in-
game instructions appear only at the beginning of the task, as seen in Follow Micah and Go to Shed.
Lastly, episodic memory becomes increasingly important as tasks grow more complex, requiring
more steps to complete, such as in Go to Shed and Combat, which involve far more steps than other
subtasks. Overall, each module plays a crucial and distinct role in the Cradle framework. Removing
or isolating any of them significantly reduces the agent’s effectiveness, underscoring the importance
of their integrated function.
Table 5: Success rates of each variant by systematically removing Cradle’s module on six consecutive subtasks
in RDR2. Every subtask is run 5 times. Each of subtasks are run for at most 500 steps.

Subtask w/o Information
Gathering

w/o Self-
Reflection

w/o Task
Inference

w/o Episodic
Memory CRADLE

Follow Micah 0% 0% 40% 80% 100%
Hitch Horse 0% 100% 100% 100% 100%
Go to Shed 0% 20% 40% 20% 80%

Peek out of Cover 60% 100% 80% 100% 100%
Switch Weapon 0% 80% 60% 80% 100%

Combat 0% 0% 0% 0% 20%

5 LIMITATIONS AND FUTURE WORK
Despite CRADLE’s encouraging performance across games and software, several limitations re-
main. i) Due to the limited ability of current LMM models, CRADLE struggles in recognizing out-
of-distribution (OOD) icons and completing OOD tasks, such as games with non-realistic styles, i.e.,
Stardew Valley. As LMMs evolve, they can further improve CRADLE’s performance. ii) Another
general bottleneck for LMM-based agents is the latency caused by the limited inference speed of
LMMs, which can also be alleviated as LMMs evolve (e.g., Realtime API (OpenAI, 2024a)). iii)
Audio, as an important modality, often plays an important role in games and software; which has
not been considered in this work. The future work will be enabling CRADLE to process the audio
and graphical input simultaneously. iv) As the preliminary attempt towards GCC, most CRADLE’s
modules need to call LMM explicitly to process the input for best performance, resulting in frequent
interactions with LMM and potentially high costs and long delays. The six modules represent a
problem-solving mindset; as LMM capabilities improve, some or even all of these modules may be
combined into a single request. Exploring other potential GCC frameworks is also promising. v)
In this work, we mainly focus on enabling foundation agents to interact with various software in a
unified manner without taking training into consideration. As SIMA (Raad et al., 2024) has already
shown promising results in a similar setting with trained agents, we will let CRADLE autonomously
explore and improve over environments through RL (Tan et al., 2023) or collect expert demonstra-
tions for supervised learning (Raad et al., 2024). vi) Though CRADLE is broadly applicable to any
computer task, only a few selected tasks are investigated in this work. We plan to expand its appli-
cation to a wider range of targets, delve deeper into complex games, and enhance its adaptability
for users. vii) Due to the large scope of the experiments conducted in this work, the number of
runs for each task and human participants are limited. A more comprehensive evaluation can be
beneficial. CRADLE holds great potential to improve effective general computer task completion
and boost research and deployment of foundation agents. However, there is also a risk of unintended
or unsuitable usage, including developing game cheats, incorrect operations of software with harm-
ful failures, or other negative agent behavior. Therefore, additional regulations or safeguards are
required for secure and responsible deployments across digital and physical environments.

6 CONCLUSION
We introduce GCC, a general and challenging setting to control diverse video games and software
with a unified and standard interface, paving the way towards general foundation agents across all
digital world tasks. To properly address the challenges GCC presents, we propose a novel frame-
work, CRADLE, which exhibits strong performance in reasoning and performing actions to accom-
plish various missions in a set of complex video games and common software applications. To the
best of our knowledge, CRADLE is the first framework that enables foundation agents to succeed in
such a diverse set of environments without relying on any built-in APIs. The success of CRADLE
greatly extends the reach of foundation agents and demonstrates the feasibility of converting any
software, especially complex games, into benchmarks to evaluate agents’ general intelligence and
facilitate further data collection for self-improvement. Although CRADLE still faces difficulties in
certain tasks, it serves as a pioneering work to develop more powerful LMM-based agents towards
GCC, combining both further framework enhancements and new advances in LMMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew
Goff, Jonathan Gray, Hengyuan Hu, et al. Human-level play in the game of diplomacy by com-
bining language models with strategic reasoning. Science, 378(6624):1067–1074, 2022.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. RT-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023a.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2023b.

Roberto Brunelli. Template matching techniques in computer vision: theory and practice. John
Wiley & Sons, 2009.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. arXiv preprint
arXiv:2401.10935, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
ai using procedural generation. Advances in Neural Information Processing Systems, 35:5982–
5994, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2Web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
erative multi-agent reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.
net/forum?id=5OjLGiJW3u.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=5OjLGiJW3u
https://openreview.net/forum?id=5OjLGiJW3u

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, et al. ASSISTGUI: Task-oriented desktop graphical user
interface automation. arXiv preprint arXiv:2312.13108, 2023.

Xiaofeng Gao, Ran Gong, Tianmin Shu, Xu Xie, Shu Wang, and Song-Chun Zhu. Vrkitchen: an
interactive 3d virtual environment for task-oriented learning. arXiv preprint arXiv:1903.05757,
2019.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of Minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. CogAgent: A visual language model for GUI agents.
arXiv preprint arXiv:2312.08914, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3D multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859–865, 2019.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo platform for artifi-
cial intelligence experimentation. In Ijcai, pp. 4246–4247, 2016.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. OmniACT: A dataset and benchmark for enabling multimodal gener-
alist autonomous agents for desktop and web, 2024.

Christian Kauten. Super Mario Bros for OpenAI Gym. GitHub, 2018. URL https://github.
com/Kautenja/gym-super-mario-bros.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference on
artificial intelligence, pp. 4501–4510, 2020.

12

https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scalable eval-
uation of multi-agent reinforcement learning with melting pot. In International conference on
machine learning, pp. 6187–6199. PMLR, 2021.

Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric simula-
tion for robot learning of everyday household tasks. arXiv preprint arXiv:2108.03272, 2021.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding Dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Weiyu Ma, Qirui Mi, Xue Yan, Yuqiao Wu, Runji Lin, Haifeng Zhang, and Jun Wang. Large
language models play StarCraft II: Benchmarks and a chain of summarization approach. arXiv
preprint arXiv:2312.11865, 2023.

Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habi-
tat: A Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2019.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. GAIA: a benchmark for general AI assistants. arXiv preprint arXiv:2311.12983, 2023.

Meredith Ringel Morris, Jascha Sohl-dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Alek-
sandra Faust, Clement Farabet, and Shane Legg. Levels of AGI: Operationalizing progress on the
path to AGI. arXiv preprint arXiv:2311.02462, 2023.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. ScreenAgent: A vision language model-driven computer control agent. arXiv preprint
arXiv:2402.07945, 2024.

OpenAI. Universe, 2016. URL https://openai.com/index/universe/.

OpenAI. New and improved embedding model, 2022. URL https://openai.com/index/
new-and-improved-embedding-model/.

OpenAI. Introducing the realtime api, 2024a. URL https://openai.com/index/
introducing-the-realtime-api/.

OpenAI. Hello gpt-4o, 2024b. URL https://openai.com/index/hello-gpt-4o/.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8494–8502, 2018.

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
sey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A
co-habitat for humans, avatars and robots. arXiv preprint arXiv:2310.13724, 2023.

Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi Wang, Bangcheng Yang, Pring Wong, Yifan
Zhong, Xiaoyuan Zhang, Zhaowei Zhang, et al. CivRealm: A learning and reasoning odyssey in
Civilization for decision-making agents. In ICLR, 2024.

13

https://arxiv.org/abs/1802.08802
https://openai.com/index/universe/
https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/introducing-the-realtime-api/
https://openai.com/index/introducing-the-realtime-api/
https://openai.com/index/hello-gpt-4o/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian Bolton,
Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable
agents across many simulated worlds. arXiv preprint arXiv:2404.10179, 2024.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
wild: A large-scale dataset for Android device control. arXiv preprint arXiv:2307.10088, 2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The Starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martín-Martín, Linxi Fan, Guanzhi Wang, Claudia
Pérez-D’Arpino, Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, et al. igibson 1.0: a simu-
lation environment for interactive tasks in large realistic scenes. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7520–7527. IEEE, 2021.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Von-
drus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen
Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to
rearrange their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowl-
edge comes from practice: Aligning large language models with embodied environments via
reinforcement learning. In ICLR, 2023.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojciech M
Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al. AlphaStar: Mas-
tering the real-time strategy game Starcraft II. DeepMind blog, 2:20, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiF0R3a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Ji-
tao Sang. Mobile-Agent: Autonomous multi-modal mobile device agent with visual perception.
arXiv preprint arXiv:2401.16158, 2024b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin,
Zhaofeng He, Zilong Zheng, Yaodong Yang, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. arXiv preprint arXiv:2311.05997,
2023a.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and
select: Interactive planning with large language models enables open-world multi-task agents. In
ICML, 2023b.

14

https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max
Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse plan-
ning. Topics in Cognitive Science, n/a(n/a), 2021. doi: https://doi.org/10.1111/tops.12525. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. OS-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.
Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

Yuchen Xiao, Weihao Tan, and Christopher Amato. Asynchronous actor-critic for multi-agent rein-
forcement learning. Advances in Neural Information Processing Systems, 35:4385–4400, 2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan Wang. GPT-4V in won-
derland: Large multimodal models for zero-shot smartphone GUI navigation. arXiv preprint
arXiv:2311.07562, 2023.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v, 2023a.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. AppAgent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. UFO: A UI-focused agent for Windows OS interaction. arXiv
preprint arXiv:2402.07939, 2024.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. GPT-4V(ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024a.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In ICLR, 2024b.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. WebArena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

15

https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Game & Task Introduction 18

B Extended Related Work 18
B.1 Environments and Benchmarks for Computer Control 18
B.2 LMM-based Agents for Computer Tasks . 19

C Experimental Cost 20

D General Implementation 20

E Red Dead Redemption II 23
E.1 Introduction to RDR2 . 23
E.2 Objectives . 23
E.3 Implementation Details . 24
E.4 Case Studies . 29
E.5 Limitations of GPT-4o and GPT-4V . 32

F Stardew Valley 35
F.1 Introduction to Stardew Valley . 35
F.2 Objectives . 35
F.3 Implementation Details . 35
F.4 Case Studies . 38
F.5 Limitations of GPT-4o . 39

G Dealer’s Life 2 40
G.1 Introduction to Dealer’s Life 2 . 40
G.2 Objectives . 40
G.3 Implementation Details . 40
G.4 Case Studies . 42
G.5 Quantitative Evaluation . 43
G.6 Evaluation Metrics . 43

H Cities: Skylines 45
H.1 Introduction to Cities: Skylines . 45
H.2 Objectives . 46
H.3 Evaluation Metric . 46
H.4 Implementation Details . 47
H.5 Case Studies . 50

I Software Applications 52
I.1 Selected Software Applications . 52
I.2 Software Tasks . 52
I.3 Quantitative Evaluation . 56
I.4 Implementation Details . 56
I.5 Case Studies . 61
I.6 Limitations of GPT-4o . 63

J OSWorld 64
J.1 Introduction to OSWorld . 64

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

J.2 OSWorld Tasks . 64
J.3 Implementation Details . 65
J.4 Application Target and Setting Challenges . 67
J.5 Case Studies . 67
J.6 Quantitative Evaluation . 69

K Cradle Prompts 69
K.1 Prompts for RDR2 . 69
K.2 Prompts for Cities: Skylines . 78
K.3 Prompts for Stardew Valley . 85
K.4 Prompts for Dealer’s Life 2 . 104
K.5 Prompts for Software Applications . 109

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A GAME & TASK INTRODUCTION

The four selected representative games are:

• Red Dead Redemption 2 (RDR2), an epic AAA 3D role-playing game (RPG) with rich story-
lines, realistic scenes, and an immersive open-ended world; where players can complete missions
by following the instructions, freely explore the world, interact with non-player characters (NPCs)
and engage in a variety of activities such as hunting and fishing, in a first- or third-person perspec-
tive. This game offers great challenges in 3D embodied navigation and interaction.

• Stardew Valley, a 2D pixel-art farming simulation game where players can restore and expand
a farm through carefully planned activities such as planting crops, mining, fishing, and crafting.
Players can build relationships with the villagers, participate in seasonal events, and uncover the
mysteries of the valley. The game encourages strategic planning and time management, as each
day brings new opportunities and challenges. Players have to balance their energy and resources
to maximize their farm’s productivity and profitability.

• Dealer’s Life 2, a simulation game where players manage a pawn shop. They must assess the
value of items, haggle with customers, and make strategic decisions to grow their business. The
game offers a dynamic market influenced by trends, customer preferences, and random events,
requiring players to adapt and refine their negotiation tactics.

• Cities: Skylines, a 3D, top-down view, city-building game where players take on the role of
a city mayor, tasked with the development and management of a thriving metropolis, engaging
in urban planning by controlling zoning, road placement, taxation, public services, and public
transportation in an area. They must balance the needs and desires of the population with the
city’s budget, addressing issues such as traffic congestion, pollution, and citizen satisfaction. The
game provides a sandbox environment where creativity and strategic thinking are key to building
efficient and aesthetically pleasing urban landscapes. It also requires highly precise mouse control.

Open-ended

Fo
llo

w

D
ut

ch

G
o

to
To

w
n

Hitc
h

Hors
e

Protec
t

Dutch

Search for

Supplies

Go to
Barn

Search Barn

LeadHorse
Follow

JavierSearch

JohnK
eep

W
olves

Aw
ay

K
ill

W
olvesRe

tu
rn

 to

Ca
m

pBu
y

Su
pp

ly

W
eekly Shop

M
anagem

ent

Build a Town

Farm

Clean Up

Sho
pp

ing

Cultiv
ating

D
ow

nl
oa

d
Pa

pe
r

Po
st

in

Tw
itt

er
Ope

n C
los

ed

Pa
ge

Go to

Profile

Change

Mode

Send
New E-mail

Empty
Junk Folder

Reply to Person
Find Target E-mail

Setup

Forwarding

Create

M
edia Project

A
dd

Transition

Crop by
Tim

estam
p

A
dd

Sticker
Crop by

Content

App
ly

Fi
lte

r

Cutout

Add
Sticker

Create
Collage

Add
Frame

CreateAppointment

Message
Contact

SendFile

SetUser Status

Start Video

Conference

Chrome

Outlook

CapCut

Meitu

Feishu

Figure 9: Overview of all game tasks (left) in RDR2, Stardew Valley, Cities: Skylines, and Dealer’s Life 2 and
application tasks (right) in Chrome, Outlook, CapCut, Meitu, and Feishu.

B EXTENDED RELATED WORK

B.1 ENVIRONMENTS AND BENCHMARKS FOR COMPUTER CONTROL

Environments and Benchmarks on Software Applications. Simulated environments on com-
puters have been popular benchmarks and testbeds for the research community. Earlier computer
control environments primarily focused on web navigation tasks (Shi et al., 2017; Liu et al., 2018;
Yao et al., 2022; Deng et al., 2023; Zhou et al., 2023; Koh et al., 2024). Recent benchmarks start
to include various common software (Kapoor et al., 2024; Xie et al., 2024), aiming to develop a
generalist agent in the digital world. However, none of them takes video games into consideration,
missing a key component of computer control.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Environments and Benchmarks on Video Games. On the other side, many research environ-
ments are built on top of video games, significantly advancing the study of decision-making, espe-
cially, reinforcement learning (RL). Examples include but are not limited to Atari games (Bellemare
et al., 2013), Super Mario Bros (Kauten, 2018), Google Research Football (Kurach et al., 2020),
Minecraft (Johnson et al., 2016; Guss et al., 2019; Fan et al., 2022), Dota II (Berner et al., 2019),
StarCraft II (Vinyals et al., 2019; Samvelyan et al., 2019; Ellis et al., 2023), Quake III (Jaderberg
et al., 2019), Gran Turismo (Wurman et al., 2022), Diplomacy (Bakhtin et al., 2022) and Civiliza-
tion (Qi et al., 2024). Additionally, many custom-built environments, especially grid world and
embodied scenarios, are created from scratch in a game-like manner to facilitate agent development,
such as BabyAI (Chevalier-Boisvert et al., 2019), Melting Pot (Leibo et al., 2021), Overcooked (Car-
roll et al., 2019; Wu et al., 2021; Xiao et al., 2022), VRKitchen (Gao et al., 2019), VirtualHome (Puig
et al., 2018), iGibson (Shen et al., 2021; Li et al., 2021), ProcTHOR (Deitke et al., 2022), Habi-
tat (Manolis Savva* et al., 2019; Szot et al., 2021; Puig et al., 2023), and Generative agents (Park
et al., 2023).

Each of these environments highly relies on the accessibility of the open-source code or provided
built-in APIs. Significant human efforts are required for implementation and encapsulation, enabling
agent interaction. Therefore, despite the abundance of software and games available for human use,
only a limited number are accessible to agents, especially for commercial closed-source games and
software applications. Additionally, the lack of consensus on environment standards further com-
plicates the interaction, as each environment has specific observation and action spaces, tailored to
its unique requirements. This variation exacerbates the challenge of enabling agents to interact with
diverse environments and collect data with a consistent level of fine-grained semantics to improve
the agent’s capabilities. Few agents can complete tasks across multiple environments so far.

Similar to OpenAI Universe (OpenAI, 2016) and SIMA (Raad et al., 2024), our goal is to explore
a unified way that allows agents to interact for measuring and training agents’ abilities across a
wide range of games, websites, and other applications without heavy human efforts needed. This
approach aims to prove that diverse software applications and games can serve as out-of-the-box
environments for AI development.

B.2 LMM-BASED AGENTS FOR COMPUTER TASKS

Agents for Software Manipulation. Agents for software applications are developed to complete
tasks such as web navigation (Zhou et al., 2023; Deng et al., 2023; Mialon et al., 2023) and software
application control (Rawles et al., 2023; Yang et al., 2023b; Kapoor et al., 2024). While previous
LLM-based web agents (Deng et al., 2023; Zhou et al., 2023; Gur et al., 2023; Zheng et al., 2024b)
show some promising results in effectively interacting with content on webpages, they usually use
raw HTML code and DOM tree as input and interact with the available element IDs, ignoring the rich
visual patterns with key information, like icons, images, and spatial relations. Recently, multimodal
web agents (Yan et al., 2023; Gao et al., 2023; He et al., 2024; Zheng et al., 2024a; Niu et al.,
2024; Zhang et al., 2024; Wu et al., 2024) and mobile app agents (Yang et al., 2023b; Wang et al.,
2024b) have been explored. Though using screenshots as input, they still rely on built-in APIs
and advanced tools to get internal information, like available interactive element IDs, to execute
corresponding actions, which greatly limits their applicability. Other train-based agents (Hong et al.,
2023; Furuta et al., 2023; Cheng et al., 2024) also suffer from generalizing to unseen software and
tasks. Moreover, all of these works primarily focus on static websites and software, which greatly
reduces the need for timeliness and simplifies the setting by ignoring the dynamics between adjacent
screenshots, i.e., animations, and incomplete action space without considering the duration of the
key press and different mouse mode. It results in the failure of deployment to the tasks with rapid
graphics changes, e.g., game playing.

Agents for Game Playing. Several attempts try to develop foundation agents for complex video
games, such as Minecraft (Wang et al., 2023b;a; 2024a), Starcraft II (Ma et al., 2023) and
Civilization-like game (Qi et al., 2024) with textual observations obtained from internal APIs and
pre-defined semantic actions. Although JARVIS-1 (Wang et al., 2023a) claims to interact with the
environment in a human-like manner with the screenshots as input and mouse and keyboard for
control, its action space is predefined as a hybrid space composed of keyboard, mouse, and API.
The game-specific observation and action spaces prohibit the generalization of them to other novel
games. Pre-trained with videos with action labels, VPT (Baker et al., 2022) manages to output mouse

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and keyboard control with raw screenshots as input without any additional information. However,
collecting videos with action labels is time-consuming and costly, which is difficult to generalize
to multiple environments. Another concurrent work, SIMA (Raad et al., 2024) trained embodied
agents to complete 10-second-long tasks over ten 3D video games. Though their results are promis-
ing to scale up, they focus on behavior cloning with gameplay data from human experts, resulting in
a high expense.

In both targeting complex video games and diverse software applications, CRADLE attempts to
explore a new way to efficiently interact with different complex environments in a unified manner
and facilitate further data collection. In a nutshell, to our best knowledge, there are currently no
agents under the GCC setting, reported to show superior performance and generalization in complex
video games and across computer tasks. In this work, we make a preliminary attempt to explore
and benchmark diverse environments in this setting, applying our framework to diverse challenging
environments under GCC and proposing an approach where any software can be used to benchmark
agentic capabilities in it.

C EXPERIMENTAL COST

Table 6: Financial and time-related costs of running all the tasks once in each environment or domain.

RDR2 Cities:
Skylines

Stardew
Valley

Dealer’s
Life 2

Software
Apps OSWorld Total

Tasks Num. 14 1 3 1 25 369 -
Input Tokens 600M 150M 60M 25M 45M - -

Output Toekns 20M 7.5M 4M 1M 2.5M - -
Cost (USD) $3300 $862.5 $345 $140 $262.5 $500 $5410

Time 240 hrs 60 hrs 30 hrs 20 hrs 50 hrs 240 hrs 640 hrs

Table 6 shows the approximate cost of experiments in Section 4.2 with gpt-4o-2024-05-13. Base-
lines comparison and ablation studies are not included. Since all the tasks were run 5 times except
for OSWorld once, the total cost of getting all the results shown in Section 4.2 is approximately
5400 USD. claude-3-opus-20240229 will roughly use 3X more money and 2X more time compared
to gpt-4o-2024-05-13, due to its higher price and longer latency. We also want to note that with the
latest model, gpt-4o-2024-08-06, the cost will be halved. We estimate that costs will decrease by
one or two orders of magnitude in the coming few years. Then the cost will be affordable to every
researcher and developer.

D GENERAL IMPLEMENTATION

Here we introduce the general implementation details of CRADLE. For specialized implementations
addressing issues unique to their own environment, please refer to the corresponding section.

Hardware. All software and games can be run on regular Windows 10 machines, except for RDR2,
which is tested on machines with RTX-4090 GPU separately.

Backbone Model. We employ GPT-4o (OpenAI, 2024b), currently one of the most capable LMM
models, as the framework’s backbone model. If not mentioned explicitly, all the experiments are
done with gpt-4o-2024-05-13. Temperature is set to 0 to lower the variance of the text generation.
Same as Voyager (Wang et al., 2024a), we use OpenAI’s text-embedding-ada-002 model (OpenAI,
2022) to generate embeddings for each skill, stored in the procedural memory and retrieved accord-
ing to the similarities.

Evaluation Methods. Unlike conventional research benchmarks, which usually provide grounding
signals for evaluation, it is difficult to have a unified and general method to determine whether a task
is completed automatically in diverse software, especially in video games. Similarly to SIMA (Raad
et al., 2024), we apply human evaluation to all tasks across application software and games. More-
over, to provide more quantitative results and a comparison baseline, we provide results for the
OSWorld (Xie et al., 2024) benchmark, a contemporaneous benchmark that provides evaluation
scripts for at least one solution per task.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Observation Space. CRADLE only takes a video clip, which records the progress of execution of
the last action, as input. To lower the frequency of interaction with backbone models and reduce the
strain on the computer, video is recorded at 2 fps (a screenshot every 0.5 seconds), which proves
to be sufficient in most cases for information gathering without missing any important information.
It is important to note that, due to the dynamism of the RDR2 and Stardew Valley and the LMM
inference and communication latency, we must pause those game environments while waiting for
backbone model responses. Other environments execute continuously.

Action Space. For the action space, it includes all possible keyboard and mouse operations, includ-
ing key_press, key_hold, key_release, mouse_move, mouse_click, mouse_hold,
mouse_release, and wheel_scroll, which can be combined in different ways to form com-
bos and shortcuts, use keys in fast sequence, or coordinate timings. We choose to use Python code
to simulate these operations and encapsulate them into an io_env class. Skill code needs to be
generated by the agent in order to utilize such functions and affordances so executed actions take
effect. Table 7 illustrates CRADLE’s action space.

Table 7: Action space in the CRADLE framework, including action attributes. Coordinate system is either
absolute or relative. Actions with durations can be either synchronous or asynchronous.

Type Action Attributes

Keyboard

Key Press Key name (string),
Key press duration (seconds:float)

Key Hold Key name (string)
Key Release Key name (string)

Key Combo
Key names (strings),
Key combo duration (seconds:float),
Wait behaviour (sync/async)

Hotkey
Key names (strings),
Hotkey sequence duration (seconds:float),
Wait behaviour (sync/async)

Text Type String to type (string),
Typing duration (seconds:float)

Mouse

Button Click Mouse button (left/middle/right),
Button click duration (seconds:float)

Button Hold Mouse button (left/middle/right)
Button Release Mouse button (left/middle/right)

Move

Mouse position (width:int, height:int),
Mouse speed (seconds:float),
Coordinate system (relative/absolute),
Tween mode (enum) 2

Scroll
Orientation (vertical),
Distance (pixels:int),
Duration (seconds:float)

Wait Noop -

It is important to note that, while some works (e.g., AssistantGUI (Gao et al., 2023), Omni-
ACT (Kapoor et al., 2024) and OSWorld (Xie et al., 2024)) use PyAutoGUI 3 for keyboard and
mouse control, this approach does not work in all applications, particularly in modern video games
using DirectX 4. Moreover, such work chooses to expose a subset of the library functionality in its
action space, ignoring dimensions like press duration and movement speed, which are critical in
many scenarios (e.g., RDR2, for opening the weapon wheel and changing view).

3Python library that provides a cross-platform GUI automation module - https://github.com/
asweigart/pyautogui

4Microsoft DirectX graphics provides a set of APIs for high-performance multimedia apps - https://
learn.microsoft.com/en-us/windows/win32/directx

21

https://github.com/asweigart/pyautogui
https://github.com/asweigart/pyautogui
https://learn.microsoft.com/en-us/windows/win32/directx
https://learn.microsoft.com/en-us/windows/win32/directx

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

To ensure wide game and software compatibility and accommodate different operating systems, in
our current implementation we use the similar PyDirectInput library 5 and PyAutoGUI for keyboard
control, utilize AHK 6 and write our own abstraction (using the ctypes library 7) to send low-level
mouse commands to the operating system for mouse control. For increased portability and ease of
maintenance, all keyboard and mouse control is encapsulated in a class, called IO_env.

Notably, our low-level control wrapper is adapted for both MacOS and Windows systems, mak-
ing the OS transparent to us. At the software window level, we implemented automatic switching
between the target software window and the window running the agent (using Python ctypes for
Windows and AppleScript for MacOS 8).

Procedure Memory. This memory stores pre-defined basic skills and the generated skills captured
from the Skill Curation. However, as we continuously obtain new skills during game playing, the
number of skills in procedural memory keeps increasing, and it is hard for GPT-4o to precisely select
the most suitable skill from the large memory. Thus, similar to Voyager (Wang et al., 2024a), we
use OpenAI’s text-embedding-ada-002 model (OpenAI, 2022) to generate embeddings for each skill
and store pre-defined basic skills and any generated skills captured from Skill Curation, along with
their embeddings in a procedural memory. We retrieve a subset of skills, that are relevant to the
given task, and then let GPT-4o select the most suitable one from the subset. In the skill retrieval,
we pre-compute the embeddings of the documentations (code, comments and descriptions) of skill
functions, which describe the skill functionality, and compute the embedding of the given task.
Then we compute the cosine similarities between the skill documentation embeddings and the task
embedding. The higher similarity means that the skill’s functionality is more relevant to the given
task. We select the top K skills with the highest similarities as the subset. Using similarity matching
to select a small candidate set simplifies the process of choosing skills.

Episodic Memory. This memory stores all the useful information provided by the environment and
LMM, which consists of short-term memory and long-term summary.

The short-term memory stores the screenshots within the recent k interactions in game playing and
the corresponding information from other modules, e.g., screenshot descriptions, task guidance,
actions, and reasoning. We set k to five, and it can be regarded as the memory length. Information
stored over k interactions ago will be forgotten from direct short-term memory. Empirically, we
found that recent information is crucial for decision-making, while a too-long memory length would
cause hallucinations. In addition, other modules continuously retrieve recent information from short-
term memory and update the short-term memory by storing the newest information.

For some long-horizon tasks, short-term memory is not enough. This is because the completion of
a long-horizon task might require historical information from a long steps ago. For example, the
agent might do a series of short-horizon tasks during a long-horizon task, which makes the original
long-horizon task forgotten in short-term memory. To maintain the long-term valuable information
while avoiding the long-token burden of GPT-4o, we propose a recurrent information summary as
long-term memory, which is the text summarization of experiences in game playing, including the
ongoing task, the past entities that the player met, and the past behaviors of the player and NPCs.

In more detail, we provide GPT-4o with the summarization before the current screenshot and the
recent screenshots with corresponding descriptions, and GPT-4o will make a new summarization
by organizing the tasks, entities, and behaviors in the time order with sentence number restriction.
Then we update the summarization to be the newly generated one, which includes the information
in the current screenshot. The recurrent summarization update, inspired by RNN, achieves linear-
time inference by preserving a hidden state that encapsulates historical input. This method ensures

5Python library encapsulating Microsoft’s DirectInput calls for convenience manipulating keyboard keys -
https://github.com/learncodebygaming/pydirectinput

6A fully typed Python wrapper around AutoHotkey to keyboard and mouse control - https://github.
com/spyoungtech/ahk

7Python library that provides C compatible data types, and allows calling functions in DLL/.so binaries -
https://docs.python.org/3/library/ctypes.html

8AppleScript is a scripting language created by Apple, which allows users to directly control scriptable
applications, as well as parts of MacOS - https://developer.apple.com/library/archive/
documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/
ASLR_intro.html

22

https://github.com/learncodebygaming/pydirectinput
https://github.com/spyoungtech/ahk
https://github.com/spyoungtech/ahk
https://docs.python.org/3/library/ctypes.html
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

the compactness of summarization token lengths and recent input data. Furthermore, the incorpora-
tion of long-term memory enables the agent to effectively retain crucial information over extended
periods, thereby enhancing decision-making capabilities.

Information Gathering. Given the video clip as input, we mainly depend on GPT-4o’s OCR capa-
bilities to extract textual information in the keyframes, which usually contain critical guidance and
notifications for the current situation. We also rely on GPT-4o’s visual understanding to analyze the
visual information in the frames. Besides, we augment LMMs’ visual understanding via some tools,
like template matching (Brunelli, 2009), Grounding DINO (Liu et al., 2023), and SAM (Kirillov
et al., 2023), to provide additional grounding for object detection and segmentation. Some visual
prompting tricks, like drawing axes and colorful directional bands, are also applied to enhance the
GPT-4o’s visual ability.

Task Inference. After reflecting on the outcome of the last executed action, We let GPT-4o analyze
the current situation to infer the most suitable task for the current moment and estimate the highest
priority task to perform and when to stop an ongoing task and start a new one.

Skill Curation. GPT-4o is required to strictly follow the provided interfaces and examples to gen-
erate the corresponding code for new skills. Moreover, GPT-4o is required to include documenta-
tion/comments within the generated code, delineating the functionality of each skill. Procedural
Memory where skills are stored will then check whether the code is valid, whether the format of
documentation is right, and whether any skill with the same name already exists. If all conditions
are passed, the newly generated skill is persisted for future utilization.

Action Planning. GPT-4o needs to select the appropriate skills from the curated skill set and in-
stantiate these skills into a sequence of executable actions by specifying any necessary parametric
aspects (e.g., duration, position, and target) according to the current task and history information.
The generated action is then fed to the Executor for interaction with the environment.

E RED DEAD REDEMPTION II

E.1 INTRODUCTION TO RDR2

Red Dead Redemption II (RDR2) is an epic AAA Western-themed action-adventure game by Rock-
star Games. As one of the most famous and highest-selling games in the world, it is widely ac-
knowledged for its movie-like realistic scenes, rich storylines, and immersive open-ended world.
The game applies a typical role-playing game (RPG) control system, played from a first- or third-
person perspective, which uses WASD for movement, mouse control for view changing, first- or
third-person shooting for combat, and inventory and manipulation.

For most of the game, players need to control the main character, Arthur Morgan, upon choosing
to complete mission scenarios following the main storyline. Otherwise, they can freely explore the
interactive world, such as going hunting, fishing, chatting with non-player characters (NPCs), train-
ing horses, witnessing or partaking in random events, and participating in side quests. As the main
storyline progresses, different skills are gradually unlocked. As a close-source commercial game,
no APIs are available for obtaining additional game-internal information nor pre-defined automation
actions. Following its characteristics, this game serves as a fitting and challenging environment for
the GCC setting and a comprehensive benchmark for embodiment.

E.2 OBJECTIVES

In Chapter 1 of RDR2, the first two missions of the main storyline are Outlaws from the West
and Enter, Pursued by a Memory. These missions serve as the tutorial content for RDR2, guiding
players step-by-step into the role of Arthur. They immerse the player in the story’s development
while teaching the game’s controls and mechanics.

We divided Mission 1 and Mission 2 into 8 and 5 tasks respectively based on the checkpoints within
each mission. Each checkpoint may present failure scenarios. For example, in Mission 1, there are
six failure scenarios: i) Assaults, kills, or abandons Dutch or Micah; ii) Allows Dutch or Micah to be
killed; iii) Abandons the homestead; iv) Assaults, kills, or abandons their horse; v) Assaults, kills,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Mission 2: Enter, Pursued by a MemoryMission 1: Outlaws from the West Open-ended Mission: Buy Supply

Figure 10: Trajectory and success rates of 13 main storyline tasks and 1 open-world task in RDR2. Each task is
run 5 times and each trial is run for at most 500 steps. Long horizontal and challenging tasks like Protect Dutch
and Search for Supplies usually need several times of retry to complete, resulting in the demand for more steps.
It explains the low success rate of these tasks within 500 steps.

or abandons the horse in the barn; vi) Dies. We categorized each sub-task as either "Easy" or "Hard"
based on the likelihood of failure at each checkpoint and the need to retry the checkpoint.

To evaluate CRADLE’s capabilities in an open-world environment, Mission 3 is designed as a hard
open-ended task. Unlike the first two tutorial missions, it does not include any checkpoints. Conse-
quently, the entire Mission 3 is treated as a single, comprehensive task. Although we do not subdi-
vide Mission 3 into finer tasks, we aim to identify key points to facilitate a clearer understanding of
Mission 3 for the reader.

Tables 8 and 9 provide a brief introduction of each task in the first two missions of the main storyline
and an open-ended mission, along with approximate estimates of their difficulty. Due to GPT-4o’s
poor performance in spatial understanding and fine-manipulation skills, it can be challenging for
our agent to perform certain actions, like entering or leaving a building, or going to precise indoor
locations to retrieve specific items. Additionally, the high latency of GPT-4o’s responses also makes
it harder for an agent to deal with time-sensitive events, e.g., during combat.

E.3 IMPLEMENTATION DETAILS

Our experiments are based on the latest version of RDR2, ‘Build 1491.50’. As shown in Figure
14, strictly following the GCC setting, our agent takes the video of the screen as input and outputs
keyboard and mouse operations to interact with the computer and the game. An observation thread
is responsible for the collection of video frames from the screen and each video clip records the
whole in-game process since executing the last action.

Information Gathering. To extract keyframes from the video observation, we utilize the VideoSub-
Finder tool 9, a professional subtitle discovery and extraction tool. These keyframes usually contain
rich meaningful textual information in the game, which are highly relevant to the completion of
tasks and missions (such as character status, location, dialogues, in-game prompts and tips, etc.) We
use GPT-4o to extract and categorize all the meaningful contexts in these keyframes and perform
OCR, and call this processing "gathering text information". Then, to save interactions with GPT-4o,
we only let GPT-4o provide a detailed description of the last frame of the video.

While GPT-4o exhibits impressive visual understanding abilities across various CV tasks, we find
that it struggles with spatial reasoning and recognizing some game-specific icons. To address these
limitations, we add a visual augmentation sub-module within our Information Gathering module.
This augmentation step serves two main purposes: i) utilize Grounding DINO (Liu et al., 2023), an
open-set object detector, to output precise bounding boxes of possible targets in an image and serve
as spatial clues for GPT-4o; and ii) perform template matching (Brunelli, 2009) to provide icon
recognition grounding truth for GPT-4o when interpreting instructions or menus shown on screen.
As LMM capabilities mature, it should be possible to disable such augmentation.

9VideoSubFinder standalone tool - https://sourceforge.net/projects/videosubfinder/

24

https://sourceforge.net/projects/videosubfinder/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: Tasks in the first two missions of RDR2. In the tutorial guide, the prompt text Start Dialogue signifies
the end of the previous checkpoint and the beginning of the current checkpoint. Difficulty refers to how hard to
accomplish the corresponding tasks. Figures 11 and 12 showcase snapshots of each task (specific sub-figures
marked in parenthesis in the table). The maximal number of steps (agent takes one action) for each task is 500.

Mission 1: Outlaws from the
West

Description Start Dialogue Difficulty

Follow Dutch (Fig. 11a) Arthur follows Dutch on horseback into the snow to find
their scouting gang members.

Use [W] to Follow Dutch Easy

Go to Town (Fig. 11b) Arthur rides his horse, following Micah to the vicinity of
a little homestead Micah discovered.

Hold [W] to match speed
with Dutch and Micah

Easy

Hitch Horse (Fig. 11c) Arthur hitches the horse to the hitching post, then goes to
the old shed and takes cover.

Hold [E] to hitch your horse Easy

Protect Dutch (Fig. 11d) Arthur uses his gun to shoot all of the O’Driscolls inhab-
iting the house and protect Dutch.

Use [W] to peak out of cover Hard

Search for Supplies (Fig.
11e)

Arthur follows Dutch to the house to search for supplies. Hold [R] near items to
pick the up while searching
house.

Hard

Go to Barn (Fig. 11f) Arthur follows Dutch’s directions and goes to the barn to
see if there’s anything inside.

Dutch: Micah, Arthur, keep
looking for stuff

Easy

Search Barn (Fig. 11g) Arthur searches the barn and defeats the O’Driscoll hid-
ing inside.

[F] Attack the O’Driscoll Hard

Lead Horse (Fig. 11h) Arthur calms the horse and takes it out of the barn. Hold [Right Mouse Button]
to focus on the horse

Easy

Mission 2: Enter, Pursued
by a Memory

Description Start Dialogue Difficulty

Follow Javier (Fig. 12a) Arthur rides his horse following Javier up the mountain
through the blizzard searching for John’s trail.

Follow Javier Hard

Search John (Fig. 12b) After dismounting, Arthur followed Javier over slopes
and ledges to find John and carry him away.

Javier: Down this way Hard

Keep Wolves away (Fig.
12c)

Arthur manages to shoot all of the wolves before they can
attack Javier and John.

Keep the wolves away from
Javier and John

Hard

Kill Wolves (Fig. 12d) Three people ride horses down the mountain. Arthur
eliminate the wolves, protecting Javier and John ahead.

Javier: Come on, let’s get
back to the others

Hard

Return to Camp (Fig. 12e) Arthur followed Javier on horseback back to camp. Yea. . . c’mon. Let’s push
hard and get back

Easy

Table 9: Key points in the open-ended mission, Buy Supply in RDR2. Figure 13 showcases snapshots of key
points (specific sub-figures marked in parenthesis in the table).

Mission 3: Buy Supply Description

Find Horse (Fig. 13a) Find and mount the horse in the camp.
Prepare to Navigate to Saloon (Fig. 13b) Open map, find the saloon and create waypoint.
Go to Saloon (Fig. 13c) Ride horse to the saloon.
Prepare to Navigate to Shop (Fig. 13d) Open map, find the general store and create waypoint.
Go to Shop (Fig. 13e) Ride horse to the shop.
Enter Shop (Fig. 13f) Dismount the horse and enter the shop.
Talk to Shopkeeper(Fig. 13g) Approach the shopkeeper and talk.
Buy Target Product (Fig. 13h) Open the menu, find and buy the target product.

Self-Reflection. The reflection module mainly serves to evaluate whether the previously executed
action was successfully carried out and whether the current executing task is finished. To achieve
this, we uniformly sample at most 8 sequential frames from the video observation since the execution
of the last action and use GPT-4o to estimate the success of its execution. Additionally, we expect
GPT-4o can also provide analysis for any failure of the last action (e.g., the move-forward action
failed and the cause could be the agent was blocked by an obstacle). With such valuable information
as input for Action Planning, including the failure/success of the last action and the corresponding
analysis, the agent is capable of attempting to remedy an inappropriate decision or action execution.

Moreover, some actions require prolonged durations, such as holding down specific keys, which can
coexist or interfere with other actions decided by subsequent decisions. Consequently, the reflection
module must also decide whether an ongoing action should continue to be executed. Furthermore,
self-reflection can be leveraged to dissect why the last action failed to bring the agent close to the
target task completion, better understand the factors that led to the successful completion of the
preceding task, and so on.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Follow Dutch (b) Go to Town (c) Hitch Horse

(d) Protect Dutch (e) Search for Supplies (f) Go to Barn

(g) Search Barn (h) Lead Horse

Figure 11: Image examples of tasks in the first mission of Outlaws from the West. (The picture has been
brightened for easier reading.)

(a) Follow Javier (b) Search John (c) Keep Wolves Away

(d) Kill Wolves (e) Return to Camp

Figure 12: Image examples of tasks in the second mission of Enter, Pursued by a Memory.

Besides, we observe that instead of providing GPT-4o with sequential high-resolution images for
self-reflection, low-resolution images make it easier for GPT-4o to understand the relation among
the sequential screenshots and capture dynamic changes, resulting in a significantly higher success
rate of detecting whether the action is executed successfully and take any effect. We hypothesize that
since a high-resolution image can cost as many as 2000 tokens, too many high-resolution images
make GPT-4o fail to capture the overall changes across screenshots and be caught up in the local
details.

Task Inference. During gameplay, we let GPT-4o propose the current task to perform whenever it
believes it is time to start a new task. GPT-4o also outputs whether the task is a long- or short-horizon
task when proposing a new task. Long-horizon tasks, such as traveling to a location, typically require
multiple iterations, whereas short-horizon tasks, like picking up an item or conversing with someone,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Find Horse (b) Prepare to Navigate to Saloon (c) Go to Saloon

(d) Prepare to Navigate to Shop (e) Go to Shop (f) Enter Shop

(g) Talk to Shopkeeper (h) Buy Target Product

Figure 13: Image examples of key points in the open-ended task of Buy Supply.

Memory

Episodic
Memory

Procedural
Memory

Self-Reflection Task Inference Skill Curation

def lead_horse(duration):
 # Lead the horse.

 press_key(‘E’, duration)

“Lead the horse”

def turn(degree):
 # Turn the character a certain angle.

 move_mouse(degree)

Add/Update

Action Planning

lead_horse(duration=2)

Environment

Observe Execute

def move_forward(duration):
 # Move ahead for a duration time.
 press_key(‘W’, duration)

Information Gathering

def show_info(duration):
 # Show the information.

 press_key(‘Q’, duration)

Generated

Retrieved

1. The previous action
check_shire() took effect
since the secondary menu
of further actions appeared.
2. The task of leading the
horse is not completed yet.

Figure 14: The detailed illustration of how CRADLE is instantiated as a game agent to play RDR2.

involve fewer iterations. The agent will follow the newly generated task for the next 3 interactions.
After 3 interactions, the agent returns to the last long-horizon task in the stack. Deciding on a binary
task horizon is much easier and more robust for GPT-4o, than re-planning at every iteration. Since
a long-horizon task frequently includes multiple short-horizon sub-tasks, this implementation also
helps avoid forgetting the long-horizon tasks under execution.

Skill Curation. As shown in Figure 16, during gameplay, instructions often appear on the screen,
such as "press [Q] to take over" and "hold [TAB] to view your stored weapons", which serve as
essential directives for completing current and future tasks proficiently. To save interactions with

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

GPT-4o, we implement a simple version of this module inside Information Gathering to reduce
interactions with GPT-4o. When GPT-4o detects and classifies some instructional text in the recent
observation, which usually contains key and button hints, it will directly generate the corresponding
code and description.

Action Planning. Upon execution of this module, we first retrieve the top k relevant skills for the
task from procedural memory, alongside the newly generated skills. We then provide GPT-4o with
the current task, the set of retrieved skills, and other information collected in Information Gathering
that may be helpful for decision-making (e.g., recent screenshots with corresponding descriptions,
previous decisions, and examples) and let it suggest which skills should be executed. We also request
that GPT-4o provide the reasons for choosing these skills, which increases the accuracy, stability,
and explainability of skill selection and thus greatly improves framework performance. While GPT-
4o sometimes may generate a sequence of actions, we currently only execute the first one, and
perform Self-Reflection, since we observe a tendency for the second action to usually suffer from
severe hallucinations.

Action Execution. Unlike the conventional mouse operation in standard software, where the cursor
is restricted to a 2D grid and remains visible on the screen to navigate and interact with elements,
the utilization of the mouse in 3D games like RDR2 introduces a varied control scheme. In menu
screens, the mouse behaves traditionally, offering familiar point-and-click functionality. However,
during gameplay, the mouse cursor disappears, requiring players to move the mouse according to
specific action semantics. For example, to alter the character’s viewpoint, the player needs to map
the actual mouse movement to in-game direction angle changes, which differ in magnitude in the X
and Y axes. Another special transition applies to shooting mode, where the front sight is fixed at the
center of the screen, and players must maneuver the mouse to align the sight with target enemies.
This nuanced approach to mouse control in different contexts adds an extra layer of challenge to
general computer handling, showcasing the adaptability required in game environments, compared
to regular software applications.

Procedural Memory. In our target setting, We intend to let the agent learn all skills from scratch, to
the extent possible for the main storyline missions. The procedural memory is initialized with only
preliminary skills for basic movement, which are not clearly provided by the in-game tutorial and
guidance.

• turn(degree), move_forward(duration): Since the game does not precisely introduce how
to move in the world through in-game instructions, we provide these two basic actions in
advance, so GPT-4o can perform basic mobility, while greatly reducing the number of calls
to the model.

• shoot(x, y): RDR2 also does not provide detailed instructions on how to aim and shoot.
Moreover, due to limitations with GPT-4o spatial reasoning and the need to sometimes
augment images with object bounding boxes, we provide such basic skill for the agent to
complete relevant tasks.

• select_item_at(x, y): Similarly to shoot(), due to the lack of instructions, we provide such
skill for the agent to move the mouse to a certain place to select a given item.

Beyond these basic atomic low-level actions, we introduce a few composite skills to facilitate the
game playing progress. The agent should be able to complete tasks using only the basic skills above
and the skills it learns, but these composite skills streamline the process by greatly reducing calls to
the backend model.

• turn_and_move_forward(degree, duration): This skill is just a simple composition of turn()
and move_forward() to save frequent calls to GPT-4o in a common sequence.

• follow(duration) and navigate_path(duration): In RDR2, tasks often guide players to fol-
low NPCs or generated paths (red lines) in the minimap to certain locations. This can be
reliably accomplished via the basic movement skills, but requires numerous interactions
with GPT-4o. To control both cost and time budgets involving GPT-4o’s responses, we
leverage the information shown in the minimap to implement a composite skill to follow
target NPCs or red lines for a short set of game iterations. The default duration is 20
iterations. Increasing the duration can dramatically improve the performance in task Fol-
low Dutch, Follow Javier and Killing Wolves but significantly decrease the success rate of

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Search John since this task requires frequent exchange of the skills between climbing and
following.

• fight(): As output of an interaction with GPT-4o, the agent will only take one action per
step. However, though the action is generated correctly, specifically in fight scenarios, the
action frequency may not be high enough to defeat an opponent. In order to allow sub-
second punches, we provide a pre-defined action that wraps this multi-action punching,
which can be selected by GPT-4o to effectively win fights.

For the open-ended mission, since the agent skips all the tutorials in Chapter I, we provide all the
necessary skills in the procedural memory at the beginning of the mission.

Episodic Memory. This module stores all the useful information, e.g., input and output of GPT-
4o. In each iteration, after the self-reflection, we will request GPT-4o to summary the event that
happened in the last action and the past experiences.

Game Pause. To prevent in-game time from passing in real-time games like RDR2, we have to
pause the game while waiting for LMMs’ response. The time interval between two consecutive
actions can be as long as one minute. In RDR2, after the agent finishes executing outputted actions,
esc will be automatically pressed to pause the game and when the agent determines the next action,
esc will be automatically pressed again to unpause the game. Note that there will be an animation
lasting up to 0.5 seconds for both pausing and unpausing. During this animation, we can not control
the character, but the dynamics of the game world keep changing, e.g., the wolves are still moving.
It introduces additional challenges for the tasks that require precise timing, like combat.

E.4 CASE STUDIES

Here we present a few game-specific case studies for more in-depth discussion of the framework
capabilities and the challenges of the GCC setting.

E.4.1 SELF-REFLECTION

Self-reflection is an essential component in CRADLE as it allows our framework reasoning to correct
previous mistakes or address ineffective actions taken in-game. Figure 15 provides an example of
the self-reflection module. The task requires the agent to select a weapon to equip, in the context
of the “Protect Dutch” task. Initially, the agent selects a knife as its weapon by chance, but since
the game requires a gun to be chosen, this is incorrect and the game still prompts the player to re-
open the weapon wheel. The self-reflection module is able to determine that the previous action was
incorrect and on a subsequent iteration the agent successfully opts for the gun, correctly fulfilling
the task requirement and advancing to the next stage in the story.

E.4.2 SKILL CURATION

For skill curation, we first provide GPT-4o with examples of general mouse and keyboard control
APIs, e.g., io_env.key_press and io_env.mouse_click. Figure 16 shows that GPT-4o can capture
and understand the prompts appearing on screenshots, i.e., icons and text, and strictly follow the
provided skill examples using our IO interface to generate correct skill code. Moreover, GPT-4o
also generates comments in the code to demonstrate the functionality of this skill, which are essential
for computing similarity and relevance with a given task during skill retrieval. The quality of the
generated comment directly determines the results of skill retrieval, and further impacts reasoning
to action planning. Curation can also re-generate code for a given skill, which is useful if GPT-4o
wrongly recognized a key or mouse button in a previous iteration.

E.4.3 ACTION EXECUTION AND FEEDBACK

Proper reasoning about environment feedback is critical due to the generality of the GCC setting
and the level of abstraction to interact with the complex game world. The semantic gaps between
the execution of an action, its effects in the game world, and observing the relevant outcomes for
further reasoning lead to several potential issues that CRADLE needs to deal with. Such issues can
be categorized into four major cases:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Use [Mouse] to select a weapon and
release [TAB] to equip.

1

2

Action Planning
show_weapon_wheel()

Skill Curation
Retrieved Skills: [‘aim’, ‘follow’, ‘turn’,

‘move_forward’, ‘show_weapon_wheel’, etc.]

Task Inference
Hold Tab to show the Weapon Wheel.

Ex
ec
ut
e

def select_weapon_at(x, y):
Move the mouse to select the weapon
io_env.mouse_move(x, y)

select_weapon_at(0.6, 0.68)
Decision Reasoning: The red box is selected
as it is near the currently selected weapon.

Retrieved Skills: [‘aim’, ‘follow’, ‘turn’,
‘move_forward’, ‘show_weapon_wheel’, etc.]

Task Inference

Skill Curation

Action Planning

Ex
ec
ut
e

3

1. The frame does not change, therefore,
the task is not finished yet.
2. The selected weapon is wrong,
therefore, I need to change the weapon.

show_weapon_wheel()

Hold Tab to show the Weapon Wheel.

Task Inference

Skill Curation

Action Planning

Ex
ec
ut
e

4

select_weapon_at(0.5, 0.27)

Decision Reasoning: The weapon in
green box is slightly more relevant to the
target due to the last self-reflection.

Retrieved Skills: [‘aim’, ‘select_weapon_at’,
‘turn’, ‘move_forward’, ‘show_weapon_wheel’, etc.]

Use [Mouse] to select a weapon and
release [TAB] to equip.

Task Inference

Skill Curation

Action Planning

Ex
ec
ut
e

5

Self-Reflection
1. The last executed action was to select a weapon,
and it was executed successfully.
2. In this frame, the ammo count is 6 in the upper
right corner, so the character is ready to fire.

Figure 15: Case study of self-reflection on re-trying a failed task. Task instruction and context require the agent
to equip the gun. A wrong weapon (knife) is first selected, but the agent equips the gun after self-reflection.
Only relevant modules are shown for better readability, though all modules (Figure 3) are executed per iteration.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

def take_cover(duration = 2):
 """
 press "Q" to take cover
 """
 io_env.key_press('q', duration)

def focus_on_horse():
 """
 hold "right mouse button" to focus on horse
 """
 io_env.mouse_hold('right button')

def view_stored_weapons():
 """
 press "tab" to view your stored weapons
 """
 io_env.key_hold('tab')

Figure 16: Skill code generation based on in-game instructions. As the storyline progresses, the game will
continually provide prompts on how to use a new skill via keystrokes or utilizing the mouse.

Lack of grounding feedback. In many situations, due to the lack of precise information from the
environment, it can be difficult for the system to deduce the applicability or outcome of a given
action. For example, when picking an item from the floor, the action may fail due to the distance to
the object not yet being close enough. Or, if within pick up range, the chosen action may not exactly
apply due to other factors (e.g., character’s package is full).

Even if the right action is selected and executed successfully, the agent still needs to figure out its
results from the partial visual observation of the game world. If the agent needs to pick or manipulate
an object that is occluded from view, the action may execute correctly, but no outcome can be seen.

A representative example in RDR2 happens when the agent tries to pick up its gun from the floor
after a fight. Getting to the right distance, without completely occluding the object, can lead to
multiple re-trials. Figure 17a showcases a situation where, though the character is already standing
near the gun (as seen in the minimap), it’s still not possible to pick it up.

Previous efforts (Wang et al., 2023b; 2024a) that utilize in-game state APIs unreasonably bypass
such issues by leveraging internal structured information from the game and the full semantics of
responses (data) or failures (error messages).

Imprecise timing in IO-level calls. This issue is caused by the ambiguity in the game instructions
or differences in specific in-game action behaviors, where even the execution of a correct action may
fail due to minor timing mismatches. For example, when executing an action like ‘open cabinet’,
which requires pressing the [R] key on the keyboard, if the press is too fast, no effect happens in the
game world. However, as there is no visual change in the game nor other forms of feedback, it can
be difficult for GPT-4o to figure out if an inappropriate action was chosen at this game state or if the
minor timing factor was the problem. Pressing the key for longer triggers an animation around the
button (only if the helper menu is on screen), but this is easily missed and any key release before the
circle completes also results in no effect. Figure 17b illustrates the situation.

The same problem also manifests in other situations in the game, where pressing the same key for
longer triggers a completely different action (e.g., lightly pressing the [Left Alt] key vs. holding it
for longer).

Change in the semantics of key and button. A somewhat similar situation occurs when the same
keyboard key or mouse button gets attributed different semantics in different situations (or even in a
multi-step action). GPT-4o may decide to execute a given skill, but the original semantics no longer
hold. The lack of in-game effect parallels the previous situations. Worse yet, an undesired effect
will confuse the system regarding the correct action being selected or not.

For example, when approaching a farm in the beginning of the game, the agent needs to hitch the
horse to a pole to continue. The operation to perform the action consists of pressing the [E] key near
a hitching post (as shown in Figure 17c). However, the same [E] key press is the only constituting
step in other actions with different semantics, like dismount the horse or open the door. Wrongly
triggering a horse dismount at the situation shown in the figure can lead to undesired side effects,
i.e., it may mislead the system about the actual effects of the action or affect the planning of which
next actions to perform.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) ‘Pick gun’ unavailable (b) ‘Open cabinet’ press timing (c) ‘Hitch horse’ re-use of [E] key

Figure 17: Examples of action execution uncertainty. Lack of environmental feedback to actions and semantic
gaps between action intent and game command can lead to challenging situations for agent reasoning.

Interference issues. Lastly, completion of some actions requires the correct execution of multiple
steps sequentially, which could be interrupted in many ways not related to the agent’s own actions.
Without the use of APIs that expose internal states or other forms of feedback, it is much harder for
the agent to decide when to repeat sub-actions or try different strategies. For example, if the agents
gets shot and loses aim while in combat, or an unrelated in-game animation is triggered mid-action,
canceling it.

Since there is no direct environment feedback, the agent needs to carefully analyze the situation and
try to infer if any action step needs re-execution.

E.5 LIMITATIONS OF GPT-4O AND GPT-4V

Deploying CRADLE in a complex game like RDR2 requires the backbone LMM model to handle
multimodal input, which revealed several limitations of both GPT-4V and GPT-4o, necessitating ex-
ternal tools to enhance overall framework performance. Initial tests and exploration were performed
using GPT-4V, as GPT-4o was not yet available. These tests highlighted significant weaknesses
in spatial perception, icon understanding, history processing, and world understanding. Upon the
release of GPT-4o, further testing demonstrated some notable improvements in spatial perception.
However, enhancements in other areas remained marginal, while some regressions were also ob-
served, all indicating the need for additional tools to aid decision-making.

Spatial Perception. As shown in Figure 18a and 19a, GPT-4V’s spatial-visual recognition capability
is insufficient for precise fine-grained control, particularly in detecting whether the character is being
or going to be blocked and in estimating the accurate relative positions of target objects. In contrast,
GPT-4o exhibits a significant enhancement in spatial perception, capable of recognizing obstacles
ahead and estimating the approximate relative positions between objects. However, both models
require supplementary information, such as bounding boxes of potential target objects, to make
fine-grained decisions. These led to the need to augment certain images to provide auxiliary visual
clues for decision-making, i.e., bounding boxes of possible target objects.

Icon Understanding. Both GPT-4o and GPT-4V struggle with domain-specific concepts, such as
unique icons within the game, which may represent specific targets or refer to certain mouse and
key actions. As shown in Figure 18b and 19b, GPT-4V and GPT-4o fail to recognize the left shift,
right mouse button, and space icons. Attempts to incorporate few-shot learning to improve image
understanding cannot be generalized. Therefore, we match prepared pattern templates, e.g., icon
images, against each screenshot to continuously detect and highlight any appearing icons.

Figure 18c and Figure 19c also demonstrate that although GPT-4o performs better than GPT-4V in
understanding the mini-map, it still fails to consistently interpret this crucial information regarding
the position and direction of the character. This failure in localization leads the agent to sometimes
get lost in the town and miss the task target. While the aforementioned issues can be slightly al-
leviated by providing additional few-shot examples, a significant improvement is only achieved by
cropping the image and providing GPT-4o with the exact region containing the icon to be recognized.
This dependency on precise input makes the issue challenging and unreliable for decision-making.
Although the above issues can be slightly alleviated by providing additional few-shot examples, it
can only have an obvious effect if we crop the image and provide the GPT-4o with the region exactly
containing the icon to be recognized, which makes the issue intractable.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Based on the provided game screenshot, I've
identified the following control prompt:
- “Hold L⬆ to ride faster"
This control suggests that holding a certain key
(which seems to be an upward arrow key, often
associated with the 'W' key for forward movement
in many games) will make the character ride faster.

From the provided image screenshot from the game,
I can identify the following keyboard and mouse
control prompts:
1. "Toggle View" - The key for this action is "V".
2. "Zoom" - The key for this action is "O".
3. "Flip" - The key for this action is "L".
4. "Back" - The key for this action is "ESC".

The central white arrow is facing towards the left. The central white arrow with the white arrowhead is
facing towards the left.

There are no immediate obstacles directly in front
of the character in the image. The character has a
clear path ahead on a muddy street in what appears
to be a Western-style town setting.

The shopkeeper in the image is on the right side,
behind the counter.

(a) GPT-4V fails to recognize obstacles in the environment and the position of the shopkeeper.

Based on the provided game screenshot, I've
identified the following control prompt:
- “Hold L⬆ to ride faster"
This control suggests that holding a certain key
(which seems to be an upward arrow key, often
associated with the 'W' key for forward movement
in many games) will make the character ride faster.

From the provided image screenshot from the game,
I can identify the following keyboard and mouse
control prompts:
1. "Toggle View" - The key for this action is "V".
2. "Zoom" - The key for this action is "O".
3. "Flip" - The key for this action is "L".
4. "Back" - The key for this action is "ESC".

The central white arrow is facing towards the left. The central white arrow with the white arrowhead is
facing towards the left.

There are no immediate obstacles directly in front
of the character in the image. The character has a
clear path ahead on a muddy street in what appears
to be a Western-style town setting.

The shopkeeper in the image is on the right side,
behind the counter.

(b) GPT-4V struggles to recognize the icons for keys on keyboard and mouse buttons.

Based on the provided game screenshot, I've
identified the following control prompt:
- “Hold L⬆ to ride faster"
This control suggests that holding a certain key
(which seems to be an upward arrow key, often
associated with the 'W' key for forward movement
in many games) will make the character ride faster.

From the provided image screenshot from the game,
I can identify the following keyboard and mouse
control prompts:
1. "Toggle View" - The key for this action is "V".
2. "Zoom" - The key for this action is "O".
3. "Flip" - The key for this action is "L".
4. "Back" - The key for this action is "ESC".

The central white arrow is facing towards the left. The central white arrow with the white arrowhead is
facing towards the left.

There are no immediate obstacles directly in front
of the character in the image. The character has a
clear path ahead on a muddy street in what appears
to be a Western-style town setting.

The shopkeeper in the image is on the right side,
behind the counter.

(c) GPT-4V cannot understand the correct direction of arrow points, i.e., character, towards in the mini-
map.

Figure 18: Example situations of GPT-4V’s limitations in understanding visual information from the game.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

There is an obstacle in front of the character. It

appears to be a small wooden railing or barrier along

the edge of the platform. The character would need

to navigate around it or find a way over it to proceed

forward.

The shopkeeper in the image is on the left side

(a) GPT-4o can recognize obstacles in the environment and the position of the shopkeeper.

Based on the provided image, the control prompt

shown is:

• "Hold L to ride faster’.

The 'L' refers to the left analog stick on a controller,

indicating that the player should hold the left analog

stick in a forward position to increase the speed of

their character's movement, typically while riding a

horse.

From the provided image screenshot from the game,

I can identify the following keyboard and mouse

control prompts:

1. Toggle View: V

2. Zoom: Mouse Scroll Wheel

3. Flip: R

4. Back: Esc

5. Photograph: (No specific key assigned, just a

label)

(b) GPT-4o struggles to recognize the icons for keys on keyboard and mouse buttons.

The central white arrow in the mini-map is facing

to the right.

The central white arrow on the mini-map is facing

down.

(c) GPT-4o occasionally accurately determines the direction of arrow points, i.e., character, towards in the
mini-map.

Figure 19: Example situations of GPT-4o’s limitations in understanding visual information from the game.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

History Processing. Moreover, both GPT-4o and GPT-4V can easily get distracted by irrelevant in-
formation in longer contexts, resulting in hallucinations. For example, when action planning utilizes
too many historical screenshots, they may confuse past and present frames. Additionally, perfor-
mance fluctuates and both model versions frequently generate output not adhering to the rules in the
provided prompts. To mitigate the issue of hallucinations, we more strictly control input information
by further summarizing long-term memory.

World Understanding. Lastly, the absence of an RDR2 world model limits GPT-4V and GPT-4o’s
understanding of the consequences of its actions in the game. This often results in inappropriate
action selection, such as overestimating the necessary adjustments for aligning targets or misjudging
the duration required for certain actions. To alleviate this problem, we introduced extra prompt rules
regarding action parameters and more flexibility into the self-reflection module.

F STARDEW VALLEY

F.1 INTRODUCTION TO STARDEW VALLEY

Stardew Valley is an open-ended country-life RPG game developed by ConcernedApe, which has a
98% positive rating on Steam and is rated as Overwhelmingly Positive. Players take on the role of
a character disillusioned with city life who inherits a dilapidated farm from their late grandfather.
Initially, the farmland is overrun with boulders, trees, stumps, and weeds, which players must clear
to make way for crops, buildings, and placeable items. The main goal is to restore and expand the
farm through activities such as planting crops, raising animals, mining, fishing, and crafting. Addi-
tionally, players can interact with NPCs in town, forming relationships that can lead to marriage and
children. Players complete quests for money or to restore the town’s Community Center by complet-
ing "bundles," which reward items like seeds and tools and unlock new areas and game mechanics.
All activities are balanced against the character’s health, energy, and the game’s clock. Food pro-
vides buffs, health, and energy. The game features a simplified calendar with four 28-day months
representing each season, affecting crop growth and activities. Compared to RDR2, this game is
more lightweight and easy to control. This game features a wealth of production and social activi-
ties, presenting a comprehensive test of an agent’s abilities, which is an ideal platform to observe and
evaluate agents’ comprehensive behaviors and abilities, like in the Generative Agents (Park et al.,
2023). We use the latest version (1.6.8) of the game to conduct all the experiments.

F.2 OBJECTIVES

We find that GPT-4o surprisingly struggles with accurately recognizing and locating objects near the
player in this 2D game. This leads to difficulties for the agent to interact with objects or people, as
it requires the player to stand precisely in front of them in the grid (e.g., when entering doors, using
a pickaxe to break stones). Even some basic tasks are already challenging enough for current agents
in this game. Therefore, as shown in Figure 20, we evaluate three essential tasks in the early stages
of the game:

• Farm Clearup. Clear the obstacles on the farm, such as weeds, stones, and trees, as much
as possible to prepare for farming. This task requires agents to move precisely to be in front
of the obstacles, identify the type of obstacles correctly and select corresponding tools to
deal with them.

• Cultivation. Use the hoe to till the soil, use a parsnip seed packet on the tilled soil to
sow a crop, water the crop every day and harvest at least one parsnip. This task requires
long-horizontal memory and reasoning.

• Shopping. Go to the general store in the town, which is on the other map, to buy more seeds
and return home. This task is used to evaluate agents’ long-distance navigation ability.

For each task, the maximal steps is 100.

F.3 IMPLEMENTATION DETAILS

Visual Prompting. As a cartoon-style pixel game, the game screen of Stardew is quite different
from the real world. Although GPT-4o can observe coarse-grained information from screenshots,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) Before Farm Clear-up (b) After Farm Clear-up

(c) Cultivation (d) Shopping

Figure 20: Three tasks in Stardew Valley.

more fine-grained information is required to complete tasks. Therefore, as shown in Figure 21, we
divide each screenshot into 3× 5 grids and require GPT-4o to describe the screenshot in a grid-by-
grid format. We empirically find that it can result in a more precise and accurate description. And
GPT-4o can also make better control based on the grids. In addition, we also augment the image
with two blue and yellow bands on the left and right sides, respectfully, with the prompt, "The blue
band represents the left side and the yellow band represents the right side". Our empirical results
show that this method significantly improves GPT-4o’s ability to accurately distinguish left from
right.

Figure 21: Augmented screenshot via visual prompting. The full screenshot is divided into 3 × 5 grids and
each grid has a unique white coordinate. Additionally, we augment all input images with color bands, with
the prompt, "The blue band represents the left side and the yellow band represents the right side", which
significantly improves GPT-4o’s ability to accurately distinguish left from right.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Information Gathering. As mentioned in the introduction of visual prompting, we let GPT-4o
describe the image grid by grid, which is helpful in locating the position of the character, surrounding
objects and buildings and facilitates the understanding of the relative positions among them for GPT-
4o. Besides, while compared to GPT-4V, GPT-4o is able to recognize most of the icons and their
quality in the toolbar shown at the bottom of the screenshot, GPT-4o cannot output the items in the
inventory sequentially one by one as it always skips a few in between. We have to clip the box
for each item out of the toolbar and feed them to GPT-4o independently, augmented with template
matching, for recognition, which turns out to be more accurate. The success of recognition of the
tools in the toolbar is critical to tasks like Farm Clearup and Cultivation.

Self-Reflection. The duration of actions in Stardew is usually much shorter than in RDR2, so we
only use the first and last frame from the video observation to reduce the number of tokens used
per request. Additionally, we provide some helpful prior information for GPT-4o. For example, a
screenshot of the inside of the store is provided to check whether the store was successfully entered.
This is useful because there are many other buildings near the store, and sometimes GPT-4o controls
the character to enter the wrong one. However, this is not realized if the screenshot is not provided.

Skill Curation. For skill curation, as mentioned in Figure 4, we mainly rely on the in-game manual
to generate atomic skills, like move_up(), do_action() and use_tool(). In addition, to handle the
challenges of locating objects, especially doors, we have a special set of composite skills specifically
for Stardew. e.g., go_through_door, buy_item, get_out_of_house and enter_door_and_sleep. With
the restrictions of GPT-4o in fine-grained control, we designed go_through_door composite skills for
the agent to control the game character to accurately reach various doors and successfully enter, such
as the house and the store door. and in order to buy certain items such as parsnip seeds, we designed
the composite skills buy_item to control the game character to interact with the salesman and buy
parsnip seeds. similarly, we designed the get_out_of_house and enter_door_and_sleep composite
skills to accurately exit the house from the bed and enter the house and walk to the bed.

Action Planning. In this game, we let GPT-4o output at most two skills in a single action every
time, which turns out to be efficient. The agent usually needs to select the correct tool first and then
use the tool or do action.

Procedure Memory. Procedure Memory is used to store and retrieve skills in code form. In order
for agents to quickly get started and complete some special tasks in Stardew, we have predefined
skills in Procedure Memory. These skills are divided into atomic and composite skills. atomic skill
consists of basic operations such as moving, selecting tools, etc. The description of all the atomic
skills is listed as follows:

• do_action(): The function to perform a context-specific action on objects or characters.

• use_tool(): The function to execute an in-game action commonly assigned to using the
character’s current selected tool.

• move_up(duration): The function to move the character upward (south) by pressing the ’w’
key for the specified duration.

• move_down(duration): The function to move the character downward (north) by pressing
the ’w’ key for the specified duration.

• move_left(duration): The function to move the character left (west) by pressing the ’w’ key
for the specified duration.

• move_right(duration): The function to move the character right (east) by pressing the ’w’
key for the specified duration.

• select_tool(key): The function to select a specific tool from the in-game toolbar based on
the given tool number.

and the composite skills are designed for the agent to complete a variety of special tasks. The
description of all the composite skills is listed as follows:

• buy_item(): The function to interact with the salesman and buy the item.

• enter_door_and_sleep(): The function to enter the house and walk to the bed.

• get_out_of_house(): The function to accurately exit the house from the bed

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

• go_through_door(): The function to reach and enter all kinds of doors.

Game Pause. The game will pause automatically when the game window is not focused. So when
the character finishes executing actions, we will activate another window, e.g., code window, to
pause the game and stop the passage of the time in the game.

F.4 CASE STUDIES

Here we present a few game-specific case studies to further discuss CRADLE’s self-reflection and
task-inference processes in the GCC setting.

1. The characters' positions in these frames are identical.

2. The most probable cause is that the character was

blocked by seen or unseen obstacles.1

Action Planning

move_left(duration=5)

Skill Curation

Retrieved Skills: [‘move_left’,

‘move_right’, ‘move_up’, ‘move_down’, etc.]

Task Inference

Move left to exit town.

Task Inference

move_up(duration=0.5)

Decision Reasoning: The most suitable
action now is to try moving slightly to fine
tune the character’s position and then
attempt move_left() again if required..

Action Planning

2

3

Self-Reflection

1. The last executed action was to move up, and it

was executed successfully.

2. In this frame, the character successfully

surmounted the obstacle.

Skill Curation

Retrieved Skills: [‘move_left’,

‘move_right’, ‘move_up’, ‘move_down’, etc.]

Figure 22: Case study of self-reflection on re-trying a failed task. Task instruction and context require the agent
to exit town. A wrong direction is first selected, but the agent moves up after self-reflection. Only relevant
modules are shown for better readability, though all modules (Figure 3) are executed per iteration.

F.4.1 SELF-REFLECTION

The Self-reflection module plays an important role in the completion of game missions in Stardew,
giving our framework the ability to determine if the actions performed are complete and effective
and to correct the errors of invalid actions. In the "Purchasing Seeds" task, the Agent is asked to
return home from the store after purchasing items. At the "Home is on the left side of the store"
prompt, the Agent controls the character to go left, but there are obstacles to keep going left, and
the character must go up to circumnavigate the obstacles. As shown in the Fingure 22, the role will
initially be stuck at the obstacle and cannot continue to the left. Through Self-Reflection, the Agent
can judge that it is currently in a state of obstruction, and moving to the left cannot be implemented
smoothly. Therefore, the agent can adjust the direction upward to bypass the obstacle and enable the
role to continue to the left until it returns home.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

F.4.2 TASK-INFERENCE

Task Inference is a very effective module for completing game quests in Stardew. Its function is to
decompose a vague and grand task into a specific sub-task, which effectively guides the Agent to
complete the overall task. For example, in the Farming task, as shown in Figure 23, the task that the
character needs to complete is "cultivate and harvest a parsnip." This is a complete but vague task.
Through the Task Inference module, the Agent breaks down the task into (1) till the soil with the
hoe, (2) plant the parsnip seeds, (3) water the planted seeds once daily for four days, (4) harvest the
fully grown parsnip. This enables the Agent to know more clearly the steps needed to complete and
finish the task successfully.

Cultivate and

harvest a parsnip.

Task

Inference

Information

Gathering

Task

Inference
Action

Planning

Toolbar: 5. Scythe

(Selected)

The next subtask

is to till the soil

with the hoe

select_tool(key="2")

use_tool()

Toolbar: 2. Hoe

(Selected)

The next step is

to plant the

parsnip seeds.

select_tool(key="6")

do_action()

(1) Till the soil with the hoe.

(2) Plant the parsnip seeds.

Toolbar: 6.

Parsnip Seeds (11)

(Selected)

The next step is

to water the

planted seeds.

select_tool(key="3“)

use_tool()

(3) Water the planted seeds once daily for four days.

Toolbar: 3. Watering

Can (Selected)

the next step is

to harvest the

parsnip.

do_action()

(4) Harvest the fully grown parsnip.

Figure 23: Case study of task inference on decomposing a task into specific sub-tasks. The complete task is
to cultivate and harvest a parsnip. CRADLE decomposes the task into four sub-tasks by task inference. Only
relevant modules are shown for better readability, though all modules (Figure 3) are executed per iteration.

F.5 LIMITATIONS OF GPT-4O

Fine-grained Control. Stardew Valley requires that players are positioned precisely to interact with
objects, such as doors and NPCs. However, it is difficult for GPT-4o to take a pixel-level precise
action. For example, GPT-4o can not take a precise movement even though the speed at which the
figure moves is known. To alleviate this problem, we make some composite skills that use template-
matching to complete some complex interaction tasks, such as purchasing items.

Perception in a 2D virtual world . In Stardew Valley, it’s common for a character to be blocked by
rocks or trees, and GPT-4o fails to tell if a character is blocked by looking at the image once, and
can’t predict if the next move will be blocked, which is very easy for a human to do by looking at the
image. This indicates that GPT-4o is relatively weak in perceiving the virtual world in this game. In
order to solve this problem, we compare the successive frames before and after in Self-Reflection to
enable GPT-4o to judge the corresponding changes.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

G DEALER’S LIFE 2

G.1 INTRODUCTION TO DEALER’S LIFE 2

Dealer’s Life 2 is a captivating indie simulation game developed by Abyte Entertainment. Renowned
for its intricate negotiation mechanics and humorous portrayal of a pawn shop environment, the
game is celebrated for its engaging gameplay that combines strategy with a quirky, cartoonish art
style. As a simulation game with role-playing elements, Dealer’s Life 2 is played from a first-person
perspective, utilizing a mouse for point-and-click interactions and a keyboard for price inputs. This
interface facilitates item appraisals, customer interactions, and comprehensive shop management.

In the game, players assume the role of a pawn shop manager, tasked with acquiring and selling
various items to make a profit while managing their store’s reputation and inventory. Players engage
with a wide range of unique non-player characters (NPCs), each with their own distinct behaviors
and negotiation styles. Whether bartering over the price of a rare collectible or managing unfore-
seen shop events, players must hone their haggling and strategic decision-making skills to succeed.
Dealer’s Life 2 operates in a closed-source format with no APIs available for accessing in-game
data or automating gameplay functions. This setup ensures a hands-on experience where players are
immersed in the day-to-day challenges of running a pawn shop. This game environment provides
a unique and entertaining setting for testifying the GCC’s haggling and strategic decision-making
abilities. We run our experiments using the latest version, V. 1.013_W96 of the game.

G.2 OBJECTIVES

We concentrate on evaluating the sustained management skills required to maximize profits through
buying and selling a diverse range of items from customers. Therefore, the task in this game is de-
fined as Weekly shop management, i.e., managing a shop for a week automatically. This game could
effectively demonstrate the negotiation ability of the LMM in a trade and bargain. For example,
giving an unacceptable price to the customers, i.e., a pretty low price for a seller customer or a very
high price for a buyer customer, could cause the deal to fail directly, which brings no profit in this
situation. The key is to carefully analyze the description of the item, e.g., the rarity and condition of
the item, and more importantly, the response of the customer, i.e., the customer’s mood changes.

Contrary to many games that feature detailed tutorials highlighting specific operations and objectives
through each crucial step, Dealer’s Life 2 does not provide such guidance. This absence transforms
the game into a zero-shot, hard open-world task, where the LMM must directly apply its prior
knowledge of haggling and strategic decision-making to a new and unfamiliar environment. To
provide readers with a clear and straightforward understanding of the task, we illustrate the typical
flow of a day’s shop management through several key steps, presented in Table 10.

Table 10: Key points in the open-ended mission, Weekly shop management in Dealer’s Life 2. Figure 24
showcases snapshots of key points (specific sub-figures marked in parenthesis in the table).

Task: Weekly shop management Description

Open shop (Fig. 24a) Start a new day shop management.
Dialog (Fig. 24b) Choose an option in a dialog.
Item Description (Fig. 24c) View the item information
Haggle (Fig. 24d) Give a price for the item.
Deal Result (Fig. 24e) View the deal results.
Stats (Fig. 24f) View shop stats.

G.3 IMPLEMENTATION DETAILS

The implementation of Dealers’ Life 2 also strictly follows the GCC framework, which includes
Information Gathering, Self-Reflection, Task Inference, Skill Curation, Action Planning, and Ac-
tion Execution. The details are described in Appendix D. Therefore, we emphasize the specific
implementations for Dealers’ Life 2.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

(a) Open Shop (b) Dialog (c) Item Description

(d) Haggle (e) Deal Result (f) Stats

Figure 24: Image examples of key points in the open-ended task of Dealers’ Life 2.

Procedural Memory. Due to the absence of a new-user guide, the LMM cannot directly and accu-
rately know the operation method or effect of an action in the game, e.g., giving the price can only
use the keyboard to input an integer in an abstract box in the bottom right of the haggle screen as
shown in Figure 24d, by directly observing the screen. Unless the player executes an action and ob-
serves what is happening, the player cannot know what its effect is. However, this could easily cause
severe errors in an open-world environment. For example, if the player gives a price at $100,000 for
an item without knowing what the box is, it could cause the player to lose all the money. Besides,
this game is very simplified with finite types of screen content and fixed buttons positions for pro-
cessing the deal, where we could categorize the screen types and design general atomic skills for
them. Thus, with a focus on evaluating the LMM’s zero-shot haggling and strategic decision-making
ability in managing a shop, we believe it is reasonable to skip the skill curation by directly setting
several atomic skills as the initialization of the procedural memory, such as "process_dialog()" for
clicking on the option of a dialog screen to keep the deal going on as shown in Figure 24b. The
description of all the atomic skills is listed as follows:

• open_shop(): The function to open the dealer’s shop to start dealing for today.
• give_price(price): The function to give a price for the item in the deal. The price must be

an integer number.
• process_dialog(): The function to click on to choose the first option of the dialog to make

the game go on.
• close_description_page(): The function to close a description page showing information

about the item details, daily stats, or the traits of the buyer or seller.
• accept_deal(): The function to click on the check mark to accept the deal on the confirma-

tion dialog.
• reject_deal(): The function to click on the cross mark to reject the deal on the confirmation

dialog.
• finish_buy(): The function to click on the ok button to finish the deal on the confirmation

dialog.
• finish_sell(): The function to click on the ok button to finish the selling on the confirmation

dialog.

Self-Reflection. Additionally, as Dealers’ Life 2 has no heavy need for a long-term reflection, so
we only use the first and last frame of the video as input to reduce the number of tokens used per
request. Finally, this self-reflection module could help to keep the game going, instead of sticking
to the same point in the game.

Action Planning. In this game, we restrict GPT-4 to output only one skill per action because it is
a round-based game that does not require frequent execution of actions, and the state of the next

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

(a) Agent: Given that the customer is a seller
and the item on offer is in bad condition with
an estimated price of $ 280, it would be wise
to offer around $150 to leave room for nego-
tiation.

(b) Agent: Given the item’s bad condition
and $280 estimate, A reasonable starting
counteroffer would be 50-60% of its esti-
mated value, and $160 is a reasonable coun-
teroffer.

(c) Agent: A reasonable next offer could
be $180 or $190, aiming to reach a middle
ground. I would still risk with $160 to see if
the offer is cut further.

(d) Agent: The customer is proposing her fi-
nal offer at $205. It will be necessary to ac-
cept the offer as this is still a profitable mar-
gin.

Figure 25: The reasoning of CRADLE in a successful deal with haggling. The price provided by CRADLE is
keyed in by keyboard and mouse operations in the digital display box in the bottom-right corner.

time-step after an action is executed is highly uncertain, e.g., the unpredictable mood changes in a
customer’s response.

G.4 CASE STUDIES

Here we present a few game-specific case studies to further discuss CRADLE’s reasoning and
decision-making process in the GCC setting.

G.4.1 SUCCESSFUL NEGOTIATION

Figure 25 illustrates a successful negotiation by CRADLE with an NPC seller over an item valued
at $280. CRADLE determines a strategic starting offer by considering both the item’s quality and
the customer’s initial proposal. Throughout subsequent negotiation rounds, CRADLE leverages its
memory to maintain an offer close to the initially assessed $160, applying pressure on the customer
to reduce their expectations. However, CRADLE also demonstrates flexibility, adapting its strategy
when faced with the customer’s final offer—signaled by their incline to leave. This allows CRADLE
to secure a final agreement that still yields a profitable deal.

G.4.2 UNSUCCESSFUL NEGOTIATION

Figure 26 illustrates a scenario where CRADLE engages in an unsuccessful negotiation. The seller
consistently demands a price above the estimated value of the item, while CRADLE, aiming to secure
a profit, steadfastly offers a price below the estimated value. A common price cannot be arrived at
after rounds of negotiation. Consequently, the negotiation fails to reach an agreement, resulting in
the departure of the high-expectation customer.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

(a) Agent: I will offer an initial price of $100
to reflect the poor condition while allowing
room for negotiation since the condition is
poor.

(b) Agent: The buyer suggests higher than
the estimated price.I should offer a price
lower than the item’s estimated value. I will
offer $110.

(c) Agent: The seller has countered several
times already, suggesting that further nego-
tiations could result in a mutually acceptable
price, possibly just a little bit below $164.

(d) Agent: The negotiation failed. My next
step is to acknowledge the failure and con-
tinue the game-play to interact with other
customers to profit.

Figure 26: The reasoning of CRADLE in an unsuccessful deal with haggling. The price provided by CRADLE
is keyed in by keyboard and mouse operations in the digital display box in the bottom-right corner.

G.4.3 ACQUIRING AND SELLING OF A COUNTERFEIT ITEM

Figure 27 depicts a complete buying and selling cycle involving an item later identified as counterfeit
by a buyer. Notably, CRADLE initially acquires the item without a known price estimate, basing its
purchase solely on the seller’s initial offer. In subsequent transactions, although CRADLE recognizes
the item’s potential forgery, it continues to trade the item in pursuit of maximizing profit. This
strategy yields a substantial profit margin of 145%. However, it also poses a risk to the in-game
character’s reputation, highlighting a strategic decision made under the directive to prioritize profit.

G.5 QUANTITATIVE EVALUATION

The effectiveness of CRADLE in terms of game performance is evaluated through experiments con-
ducted over a 7-day gaming scenario using nine quantitative financial metrics. A comprehensive
description of these metrics is provided in Section G.6.

G.6 EVALUATION METRICS

Assuming the buying price for item i is denoted by Bi, the selling price by Si, the market valuation
by Vi, and the number of successfully traded items is n. To evaluate CRADLE’s profitability and
performance in Dealer’s Life 2, we use the following evaluation metrics:

• Turnover Rate (TR) can be calculated as the ratio of the number of successfully traded items
to the total number of items considered (both successfully and unsuccessfully traded). It reflects
the Agent’s ability to successfully complete transactions and can indicate operational efficiency,
market competitiveness, and negotiation effectiveness. The calculation formula is TR = n

n+m .

• Gross Profit Margin (GPM) is the ratio of gross profit to sales revenue, reflecting the dealer’s
direct profit capability after selling items. The calculation formula is GPM =

∑n
i=1 Si−Bi∑n

i=1 Si
.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

(a) Agent: Given that we do not know the
estimated price, I proceed with 70%-80% of
the asked price, around $4,200 to $4,480.

(b) Agent: Since the seller is willing to lower
the price, the current counteroffer may still
be negotiated.

(c) Agent: The counteroffer of $4,900 seems
reasonable, but I can go further for the best
possible price.

(d) Agent: The response will be final. Given
this, accepting the deal is a sensible to secure
the item.

(e) Agent: As I am selling the item, I’ll try
for a higher price for higher profits.

(f) Agent: I note that the customer rejected
my counter-offer, calling the item fake.

(g) Agent: The seller is in an urgent need to
buy the jeweled necklace.

(h) Agent: From the warning window, I am
told that this necklace is fake.

(i) Agent: Though the jeweled necklace is
fake, accepting this offer provides substan-
tial profit with the buyer’s offer at $11,400.

(j) Agent: Despite the successful sale at a
good price, the item is revealed as a fake.
The added profit is good (+145%)

Figure 27: Case in acquiring and selling an item for multiple attempts with reasoning, and dealing with unex-
pected information on the authenticity. The price provided by CRADLE is keyed in by keyboard and mouse
operations in the digital display box in the bottom-right corner.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

• Return on Investment (ROI) is the ratio of profit to investment, used to measure the dealer’s
return on investment for items. The calculation formula is ROI =

∑n
i=1 Si−Bi∑n

i=1 Bi
.

• Valuation Deviation (VD) reflects the difference between the selling price and the market val-
uation, used to evaluate the reasonableness of the pricing strategy. It is denoted as V D =∑n

i=1 Si−Vi∑n
i=1 Vi

.

• Buying Price to Valuation Ratio (BPVR) can help determine whether the buying price is lower
than the market valuation, reflecting the success of the procurement. The calculation formula is
BPV R =

∑n
i=1 Bi∑n
i=1 Vi

.

• Selling Price to Valuation Ratio (SPVR) reflects the selling price relative to the market valuation,
helping to assess the success of the sales. The calculation formula is SPV R =

∑n
i=1 Si∑n
i=1 Vi

.

• Average Profit Rate (APR) reflects the overall profitability of the dealer on items. Assuming
the return rate for item i is Si−Bi

Bi
, the calculation formula of average return rate is denoted as

APR = 1
n

∑n
i=1

Si−Bi

Bi
.

• Maximum Return Rate (MRR) is the highest return rate among all items. The calculation for-
mula is MRR = max(S1−B1

B1
, S2−B2

B2
, . . . , Sn−Bn

Bn
).

• Minimum Return Rate (mRR) is the lowest return rate among all items. The calculation formula
is mRR = min(S1−B1

B1
, S2−B2

B2
, . . . , Sn−Bn

Bn
).

Table 11: Performance of CRADLE with GPT-4o in Dealer’s Life 2 gameplay. “# attempts” represents the total
number of all negotiation attempts on items, including both successful and unsuccessful transactions.

Exp # attempts TR↑ GPM↑ ROI↑ VD↑ BPVR↓ SPVR↑ APR↑ MRR↑ mRR↑
01 13 92.86 20.38 25.60 13.17 90.10 113.17 42.97 105.56 0.00
02 12 91.67 18.89 23.30 23.30 100.00 123.30 17.98 97.76 0.00
03 12 83.33 26.81 36.63 34.39 98.36 134.39 38.68 127.27 -8.06
04 9 100.00 49.35 87.45 80.69 93.53 165.74 66.45 145.16 0.00
05 12 100.00 20.61 25.25 25.25 100.00 125.25 23.08 44.33 0.00

Avg. 11.6 93.57 27.21 39.65 35.36 96.40 132.37 37.83 104.02 -1.61

H CITIES: SKYLINES

H.1 INTRODUCTION TO CITIES: SKYLINES

Cities: Skylines is a single-player open-ended city-building simulation game developed by Colossal
Order. In the game, players assume the role of a city planner, tasked with building and managing
various aspects of a city to ensure its growth and prosperity. Players engage with a wide range of
urban challenges, from managing traffic flow to balancing the budget, and from providing essential
services to fostering a vibrant economy. Each decision impacts the city’s development, requiring
players to hone their planning and strategic decision-making skills to succeed. Effective city man-
agement leads to thriving neighborhoods, a growing economy, and high citizen satisfaction, while
mismanagement can result in traffic congestion, service shortages, and a decline in population and
reputation. Proper planning and responsive governance are crucial for a city that flourishes and
remains appealing to its residents and visitors.

As the city’s infrastructure and various supporting resources are well-developed, it can attract more
people. And a larger population brings more tax revenue and also brings greater expenses to the
city’s operations. If operated properly, the increasing population can continuously unlock richer ur-
ban facilities; if operated improperly, such as road congestion, insufficient services, housing short-
age, water and electricity shortage, noise pollution, water pollution, excessive garbage, disease, fire
Situation, etc., will all lead to population decline.

This game could be used to evaluate agents’ strategies in managing urban development and resource
allocation. By simulating different scenarios, agents can experiment with various policies and infras-
tructural changes to see their impacts on the city’s growth and sustainability. Effective strategies may

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

involve optimizing public transportation systems to reduce road congestion, investing in renewable
energy sources to prevent power shortages, and implementing comprehensive waste management
programs to handle excessive garbage. It offers a risk-free environment to test innovative ideas
and learn from the consequences of their actions, ultimately promoting a deeper understanding of
sustainable urban development.

Though this game is ranked very positive on Steam, it is notorious for its extremely high difficulty
for beginners, as it lacks a detailed tutorial in the beginning, which introduces more challenges for
CRADLE to deal with. On the other side, Although the successor, Cities: Skylines 2, simplified the
controls and provided a detailed tutorial for beginners, it became notorious for poor optimization
and frequent crashes that caused computer blue screens. As a result, we had to back to using Cities:
Skylines 1 instead of 2. And we do not apply any modes to the game. We use the latest version of
the game (version 1.17.1-f4).

H.2 OBJECTIVES

Our mission is to build cities so that they can support as many people as possible. Maps in this game
are usually very large, which usually costs human players dozens of hours to cover all areas. Besides,
the technology tree unlocks as the population grows, which requires multiple turns of planning and
building. In this work, we simplified the problem by starting the game near the water and fixing the
viewpoint (as shown in Figure 28), so that CRADLE can leverage the pixel position in the screenshot
to locate the position of placed buildings and facilities. Agents start with a plot of land, which is
equipped with an entry and an exit from a major highway, providing crucial access for future traffic
flow, and proximity to the water source, which is essential for the city’s water supply needs. And we
focus on the first turn of planning, i.e., pause the game and stop the passage of the in-game time, use
the initial starting funds of ₡70,000 and the most basic road, water, and electricity facilities provided
at the beginning of the game, which is enough to achieve the first milestone, Little Hamlet with the
population of 440 in the game. Then what kind of city can CRADLE create? Can this city ensure
water and electricity supply to keep functioning normally while reasonably dividing residential,
commercial, and industrial zones? A run is terminated when it reaches the maximal steps, 1000, or
the budget is used up (less than ₡ 1000).

Figure 28: Demonstration for the initialization loca-
tion of our mission in City: Skylines, which is near the
river and contains the entry and exit of the highways.

Figure 29: Visual prompting methods used in Cities:
Skylines. The full screenshot is divided into 3×5 grids
and each grid is assigned a unique white coordinate.

H.3 EVALUATION METRIC

To measure the completeness of the city built by the agent, we design the following preliminary
metrics:

• Roads in closed loop: Whether the road is a closed loop, which is crucial for ensuring
smooth traffic flow and is beneficial for the city’s future development.

• Sufficient water supply: To ensure a sufficient water supply, the player needs to construct
a water pumping station at the shoreline and then use water pipes to cover every district
along the roads. To manage the effluent effectively, the other end of the water pipe network
must be equipped with the water drain pipe which is also required to be placed near the
shoreline.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

• Sufficient electricity supply: Both zones and water facilities need electricity to power.
To provide sufficient electricity supply, the player can build a coal power plant or wind
turbine. Considering coal power plants cost too much and will create heavy pollution,
wind turbines combined with the power lines are a better choice at the beginning. The
electricity area extends automatically based on the presence of buildings and infrastructure
that consume electricity.

• Zones Coverage > 90%: The built two-lane road will provide empty space for the devel-
opment of zones, i.e., residential zone, commercial zone and industrial zone. Residential
zones provide houses for people to live in, which is the most essential zone to increase
the population. Commercial zones provide places for small businesses, shops, and services
produced in the industrial zones or imported. Industrial zones provide jobs for the residents
and products for commercial buildings, which is also important to attract more people to
move to the city. This metric is used to evaluate whether 90% of the available areas are
covered by the zones. The agent needs to reasonably allocate the areas and proportions of
various zones to achieve better city development and attract a larger population.

• Maximal population: After CRADLE finishes building, we will unpause the game and
start the simulation. Then houses start to be built and residents start to move in. We will
record the maximal population during the simulation as the value for this metric.

• Maximal population with assistance: We find that cities built by CRADLE manage to
meet most of the requirements but suffer a significant population loss due to a few easy-to-
fix mistakes. So after CRADLE finishes the design of the city, we apply human assistance
that attempts to address these small mistakes within 3 unit operations (building or removing
a road/facility/a place of zones is counted as one unit operation). We will also record the
maximum population during the simulation in the city with human assistance.

H.4 IMPLEMENTATION DETAILS

The implementation of Cities: Skylines also strictly follows the GCC framework, which includes
Information Gathering, Self-Reflection, Task Inference, Skill Curation, Action Planning and Action
Execution. The details are described in Appendix D. Therefore, we emphasize the specific design
for Cities: Skylines.

Pause. Since the game is stopped before starting the simulation, there is no need to unpause and
pause the game while executing actions.

Visual Prompting. As shown in Figure 29, similar to Stardew Valley, we divide each screenshot
into 3 × 5 grids with an axis based on the resolution of the game screen. Then CRADLE can utilize
the pixel-level position in the screenshot to locate the building and facility. We empirically find that
this visual prompting method can result in a more precise control of GPT-4o.

Information Gathering. In Cities: Skylines, the game’s perspective is typically adjustable, al-
lowing players to zoom in and out, rotate, and pan across their cityscape to get a detailed view of
their urban development. To ensure consistency and ease of navigation for GPT-4o, we have locked
the camera angle and applied a visual prompting method to enhance GPT-4o’s visual understand-
ing. Besides, we use GPT-4o to extract key information, such as budget, population, construction
information and error messages, in the game.

It is worth noting that in this module, we feed the original screenshot to GPT-4o, rather than the
augmented screenshot with axis and coordinates. We find that the numbers and lines may cover some
key information and result in wrong OCR recognition. For example, the construction information,
"Estimated Production: 120,000m3/week" may be mistakenly interpreted as "Estimated Production:
000,000m3/week" by GPT-4o, due to interference from the lines and numbers. This construction
information is a key signal for the suitable place of the water pumping station. For the other modules,
we feed GPT-4o with the augmented screenshots.

Self-Reflection. Since actions in this game are very short, and each of them has a significant effect
shown in the last screenshot. We only use the first screenshot and the last screenshot of the video clip
as input to this module, which is proved to be enough for not missing any important information.

Task Inference. Due to the lack of a detailed tutorial, we have to provide a draft blueprint for
the GPT-4o as the plan at the beginning to help GPT-4o to determine the next step to do. This

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

plan provides guidance to the orders of building each facility and how to build a closed road, how
to ensure water and electricity supply and zone placement. Even so, we find that GPT-4o failed
frequently to follow the plan, resulting in the lack of building some important facilities, like water
pumping stations.

Skill Curation. Due to the lack of detailed tutorials in the game, we generate the skills through
self-exploration in this game. The skill generation basically involves manipulating the toolbar to
understand the items on it. The pseudo-code for skill generation is described in Algorithm 1. This
process leverages SAM for objective grounding and GPT-4o to gather information about the objects
provided by the game, subsequently generating skills based on a predefined template. An example
of the process is shown in Fig 30, 31, 32, 33, 34 and 35.

Figure 30: The toolbar in Cities: Skylines

Figure 31: The grounding result of the toolbar in Cities: Skylines

Figure 32: When hovering the mouse over a
toolbar item, the pop-up description is "Water
& Sewage". The skill generated is then called
"open_water_sewage_menu".

Figure 33: When hovering the mouse over a toolbar
item, the pop-up description is "Education - Reach a
population of 440". As this is not selectable for now,
GPT-4o does not generate a new skill for it.

Action Planning. In this game, we only let GPT-4o output one skill for each action since we observe
that GPT-4o tends to output try_place and confirm placement together if we allow it to output and
execute multiple skills in one action, which is against the intention of our design for the try_place
action.

Procedure Memory. Skills generated through self-exploration are listed below:

• open_roads_menu(): The function to open the roads options in the lower menu bar for
further determination of which types of roads to build.

• open_electricity_menu(): The function to open the electricity options in the lower menu
bar for further determination of which types of power facility to build.

• open_water_sewage_menu(): The function to open the water and sewage options in the
lower menu bar for further determination of which types of water and sewage to build.

• open_zoning_menu(): The function to open the zoning options in the lower menu bar for
further determination of which types of zonings to build.

• try_place_two_lane_road(x1, y1, x2, y2): Previews the placement of a road between two
specified points, (x1, y1) and (x2, y2), with x1, y1 being the coordinate of start point of the
road, and (x2, y2) being the coordinate of end point of the road. This function does not
actually construct the road, but rather displays a visual representation of where the road
would be placed if confirmed.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Figure 34: The Water & Sewage menu is opened by
executing the new skill "open_water_sewage_menu".
The Agent then hovers the mouse over a second-
level toolbar item, the pop-up description is
"Water Pipe", and the generated skill is called
"try_place_water_pipe".

Figure 35: The Roads menu is opened by executing the
new skill "open_roads_menu". The Agent then hovers
the mouse over a second-level toolbar item, the pop-
up description is "Two-Lane Road", and the generated
skill is called "try_place_two_lane_road".

Algorithm 1: Skill Generation
Input: Toolbar with objects, Skill template
Output: Procedure memory with generated skills

1 Initialize procedure memory;
2 for each object in the toolbar do
3 Hover the mouse on the object to get the description;
4 Generate skill using GPT-4o based on the object description and the skill template;
5 Store generated skill in procedure memory;
6 Execute the generated skill to enter the second-level toolbar;
7 for each object in the second-level toolbar do
8 Hover the mouse on the object to get the description;
9 Generate skill using GPT-4o based on the object description and skill template;

10 Store generated skill in procedure memory;

11 return procedure memory

• try_place_wind_turbine(x, y): Previews the placement of a wind turbine on point, (x, y).
This function does not actually construct the wind turbine, but rather displays a visual
representation of where the wind turbine would be placed if confirmed.

• try_place_water_pumping_station(x, y): Previews the placement of a water pumping sta-
tion on point, (x, y). This function does not actually construct the water pumping station,
but rather displays a visual representation of where the water pumping station would be
placed if confirmed.

• try_place_water_pipe(x1, y1, x2, y2): Previews the placement of a water pipe between two
specified points, (x1, y1) and (x2, y2). This function does not actually construct the water
pipe, but rather displays a visual representation of where the water pipe would be placed if
confirmed.

• try_place_water_drain_pipe(x, y): Previews the placement of a water drain pipe on point,
(x, y). This function does not actually construct the water drain pipe, but rather displays a
visual representation of where the water drain pipe would be placed if confirmed.

• try_place_commercial_zone(x1, y1, x2, y2): Previews the placement of a commercial zone
within a rectangular region with diagonal corners at (x1, y1) and (x2, y2). This function
does not actually construct the commercial zone, but rather displays a visual representation
of where the commercial zone would be placed if confirmed.

• try_place_industrial_zone(x1, y1, x2, y2): Previews the placement of a industrial zone
within a rectangular region with diagonal corners at (x1, y1) and (x2, y2). This function
does not actually construct the industrial zone, but rather displays a visual representation
of where the industrial zone would be placed if confirmed.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

• try_de_zone(x1, y1, x2, y2): The function to remove the zone in the game. The zone must
cover the road.

• confirm_placement(): The function to confirm the placement and build the object after the
try_place_[object] function.

• cancel_placement(): The function to cancel the placement of the object after the
try_place_[object] function.

Episodic Memory. Besides the common information to store in the episodic memory. We initialize
the memory with the coordinates of the entry and exit of the highway. Then CRADLE is able to
extend the roads according to these two points at the beginning. When a road or a facility such
as wind turbine, water pumping station, water drain pipe and water pipe is placed on the map, the
corresponding coordinates will also be stored in the memory for future development of the city.

H.5 CASE STUDIES

H.5.1 FAILURE FOR ROAD BUILDING.

As shown in Figure 36, sometimes GPT-4o will build a long road, which ends on the top of water.
The recorded endpoint of the road is actually the projection of the road on the sea level, resulting
in the offset from the projection point and the real endpoint of the road. It leads to the failure of
extending the road to the other places.

Figure 36b, 36c, 36d and 36e tells a story that GPT-4o sometimes forgets to confirm the placement
(from 36c to 36d) and directly moves to the next step of building the next road (from 36d to 36e),
resulting in the disconnection of the roads.

(a) (b) (c)

(d) (e)

Figure 36: Failure cases of building roads in a closed loop. Figure 36a shows that the road is built over the
water and is difficult to continue. Figure 36b, 36c, 36d and 36e tells a story that GPT-4o sometimes forgets
to confirm the placement (from 36c to 36d) and directly moves to the next step of building (from 36d to 36e),
resulting in the disconnection of the roads.

H.5.2 FAILURE FOR SUFFICIENT WATER SUPPLY.

Figure 37 displays three cases where CRADLE fails to ensure the water supply due to the discon-
nection of water pipes and the missing water pumping station. All of them can be fixed within three
unit operations. As shown in Figure 37b and 37f, we observe a significant increase in the population
if these mistakes are fixed, which proves that CRADLE already has the ability to build a reasonable
city but some minor adjustments are needed.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

(a) CRADLE’s craftwork I. The upper left corner of the city is experiencing a severe local water shortage since
the water pipes there are not connected. Population: 800+.

(b) CRADLE’s craftwork I with assistant within three unit operations to develop the idle area in the upper right
corner of the city into a residential zone and put two water pipes to ensure all the water pipes connected and
cover the whole city. Population: 1150+.

(c) CRADLE’s craftwork II. The left side of the city a localized area on the right suffers from water shortage
because of the water pipes connected issues. Population: 640+.

(d) CRADLE’s craftwork II with assistant within three unit operations by selling the redundant water pumping
station and the independent water pipe on the right to get some budget and using the budget to get the water
pipes connected. Population: 730+.

(e) CRADLE’s craftwork III. The entire city is experiencing a severe water shortage due to the lack of the water
pumping station. Population: 200+.

(f) CRADLE’s craftwork III with assistant within three unit operations to place the water pumping station, lay
water pipe on the right side and develop the bottom area with industrial zones. Population: 780+.

Figure 37: Demonstrations of three cities built by CRADLE in zoning view (left), water view (middle) and elec-
tricity view (right). Figures 37b, 37d, 37f show the cities with human assistance to address construction issues
(shown in red arrow). Populations shown in the figures are close to but not exactly the maximal population
since they are changed dynamically.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

I SOFTWARE APPLICATIONS

I.1 SELECTED SOFTWARE APPLICATIONS

Besides targeting complex digital games, CRADLE also includes an initial benchmark task set across
diverse software applications. The selected applications include Chrome, Outlook, Feishu, CapCut,
and Meitu. These applications cover popular applications for daily tasks in different usage cate-
gories, such as web browsing, communication, work, and media manipulation. Table 12 shows the
exact application versions benchmarked in this paper. Five distinct tasks were designed for each ap-
plication to represent their target domains and explore the difficulties posed to LMM-based agents
and analyze their limitations. Figure 9 shows an overview of all tasks across applications and Ta-
bles 13 and 14 detail each task.

Chrome and Outlook were selected as common representatives for web browsing and e-mail, with
well-known functionality and UI design. CapCut and Meitu are two popular media editing applica-
tions for video/image editing with their own interaction styles. Lastly, Feishu (also known as Lark)
is an office collaboration and productivity application, which includes messaging, calendar/meet-
ings, and approval workflows. It represents a complex business application that doesn’t strictly
follow OS-specific UI guidelines. To the best of our knowledge, this is the first agent targeting
applications like CapCut, Meitu, and Feishu.

I.1.1 BRIEF DESCRIPTIONS

Table 12: Exact software versions utilized in
the described experiments. Similar versions
should behave similarly.

Software Version
Chrome 125.0.6422.142
Outlook 1.2024.529.200
CapCut 4.0.0
Meitu 7.5.6.1
Feishu 7.19.5

Chrome is a web browser developed by Google. It allows
users to access and utilize online resources through activ-
ities such as browsing websites, streaming videos, and us-
ing web applications. Additionally, users can customize
their browsing experience with various extensions, man-
age bookmarks and passwords, and synchronize their data
across multiple devices for seamless access.

Outlook is an application by that allows users to manage
emails, calendars, contacts, and tasks. It includes tools
for communication and scheduling through features such
as sending and receiving emails, setting up meetings, and
keeping track of appointments. Additionally, users can customize their experience and integrate
Outlook with other Microsoft Office applications.

CapCut is a popular video editing application developed by ByteDance. It provides easy-to-use
editing tools and and enables users to create quality videos with a range of advanced features. Cap-
Cut offers a set of editing tools, including trimming, cutting, merging, and splitting video clips; the
application of various effects, filters, and transitions; as well as adjusting speed, and adding music
or text overlays.

Meitu is a photo editing application. It is designed to cater to a broad audience and enables users
to enhance and transform their photos with minimal effort. Meitu offers editing tools, including
basic adjustments like cropping, rotating, and resizing, as well as advanced features such as beauty
retouching, filters, and special effects. Additionally, Meitu offers a wide range of stickers, frames,
and text options to further personalize photos.

Feishu, also known as Lark, is a business communication and collaboration platform by ByteDance.
It integrates various tools for office workflows and project management. Feishu offers a wide array
of functionalities, including instant messaging, video conferencing, file sharing, and collaboration
within the app. It also includes an integrated calendar, which helps users schedule and manage
meetings and events, and task management tools that allow users to assign and track tasks.

I.2 SOFTWARE TASKS

For each of the five applications, we selected a set of representative tasks for their respective do-
mains. For example, search, navigation, and settings tasks on Chrome; sending, searching, and
deleting emails, plus changing settings on Outlook; basic video and image editing operations on

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Table 13: Task Descriptions for Chrome, Outlook, and CapCut. Difficulty refers to how hard it is for our agent
to accomplish the corresponding tasks. Figures 38, 39, and 40 illustrate each task (specific sub-figures marked
in parenthesis in the left-most column along with task name).

Software Description Difficulty
Chrome
Download Paper (Fig. 38a) Search for an article with a title like {paper_title}

and download its PDF file.
Hard

Post in Twitter (Fig. 38b) Post "It’s a good day." on my Twitter. Hard
Open Closed Page (Fig. 38c) Open the last closed page. Easy
Go to Profile (Fig. 38d) Find and navigate to {person_name}’s homepage

on GitHub.
Medium

Change Mode (Fig. 38e) Customize Chrome to dark mode. Medium

Outlook
Send New E-mail (Fig. 39a) Create a new e-mail to {email_address} with

subject "Hello friend" and send it.
Medium

Empty Junk Folder (Fig. 39b) Open the junk folder and delete all messages in
it, if any.

Medium

Reply to Person (Fig. 39c) Open an e-mail from {person_name} in the in-
box, reply to it with "Got it. Thanks.", and click
send.

Medium

Find Target E-mail (Fig. 39d) Find the e-mail whose subject is "Urgent meet-
ing" and open it.

Easy

Setup Forwarding (Fig. 39e) Set up email forwarding for every email received
to go to {email_address}.

Medium

CapCut
Create Media Project (Fig. 40a) Create a new project, then import

{video_file_name} to the media, click the
"Audio" button to add music to the timeline, and
finally export the video.

Hard

Add Transition (Fig. 40b) Open the first existing project. Switch to Transi-
tions panel. Drag a transition effect between the
two videos, and then export the video.

Medium

Crop by Timestamp (Fig. 40c) Delete the video frames after five seconds and
then before one second in this video, and then
export the video.

Medium

Add Sticker (Fig. 40d) Open the first existing project. Switch to Stickers
panel. Drag a sticker of a person’s face to the
video, and then export the video.

Hard

Crop by Content (Fig. 40e) Crop the video when the ball enters the goal, and
then export the video.

Very hard

CapCut and Meitu (e.g., adding special effects and creating a collage); and communication and or-
ganization operations on Feishu. Tables 13 and 14 describe in detail the 25 tasks CRADLE performs
and analyzes on the five selected applications; also illustrated in Figures 38, 39, 40, 41, 42, and 9.

It is worth noting that we add a special task on CapCut to demonstrate the agent’s ability for tool
use. In this task, a pre-defined skill uses GPT-4o as a tool for video understanding capabilities. The
skill can be selected to answer content-based questions about a video (e.g., "when the ball enters the
goal") and the response be used during task completion. This task is illustrated in detail in Figure
49.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Table 14: Task Descriptions for: Meitu, and Feishu. Difficulty refers to how hard it is for our agent to accom-
plish the corresponding tasks. Figures 41, and 42 illustrate each task (specific sub-figures marked in parenthesis
in the left-most column along with task name).

Software Description Difficulty
Meitu
Apply Filter (Fig. 41a) Apply a filter from Meitu to {pic-

ture_file_name} and save the project.
Easy

Cutout (Fig. 41b) Cutout a person from {picture_file_name} and
save the project.

Easy

Add Sticker (Fig. 41c) Add a flower sticker to {picture_file_name}
and save the picture.

Middle

Create Collage (Fig. 41d) Make a collage using 3 pictures and save the
project.

Hard

Add Frame (Fig. 41e) Add a circle-shaped frame to {pic-
ture_file_name} and save the picture.

Hard

Feishu
Create Appointment (Fig. 42a) Create a new appointment in my calendar any-

time later today with title "Focus time".
Hard

Message Contact (Fig. 42b) Please send a "Hi" chat message to {con-
tact_name}.

Easy

Send File (Fig. 42c) Send the AWS bill file at {pdf_path} in a chat
with {contact_name}.

Hard

Set User Status (Fig. 42d) Open the user profile menu and set my status
to "In meeting".

Medium

Start Video Conference (Fig. 42e) Create a new meeting and meet now. Easy

(a) Download Paper (b) Post in Twitter (c) Open Closed Page

(d) Go to Profile (e) Change Mode

Figure 38: Screenshots of Chrome tasks.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

(a) Send New E-mail (b) Empty Junk Folder (c) Reply to Person

(d) Find Target E-mail (e) Setup Forwarding

Figure 39: Screenshots of Outlook tasks.

(a) Create Media Project (b) Add Transition (c) Crop by Timestamp

(d) Add Sticker (e) Crop by Content

Figure 40: Screenshots of CapCut tasks.

(a) Apply Filter (b) Cutout (c) Add Sticker

(d) Create Collage (e) Add Frame

Figure 41: Screenshots of Meitu tasks.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

(a) Create Appointment (b) Message Contact (c) Send File

(d) Set User Status (e) Start Video Conference

Figure 42: Screenshots of Feishu tasks.

Chrome Outlook CapCut Meitu Feishu

Figure 43: Success rates for tasks in software applications

I.3 QUANTITATIVE EVALUATION

We calculate CRADLE’s performance over the 25 tasks in the applications set. Each task is executed
five times and performance is measured in three metrics: success rate, average number of steps
taken by the agent (and variance over the five runs), and efficiency. Efficiency is defined as the ratio
between the expected number of steps in a given task and the total number of steps taken by the
agent. The expected number of steps per task is calculated by having humans perform each task.

Table 15 and Figure 43 show the details of the evaluation. CRADLE presents overall good perfor-
mance over the diverse tasks and applications (compared to Expected Steps, CRADLE achieves an
overall efficiency of 50%). However, performance for certain tasks can vary considerably due to
different factors. The main reason for the higher number of task step during agent execution is the
frequent incorrect positioning decisions for the mouse, i.e., the backbone model chooses a position
of bounding box tag that does not correspond to the UI item described in the model reasoning. We
discuss examples of task-specific issues in Sections I.5 and I.6 below.

It is worth noting that in Chrome’s task 3 ("Open the last closed page"), CRADLE knows how to
use the shortcut key directly, calling the key_press skill directly with the correct keyboard shortcut:
‘Ctrl + Shift + T’, whereas humans typically do not know this.

To further evaluate the performance of CRADLE in diverse software applications scenarios, we
provide quantitative results over OSWorld, a new contemporaneous benchmark with similar charac-
teristics to our settings. More details in Appendix J and overview of the results in Table 16.

I.4 IMPLEMENTATION DETAILS

The implementation of CRADLE targeting all five software applications follows the GCC setting and
framework modules (which include Information Gathering, Self-Reflection, Task Inference, Skill
Curation, Action Planning, and Action Execution). Implementation details of the overall framework

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Table 15: Application Software results. Success Rate determines the ratio of successful completions over five
runs. Average Steps refers to the number of actions the agent takes to fulfil a task, if successful. Expected Steps
represents the number of steps as estimated by humans performing the task. Efficiency represents the ratio
between the expected number of steps and the total number of steps taken by the agent.

Software Success Rate Average Steps Expected Steps Efficiency

Chrome 88% 8.23 ± 6.75 4.20 48.05%

Download Paper 80% 16.00 ± 5.52 6 37.50%
Post in Twitter 80% 11.75 ± 5.26 7 61.14%
Open Closed Page 100% 1.00 ± 0 3 300.00%
Go to Profile 100% 4.00 ± 0.63 1 25.00%
Change Mode 80% 11.25 ± 4.71 4 35.56%

Outlook 60% 7.13 ± 5.61 4 48.48%

Send New E-mail 40% 11.00 ± 4 5 45.45%
Empty Junk Folder 40% 8.50 ± 3.50 3 35.29%
Reply to Person 60% 8.33 ± 4.71 4 48.02%
Find Target E-mail 100% 1.40 ± 0.80 1 71.43%
Setup forwarding 60% 12.00 ± 4.90 7 58.33%

CapCut 56% 10.87 ± 5.56 4.80 44.16%

Create Media Project 60% 13.67 ± 5.25 7 51.20%
Add transition 60% 10.67 ± 4.03 4 37.49%
Crop by Timestamp 60% 11.00 ± 5.66 5 45.45%
Add Sticker 40% 12.00 ± 8.00 4 33.33%
Crop by Content 60% 7.00 ± 1.41 4 57.14%

Meitu 44% 12.36 ± 3.34 8.00 64%

Apply Filter 60% 14.67 ± 2.36 7 47.72%
Cutout 60% 9.33 ± 1.89 5 53.59%
Add Sticker 40% 9.50 ± 0.50 8 84.21%
Create Collage 40% 16.00 ± 2.00 12 75.00%
Add Frame 20% 13.00 ± 0.00 7 53.85%

Feishu 56% 7.50 ± 4.50 4.00 46.07%

Create Appointment 40% 8.00 ± 1.00 4 50.00%
Message Contact 40% 6.00 ± 1.00 3 50.00%
Send file 20% 11.00 ± 0.00 7 63.64%
Set User Status 100% 14.60 ± 7.50 3 20.55%
Start Video Conference 80% 4.50 ± 2.60 3 46.15%

are described in Appendix D. Therefore, here we emphasize any application-specific differences or
customization.

To apply CRADLE to the target application set described in this appendix, we start with base com-
mon prompts, and customize those prompts for specific modules, if necessary, to handle application-
specific characteristics. For example, for CapCut we add few-shot examples for Self-Reflection, to
let it properly perform success detection, as the application UI by itself is non-standard and some-
times provides little post-action feedback to users, making it harder for the backend model to deter-
mine action success.

Information Gathering. Noticeably, GPT-4o presents the same limitations in both spatial reasoning
(e.g., confusing up/down, left/right) and image understanding identifying specific UI items or the
state of the forefront GUI, across all applications.

To help mitigate such issues, we perform augmentation on the captured screenshots similarly to the
Set-of-Mark (SoM) approach Yang et al. (2023a), by only utilizing SAM Kirillov et al. (2023) to
generate potential UI items bounding boxes and assign them numerical tags. Our SoM-like augmen-
tation differs from recent agent-related work (e.g., (Zhang et al., 2024; Xie et al., 2024)), which use

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

OS-specific APIs to draw ground-truth bounding boxes for interactable elements (plus UI structure
info, like types and element tree) to the results, while CRADLE relies only on image input and the
segmentation output as augmentation. To make this distinction explicit, we call our augmentation
approach SAM2SOM 10. Figure 47 illustrates the difference. While our approach produces many
more potential bounding boxes, it is more general by relying only on a screenshot (or video frame).

To ensure all bounding box labels are consistently positioned, CRADLE’s SAM2SOM implements
two rendering styles, as shown in Figure 45 first and second rows. In the standard style, we pad the
SAM2SOM-enhanced image when showing the label IDs in the upper left corner of the bounding
boxes (to prevent labels from hiding the contents of small areas), so no numerical label ID is drawn
outside the image area). In the uniform style, all bounding boxes utilize single-color borders with
labels in black text over white background, placed within the bounding box area (top left corner).

Moreover, in specific situations we may still need to refine SAM2SOM’s output further. For exam-
ple, in the Feishu case, we observe that watermarks generated by the software affect the segmen-
tation negatively, complicating GPT-4o’s selection of the correct bounding boxes to interact with.
Therefore, we implement a simple filtering method for such watermarks. This filter is enabled only
in the Feishu benchmark and, as shown in Figure 46, can greatly reduce the number of unnecessary
bounding boxes (from 216 to 166, in this example).

Figure 44: Sample augmented image w/ drawn mouse
pointer. Zoom overlay shows the image difference.

In addition to using the SAM2SOM method for
image augmentation, we also redraw the mouse
pointer not present in captured screenshots in
a more prominent magenta color based on its
screen position, to emphasize both its presence
and position for image understanding (e.g., Fig-
ure 44). The augmentation process in Informa-
tion Gathering can then result in four versions
of a screenshot: a) base image, b) SAM2SOM
image, c) base image with mouse pointer, and
d) SAM2SOM image with mouse pointer.

Self-Reflection. As the applications in the soft-
ware set are much less dynamic than complex
games, there is no need to send multiple video
frames to Self-Reflection. For the software ap-
plications, pre- and post-action screenshot usually suffice, i.e., one image before and one image after
an action is executed. Digital games often have continuous and dynamic environments that require
multiple frames to properly capture the full context and thus help the backbone LMMs understand
what happened. In contrast, software operations are typically more discrete and static, where the
state before and after an action provides sufficient information for most analysis.

Nonetheless, we find that irrespective of images used, GPT-4o sometimes can have difficulty deter-
mining the success of certain tasks. For example, when downloading a file on Chrome, after either
pressing ‘Ctrl + S’, or using a ‘Save’ menu, the agent must also press ‘Enter’ or click the ‘Save’
button to complete the task. However, GPT-4o often assumes the task is complete when the dialog
opens and before this final step. Similar cases of incorrect conclusion happen when an action cor-
rectly closes a new panel or dialog. To address this category of issues, we add mandatory reasoning
rules in the prompt for the Self-Reflection module to help mitigate such mistakes. If for specific
applications this still remains an issue, we can use few-shot image examples to reinforce how the
backend model should correctly judge success.

10We do not claim the method itself as a core contribution. SAM2SOM is used to illustrate a possible extra
capability of the backend model, as mitigation for current spatial reasoning issues.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

(a) CapCut: Base image (b) CapCut: Base image w/ SAM2SOM

(c) Meitu: Base image (d) Meitu: Base image w/ SAM2SOM

Figure 45: Image examples of the two SAM2SOM augmentation styles. As CapCut’s UI (top row) has very
dark background, we utilize single-color borders with IDs in black text over white background, placed within
the bounding box area. Other application software and OSWorld use the "standard" SAM2SOM multi-color
style, as shown for Meitu (bottom row).

(a) SAM2SOM image w/ watermarks (b) SAM2SOM image w/o watermarks

Figure 46: Examples of filtering watermark in Feishu. The number of labels is greatly reduced from 216 to
166.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

(a) Chrome window (b) CRADLE SAM2SOM output (c) OSWorld SOM image output

(d) GIMP window (e) CRADLE SAM2SOM output (f) OSWorld SOM image output

Figure 47: Comparison of CRADLE’s visual-only SAM2SOM and OSWorld’s API-based SOM image results.
Chrome: 78 vs. 53 bounding boxes; GIMP: 227 vs. 98 bounding boxes.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

Figure 48: Shortcuts screen in CapCut.

Skill Curation. In software tasks, direct skill
generation was not necessary, as UI operations
generally map closely to specific mouse or key-
board actions, making them more straightfor-
ward. In contrast, digital game environments
involve continuous interactions and decision-
making, raising new previously undiscovered
information, and requiring the development of
new skills to handle novel scenarios and adapt
to changing contexts.

However, we do add some additional pre-
defined skills, on a per-application basis, for
specific knowledge like less-widely known key-
board shortcuts which could be learnt from the
application. For example, CapCut’s shortcuts
screen, shown in Figure 48, or toolbar/icon
processing output similarly to the process de-
scribed for Cities: Skylines. Moreover, we also
introduce pre-defined complex skills to demonstrate CRADLE’s capability to leverage tools into
novel functionality, such as using GPT-4o as a tool to extract information from a video to complete
task 5 in CapCut.

When dealing with shortcuts, e.g., as alternatives to mouse operations, it may be the case that specific
shortcuts require "calibration". For example, using the keyboard to navigate the timeline in CapCut
(as seen in the bottom area of Figure 45b) requires mapping the keyboard shortcut (‘Alt + arrow
keys’) to pixels or time, which we perform a priori and use the mapping in the pre-defined skill
go_to_timestamp(seconds).

Task Inference. During the execution of an application task, we let GPT-4o decompose the execu-
tion strategy for the next step based on the overall task description and the subtask description. If
the previous task decomposition is found to be unreasonable, a new decomposition plan should be
proposed and this is evaluated at each iteration round.

Action Planning. To enable usage of SAM2SOM, for Action Planning, we insert new mouse skills,
which mirror existing coordinates-based mouse skills (i.e., that use x,y coordinates), but take a
bounding box numerical label as an argument.

Furthermore, unlike in game playing, which focuses on performing one action per turn, when ma-
nipulating software CRADLE can be configured to perform two actions in sequence and thus lower
interaction frequency requirements to the backend model. We find that GPT4-o can usually correctly
output two-step compound actions. For example, when performing a search in the browser, it can
typically output two consecutive action steps, e.g., type_text(text=‘{user_query}’), followed by the
required press_key(key=‘enter’).

Action Execution. While atomic and composite skills can involve complex operations, Action
Execution happens over the regular CRADLE action space, as shown in Table 7. For example,
during Action Execution, a post-processing step converts the bounding box calls into regular mouse
actions, using the centroid of a given bounding box as its coordinates for regular mouse operations.

Tool usage, like calling GPT-4o separately to analyze the contents of a media file, is not considered
as an action, as tools do not operate on the environment, only as code steps inside a composite skill.

I.5 CASE STUDIES

I.5.1 TASK HARDNESS

It is well known that the difficulty of task completion can vary widely between humans and agents.
The results in Table 15 help illustrate some such cases. While many application operation issues
may be attributed to UI variety or non-conformity, that is not necessarily the main source of task
hardness (i.e., how unexpectedly complex performing an operation is).

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Here we use Outlook, a well-known e-mail client, as a case study to discuss how different factors
affect CRADLE task completion in real-world application situations (the exact version used is listed
in Table 12). Taking task 1 ("Create a new e-mail to {email_address} with the subject ‘Hello friend’
and send it.") as an example, a success rate of 40% and efficiency of 45.45% may seem lower than
expected.

Such a task could be reasonably broken down into steps like: a) Create new e-mail, b) Add recipient,
c) Write title, and d) Send e-mail. And the Task Inference module performs such decomposition
consistently. However, Action Planning needs to define specific actionable operations with mouse
and keyboard to execute each step.

Firstly, CRADLE needs to decide based on the knowledge and visual understanding capabilities
available to it to either use a known keyboard shortcut (e.g., ‘Ctrl + N’) or to click at the "New mail"
button. In our experiments, CRADLE tends to chose clicking on the button, which is then affected by
the previously discussed issues that led to the integration of SAM2SOM into the framework. Issues
in spatial reasoning issues or icon/image understanding may cause a few incorrect click attempts.

Adding the recipient to the e-mail requires typing an address at the appropriate location, i.e., the
typical "To" field. This can be accomplished in multiple ways, mainly by typing the address on the
UI next to the "To" item or choosing a pre-existing contact.

Clicking on the "To" button triggers the UI to search and select a pre-existing contact e-mail address
(with no option of adding a new contact entry, which requires first accessing the "Contacts" menu,
outside of "Mail"). Moreover, the UI interaction sequence to select an existing contact can be unin-
tuitive even to experienced users, requiring a minimum of four steps, at each step offering multiple
UI options that go away from contact selection. Attempting this flow usually leads CRADLE to
exceed the maximum number of allowed step as it gets confused by the UI design.

Nonetheless, choosing the simpler alternative of typing the e-mail address (assuming the correct text
field is selected) triggers assistive UI pop-ups (as shown in Figure 50), which lead GPT-4o to falsely
conclude the e-mail address is either already typed at the correct location or that it is duplicated
and needs to be edited/removed. Furthermore, the pop-ups partially hide the subject area, making it
harder for CRADLE to choose the next UI item to interact with for the next task step.

Similar issues with positioning and correctly identifying the typed subject text can also occur, but at
a much smaller frequency.

Lastly, completing the task and sending the e-mail requires step similar to creating a new message.
But determining send success requires additional attention/reflection as not all cases of the "Send
mail" interface disappearing indicate a successful send (e.g., clicking on an unrelated e-mail on the
Inbox or closing the current window pop-up).

The Self-Reflection module plays a key role in moving task completion forward by detecting failed
attempts at executing each sub-task and providing rationale for failures, even if Information Gath-
ering and Action Planning make repeated mistakes. Such feedback from Self-Reflection and allows
Action Planning to tune its process and move ahead.

I.5.2 TOOL USE IN CAPCUT

Some general computer control tasks may require additional capabilities during execution prepara-
tion that can benefit from external tools to enhance agent abilities.

When performing video editing, like in CapCut, a user may need to determine the precise frames
to operate on based on video content. For such scenarios, CRADLE can easily leverage tool-using
skills, like the LMM’s ability to understand actions in a sequence of video frames, enabling it to
comprehend video content and identify the exact frames for editing.

We exemplify such tasks with task 5 ("Crop the video when the ball enters the goal, and then
export the video") for CapCut, as illustrated in Figure 49. This means our agent can effectively
execute tool usage to find the specific frame where "the ball enters the goal". After the first
round of Task Inference, CRADLE decomposes the task into three subtasks: 1. Identify the ex-
act frame, 2. Crop the video, and 3. Export the video. Action Planning can then plan to execute

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

‘get_information_from_video(event)’ from our curated skills and generate "ball enters the goal" as
its required argument for execution.

In this skill, we input a frame set of the video at 1 fps to identify the specific frame where the event
occurs. The response is then recorded in Episodic Memory to ensure that subsequent operations can
accurately utilize it and target the moment when the action occurs. Across subsequent iterations,
CRADLE can then correctly plan and execute the remaining necessary actions for task completion:
‘go_to_timestamp(seconds=8)’, ‘delete_right()’, and ‘export_project()’].

We have integrated few-shot learning into Self-Reflection to ensure CRADLE recognizes that follow-
ing export_project(), the expected screen is the CapCut application main window. This information
allows it to verify the successful execution of the task, leading to success detection for the overall
task.

Information Gathering Action PlanningTask Inference Skill CurationSelf-Reflection

Last Action: go_to_timestamp(seconds=8)
 delete_right()
The last executed action was successful
because the portion of the video after the 8th
second has been deleted as required.
Success Detection Flag: False. The final step
of exporting the video has not been
completed yet.

Retrieved Skills:
['export_project','press_enter','cl
ose_window','go_to_timestamp'...]

The current subtask is to export
the video to complete the task.

Image Same Flag: False
Mouse Position Same Flag: False
Image Description: The timeline at the
bottom shows a video clip that is
currently at the 8-second mark.

export_project()

Last Action: get_information_from_video
 (event="ball enters the goal")
The last executed action was successful
because it correctly identified the frame where
the ball enters the goal as the 8th second.
Success Detection Flag: False. The steps to
crop the video at this point and export it have
not been completed yet.

Retrieved Skills:
['go_to_timestamp','delete_right','ge
t_information_from_video','mouse_drag
_with_label'...]

The current task is to crop the video at the
8th second where the ball enters the goal.

Image Same Flag: True
Mouse Position Same Flag: True

Task Description: Crop the video when the ball enters the goal, and then export the video.

1. Identify the exact moment when
the ball enters the goal in the video.
2. Crop the video at that point.
3. Export the cropped video.

get_information_from_video
(event="ball enters the goal")

Retrieved Skills:
['get_information_from_video'
,'go_to_timestamp','press_key
','mouse_drag_with_label'...]

Bounding Boxes Description:
[…, 14: Media,…, 21: Templates,…, 145:…]

Ex
ec

ut
e

Ex
ec

ut
e

Image Description: CapCut shows
various UI elements, including a
timeline, media library, and preview
windows. It contains a video clip that
appears to capture a soccer game.

go_to_timestamp(seconds=8)
delete_right()

The second of "ball enters the goal" is 8.

Frame Set at 1fps

Prompt:
… Please answer at which
frame does "<$event$>" happen,
only answer with a number …

Ex
ec

ut
e

Figure 49: Showcase of Task 5 ("Crop the video when the ball enters the goal, and then export the new video")
in CapCut.

I.6 LIMITATIONS OF GPT-4O

Besides the previously discussed limitations of GPT-4o, it is important to highlight a couple other
GUI grounding issues.

Non-standard UI and Noise.

Non-standard UI, be it in visual style or in behaviour, can lead GPT-4o to misinterpret UI item
functionality and application context state. The same applies to visual noise in the form of update
pop-up, external contents (e.g., ads), new e-mail/chat messages, etc.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

(a) Pre-existing contact dropdown (b) Contact search dropdown (c) Contact suggestions

Figure 50: Visual behaviour in Outlook that may lead GPT-4o to visual understanding mistakes.

Figure 51: Different CapCut pop-ups

CapCut is affected by both factors, as further illustrated in Figure 51. Moreover, its UI includes non-
standard layouts involving precise positioning and drag/dropping. Lack of such prior knowledge
by GPT4-o and differences in behaviour between similar functions, may also lead to mistakes in
trying to decompose actions to perform. E.g., "Add an effect" requires very different UI-interaction
depending on details. Users can add effects in three different ways: i) dragging an effect to the
timeline; ii) click the plus sign in a given effect in the effects panel, which adds the effect to the
current place on the timeline; and iii) drag an effect directly onto a video and apply the effect to the
entire video.

Visual Context Detail.

GPT-4o still struggles with detailed visual understanding and over-relies on textual information or
hallucinations, which results in insufficient attention to visual context and leads to understanding
and reasoning mistakes.

One such common example is GPT-4o declaring a dialog state to be ready to press a button like
"Save", while ignoring no file name was provided, even if GPT-4o has been prompted to check for
such situations. The same applies to it suggesting keyboard shortcuts to open menus that do not exist
in the image being interpreted, e.g., trying to press ‘Alt + F’ to open the "File" menu on a screenshot
that has no "File" menu.

Lastly, this lack of attention to context details can also affect understanding the outcome of opera-
tions over visual content, leading to incorrect estimation of operation success, e.g., when retouching
an image or deciding between a circle and a heart for a shape form.

J OSWORLD

J.1 INTRODUCTION TO OSWORLD

OSWorld is a scalable, computer environment designed for multimodal agents. This platform pro-
vides a unified environment for assessing open-ended computer tasks involving various applications.

J.2 OSWORLD TASKS

OSWorld is a benchmark suite of 369 real-world computer tasks (mostly on an Ubuntu Linux en-
vironment, but including a smaller set on Microsoft Windows) collected from authors and diverse

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Files 2.2%
Settings 2.4%Terminal 1.9%

Visualization 1.9%
Proc

es
sin

g 7
.0%

Ta
b.

 fo
rm

at
tin

g
3.

8%

Sl
id

e
se

tti
ng

s
4.

1%
Slide editing 8.7%

Doc. settings 1.6%

Doc. editing 4.6%Image ops 7.0%

Configuration 3.8%

Code assist 2.4%

File ops 8.1%

Mult
im

ed
ia

4.6
%

D
at

a
an

al
ys

is
 8

.9
% M

isc. 5.7%

Settings 5.7%
Info query 4.1%

Shopping 2.7%

Account ops 1.6%

Email ops 2.4%

Video control 4.6%

OS 6.5%

31.7%

13.3%

Workflow

27.4%

Daily

21.1%

Office

Professional

Figure 52: Task instructions distribution in OSWorld Xie et al. (2024)

sources such as forums, tutorials, guidelines. Each task is annotated with a natural language instruc-
tion and a manually crafted evaluation script for scoring.

J.3 IMPLEMENTATION DETAILS

The OSWorld environment uses a virtual machine that takes in Python scripts based on PyAutoGUI
for actions and provides screenshots and an accessibility tree for observations. We strictly follow
the GCC settings. Our agent only uses the screenshot as input and outputs Python scripts using
PyAutoGUI methods to control the keyboard and mouse (these operations are analogous to the
regular action space for CRADLE). All 369 tasks use a same set of prompt templates.

We employ GPT-4o as the framework’s backbone model. We use the default experimental settings,
as in OSWorld’s baseline agent. The executable action space is the same as the OSWorld setting,
the atomic skills are as follows:

• Mouse Actions
– move_mouse_to_position(x, y): Moves the mouse to a specified position on the screen.
– click_at_position(x, y): Performs a click at a specified position.
– mouse_down(button): Presses the specified mouse button.
– mouse_up(button): Releases the specified mouse button.
– right_click(x, y): Right-clicks at the specified position.
– double_click_at_position(x, y): Double-clicks at the specified position.
– mouse_drag(x, y): Drags the cursor to the position.
– scroll(direction, amount): Scrolls the mouse wheel up or down by a specified amount.

• Keyboard Actions
– type_text(text): Types the specified text.
– press_key(key): Presses and releases the specified key.
– key_down(key): Holds a specified key.
– key_up(key): Releases a specified key.
– press_hotkey(keys): Presses a combination of keys and releases them in the opposite

order (e.g., Ctrl+C), useful for shortcuts.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

• Task Status

– task_is_not_feasible(): Indicates that the task cannot be completed, providing feed-
back for scenarios where the agent encounters infeasible tasks.

Many of these basic skills require GPT-4o to directly output an (x,y) position based on a screenshot.
Given that the current GPT-4o is not able to achieve such precise control, we use a grounding tool
to augment the screenshot. This way, GPT-4o only needs to choose an object ID. With the object ID
and the bounding box of the object, we automatically convert it to the (x,y) position needed for skill
execution. Instead of having GPT-4o directly choose the executable skills that require (x,y) position
input, we provide several skills that only require a label ID as input for GPT-4o.

• Actions with Grounding Tools

– click_on_label(label_id): Clicks on a specified label in the grounding result.
– double_click_on_label(label_id): Double-clicks on a specified label in the grounding

result.
– hover_over_label(label_id): Moves the mouse to hover over a specified label in the

grounding result.
– mouse_drag_to_label(label_id): Drags the mouse to a specified label in the grounding

result.

Information Gathering. Tasks in OSWorld require pixel-level mouse control. While GPT-4 ex-
hibits grounding ability, using tools like SAM can further augment the screenshot with the grounding
of icons in complex computer control tasks. The bounding box is helpful for GPT-4 to understand
the occurrence of objects on the screen and can also be used to calculate the precise position for
mouse control.

Figure 53: Augmented screenshot using CRADLE’s SAM2SOM

Self-Reflection. The reflection module evaluates whether previous actions have been successfully
executed and determines if the entire task was successful. The self-reflection module is important
for tasks in OSWorld, which are sequential decision-making problems that require re-planning based
on the current state and previous actions. The self-reflection module also helps to identify infeasible
tasks.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

J.4 APPLICATION TARGET AND SETTING CHALLENGES

Evaluations within OSWorld reveal notable challenges in agents’ abilities, particularly in GUI un-
derstanding and operational knowledge Xie et al. (2024). To further complete tasks in OSWorld,
the agent needs advanced visual capabilities and robust GUI interaction abilities. Furthermore, the
agents face challenges in leveraging lengthy raw observation and action records. The next-level ap-
proach encompasses designing more effective agent architectures that augment the agents’ abilities
to explore autonomously and synthesize their findings.

J.5 CASE STUDIES

J.5.1 INFORMATION GATHERING

Figure 54: Case Study of robust and precise GUI interaction via information gathering

With SAM as the grounding tool, we prompt the agent to identify the objects in each bounding box
to determine the exact position of each object. As shown in Figure 54, the agent recognized the GUI
element in box 32 as the Save button. In the planner, the agent chose to click on box 32 to save the
PDF, resulting in success.

J.5.2 PLANNING WITH SELF-REFLECTION

We showcase how self-reflection combined with planning helps the agent complete a task by coming
up with an alternative plan and validating its success.

The current task instruction is "Copy the file ‘file1’ to each of the directories ‘dir1’, ‘dir2’, ‘dir3’."
As shown in Figure 55, the agent made two attempts at implementing the command but encountered
errors and warnings.

As shown in Figure 56, after observing the errors and warnings in the previous steps, the agent
checked the files in the directory to debug. After confirming the file structure, the agent tried differ-
ent commands.

As shown in Figure 57, after executing the new command without receiving an error message, the
agent checks whether the files have been copied to the folders. After observing the result, it marks
this task as a success.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Figure 55: The agent fails to copy the files due to using incorrect commands

Figure 56: The agent reflects on the errors, checks the file structure and tries to debug

Table 16: Detailed success rates divided by domains: OS, LibreOffice Calc, LibreOffice Impress, LibreOffice
Writer, Chrome, VLC Player, Thunderbird, VS Code, GIMP, and Workflow (i.e., involves multiple applica-
tions).

Method OS
(24)

Calc
(47)

Impress
(47)

Writer
(23)

VLC
(17)

TB
(15)

Chrome
(46)

VSC
(23)

GIMP
(26)

Workflow
(101)

GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58
GPT-4o+SoM 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60

CRADLE 16.67 0.00 4.65 8.70 6.53 0.00 8.70 0.00 38.46 5.48

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

Figure 57: The agent checks if the files have already been copied

J.6 QUANTITATIVE EVALUATION

The detailed success rates for each application are listed in Table 16. We followed the same experi-
mental settings as the OSWorld paper, running the experiment only once. Our results show that our
agent performs better in the Chrome and GIMP domains. However, the difference in performance in
the OS, Writer, and VSC domains is less statistically significant due to the smaller number of tasks.
While improved information gathering and self-reflection empowered the agent in these domains,
the complex pipeline and limitations of current grounding tools and GPT-4 hindered performance in
domains like VLC and VSC. We identify these limitations as future directions for implementing the
agent in real-world scenarios.

K CRADLE PROMPTS

Here we exemplify the utilized prompts, for each module in the framework. All prompts and cus-
tomizations are included in the relevant branch in CRADLE’s open-source repository in GitHub 11.

K.1 PROMPTS FOR RDR2

Prompt 1: RDR2: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. Your advanced capabilities enable you to process and
interpret gameplay screenshots and other relevant information.

<few_shots>

<$image_introduction$>

Current task:
<$task_description$>

Target_object_name: Assume you can use an object detection model to
detect the most relevant object for completing the current task if

11https://cradle2024acc.github.io/Cradle

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

needed. What object should be detected to complete the task based on
the current screenshot and the current task? You should obey the
following rules:

1. The object should be relevant to the current target or the
intermediate target of the current task. Just give one name without
any modifiers.

2. If no explicit weapon is specified on the weapon radial menu,
prioritize choosing ’gun’ as the weapon.

3. If no explicit shoot target is specified, prioritize choosing ’person’
as the target.

4. If no explicit item is specified, only output ’null’.
5. If the object name belongs to the person type, replace it with ’person

’.
6. If there is no need to detect an object, only output "null".
7. If you are on the trade, map, inventory, or satchel interfaces, only

output ’null’.

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

Description: Please describe the screenshot image in detail. Pay
attention to any maps in the image, if any, especially critical icons
, red paths to follow, or created waypoints. If there are multiple
images, please focus on the last one.

Screen_classification: Please select the class that best describes the
screenshot among "Inventory", "Radial menu", "Satchel", "Map", "Trade
", "Pause", and "General game interface without any menu". Output the
class of the screenshot in the output of Screen_classification.

Reasoning_of_screen: Why was this class chosen for the current screenshot
?

Movement: Does the current task require the character to go somewhere?

Noun_and_Verb: The number of nouns and verbs in the current task.

Task_horizon: Please judge the horizon of the current task, i.e., whether
this task needs multiple or only one interaction.

There are two horizon types: long-horizon and short-horizon. For long-
horizon tasks, the output should be 1. For short-horizon tasks, the
output should be 0. You should obey the following rules:

1. If the task contains only nouns without verbs, it is short-horizon.
2. If the task contains more than one verb, it is long-horizon.
3. If the task requires the character to go somewhere, it is long-horizon

.
Short-horizon tasks are sub-goals during a long-horizon task, which only

need one interaction. There are some examples of short-horizon tasks:
1. Pick up something: To complete this task, the character needs to

execute the action "pick up" only once, so it is short-horizon.
2. Use or press [B] key: The character needs to press the key [B] only

once to talk, so it is short-horizon.
3. Talk to somebody: The character needs to press a certain button once

to complete this task, so it is short-horizon.
Long-horizon tasks are long-term goals, which usually need many

interactions. There are some examples of long-horizon tasks.
1. Go outside: The character should go outside step by step, so it is

long-horizon.
2. Approach something: The character should move closer to the target

step by step, so it is long-horizon.
3. Keep away from something, shoot, take down, or battle with something:

The character must engage in a series of interactions, so it is long-
horizon.

Reasoning_of_task: Why do you make such a judgment of task_horizon?

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

You should only respond in the format described below and not output
comments or other information.

Target_object_name:
Name
Reasoning_of_object:
1. ...
2. ...
...
Description:
The image shows...
Screen_classification:
Class of the screenshot
Reasoning_of_screen:
1. ...
2. ...
...
Movement:
Yes or No
Noun_and_Verb:
1 noun 1 verb
Task_horizon:
1
Reasoning_of_task:
1. ...
2. ...
...

Prompt 2: RDR2: Gather Text Information prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. Your advanced capabilities enable you to process and
interpret gameplay screenshots and other relevant information.

<$image_introduction$>

Information: List all text prompts on the screenshot from the top to the
bottom, even the text prompt is one word.

All information should be categorized into one or more kinds of <
$information_type$>. If you think a piece of information is both "A"
and "B" categories, you should write information in both "A" and "B"
categories. For example, "use E to drink water" could both be "Action
Guidance" and "Task Guidance" categories.

Item_status: The helpful information to the current context in the game,
such as the cash, amount of ammo, current using item, if the player
is wanted, etc. This content should be pairs of status names and
their values. For example, "cash: 100$". If there is no on-screen
text and no item status, only output "null".

Environment_information: The information about the location, time,
weather, etc. This content should be pairs of status names and their
values. For example, "location: VALENTINE". If there is no on-screen
text and environment information, only output "null".

Notification: The game will give notifications showing the events in the
world, such as obtaining items or rewards, completing objectives, and
becoming wanted. Besides, it also contains valuable notifications of
the game’s mechanisms, such as "Health is displayed in the lower

left corner". The content must be the on-screen text. If there is no
on-screen text or notification, only output "null".

Task_guidance: The content should obey the following rules:

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

1. The content of task guidance must be an on-screen text prompt,
including the menu and the general game interface.

2. The game will give guidance on what should be done to proceed with the
game, for example, "follow Tom". This is task guidance.

3. The game will give guidance on how to perform a task using keyboard
keys or mouse buttons, for example, "use E to drink water". This is
task guidance.

4. If no on-screen text prompt or task guidance exists, only output "null
". Never derive the task guidance from the dialogue or notifications.

Action_guidance: The game will give guidance on how to perform a task
using keyboard keys or mouse buttons; you must generate the code
based on the on-screen text. The content of the code should obey the
following code rules:

1. You should first identify the exact keyboard or mouse key represented
by the icon on the screenshot. ’Ent’ refers to ’enter’. ’RM’ refers
to ’right mouse button’. ’LM’ refers to ’left mouse button’. You
should output the full name of the key in the code.

2. You should refer to different examples strictly based on the word used
to control the key, such as ’use’, ’hold’, ’release’, ’press’, and ’

click’.
3. If ’use’ or ’press’ is in the prompt to control the keyboard key or

mouse button, io_env.key_press(’key’, 2) or io_env.mouse_click(’
button’, 2) must be used to act on it. Refer to Examples 1, 2, and 3.

4. If there are multiple keys, io_env.key_press(’key1,key2’, 2) must be
used to act on it. Refer to Example 4.

5. If ’hold’ is in the prompt to control the keyboard key or mouse button
, it means keeping the key held with io_env.key_hold or the button
held with io_env.mouse_hold (usually indefinitely, with no duration).
If you need to hold it briefly, specify a duration argument. Refer

to Examples 5 and 6.
6. All durations are set to a minimum of 2 seconds by default. You can

choose a longer or shorter duration. If it should be indefinite, do
not specify a duration argument.

7. The name of the created function should only use phrasal verbs, verbs,
nouns, or adverbs shown in the prompt and should be in the verb+noun
or verb+adverb format, such as drink_water, slow_down_car, and

ride_faster. Note that words that do not show in the prompt are
prohibited.

This is Example 1. If "press" is in the prompt and the text prompt on the
screenshot is "press X to play the card", your output should be:

‘‘‘python
def play_card():

"""
press "x" to play the card
"""
io_env.key_press(’x’, 2)

‘‘‘
This is Example 2. If the instructions involve the mouse and the text

prompt on the screenshot is "use the left mouse button to confirm",
your output should be:

‘‘‘python
def confirm():

"""
use "left mouse button" to confirm
"""
io_env.mouse_click("left mouse button")

‘‘‘
This is Example 3. If "use" is in the prompt and the text prompt on the

screenshot is "use ENTER to drink water", your output should be:
‘‘‘python
def drink_water():

"""
use "enter" to drink water

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

"""
io_env.key_press(’enter’, 2)

‘‘‘
This is Example 4. If "use" is in the prompt and the text prompt on the

screenshot is "use W and J to jump the barrier", your output should
be:

‘‘‘python
def jump_barrier():

"""
use "w" and "j" to jump the barrier
"""
io_env.key_press(’w,j’, 3)

‘‘‘
This is Example 5. If "hold" is in the prompt and the text prompt on the

screenshot is "hold H to run", your output should be:
‘‘‘python
def run():

"""
hold "h" to run
"""
io_env.key_hold(’h’)

‘‘‘
This is Example 6. If the instructions involve the mouse and the text

prompt on the screenshot is "hold the right mouse button to focus on
the target", your output should be:

‘‘‘python
def focus_on_target():

"""
hold "right mouse button" to focus
"""
io_env.mouse_hold("right mouse button")

‘‘‘
This is Example 7. If "release" is in the prompt and the text prompt on

the screenshot is "release Q to drop the items", your output should
be:

‘‘‘python
def drop_items():

"""
release "q" to drop the items
"""
io_env.key_release(’q’)

‘‘‘

Dialogue: Conversations between characters in the game. This content
should be in the format of "character name: dialogue". For example, "
Arthur: I’m fine". If there is no on-screen text or dialogue, only
output "null".

Other: Other information that does not belong to the above categories. If
there is no on-screen text, only output "null".

Reasoning: The reasons for classification for each piece of information.
If the on-screen text prompt is an instruction on how to perform a task

using keyboard keys or mouse buttons, it should also classified as
action guidance and task guidance.

For action guidance, which code rules should you follow based on the word
used to control the key or button, such as press, hold, release, and
click?

The information should be in the following categories, and you should
output the following content without adding any other explanation:

Information:
1. ...
2. ...
...

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

Reasoning:
1. ...
2. ...
...
Item_status:
Item_status is ...
Environment_information:
Environment information is ...
Notification:
Notification is ...
Task_guidance:
Task is ...
Action_guidance:
‘‘‘python
Python code to execute
‘‘‘
‘‘‘python
Python code to execute
‘‘‘
...
Dialogue:
Dialogue is ...
Other:
Other information is ...

Prompt 3: RDR2: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. Your advanced capabilities enable you to process and
interpret gameplay screenshots and other relevant information. Your
task is to examine these inputs, interpret the in-game context, and
determine whether the executed action takes effect.

Current task:
<$task_description$>

Last executed action:
<$previous_action$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Reasoning for the last action:
<$previous_reasoning$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the last executed action not based on the sequential frames?
2. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the action involves moving forward, it is considered unsuccessful

only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2025

3. If the last action is not executed successfully, what is the most
probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- Not holding enough time should not be considered in this part.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated at the current place.
- If it is a movement action, the most probable cause was that you were

blocked by seen or unseen obstacles.
- If there is an error report, analyze the cause based on the report.

You should only respond in the format as described below:
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 4: RDR2: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Red Dead
Redemption 2’ on the PC, equipped to handle a wide range of tasks in
the game. You will be sequentially given <$event_count$> screenshots
and corresponding descriptions of recent events. You will also be
given a summary of the history that happened before the last
screenshot. You should assist in summarizing the events for future
decision-making.

The following are <$event_count$> successive screenshots and
corresponding descriptions:

<$image_introduction$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

Current task:
<$task_description$>

Info_summary: Based on the above input, please make a summary from the
screenshots with descriptions and the history in no less than 10
sentences, following the rules below.

1. Summarize the tasks from the history and the current task, with a
special note on the method of crucial press operations.

2. Summarize the entities and behaviors mentioned in the successive
descriptions.

3. If entities and behaviors in the history and screenshots are missed in
the descriptions, please add them to the summarization.

4. Organize the summarization as a story in order of time, including the
past entities and behaviors.

5. Only give descriptions; do not provide suggestions.

Entities_and_behaviors: Entities and behaviors which are summarized, e.g
., The entities include the player’s character, the target character,
and horses for both the player and the target. The behaviors consist
of the player character riding horseback, following the target on

horseback, and moving forward to maintain a distance behind the
target.

The output should be in the following format:
Info_summary:
The summary is...
Entities_and_behaviors:
The summary is...

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2025

Prompt 5: RDR2: Action Planning prompt.

You are a helpful AI assistant integrated with ’Red Dead Redemption 2’ on
the PC, equipped to handle various tasks in the game. Your advanced

capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current task:
<$task_description$>

Memory examples:
<$memory_introduction$>

<few_shots>

<$image_introduction$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$info_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

Minimap information:
<$minimap_information$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the game. You should respond to me with
:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the question number 13:
1. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are open. You should first describe
each item in the screen line by line, from the top left and moving
right. Is the target item in the current screen?
2. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are open. Which item is selected
currently?

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2025

3. Only answer this question when the character is visible in the
screenshot of the current step. Where is the character in the
screenshot of the current step?
4. Where is the target in the screenshot of the current step based on
the task description, on the left side or on the right side? Does it
appear in the previous screenshots?
5. Are there any bounding boxes with coordinates values and object
labels, such as "door x = 0.5, y = 0.5", shown in the screenshot? The
answer must be based only on the screenshot of the current step, not
on any previous steps. If the answer is no, ignore the questions 6

to 8.
6. You should first describe each bounding box, from left to right.
Which bounding box is more relevant to the target?
7. What is the value x of the most relevant bounding box only in the
current screenshot? The value is the central coordination (x,y) of
the central point of the box.
8. Based on the few shots and the value x, where is the relevant
bounding box in the current screenshot? Clearly on the left side,
slightly on the left side, in the center, slightly on the right side,
or clearly on the right side?
9. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are not open. Summarize the contents
of recent history, mainly focusing on the historical tasks and
behaviors.
10. Only answer this question when the radial menu, trade, map,
satchel or inventory interfaces are not open. Summarize the content
of self-reflection for the last executed action, and do not be
distracted by other information.
11. What was the previous action? If the previous action was a turn,
was it a left or a right turn? If the previous action was a movement,
were you blocked?
12. List conditions in action rule 12 and which condition is
satisfied. Only when you do not satisfy any conditions, summarize the
content of the minimap information.
13. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the

valid action set for the next step? You should analyze the effects of
the action step by step.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and to the previous skills already
executed, if any. You should also pay more attention to the following
action rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move(duration=1)". If it does not have a parameter,
just output the action, like "mount_horse()".
2. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the character
.
3. If the target is not on the radial menu, trade, satchel or
inventory interfaces, you MUST choose the skill ’view_next_page’. For
the map, ignore the skill ’view_next_page’.
4. If the minimap information exists, it may include angle
information for red points, yellow points, or yellow regions. Angle
information specifies the direction of the corresponding point or
area. A negative angle indicates the left side, while a positive
value signifies the right side. If the angle is 30, the corresponding
point or area is 30 degrees to the character’s right. If the angle

is -50, the corresponding point or area is 50 degrees to the
character’s left. Do not doubt the correctness of these angles; you
can refer to them when you approach these points or regions.

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2025

5. When you decide to control the character to move, if the relevant
bounding box is clearly on the left side in the current screenshot,
you MUST turn left with a big degree. If the relevant bounding box is
slightly on the left side in the current screenshot, you MUST turn

left with a small degree. If the relevant bounding box is clearly on
the right side in the current screenshot, you MUST turn right with a
big degree. If the relevant bounding box is slightly on the right
side in the current screenshot, you MUST turn right with a small
degree. If the relevant bounding box is on the central side of the
current screenshot, you can choose to move forward.
6. When you decide to control the character to move, if yellow
regions or yellow points exist in minimap information, they are
related to the current task or instruction. This implies that you
should approach within the yellow region or approach the yellow
points. You can refer to the corresponding angle information when
deciding to approach these regions or points. If red points exist in
the minimap information, they are also related to the current task or
instruction. This implies that you should turn towards them, and you
can also refer to the corresponding angle information.
7. When you decide to control the character to move, if minimap
information does not exist, the ’theta’ you use to turn MUST be more
than 10 degrees and less than 60 degrees.
8. When you decide to control the character to move, if you are in a
normal road condition, the ’duration’ you use to move forward should
be 1 second. If you have bad road conditions, such as snow, and grass
, that can slow you down, the ’duration’ you use to move forward
should be 2 seconds.
9. When you are exploring or searching a place, if you are leaving
the place, you MUST make a sharp turn to face the inside of the place
. Any values for degrees are allowed.
10. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place.
11. If upon self-reflection you think you were blocked, you MUST make
a moderate turn in the same direction as the previous turn action

and move forward, so that you can pass obstacles.
12. The conditions to ignore the minimap information for decision-
making are: 1. When self-reflection implies you were blocked. 2. When
you were inside the highlighted area in the minimap. If any of the

conditions satisfied, you must ignore the minimap information for
decision-making even if it is relevant to the current task.
13. When you are indoors, or the current task does not imply
following, you MUST not use the follow action.
14. When you are outdoors, and the current task implies following,
you MUST use the follow action.
15. If you were dead or the game failed, you MUST retry from the
checkpoint, and MUST NOT restart the mission.

You should only respond in the format described below, and you should not
output comments or other information:

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.2 PROMPTS FOR CITIES: SKYLINES

Prompt 6: Skylines: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Cities: Skylines’
on the PC, equipped to handle a wide range of tasks in the game. Your

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2025

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in detail
and then provide an overall image description. Pay attention to
anything related to the task. If there are specific features such as
characters or text, mention these as well.

Budget: Bank Balance is shown at the bottom of the screenshot.

Population: The population of the city is shown at the bottom of the
screenshot, next to the budget.

Error_message: If there are some in-game error messages, which are
usually in red color, such as "Space already occupied!", extract the
text, otherwise, only output "null".

Construction_information: If there is some in-game construction
information, which is usually in blue colors, such as "Construction
cost: 2500 Estimated production:0 m^3/week" and "Construction cost:
2500 Shoreline recommended", extract the text, otherwise, only output
"null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
The image shows...
Budget:
The amount of budget
Population:
The amount of population
Error_message:
The text of the error message
Construction_information:
The text of the construction information
Other:
Other information is

Prompt 7: Skylines: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Cities: Skylines’
on the PC, equipped to handle a wide range of tasks in the game. Your
advanced capabilities enable you to process and interpret gameplay

screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

Current coordinates:
<$coordinates$>

Last executed action for completing the subtask:

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2025

<$actions$>

Error message for the last executed action:
<$error_message$>

Construction information:
<$construction_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You MUST answer the following questions step by step to get
some reasoning based on the last action and sequential frames during
the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Is the construction information provided in the information shown
above? If yes, what is it?

3. Was the last executed action successful? Give reasons. You should
refer to the following rules:

- Buildings and roads cannot be built on the river.
- Water pumping station and water drain pipe need to be built as close as

possible to the river.
- If you are try_place a water pumping station and the construction

information provided above shows that the estimated production is 0 m
^3/week, then it means that it is not close enough to the river. So
you need to try_place to place the building to another place. If the
estimated production is not 0 m^3/week, or the construction
information is not provided, regard this action as a success. You
should only refer to the textual construction information instead of
extracting it from the sequential frames.

- If you are try_place a water drain pipe and the construction
information shows that shoreline is recommended. Then it means that
it is not close enough to the river. So you need to try_place to
place the building in another place.

- Roads are prohibited from crossing together and do not build roads on
water.

4. If the last action is not executed successfully, what is the most
probable cause? How to improve this action? You should give only one
cause and refer to the following rules:

- The reasoning for the last action could be wrong.
- If there is an error message for the last executed action provided in

the above information, analyze the cause based on the report,
otherwise, you should regard that there are no error messages. You
are not allowed to guess the error message by yourself.

5. Is the subtask completed? Give your reasons. You MUST remember that
action starts with "try_place" can NEVER complete the subtask. Only "
confirm_placement()" can make the building happen and complete the
task. If you want to make any confirmation, regard it as a success.

6. Do you think the subtask is reasonable? Give your reasons.

Success: You need to output whether the last action was executed
successfully or not.

- If the last action is successful, you should only output ’True’.
Otherwise, you should only output ’False’.

You should only respond in the format described below.
Reasoning:
1. ...
2. ...
3. ...
4. ...
5. ...

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2025

6. ...
...
Success:
True
...

Prompt 8: Skylines: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Cities: Skylines’
on the PC, equipped to handle a wide range of tasks in the game. You
will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current budget:
<$budget$>

Current population:
<$population$>

Last executed action:
<$actions$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Error message for the last action:
<$error_message$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

The task can be decomposed into the following subtasks:
1. Start from the Highway entry: Build a road from the highway entry in

grid (4, 2) vertically northwards towards grid (3,1).
2. Extend Horizontally to the Left (1,1): From the endpoint in grid (1,1)

, construct a road horizontally to the left, spanning across grids
(3,1) and (2,1), and ending at the center of grid (1,1).

3. Build a Road Down to the bottom of Grid (2,2): Start from grid (1,1)
and construct the road to the top of grid (2, 3).

4. Extend Eastward to Grid (3,3): From the bottom of grid (2,2), build a
road eastward to reach the center of grid (3,3).

5. Connect the road to the Highway Exit: Extend the end of the road from
grid (3,3) to the exit of the highway, completing the road loop.

6. Install a Water Pumping Station near the River at the top-left corner
of grid (2,3): Place the water pumping station near the river in grid
(2,3) to ensure an adequate water supply.

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2025

7. Position a Water Drain Pipe near the River at the top-left corner of
grid (2,3): Install a water drain pipe slightly downstream from the
pumping station but within the same grid to prevent water
contamination.

8. Lay Water Pipes: Connect the water pumping station to the water drain
pipe using water pipes. Additionally, ensure all roads built are
covered with water pipes to provide water access across the entire
area.

9. Erect Wind Turbines for Power: Construct several wind turbines near
the water pumping station and along the roads to provide sustainable
electricity to the area.

10. Designate Residential Zones: Allocate spaces adjacent to the roads
for residential zones to foster community living.

11. Establish Industrial Zones: Set aside areas near the roads for
industrial purposes, ideally in parts of the grid further from
residential zones to manage noise and pollution.

12. Create Commercial Zones: Develop commercial zones near the roads to
provide services and retail options for the residents and workers in
the area.

13. Make sure all the zones near roads are built with Residential Zones,
Industrial Zones or Industrial Zones.

14. Build more roads and zones and ensure water and electricity supply.

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task?

2. Which subtask has been completed? Which subtasks are not?

Subtask_reasoning: According to the task decomposition, analyze the
current progress step by step and then decide whether the previous
subtask is finished and whether it is necessary to propose a new
subtask. The subtask should be straightforward, contribute to the
target task and be most suitable for the current situation, which
should be completed within a few actions. You should respond to me
with:

1. What is the previous subtask? Which step it is for in the task
decomposition?

2. According to the reasoning of self-reflection, is the previous subtask
completed? Note that the success of the action does not mean the

success of the subtask. You should strictly follow the reasoning of
whether the subtask is completed in the self-reflection. If yes, you
should move to the next step and propose it as the new subtask. If
not, you should continue the previous subtask without changing
anything. Please do not make any assumptions if they are not
mentioned in the above information. You should assume that you are
doing the task from scratch. Please strictly follow the description
and requirements in the current task.

3. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

4. To enable water supply, you should first build a water pumping station
and then build a water drain pipe near the river, and finally use

water pipes to connect them with the roads. And ensure the water
pipes cover all the roads.

5. The water pumping station and water drain pipe also need electricity
to work. So you also need to provide electricity for them.

6. If you want to build roads for the village at the beginning, make sure
to mention that the road needs to be as long as possible and use

several roads to form a large square for the village.

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2025

Subtask: According to the subtask reasoning, determine and output the
most suitable subtask for the current situation. You MUST output the
subtask in the output.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is ...
Subtask_reasoning:
1. ...
2. ...
3. ...
Subtask:
The current subtask is ...

Prompt 9: Skylines: Action Planning prompt.

You are a helpful AI assistant integrated with ’Cities: Skylines’ on the
PC, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current task:
<$subtask_description$>

Coordinates of constructed buildings:
<$coordinates$>

The latest successful action that builds the building. If you want to
try_place a road, and the endpoint (x2, y2), of the latest successful
action is also try_place a road. Then you MUST use the end point of

the constructed road as the start point of your new road.
<$last_success_try_place_action$>

Current budget:
<$budget$>

Current population:
<$population$>

Last executed action:
<$actions$>

Self-reflection reasoning for the last executed action:
<$self_reflection_reasoning$>

Error message for the last action:
<$error_message$>

Construction information for the last action:
<$consruction_information$>

Summarization of recent history:
<$history_summary$>

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2025

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. What is the current task? What are the requirements to achieve the
goal?
2. According to the self-reflection reasoning, is the last action
executed successfully?
3. If you want to place anything, do you already open the
corresponding menu? Otherwise, you need to open the right menu first
in this step rather than doing anything else. If you have not already
opened the corresponding menu, skip answering questions 4, 5, 6, 7,

8 and 9.
4. Does the previous action "try_place" something? If there is an
error message showing that the space is already occupied or the last
action failed according to the self-reflection reasoning, you should
use the same action with different parameters as the position of it
to try again. The difference needs to be significant enough with at
least 100 pixels of change for the position of the input points. If
there is no error message, you should only output confirm_placement()
or cancel_placement() to approve or cancel the placement. You should
not call anything else.
5. Does the previous action open any menu? Then you should "try_place
" something according to the task description instead of using "
confirm_placement".
6. If you want to place a building, which grid do you plan to place
the building in? What is the exact pixel position of it?
7. If you want to place a road, which grids do you plan to make it
cross? Which grids are the start point and end point in, respectively
? What are the exact pixel positions of them? You MUST use one of the
endpoints of the constructed road shown in the coordinates

information as the start point of the new road. If you want to
try_place a road, and the endpoint (x2, y2), of the latest successful
action is also try_place a road. Then you MUST use the end point of

the constructed road as the start point of your new road.
8. If you want to place a zone, which grids do you plan to make it
cover? You should only use the vertices coordinates of the
corresponding grids as the parameter for the action. Zones cannot
cover each other.
9. If you want to place a Water Pipe, the start point should be the
position of Water Pumping Station, Water Drain Pipe, the start point
of a built Water Pipe or the end point of a built Water Pipe.
10. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the

valid action set for the next step? You should analyze the effects of
the action step by step. You should not repeat the previous action

again. Do not try to verify whether the previous action succeeded.
11. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
12. If you are placing a road, is the road more than 300 pixels long?
Otherwise, regenerate the action and give reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2025

the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the character
.
3. You MUST NOT output more than one skill in the actions.
4. If you want to build a village, you should follow these rules:
4.1 Build roads correctly.
- If you have not opened the road tool, you should open the menu.

If you have already opened the menu, you should not open it again.
- Newly built roads must be connected to the existing roads.
- Determine in which grid the starting point of the newly built

road is located, and identify the pixel position of the starting
point.

- Build the road in the correct direction.
5. You MUST NOT repeat the previous action with the same parameters
again if you think the previous action fails.
6. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.
7. Please do not directly connect the entrance of the highway with
the exit of the highway at the beginning. To make the village as
large as possible. You should build roads in the wild and connect
them with each other.
8. If you are placing a road, the road needs to be at least 300
pixels long.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.3 PROMPTS FOR STARDEW VALLEY

Prompt 10: Stardew: Information Gathering Cultivation prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in a grid-
by-grid format and then provide an overall image description. Pay
attention to anything related to the task. The image is divided into
a 3x5 grid, each cell having its own coordinates. For each grid cell,
describe the contents in detail, focusing on any critical icons, or

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2025

objects present in that particular segment. If there are specific
features such as characters or text, mention these as well. After
completing the description for one cell, proceed to the next, for
example, ’In grid (1,1), [description]. In grid (1,2), [description
].’ and so on until the entire image is covered.

Date_time: The date and time information in the game are shown on the
upper-right of the screenshot, in grid (1, 5). An example of the date
and time information is "Wed 10, 5:10 pm".

Energy: The current energy remains for the character doing actions. The
energy bar is shown on the bottom-right of the screenshot, in grid
(3, 5). The full energy is 270. An example of the energy information
is "150/270".

Weather: The current weather information in the game, the weather is one
from "Sunny", "Rainy", "Windy", "Snowy", "Stormy", "Festival", "
Wedding", and "null". If none of them applies, only output "null".

Dialog: If there are some dialogs shown in the screenshot, extract the
text of the conversation, like "Shopkeeper: What do you want to buy
?", otherwise, only output "null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
In grid (1,1), ...
In grid (1,2), ...
...
In grid (3,5), ...
Overall, the image shows...
Date_time:
Date and time information
Energy:
The number of energy remains showing in the energy bar
Weather:
Weather information
Dialog:
Dialog text
Other:
Other information is ...

Prompt 11: Stardew: Self-Reflection Cultivation prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$previous_action$>

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2025

Reasoning for the last action:
<$previous_reasoning$>

Current date and time:
<$date_time$>

Previous toolbar information:
<$previous_toolbar_information$>

Current toolbar information:
<$toolbar_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Was the executed action successful? Give reasons. You should refer to
the following rules:

- If the action involves moving forward, it is considered unsuccessful
only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

- If you are not 100% sure that the action fails, regard it as success.
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action, the most probable cause was that the

action was unavailable at the current place, then you should move to
a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
4. Is the subtask completed? Give your reasons. If you want to make any

confirmation, regard it as a success.
5. Is the target task completed? Give your reasons.
6. Do you think the subtask is reasonable? Give your reasons.

You should only respond in the format described below.
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 12: Stardew: Task Inference Cultivation prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. You

will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

87

4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751

Under review as a conference paper at ICLR 2025

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to harvest a seed, you

need to water the seed for 4 days. And you have already planted the
seed and watered it for two days.

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.
4. If you are watering a seed. Record how many times you have watered and

calculate how many days you have to water before you can harvest
according to the toolbar information provided above.

Here is an example to follow:
On Thu.4, I dig the dirt with the toe and then plant the parsnip seed and

water the seed. The seed has been watered once. It still needs to be
watered another three times to harvest. On Fri.5, I watered the seed
again. The seed has been watered twice. It still needs to be watered
twice to harvest. Today, Sat.6, I just need to get out of home and

watered the seed again.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? Or is
it improper for the current situation? Then select a new one,
otherwise you should reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

88

4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

Under review as a conference paper at ICLR 2025

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. The seed only needs to be watered once.
7. Do not mention any grid information in the subtask description.
8. Do not check the growth status of the crop.
9. The seeds only need to be watered ONCE every day. If you have already

watered the seed today, you should return home and go to sleep,
waiting for the next day.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is...
Subtask_reasoning:
1. ...
2. ...
...
Subtask:
The current subtask is

Prompt 13: Stardew: Action Planning Cultivation prompt.

You are a helpful AI assistant integrated with ’Stardew Valley’ on the PC
, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Current date and time:
<$date_time$>

Toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

89

4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859

Under review as a conference paper at ICLR 2025

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. Analyze the information in the toolbar. Does it contain all the
necessary items for completing the task?
2. What is the current selected tool? Do you want to use a tool, such
as axe, hoe, watering can, pickaxe and scythe? And is the character’

s current position a suitable place to use such a tool? Then you
should use use_tool() instead of do_action().
3. Does the character already reach the target place?
4. What was the previous action? If the previous action was a
movement, were you blocked?
5. If your task is to harvest the plant, did you water the seed? The
seeds only need to be watered ONCE every day. If you have already
watered the seed today, you should return home and go to sleep,
waiting for the next day.
6. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the valid
action set for the next step? You should analyze the effects of the

action step by step. You should not repeat the previous action again
except for the movement action. Do not try to verify whether the
previous action succeeded.
7. Is the selected action the same as the last executed action? If
yes, regenerate the action and give the reasons.
8. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
9. Analyze whether the selected action meets the requirements of the
Actions below one by one. Does the generated action meet all the
requirements? If not, regenerate the action and give the reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. You can only output at most two actions in the output.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore character’s

facing direction and output the action in an absolute direction like
right and left.
4. If you want to interact with the objects in the toolbar, you need
to make sure that the target object is already selected. You need to
use select_tool() to select them before executing use_tool() or
do_action().
5. If you want to plant a seed or harvest a mature crop, please use
do_action() instead of use_tool(). If you want to use tools, like axe
, hoe, watering can, pickaxe and scythe, please use use_tool().
6. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place. Please do not
try to execute the same action again.
7. If you want to get out of the house, just use the skill
get_out_of_house(). You MUST NOT output any movement action behind
this skill. And if the last executed action already contains this
skill, do not execute this skill for the current step again.

90

4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2025

8. If upon self-reflection you think you were blocked, you MUST
change the direction of moving, so that you can pass obstacles.
9. You MUST NOT repeat the previous action again if you think the
previous action fails.
10. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Prompt 14: Stardew: Information Gathering Farm Clearup prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in a grid-
by-grid format and then provide an overall image description. Pay
attention to anything related to the task. The image is divided into
a 3x5 grid, each cell having its own coordinates. For each grid cell,
describe the contents in detail, focusing on any critical icons, or

objects present in that particular segment. If there are specific
features such as characters or text, mention these as well. After
completing the description for one cell, proceed to the next, for
example, ’In grid (1,1), [description]. In grid (1,2), [description
].’ and so on until the entire image is covered.

Date_time: The date and time information in the game are shown on the
upper-right of the screenshot, in grid (1, 5). An example of the date
and time information is "Wed 10, 5:10 pm".

Energy: The current energy remains for the character doing actions. The
energy bar is shown on the bottom-right of the screenshot, in grid
(3, 5). The full energy is 270. An example of the energy information
is "150/270".

Weather: The current weather information in the game, the weather is one
from "Sunny", "Rainy", "Windy", "Snowy", "Stormy", "Festival", "
Wedding", and "null". If none of them applies, only output "null".

Dialog: If there are some dialogs shown in the screenshot, extract the
text of the conversation, like "Shopkeeper: What do you want to buy
?", otherwise, only output "null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
In grid (1,1), ...

91

4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967

Under review as a conference paper at ICLR 2025

In grid (1,2), ...
...
In grid (3,5), ...
Overall, the image shows...
Date_time:
Date and time information
Energy:
The number of energy remains showing in the energy bar
Weather:
Weather information
Dialog:
Dialog text
Other:
Other information is ...

Prompt 15: Stardew: Self-Reflection Farm Clearup prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Current date and time:
<$date_time$>

Previous toolbar information:
<$previous_toolbar_information$>

Current toolbar information:
<$toolbar_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Was the executed action successful? Give reasons. You should refer to
the following rules:

- If the action involves moving forward, it is considered unsuccessful
only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

- If you are not 100% sure that the action fails, regard it as success.

92

4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021

Under review as a conference paper at ICLR 2025

3. If the last action is not executed successfully, what is the most
probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action, the most probable cause was that the

action was unavailable at the current place, then you should move to
a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
4. Is the subtask completed? Give your reasons. If you want to make any

confirmation, regard it as a success.
5. Is the target task completed? Give your reasons.
6. Do you think the subtask is reasonable? Give your reasons.

You should only respond in the format as described below.
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 16: Stardew: Task Inference Farm Clearup prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. You

will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The

93

5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075

Under review as a conference paper at ICLR 2025

summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to harvest a seed, you

need to water the seed for 4 days. And you have already planted the
seed and watered it for two days.

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.
4. If you are watering a seed. Record how many times you have watered and

calculate how many days you have to water before you can harvest
according to the toolbar information provided above.

Here is an example to follow:
On Thu.4, I dig the dirt with the toe and then plant the parsnip seed and

water the seed. The seed has been watered once. It still needs to be
watered another three times to harvest. On Fri.5, I watered the seed
again. The seed has been watered twice. It still needs to be watered
twice to harvest. Today, Sat.6, I just need to get out of home and

watered the seed again.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? Or is
it improper for the current situation? Then select a new one,
otherwise you should reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. The seed only needs to be watered once.
7. Do not mention any grid information in the subtask description.
8. Do not check the growth status of the crop.
9. The seeds only need to be watered ONCE every day. If you have already

watered the seed today, you should return home and go to sleep,
waiting for the next day.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is...
Subtask_reasoning:
1. ...
2. ...
...
Subtask:
The current subtask is

Prompt 17: Stardew: Action Planning Farm Clearup prompt.

You are a helpful AI assistant integrated with ’Stardew Valley’ on the PC
, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions

94

5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129

Under review as a conference paper at ICLR 2025

from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Current date and time:
<$date_time$>

Toolbar information:
<$toolbar_information$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
MUST NOT miss question 3 and question 11:
1. Analyze the information in the tool bar. Does it contain all the
necessary items for completing the task?
2. Where is the character in the screenshot of the current step?
Where is the house in the screenshot of the current step? The blue
band represents the left side and the yellow band represents the
right side. Where is the character compared with the house? (Is he at
the left edge or right edge of the house?)
3. If your task is to clear obstacles, you MUST NOT miss any question
in this step:
- The blue band represents the left side and the yellow band

represents the right side. Where is the character according to the
house? (Is he at the left edge or right edge of the house?)

- Which grids do the house span in the screenshot? (You MUST answer
one or two grid position. The house does not span over two grids.)

Then, what are the two grids below and near the house? (e.g. If the
house spans from grid (1,3) to (1,4), the CLEARING AREA of character
should be grid (2,3) and (2,4). If the house spans grid (1,3), the
CLEARING AREA of character should be grid (2,2) and (2,3).You MUST
remember this CLEARING AREA precisely IN THIS ROUND.) You should
focus on obstacles in them. You MUST NOT move the character out of
these two obstacle grids.

- In order to clear all obstacles below the house and make the
place suitable for cultivating, you should not target for a specific

95

5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183

Under review as a conference paper at ICLR 2025

obstacle. Instead, you should try your best to move the character to
pass every patch in the CLEARING AREA. You should clear every
obstacle that blocks the character in this process.

- Every time after you move the character down (or up when being
too far from the house), you should move the character right or left
(based on the character’s position in the CLEARING AREA compared with
the house) to fully explore the CLEARING AREA of the two grids

determined above. You should clear all obstacles the character meets
in this process.

- Is the current row fully explored by the character? If so, your
movement should be moving down. If there is an obstacle beneath the
character, you should clear it first before moving the character down
.

- You should not move too far from the house. You should not move
the character down but should move him up instead if the house is not
in the current screenshot.
- What was the previous action? If the previous action contained

use_tool(), you MUST NOT start with the same use_tool() action in
this round. (You can still use use_tool() by following a movement or
select_tool().)

- If the previous action was a movement, is the position of
character changed? If not, it is the most trustworthy evidence that
there is an obstacle in front of the character that can interact with
.

- If the character is blocked by an obstacle in front of him or if
you think there is an obstacle in front of the character, what type
of obstacle is it? (Usually, weed and grass are green, stone is grey
and branch is brown) What is the suitable tool for clearing it and is
the tool correctly selected?
4. What is the current selected tool? Do you want to use a tool, such
as axe, hoe, watering can, pickaxe and scythe? And is the character’

s current position a suitable place to use such a tool? Then you
should use use_tool() instead of do_action().
5. Does the character already reach the target place?
6. What was the previous action? If the previous action was a
movement, were you blocked?
7. If your task is to harvest the plant, did you water the seed? The
seeds only need to be watered ONCE every day. If you have already
watered the seed today, you should return home and go to sleep,
waiting for the next day.
8. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the valid
action set for the next step? You should analyze the effects of the

action step by step. You should not repeat the previous action again
except for the movement action. Do not try to verify whether the
previous action succeeded.
9. Is the selected action the same as the last executed action? If
yes, regenerate the action and give the reasons.
10. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
11. Analyze whether the selected action meets the requirements of the
Actions below one by one. Does the generated action meet all the

requirements? If not, regenerate the action and give the reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".

96

5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237

Under review as a conference paper at ICLR 2025

2. You can only output at most two actions in the output.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore character’s

facing direction and output the action in an absolute direction like
right and left.
4. If you want to interact with the objects in the toolbar, you need
to make sure that the target object is already selected. You need to
use select_tool() to select them before executing use_tool() or
do_action().
5. If you want to plant a seed or harvest a mature crop, please use
do_action() instead of use_tool(). If you want to use tool, like axe,
hoe, watering can, pickaxe and scythe, please use use_tool().
6. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place. Please do not
try to execute the same action again.
7. If you want to get out of the house, just use the skill
get_out_of_house(). You MUST NOT output any movement action behind
this skill. And if the last executed action already contains this
skill, do not execute this skill for the current step again.
8. If upon self-reflection you think you were blocked, you MUST
change the direction of moving, so that you can pass obstacles.
9. You MUST NOT repeat the previous action again if you think the
previous action fails.
10. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.
11. If you want to clear obstacles, you should follow the order of
thinking as follows:

- You MUST NOT move the character to the house.
- In order to clear all obstacles below the house and make the

place suitable for cultivating, you should not target for a specific
obstacle. Instead, you should try your best to move the character to
pass every patch in the CLEARING AREA. You should clear every
obstacle that blocks the character in this process.

- Every time after you move the character down (or up when being
too far from the house), you should move the character right or left
(based on the character’s position compared with the house) to fully
explore the CLEARING AREA. You should clear all obstacles the
character meets in this process.

- If you think the character has fully explored the current row
of the CLEARING AREA, you should move the character down. If there is
an obstacle beneath the character, you should clear it first before

moving the character down.
- You should not move too far from the house. You should not move

the character down but should move hime up instead if the house is
not in the current screenshot.

- You can take larger steps of moving left or right by adjusting
the action’s parameter. You MUST use a small parameter when doing
move_down() to make sure the character only moves one patch down.

- If you think there is an obstacle in front of the character,
you should determine its type. You should then select the suitable
tool by select_tool() and clear the obstacle by use_tool().

- You should always use_tool() after select_tool(). Do not switch
to another tool without using it.

- If the previous action contained use_tool(), you MUST NOT start
with the same use_tool() action in this round. (You can still use

use_tool() by following a movement or select_tool().)
- If the previous action contained use_tool(), you should

determine whether the obstacle is cleared. If you are not sure that
the obstacle is cleared, you are encouraged to try different tools by
select_tool() and use_tool() before moving the character to other

positions.
- If the previous action was a movement, you should determine

whether there is an obstacle IN FRONT OF the character. If so, you
should select the suitable tool by select_tool() and clear it by
use_tool().

97

5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291

Under review as a conference paper at ICLR 2025

- If previous action contained use_tool(), you should move the
character to the same direction as before to test if the blocking
obstacle is cleared.

- If the blocking obstacle is not cleared, you should select a
different tool to clear it.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Prompt 18: Stardew: Information Gathering Shopping prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information.

<$image_introduction$>

Task overview:
<$task_description$>

Current subtask:
<$subtask_description$>

Description: Please analyze and describe the screenshot image in a grid-
by-grid format from left to right and top to bottom and then provide
an overall image description. Pay attention to anything related to
the current subtask. The image is divided into a 5x3 grid, each cell
having its own coordinates. For each grid cell, describe the contents
in detail, focusing on any critical icons, or objects present in

that particular segment. If there are specific features such as
characters or text, mention these as well. After completing the
description for one cell, proceed to the next, for example, ’In grid
(1,1), [description]. In grid (2,1), [description].’ and so on until
the entire image is covered.

Date_time: The date and time information in the game are shown on the
upper-right of the screenshot, in grid (5, 1). An example of the date
and time information is "Wed 10, 5:10 pm".

Energy: The current energy remains for the character doing actions. The
energy bar is shown on the bottom-right of the screenshot, in grid
(5, 3). The full energy is 270. An example of the energy information
is "150/270".

Weather: The current weather information in the game, the weather is one
from "Sunny", "Rainy", "Windy", "Snowy", "Stormy", "Festival", "
Wedding", and "null". If none of them applies, only output "null".

Dialog: If there are some dialogs shown in the screenshot, extract the
text of the conversation, like "Shopkeeper: What do you want to buy
?", otherwise, only output "null".

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

98

5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345

Under review as a conference paper at ICLR 2025

You should only respond in the format described below and not output
comments or other information.

Description:
In grid (1,1), ...In grid (2,1), ...In grid (3,1), ...In grid (5,3), ...

Overall, the image shows...
Date_time:
Date and time information
Energy:
The number of energy remains showing in the energy bar
Weather:
Weather information
Dialog:
Dialog text
Other:
Other information is ...

Prompt 19: Stardew: Self-Reflection Shopping prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. Your

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Current Image description:
<$image_description$>

Toolbar information
<$toolbar_information$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. Are the characters’ positions in these frames identical?
2. What is the executed action? Please answer this question not based on

the sequential frames.
3. Was the executed action successful? Give reasons. You should refer to

the following rules:
- Analyze by observing given sequential frames for detailed information.
- If the action involves moving forward, it is considered unsuccessful

only when the character’s position remains unchanged across
sequential frames, regardless of background elements and other people
.

- If you are not 100% sure that the action fails, regard it as success.

99

5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399

Under review as a conference paper at ICLR 2025

4. If the last action is not executed successfully, what is the most
probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action such as buy_item or do_action, the most

probable cause was that the action was unavailable at the current
place, then you should move to a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
5. If the current subtask involves determining whether to enter the store

, you need to compare the scene in the current screenshot with the
scene in the screenshot from Memory to determine whether the
character has entered the store, if not, then the task of entering
the store is not complete.

6. Is the subtask completed? Give your reasons. If you want to make any
confirmation, regard it as a success. You should observe given
sequential frames, do not rely on the text information.

7. Is the target task completed? Give your reasons.
8. If the current subtask involves purchase something, you should check

the toolbar or purchase menu to see if the purchase was successful.
Do not overbuy or miss the purchase.

9. Do you think the subtask is reasonable? Give your reasons.

You should only respond in the format as described below.
Reasoning:
1. ...
2. ...
3. ...
...

Prompt 20: Stardew: Task Inference Shopping prompt.

Assume you are a helpful AI assistant integrated with ’Stardew Valley’ on
the PC, equipped to handle a wide range of tasks in the game. You

will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current Image description:
<$image_description$>

Last executed action:
<$previous_action$>

Decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:

100

5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453

Under review as a conference paper at ICLR 2025

<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to harvest a seed, you

need to water the seed for 4 days. And you have already planted the
seed and watered it for two days.

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are
not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? If so,
give evidence that the task was completed. Or is it improper for the
current situation? Then select a new one, otherwise you should reuse
the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. Do not mention any grid information in the subtask description.
7. If the character does not reach the target place, you should propose a

movement task to make him closer to the target.
8. If you want to purchase items, then you should move up to stand in

front of the shopkeeper’s counter, move sligntly to align with the
green counter and buy items. After purchasing, you can move down to
the exit and leave store.

9. If you want to leave town, you should move along gray cobblestone road
to the left of the store and the clinic.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is...
Subtask_reasoning:
1. ...
2. ...
...
Subtask:
The current subtask is

Prompt 21: Stardew: Action Planning Shopping prompt.

You are a helpful AI assistant integrated with ’Stardew Valley’ on the PC
, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation

101

5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507

Under review as a conference paper at ICLR 2025

within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Image description:
<$image_description$>

Last executed action:
<$previous_action$>

Reasoning for the last action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

Grid System Information:
1. Each grid has a coordinate (x,y). A larger x means that the grid is on

the more eastern(right) side, and a larger y means that the grid is
on the more southern(down) side. For example, moving from grid (1,3)
to grid (1,1) requires move_up(duration=2) and moving from grid (1,1)
to grid (2,1) requires move_right(duration=1)

2. The larger the difference between the coordinates of the two grids,
the longer it takes to move. Moving from grid (2,5) to grid (2,3)
takes longer than moving from grid (2,3) to grid (1,3).

<$image_introduction$>

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. Does the character already reach the target place? You must move
close enough to the object to be in contact with it in order to
interact with it. Just in the same grid with the target is not enough
.
2. Make use of the above image description, grid system information
and current screenshot. Analyze whether the character has reached the
target place. You must move close enough to the object to be in

contact with it in order to interact with it. Just in the same grid
with the target is not enough.
3. What was the previous action? If the previous action was a
movement, were you blocked?
4. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the valid

102

5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561

Under review as a conference paper at ICLR 2025

action set for the next step? You should analyze the effects of the
action step by step. You should not repeat the previous action again
except for the movement action. Do not try to verify whether the
previous action succeeded.
5. Is the selected action the same as the last executed action? If
yes, regenerate the action and give the reasons.
6. Do all the selected actions exist in the valid action set? If no,
regenerate the action and give the reasons.
7. Where is the player’s character? Notice that the player’s
character is a brown-haired man wearing a blue jacket.
8. Does the selected action contribute to the current subtask?
9. Analyze whether the selected action meets the requirements of the
Actions below one by one. Does the generated action meet all the
requirements? If not, regenerate the action and give the reasons.

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and to the previous skills already executed, if
any. You should also pay more attention to the following action

rules:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. You can only output at most two actions in the output.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore character’s

facing direction and output the action in an absolute direction like
right and left.
4. If upon self-reflection you think the last action was unavailable
at the current place, you MUST move to another place. Please do not
try to execute the same action again.
5. If you want to get out of the house, just use the skill
go_through_door. You MUST NOT output any movement action behind this
skill. And if the last executed action already contains this skill,
do not execute this skill for the current step again.
6. If upon self-reflection you think you were blocked, you MUST
change the direction of moving, so that you can pass obstacles.
7. You MUST NOT repeat the previous action again if you think the
previous action fails.
8. Your action should be strictly follow the analyze in the reasoning
. Do not output any additional action not mentioned in the reasoning.
9. If the current subtask includes purchasing items, here are some
useful tips for you:
- Pierre’s store is east of the character’s house.
- if you do not see the store, you can move for a longer time each

time, such move_right(duration=5). You can also move more distance to
the left each time to get home faster.
- To successfully enable the purchase transaction, you should stand

directly in front of the green counter, which left to the white
counter with word ’for sale’.
- After aligning with green counter, you should purchase items.
- It is not necessary to positioned very precisely. If you stand

near the green counter, you can try to purchase items.
10. If the current subtask includes exiting town and returning home,
here are some useful tips for you:
- Character’ house is west of Pierre’s store.
- There is a long distance from home to the store, so each movement

should take a long duration, such as move_left(duration=5).
- Don’t stand in the grass, move up and away from the lawn.
- The exit to the town is on the west(left) of Pierre’s store and

clinic. You should move left along the stone road, which has a wooden

103

5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615

Under review as a conference paper at ICLR 2025

fence below it. If you gets stuck, move up slightly to get over the
obstacle.
11. If you want to enter a building, you should use go_through_door(
door="xxx_entrance"); If you want to leave a building, you should use
go_through_door(door="xxx_exit").
- You can use go_through_door(door="store_entrance") to enter the

store.
- You can use go_through_door(door="store_exit") to leave the store.
- You can use go_through_door(door="home_entrance") to enter your

house.
- You can use go_through_door(door="home_exit") to leave your house.
12. If you want aligh with the target, you MUST move slightly. Each
movement take only 0.1 seconds, such as move_xxx(duration=0.1).

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.4 PROMPTS FOR DEALER’S LIFE 2

Prompt 22: Dealer’s Life 2: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with "Dealer’s Life 2"
on the PC, equipped to handle a wide range of tasks in the game. Your
advanced capabilities enable you to process and interpret gameplay

screenshots and other relevant information.

<$image_introduction$>

Current task:
<$task_description$>

Description: Please analyze and describe the screenshot image in detail
and then provide an overall image description. Most importantly,
identify the current page type and any relevant information related
to the task. If there are specific features such as characters or
text, mention these as well.

Budget: Bank Balance is shown at the top right of the screenshot.

Other: Other information that does not belong to the above categories. If
none of them applies, only output "null".

You should only respond in the format described below and not output
comments or other information.

Description:
The image shows...
Budget:
The amount of budget
Other:
Other information is ...

Prompt 23: Dealer’s Life 2: Self Reflection prompt.

Assume you are a helpful AI assistant integrated with "Dealer’s Life 2"
on the PC, equipped to handle a wide range of tasks in the game. Your

104

5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669

Under review as a conference paper at ICLR 2025

advanced capabilities enable you to process and interpret gameplay
screenshots and other relevant information. Your task is to examine
these inputs, interpret the in-game context, and determine whether
the executed action takes effect.

Target task:
<$task_description$>

Current subtask for completing the target task:
<$subtask_description$>

The reasoning for proposing the current subtask:
<$subtask_reasoning$>

Last executed action for completing the subtask:
<$actions$>

Reasoning for the last action:
<$decision_making_reasoning$>

Current budget:
<$budget$>

Summarization of recent history:
<$history_summary$>

<$image_introduction$>

Reasoning: You need to answer the following questions step by step to get
some reasoning based on the last action and sequential frames of the
character during the execution of the last action.

1. What is the executed action? Please answer this question not based on
the sequential frames.

2. Was the executed action successful? Give reasons. You should refer to
the following rules:

- If you are not 100% sure that the action fails, regard it as success.
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it is an interaction action, the most probable cause was that the

action was unavailable at the current place, then you should move to
a new place.

- If it is a movement action, the most probable cause was that you were
blocked by seen or unseen obstacles.

- If there is an error report, analyze the cause based on the report.
4. Is the subtask completed? Give your reasons. If you want to make any

confirmation, regard it as a success.
5. Is the target task completed? Give your reasons.
6. Do you think the subtask is reasonable? Give your reasons.

Success: You need to output whether the last action was executed
successfully or not.

- If the last action is successful, you should only output ’True’.
Otherwise, you should only output ’False’.

You should only respond in the format described below.
Reasoning:
1. ...
2. ...
3. ...
Success:
True
...

105

5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723

Under review as a conference paper at ICLR 2025

Prompt 24: Dealer’s Life 2: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’DealersLife2’ on
the PC, equipped to handle a wide range of tasks in the game. You
will also be given a summary of the history that happened before the
last screenshot. You should assist in summarizing the events for
future decision-making and also propose a new subtask, which is the
most suitable subtask for the current situation, given the target
task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Current task:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

<$image_introduction$>

Current budget:
<$budget$>

Current population:
<$population$>

Last executed action:
<$actions$>

Decision-making reasoning for the last executed action:
<$decision_making_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete and highly related to the
task and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task?

2. Record the successful actions and organize them into events day by day
.

3. Do not forget the information and key events in the previous days.
4. If you are watering a seed. Record how many times you have watered and

calculate how many days you have to water before you can harvest
according to the toolbar information provided above.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task and be most
suitable for the current situation, which should be completed within
a few actions. You should respond to me with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in step 1? Please do not make any assumptions if they are

106

5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777

Under review as a conference paper at ICLR 2025

not mentioned in the above information. You should assume that you
are doing the task from scratch.

3. What is the previous subtask? Does the previous subtask finish? Or is
it improper for the current situation? Then select a new one,
otherwise you should reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation.

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be related to any skills.

6. Do not mention any grid information in the subtask description.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary is ...
Subtask_reasoning:
1. ...
2. ...
3. ...
Subtask:
The current subtask is ...

Prompt 25: Dealer’s Life 2: Action Planning prompt.

You are a helpful AI assistant integrated with "Dealer’s Life 2" on the
PC, equipped to handle various tasks in the game. Your advanced
capabilities enable you to process and interpret gameplay screenshots
and other relevant information. By analyzing these inputs, you gain

a comprehensive understanding of the current context and situation
within the game. Utilizing this insight, you are tasked with
identifying the most suitable in-game action to take next, given the
current task. You control the game character and can execute actions
from the available action set. Upon evaluating the provided
information, your role is to articulate the precise action you would
deploy, considering the game’s present circumstances, and specify any
necessary parameters for implementing that action.

Here is some helpful information to help you make the decision.

Current subtask:
<$subtask_description$>

Current page type:
<$coordinates$>

Current budget:
<$budget$>

Last executed action:
<$actions$>

Reasoning for the last action:
<$decision_making_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Summarization of recent history:
<$history_summary$>

Valid action set in Python format to select the next action:
<$skill_library$>

<$image_introduction$>

107

5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831

Under review as a conference paper at ICLR 2025

Based on the above information, analyze the current situation and provide
the reasoning for what you should do for the next step to complete

the task. Then, you should output the exact action you want to
execute in the game. You should respond to me with:

Reasoning: You should think step by step and provide detailed reasoning
to determine the next action executed on the current state of the
task. You need to answer the following questions step by step. You
cannot miss the last question:
1. Analyze the information in the screenshot. What can you observe in
the screenshot? Please list some key elements.
2. What is the current task? What are the requirements to achieve the
goal?
3. What have you done so far in the game? What are the results of the
previous actions?
4. What is your next step to achieve the goal? What is your plan? Why
do you choose this action? Please explain the reasoning behind your

decision.
5. If you were to respond to the customer’s dialogue on the dialogue
page, which of the listed responses in the screenshot would you
choose? Why?
6. If you are to make an offer to a customer, how would you determine
the price? You should determine the customer’s role here. If the

customer is a "seller", you should offer a price lower than the item’
s value. If the customer is a "buyer", you should offer a price
higher than the item’s value. Please explain your reasoning.
7. If the customer rejects your offer and makes a counteroffer, what
would you do? Would you accept the counteroffer or refuse the deal?
Why?
8. What does the current screen image show? is it a giving price page
(it at least should show price $ in the right bottom of the screen

image) or a non-giving price page and why?

Actions: The requirements that the generated action needs to follow. The
best action, or short sequence of actions without gaps, to execute
next to progress in achieving the goal. Pay attention to the names of
the available skills and the previous skills already executed, if

any. You should also pay more attention to the following action rules
:
1. You should output actions in Python code format and specify any
necessary parameters to execute that action. If the function has
parameters, you should also include their names and decide their
values, like "move_right(duration=1)". If it does not have a
parameter, just output the action, like "open_map()".
2. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the character
.
3. In the screenshots, the blue band represents the left side and the
yellow band represents the right side. Please ignore the character’s
facing direction and output the action in an absolute direction like
right and left.
4. If you want to run as a successful dealer in conversation with the
customer, you should follow these rules:
4.1 Check the customer’s dialogue.
- If the customer is introducing himself and his purpose of

visiting your shop, you should always respond with "Let’s see" to
make them potential buyers. This will be the first option in the
dialogue and you should select it.
4.2 Check the customer’s response.
- If the customer has shown you the details of the items and you

have completed by closing the item detail page, you should respond
with "Let’s deal" to make an offer. This will be the first option in
the dialogue and you should select it.

108

5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885

Under review as a conference paper at ICLR 2025

5. If you want to run as a successful dealer in making an offer and
deciding whether to take the offer or counteroffer, you should follow
these rules:
5.1 Check the customer’s role.
- If the customer is a "seller", you should offer a price lower

than the item’s value. You should also consider your budget.
- If the customer is a "buyer", you should offer a price higher

than the item’s value.
5.2 Check the item’s details.
- You should check the item’s "rarity", "condition", and "estimate"

to determine the price you offer.
6. If you have opened up the buyer’s or seller’s character trait page
, you should call the function to close the description page to
proceed with the next action. You should NOT call any other skill
like dialogue().
7. Your action should strictly follow the analysis in the reasoning.
Do not output any additional action not mentioned in the reasoning.

You should only respond in the format described below, and you should not
output comments or other information.

Reasoning:
1. ...
2. ...
3. ...
Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

K.5 PROMPTS FOR SOFTWARE APPLICATIONS

Prompt 26: Chrome: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Google Chrome’ on
the PC, equipped to handle a wide range of tasks in the application.
Your advanced capabilities enable you to process and interpret
application screenshots and other relevant information.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, or created
items.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

Description_of_bounding_boxes:
Please provide a list of EVERY bounding box from label ID of 1 to <

$length_of_som_map$> ONE BY ONE. The label IDs are marked in the
upper left corner of the bounding boxes.

For bounding boxes containing text, provide ONLY the text.
For bounding boxes without text, brief description of the function.

109

5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939

Under review as a conference paper at ICLR 2025

Format your response as follows: ’1: function_a’, ’2: text_b’, ..., ’<
$length_of_som_map$>: function_b’. Don’t write anything you are not
sure about.

Target_object_name: Assume you can use an object detection model to
detect the most relevant object or UI item for completing the current
task if needed. What item should be detected to complete the task

based on the current screenshot and the current task? You should obey
the following rules:

1. Identify an item that is relevant to the current or intermediate
target of the task. If the item is within a bounding box in the
screenshot, please include the corresponding label ID.

2. If no explicit item is specified, only output "null".
3. If there is no need to detect an object, only output "null".

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

You should only respond in the format described below and not output
comments or other information. DO NOT change the title of each item.

Image_Description:
1. ...
2. ...
3. ...

Description_of_bounding_boxes:
Format like: 1: function_a’, ’2: text_b’, ..., ’<$len_of_bound_boxes$>:

function_b

Target_object_name:
label ID, Name

Reasoning_of_object:
...

Prompt 27: Chrome: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Google Chrome’ on
the PC, equipped to handle a wide range of tasks in the application.
Your advanced capabilities enable you to process and interpret
application screenshots and other relevant information. Your task is
to examine these inputs, interpret the in-application and OS context,
and determine whether the executed action has taken the correct

effect.

Overall task description:
<$task_description$>

Image introduction:
<$image_introduction$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

History Summarization
<$history_summary$>

110

5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993

Under review as a conference paper at ICLR 2025

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Self_Reflection_Reasoning:
You need to answer the following questions, step by step, to describe

your reasoning based on the history summarization, last action and
sequential screenshots of the application during the execution of the
last action.

1. Please describe what the page is in the current screenshot. Respond in
one sentence.

2. What is the last executed action based on the text information above?
3. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the last action executed was empty, then the previous action is

deemed successful.
- If the action involves moving the mouse, it is considered unsuccessful

when the mouse position remains unchanged or moves in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- If the operation involves type text, it will be considered unsuccessful

when the corresponding text does not appear in the diagram,
regardless of background elements and other items.

- If the action seemed to have no effect, pay attention to the latest
mouse position. Did it move? Did it get closer to the target UI
element? Where are the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
4. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated in the current state.
- If an unrelated change happened in the UI, the most probable cause was

that the action triggered an incorrect UI element.
- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the history summarization, the last action, the current

screenshots and the Success_Detection flag, determine whether the
overall task "<$task_description$>" was successful. This assessment
should consider the overall task’s success, not just individual
actions.

- If the last action executed was an empty list and "<$success_detection$
>" indicates the task is successful, then the overall task has a high
chance of being considered a success.

- If the overall task was unsuccessful, specify the reason of failure and
which steps are missing.

- If the overall task was successful, ONLY output "SUCCESSFUL".

111

5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047

Under review as a conference paper at ICLR 2025

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 28: Chrome: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Google Chrome’ on
the the PC, equipped to handle a wide range of tasks in the game. You
will be sequentially given <$event_count$> screenshots and

corresponding descriptions of recent events. You will also be given a
summary of the history that happened before the last screenshot. You
should assist in summarizing the events for future decision-making

and also in proposing the most suitable subtask to execute next,
given the target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.
1. Determine if the task has been completed successfully. If it is
successful, ignore question 2 to 5.
2. Summarize the tasks from the history and the current task. What is
the current progress of the task? For example, to open a file, you

112

6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101

Under review as a conference paper at ICLR 2025

first need to select the file, then open it by clicking somewhere or
using the keyboard. Subtasks may have other pre-requisites.
3. Record the successful actions and organize them into events, step
by step.
4. Which subtask has been completed? Which subtasks have not? Do not
forget the information and key events in the previous steps of the
overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with the following item.
1. Think about a hotkey related to the overall task and next subtask,
please specify what it is.
2. Based on the current screenshot, identify the most direct and
easiest way to complete the task.
3. Analyze the target task step by step to determine how to complete
it.
4. What is the previous subtask? Has the previous subtask finished
due to self-reflection? Or is it improper for the current situation?
If finished or improper, please select a new one, otherwise you
should reuse the last subtask.
5. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation. Please strictly follow the
description and requirements in the current task.
6. The proposed subtask needs to be precise and concrete within one
sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
1. ...
2. ...
...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 29: Chrome: Action Planning prompt.

You are a helpful AI assistant integrated with ’Google Chrome’ on the PC,
equipped to handle a wide range of tasks in the application. Your

advanced capabilities enable you to process and interpret application
screenshots and other relevant information. By analyzing these

inputs, you gain a comprehensive understanding of the current context
and situation within the application. Utilizing these insights, you

are tasked with identifying the most suitable in-application action
to take next, given the current task. You control the application and
can execute actions from the available action set to manipulate its

UI. Upon evaluating the provided information, your role is to
articulate the precise actions you should perform, considering the
application’s present circumstances, and specify any necessary
parameters for implementing that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

113

6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155

Under review as a conference paper at ICLR 2025

Subtask description:
<$subtask_description$>

Few shots:
<few_shots>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the application.

Pay attention to all UI items and contents in the image. DO NOT make
assumptions about the layout! If the image includes a mouse cursor,
pay close attention to the coordinates of the pointer tip, not the
centre of the mouse cursor.

You should respond to me with the following information, and you MUST
respond one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" mean the overall task was successful?
If successful, ignore questions 2 to 12.
2. Which skill in the Skill Library "<$skill_library$>" has the
closest semantics to the current subtask "<$subtask_description$>"?
If there is an answer, select it as the output action.
3. Prefer keyboard operation instead of mouse operation. Are there
any keyboard actions, such as using shortcut keys or pressing "enter
", to finish the current step or overall task? If there is, please
specify which it is.
4. Based on the action rules, self-reflection and previous
summarization, what should be the most suitable action in the valid

114

6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209

Under review as a conference paper at ICLR 2025

action set for the next step? You should analyze the effects of the
action step by step.
5. If the previous action is unsuccessful, DO NOT repeat the previous
action, consider an alternative action if possible. If there is an

alternative action, please specify what it is, such as clicking
different label IDs or using different shortcut keys.
6. Always try pressing "enter" first instead of clicking it with the
mouse, if the button you want to click is active.
7. Check whether the UI element you want to operate exists in the
current screenshot. If not, you can choose to return to the previous
page or reopen a tab.
8. In the current screenshot, identify the label ID of the bounding
box most relevant to the current step. If there is text within this
bounding box, please provide the text.
9. If mouse actions are necessary, use that specific bounding box
label ID (if shown in the current screenshot) as a parameter, rather
than directly generating normalized x and y coordinates. If there is
any relevant label ID, please specify which it is.
10. If a dialog box appears, make sure to check the content of the
dialog box to determine if the task is complete. For instance, when a
download dialog box appears, the task is only completed after

pressing the Enter key or clicking "Save".
11. If you need to use an action outside an open menu or dialog box,
please close the current menu or dialog box before trying the next
action.
12. If you anticipate that the next step involves typing text,
confirm that the last executed action was a click at the appropriate
input box. If not, it is mandatory to click on the corresponding
input box before proceeding with typing.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then the output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid action set. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Before typing text, ensure that the last executed action involved
clicking on the relevant input box. If the last action was not a
click on this input box, the required action MUST be to click on the
corresponding input box before proceeding.
4. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
5. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
6. When you decide to operate on a file, such as downloading it,
please pay attention to the path and name of the current file.

Key_reason_of_last_action: Summarize the key reasons why you output this
action.

115

6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263

Under review as a conference paper at ICLR 2025

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below.

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 30: Outlook: Information Gathering prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail. The
screenshots include numerical tags (label IDs) and bounding boxes

marking some UI items.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, open menus
or dialogs, and any instructions for the application user. Focus on
the image contents and the situation in the application.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

4. DO NOT describe overlayed bounding boxes in this description, only the
relevant UI items themselves. Focus on the state of the application

UI and what the key UI items of interest for the task would be.
Describe any relevant open panels, dialogs, menus, etc.

Target_object_name:
As an application expert and a helpful assistant, you can determine the

most relevant UI items for completing the current subtask, if needed.
What item should be detected to complete the task based on the

current screenshot and the current subtask? You should obey the
following rules:

1. The item should be present in the screen and relevant to the current
subtask or overall task. Just name the item, without any modifiers or
extra information.

116

6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317

Under review as a conference paper at ICLR 2025

2. If the item of itnerest of not on the current screen, only output "
Target items not in current screen".

2. If no explicit item is specified, only output "null".
3. If there is no need to detect a target item in this state, only output

"null". You must output this field in the response.

Reasoning_of_object: Why was this item chosen, or why is there no need to
detect an UI item at this stage?

You should only respond in the format described below and not output
comments or other information. DO NOT change the titles of any
response items.

Image_Description:
1. ...
2. ...
3. ...

Target_object_name:
name

Reasoning_of_object:
...

Prompt 31: Outlook: Self-Reflection prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail.

You MUST examine all inputs, interpret the in-application and OS contexts
, and determine whether the executed action has taken the correct
effect.

Overall task description:
<$task_description$>

Execution step images:
<$image_introduction$>

Current image description:
<$current_image_description$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

117

6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371

Under review as a conference paper at ICLR 2025

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

As the textual history may not completely record some effects of previous
actions, you should closely evaluate every part of the screenshots

to understand what was supposed to happen and what has actually
happened.

Self_Reflection_Reasoning: You need to answer the following questions,
step by step, to describe your reasoning based on the last action and
sequential screenshots of the application during the execution of

the last action. Any action involving x and y coordinates is an
action involving movement.

1. What is the last executed action not based on the sequential
screenshots?

2. Was the last executed action successful? Give reasons. You should
refer to the following rules:

- If the action involved typing text, was it typed correctly at the right
location? Do not trust only the textual information as it may not

provide enough detail. Perform a thorough and detailed inspection of
the provided creenshots! This is a critical check at every step!

- If the action involved moving the mouse, it is considered unsuccessful
when the mouse position remains unchanged or moved in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

location or UI item to move to.
- Are you sure the latest screenshot shows UI items that correspond to

the success of the previous action? For example, if you tried to
click on the "Junk" folder, the latest screenshot should show that
folder, not "Inbox" or others.

- Triggering an action in the last step is not enough to say it was
completely successfully. At least some relevant UI must change. Pay
attention to the application states in the screenshots and any
differences.

- If the action seemed to have no effect, pay attention to the latest
mouse position. Did it move? Did it get closer to the target UI
element? Was the target in the action wrong? The position of the
mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates or destination location
used were incorrect.

- If you already tried the same action more than one time and there was
no effect. DO NOT REPEAT the same action again until you have tried
something else.

- If it is an interaction action, the most probable cause was that the
action was unavailable or not activated at the current state.

- If an unrelated change happened in the UI, the most probable cause was
that the action triggered an incorrect UI element.

- If there is any error report, analyze the cause based on the report.

Success_Detection:
Based on the last action, the current screenshots and the

Success_Detection flag, determine whether the overall task was

118

6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425

Under review as a conference paper at ICLR 2025

successful. This assessment should consider the overall task’s
success, not just individual actions.

- If the task was unsuccessful, specify the reason of failure and which
steps are missing.

- Pay extra attention to the application state in the latest screenshot.
Is it consistent with the task being completed successfully? Or is
there evidence that the task is still ongoing?

- If the task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 32: Outlook: Task Inference prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.
Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail.

You will receive a sequence of <$event_count$> screenshots, corresponding
descriptions of recent events, and a summary of the history of

events before the last screenshot. Please summarize the events for
future decision-making and also propose the most suitable subtasks to
execute next, given the overall target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

119

6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479

Under review as a conference paper at ICLR 2025

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to open a file, you first
need to select the file, then open it by clicking somewhere or using
the keyboard. Subtasks may have other pre-requisites.

2. Record the successful actions and organize them into events, step by
step.

3. Which subtask has been completed? Which subtasks have not?
4. Do not forget the information and key events in the previous steps of

the overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. Use your knowledge of keyboard shortcuts to accomplish
subtasks. You should respond with:

1. How to finish the target task? You should analyze it step by step.
Subtasks can involve keyboard shortcuts, using the mouse, or
executing other skills.

2. What is the current progress of the target task according to the
analysis in question 1? Please do not make any assumptions if needed
information is not mentioned previously. You should assume that you
are doing the task from scratch. Please strictly follow the
description and requirements in the current overall task.

3. What is the previous subtask? Has the previous subtask finished
according to self-reflection? Or is it improper for the current
situation? If the last subtask already finished or now is improper,
please select a new one. Otherwise you should reuse the last subtask.

4. If you propose a new subtask, give the reasons why it is more feasible
in the current situation in the application. Please strictly follow

the description and requirements in the current overall task.
5. The proposed subtask needs to be precise and concrete within one

sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary of past events is...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 33: Outlook: Action Planning prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Microsoft Outlook’ on the PC and can handle a wide
range of tasks in the application using the keyboard, shortcut keys,
and mouse operations. For each step, you will get one or more
observation images, which are screenshots of the computer screen.

120

6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533

Under review as a conference paper at ICLR 2025

Your advanced capabilities enable you to process and interpret these
application screenshots and other relevant information in detail. The
screenshot includes numerical tags (label IDs) and bounding boxes

marking some UI items.
Based on your analysis of screenshots and knowledge of the application,

keyboard shortcuts, and general GUI design, you will identify the
most suitable in-application action to take next, given the current
task. Upon evaluating the provided information, you MUST choose the
precise actions to perform, considering the applications’s present
circumstances, and specify any necessary parameters to execute the
desired action.

Here is some helpful information to help you make the correct decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Few shots:
<few_shots>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same: <$image_same_flag$>. Mouse
position in the current screenshot is the same as in the previous
screenshot:<$mouse_position_same_flag$>.

Description of the current screenshot:
<$image_description$>

Potential target UI item and label ID:
<$target_object_name$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation of the application and provide the reasoning behind what
should be the next step to complete the task. Then, you should output
the exact action to be executed in the application. As the textual

history may not completely record some effects of previous actions,
you should closely evaluate every part of the screenshots to
understand what you have done and what you should do next. Pay
attention to your application knowlege and all contents in the image.
You also have great OCR capabilities. DO NOT make assumptions about

the layout! If the image includes a mouse cursor, pay close attention
to the coordinates of the pointer tip, not the center of the mouse

121

6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587

Under review as a conference paper at ICLR 2025

cursor. Remember you know the common keyboard shortcuts for Microsoft
Outlook on Windows and can use them instead of the mouse. You should
respond with the following information, and you MUST answer them one
by one.

Does "<$success_detection$>" mean the overall task was successful? If
successful, ignore decision making and action questions. No new
action needs to be taken and output action MUST be empty, like ’’. Be
careful to check the task was really successful though!

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Do you know any keyboard shortcuts for Microsoft Outlook on
Windows that can be used to accomplish this subtask? Which one?
2. If the current screenshot is the same as the previous screenshot,
DO NOT output the same action as the last executed action with the
same parameters as in the previous step, as it was not useful!!!
3. Prefer keyboard operations and skills, instead of mouse operations
. Are there any keyboard actions, such as shortcut keys like
press_keys_combined(["ctrl", "s"]) to save, or press_key("enter") to
confirm, that can complete the current step or the overall task? If
yes, please specify what the action is and ignore questions 5 to 8.
4. Which skill in the available Python action set has the closest
semantics to the current subtask? If there is any, select it as the
output action and ignore questions 5 to 8.
5. Carefully identify if there is a bounding box label ID for the UI
item relevant for the current step. Be extra careful to use the
correct label ID and describe why you selected the given ID, if any!
If there is text within this bounding box area, please provide that
text in your reasoning. If there is no text, provide a visual
description of the UI item inside the bounding box. Only directly
generate normalized x, y coordinates if no suitable label ID is
present.
6. If a mouse cursor is present in the image, pay attetion to which
ID-labeled bounding box or unlabelled UI item the cursor’s tip is
located, not the center of the cursor.
7. If not absolutely sure if a UI item or location is correct to
click, you can first just hover the mouse over it and check for more
information. If it is the right item, you can choose to click on it
in the next reasoning step.
8. If there is a dialog or menu opened after the previous action, pay
attention to any missing step before clicking on its buttons. For

example, before clicking "Save", make sure a correct file name is
typed in the correct text field.
9. If the previous action is unsuccessful, consider an alternative
action if possible. If there is an alternative action, please specify
what it is. Such as click a different label ID or use a different

keyboard shortcut.
10. If you think the next step will be to type text, confirm the text
cursor is in the correct location or that the last executed action

was a click at the appropriate input area. If neither is true, you
have to click the corresponding input box before proceeding with
typing.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress towards the task goal. Pay attention to the
names of the available skills, keyboard shortcuts, and the previous
skills already executed. Pay special attention to the coordinates or
bounding box label ID of any action that needs them. Do not make
assumptions about the location of UI elements or their coordinates,
analyse in detail any provided images! You should also pay more
attention to the following action rules:
1. Which keyboard shortcuts do you know for this application that can
be used to accomplish exactly this specific subtask? Be precise to

122

6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641

Under review as a conference paper at ICLR 2025

the current subtask step. Keyboard shortcuts are more reliable than
using the mouse as you tend to choose the correct UI item, but act on
the wrong label ID or position. If there is no applicable shortcut,

you can choose typing text or other forms of UI interaction. Don’t
recomment a single key press that may not apply in this exact
situation.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid action set. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
4. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose the skill
click_on_label(label_id, mouse_button). Be careful to use the correct
label ID number.
5. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
6. When you decide to operate on a file, such as downloading it,
please pay attention to the file path and to the name of the current
file.
7. If upon self-reflection you think the target coordinates or label
ID were an issue, you MUST pay close attention to choosing new
coordinates or a new label ID that are not the same or too similar to
the previous ones.
8. If upon self-reflection you think the last action was unavailable
at the current state, you SHOULD try to take another action to try to
enable the desired action.
9. If you leave the application incorrectly, you can go back to it
directly using the skill go_back_to_target_application(). No need to
use the mouse.

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below:

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 34: Capcut: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’CapCut’ on the PC,
equipped to handle a wide range of tasks in the application. Capcut

is a video editing software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant

information.

123

6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695

Under review as a conference paper at ICLR 2025

Image introduction:
<$image_introduction$>

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, or created
items.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

Description_of_bounding_boxes:
Please provide a list of EVERY bounding box from label ID of 1 to <

$length_of_som_map$> ONE BY ONE. The label IDs are marked in the
upper left corner of the bounding boxes.

For bounding boxes containing text, provide ONLY the text.
For bounding boxes without text, brief description of the function.
Format your response as follows: ’1: function_a’, ’2: text_b’, ..., ’<

$length_of_som_map$>: function_b’. Don’t write anything you are not
sure about.

Target_object_name: Assume you can use an object detection model to
detect the most relevant object or UI item for completing the current
task if needed. What item should be detected to complete the task

based on the current screenshot and the current task? You should obey
the following rules:

1. Identify an item that is relevant to the current or intermediate
target of the task. If the item is within a bounding box in the
screenshot, please include the corresponding label ID.

2. If no explicit item is specified, only output "null".
3. If there is no need to detect an object, only output "null".

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

You should only respond in the format described below and not output
comments or other information. DO NOT change the title of each item.

Image_Description:
1. ...
2. ...
3. ...

Description_of_bounding_boxes:
Format like: 1: function_a’, ’2: text_b’, ..., ’<$len_of_bound_boxes$>:

function_b

Target_object_name:
label ID, Name

Reasoning_of_object:
...

Prompt 35: Capcut: Self-Reflection prompt.

Assume you are a helpful AI assistant integrated with ’CapCut’ on the PC,
equipped to handle a wide range of tasks in the application. Capcut

is a video editing software. Your advanced capabilities enable you to

124

6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749

Under review as a conference paper at ICLR 2025

process and interpret application screenshots and other relevant
information. Your task is to examine these inputs, interpret the in-
application and OS context, and determine whether the executed action
has taken the correct effect.

Overall task description:
<$task_description$>

Image introduction:
<$image_introduction$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

History Summarization
<$history_summary$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Self_Reflection_Reasoning:
You need to answer the following questions, step by step, to describe

your reasoning based on the history summarization, last action and
sequential screenshots of the application during the execution of the
last action.

1. Please describe what the page is in the current screenshot. Respond in
one sentence.

2. What is the last executed action based on the text information above?
3. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the action involves moving the mouse, it is considered unsuccessful

when the mouse position remains unchanged or moves in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the last action executed was empty, then the previous action is
deemed successful.

- If the last action was related to choose panel, pay attention to the
panel you are in. Does the panel is your target panel?

- If the last action was to drag an element onto the timeline, pay
attention to the difference between the current timeline and the
previous timeline. Is there the target element you want on the
timeline now?

- If the last action was related to crop, pay attention to the video
length. If the video length does not change, it is considered
unsuccessful.

125

6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803

Under review as a conference paper at ICLR 2025

- If the last action executed was ’export_project()’ and the current
screenshot is the Capcut homepage, then the previous action is deemed
successful.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- If the action seemed to have no effect, pay attention to the latest

mouse position. Did it move? Did it get closer to the target UI
element? Where are the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
4. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated in the current state.
- If an unrelated change happened in the UI, the most probable cause was

that the action triggered an incorrect UI element.
- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the history summarization, the last action, the current

screenshots and the Success_Detection flag, determine whether the
overall task "<$task_description$>" was successful. This assessment
should consider the overall task’s success, not just individual
actions.

- If the last action executed was an empty list and "<$success_detection$
>" indicates the task is successful, then the overall task has a high
chance of being considered a success.

- If the overall task was unsuccessful, specify the reason of failure and
which steps are missing.

- If the overall task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 36: Capcut: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’CapCut’ on the the
PC, equipped to handle a wide range of tasks in the game. Capcut is

a video editing software. You will be sequentially given <
$event_count$> screenshots and corresponding descriptions of recent
events. You will also be given a summary of the history that happened
before the last screenshot. You should assist in summarizing the

events for future decision-making and also in proposing the most
suitable subtask to execute next, given the target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

126

6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857

Under review as a conference paper at ICLR 2025

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.

1. Determine if the task has been completed successfully. If it is
successful, ignore question 2 to 5.

2. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to open a file, you first
need to select the file, then open it by clicking somewhere or using
the keyboard. Subtasks may have other pre-requisites.

3. Record the successful actions and organize them into events, step by
step.

4. Which subtask has been completed? Which subtasks have not? Do not
forget the information and key events in the previous steps of the
overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with:

1. How to finish the target task? You should analyze it step by step.
- To add Media, Audio, Text, Stickers, Effects, Transitions, Filters,

Adjustments or Templates, you should first switch to that panel and
then drag the target object to the video in the timeline.

- To get content information of a video, you can use related skills. For
example, you want to know which exactly second you want to operate.

2. What is the current progress of the target task according to the
analysis in question 1? Please do not make any assumptions if they
are not mentioned in the above information. You should assume that
you are doing the task from scratch. Please strictly follow the
description and requirements in the current task.

3. What is the previous subtask? Has the previous subtask finished due to
self-reflection? Or is it improper for the current situation? If

finished or improper, please select a new one, otherwise you should
reuse the last subtask.

4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation. Please strictly follow the
description and requirements in the current task.

127

6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911

Under review as a conference paper at ICLR 2025

5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
1. ...
2. ...
...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 37: Capcut: Screen Classification prompt.

You are an assistant who assesses my progress in playing Red Dead
Redemption 2 on the PC and provides expert guidance. Imagine you are
playing Red Dead Redemption 2 with the keyboard and mouse, the image
is the screenshot of your computer.

Given the classes, please select the class that best describes the
screenshot.

<classes>

You must follow the following criteria:
(1) The output should only be a JSON file. You should not add any other

explanation text along with the JSON.
(2) You should choose one class for the value of "class".
(3) Do not change the "type": "screen_classification" in your output.

The output format should be as follows:
Classes:
map

Prompt 38: Capcut: Action Planning prompt.

You are a helpful AI assistant integrated with ’CapCut’ on the PC,
equipped to handle a wide range of tasks in the application. Capcut
is a video editing software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant

information. By analyzing these inputs, you gain a comprehensive
understanding of the current context and situation within the
application. Utilizing these insights, you are tasked with
identifying the most suitable in-application action to take next,
given the current task. You control the application and can execute
actions from the available action set to manipulate its UI. Upon
evaluating the provided information, your role is to articulate the
precise actions you should perform, considering the application’s
present circumstances, and specify any necessary parameters for
implementing that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

128

6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965

Under review as a conference paper at ICLR 2025

Few shots:
<few_shots>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success_Detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the application.

Pay attention to all UI items and contents in the image. DO NOT make
assumptions about the layout! If the image includes a mouse cursor,
pay close attention to the coordinates of the pointer tip, not the
centre of the mouse cursor.

You should respond to me with the following information, and you MUST
respond one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" means the overall task was successful
? If successful, ignore questions 2-11.
2. Which skill in the Skill Library "<$skill_library$>" has the
closest semantics to the current subtask "<$subtask_description$>"?
If there is an answer, select it as the output action.
3. Prefer keyboard operation over mouse operation. Is there a direct
skill in the skill library to complete the current action? If there
is, please specify which it is. Or are there any keyboard actions,
such as using shortcut keys or pressing "enter", to finish current
step or overall task? Please specify which it is.
4. Always try pressing "enter" first instead of clicking it with the
mouse, if the button you want to click is active.

129

6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019

Under review as a conference paper at ICLR 2025

5. If you need to get information from video content, select the
skill get_information_from_video(). For example, you want to know
which exactly second you want to operate.
6. Based on the current screenshot and the description of label IDs
in text, which label ID is most relevant to the current task? You
should never answer this question based on the screenshot.
7. If the previous action is unsuccessful, DO NOT repeat the previous
action, consider an alternative action if possible. Such as click

different label ID or use different shortcut keys. If there is an
alternative action, please specify what it is.
8. In the current screenshot, identify the label ID of the bounding
box most relevant to the current step. If there is text within this
bounding box, please provide the text.
9. If mouse actions are necessary, use that specify bounding box
label ID (if shown in the current screenshot) as parameter, rather
than directly generating normalized x and y coordinates. If there is
any relevant label ID, please specify which it is.
10. If there is a dialog open after the previous action, pay
attention to any missing step before clicking on it’s buttons. For
example, before clicking "Save", make sure the file name is typed in
the correct text field.
11. If you need to use an action outside an open menu or dialog,
please close the current menu or dialog before trying the next action
.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid actions et. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
4. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
5. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose skill click_on_label(
label_id, mouse_button).
6. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.
7. When you decide to perform a mouse click, prioritize clicking
icons, instead of text.
8. When there is new dialog box that affects the next step, you
should close it.
9. The material panel includes the Media, Audio, Text, Stickers,
Effects, Transitions, Filters, Adjustments, and Templates tabs.
Choose this skill "switch_material_panel()" to switch between these
tabs one by one.
10. To add media, drag that media to the video in the timeline.

Key_reason_of_last_action: Summarize the key reasons why you output this
action.

130

7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073

Under review as a conference paper at ICLR 2025

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below.

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 39: Meitu: Information Gathering prompt.

Assume you are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on
the PC, equipped to handle a wide range of tasks in the application.
Meitu Xiuxiu is a user-friendly and powerful image editing and
beautification software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant
information.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, or created
items.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

Description_of_bounding_boxes:
Please provide a list of EVERY bounding box from label ID of 1 to <

$length_of_som_map$> ONE BY ONE. The label IDs are marked in the
upper left corner of the bounding boxes.

For bounding boxes containing text, provide ONLY the text.
For bounding boxes without text, brief description of the function.
Format your response as follows: ’1: function_a’, ’2: text_b’, ..., ’<

$length_of_som_map$>: function_b’. Don’t write anything you are not
sure about.

Target_object_name: Assume you can use an object detection model to
detect the most relevant object or UI item for completing the current
task if needed. What item should be detected to complete the task

based on the current screenshot and the current task? You should obey
the following rules:

131

7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127

Under review as a conference paper at ICLR 2025

1. Identify an item that is relevant to the current or intermediate
target of the task. If the item is within a bounding box in the
screenshot, please include the corresponding label ID.

2. If no explicit item is specified, only output "null".
3. If there is no need to detect an object, only output "null".

Reasoning_of_object: Why was this object chosen, or why is there no need
to detect an object?

You should only respond in the format described below and not output
comments or other information. DO NOT change the title of each item.

Image_Description:
1. ...
2. ...
3. ...

Description_of_bounding_boxes:
Format like: 1: function_a’, ’2: text_b’, ..., ’<$len_of_bound_boxes$>:

function_b

Target_object_name:
label ID, Name

Reasoning_of_object:
...

Prompt 40: Meitu: Self Reflection prompt.

Assume you are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on
the PC, equipped to handle a wide range of tasks in the application.
Meitu Xiuxiu is a user-friendly and powerful image editing and
beautification software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant
information. Your task is to examine these inputs, interpret the in-
application and OS context, and determine whether the executed action
has taken the correct effect.

Overall task description:
<$task_description$>

Image introduction:
<$image_introduction$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

History Summarization
<$history_summary$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:

132

7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181

Under review as a conference paper at ICLR 2025

<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Self_Reflection_Reasoning:
You need to answer the following questions, step by step, to describe

your reasoning based on the history summarization, last action and
sequential screenshots of the application during the execution of the
last action.

1. Please describe what the page is in the current screenshot. Respond in
one sentence.

2. What is the last executed action based on the text information above?
3. Was the last executed action successful? Give reasons. You should

refer to the following rules:
- If the last action executed was empty, then the previous action is

deemed successful.
- If the action involves moving the mouse, it is considered unsuccessful

when the mouse position remains unchanged or moves in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- If the operation involves type text, it will be considered unsuccessful

when the corresponding text does not appear in the diagram,
regardless of background elements and other items.

- If the action seemed to have no effect, pay attention to the latest
mouse position. Did it move? Did it get closer to the target UI
element? Where are the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
4. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If it is an interaction action, the most probable cause was that the

action was unavailable or not activated in the current state.
- If an unrelated change happened in the UI, the most probable cause was

that the action triggered an incorrect UI element.
- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the history summarization, the last action, the current

screenshots and the Success_Detection flag, determine whether the
overall task "<$task_description$>" was successful. This assessment
should consider the overall task’s success, not just individual
actions.

- If the last action executed was an empty list and "<$success_detection$
>" indicates the task is successful, then the overall task has a high
chance of being considered a success.

- If the overall task was unsuccessful, specify the reason of failure and
which steps are missing.

- If the overall task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:

133

7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235

Under review as a conference paper at ICLR 2025

...

Prompt 41: Meitu: Task Inference prompt.

Assume you are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on
the the PC, equipped to handle a wide range of tasks in the game.
Meitu Xiuxiu is a user-friendly and powerful image editing and
beautification software. You will be sequentially given <
$event_count$> screenshots and corresponding descriptions of recent
events. You will also be given a summary of the history that happened
before the last screenshot. You should assist in summarizing the

events for future decision-making and also in proposing the most
suitable subtask to execute next, given the target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.
1. Determine if the task has been completed successfully. If it is
successful, ignore question 2 to 5.
2. Summarize the tasks from the history and the current task. What is
the current progress of the task? For example, to open a file, you

first need to select the file, then open it by clicking somewhere or
using the keyboard. Subtasks may have other pre-requisites.
3. Record the successful actions and organize them into events, step
by step.
4. Which subtask has been completed? Which subtasks have not? Do not
forget the information and key events in the previous steps of the
overall task.

134

7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289

Under review as a conference paper at ICLR 2025

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with the following item.
1. Based on the unfinished part of overall task and the current
screenshot, identify the most direct and easiest way to complete the
task, considering possible shortcut keys and without making any
assumptions beyond the provided information.
2. Analyze the target task step by step to determine how to complete
it.
3. What is the previous subtask? Has the previous subtask finished
due to self-reflection? Or is it improper for the current situation?
If finished or improper, please select a new one, otherwise you
should reuse the last subtask.
4. If you want to propose a new subtask, give reasons why it is more
feasible for the current situation. Please strictly follow the
description and requirements in the current task.
5. The proposed subtask needs to be precise and concrete within one
sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
1. ...
2. ...
...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 42: Meitu: Action Planning prompt.

You are a helpful AI assistant integrated with ’Meitu Xiuxiu’ on the PC,
equipped to handle a wide range of tasks in the application. Meitu
Xiuxiu is a user-friendly and powerful image editing and
beautification software. Your advanced capabilities enable you to
process and interpret application screenshots and other relevant
information. By analyzing these inputs, you gain a comprehensive
understanding of the current context and situation within the
application. Utilizing these insights, you are tasked with
identifying the most suitable in-application action to take next,
given the current task. You control the application and can execute
actions from the available action set to manipulate its UI. Upon
evaluating the provided information, your role is to articulate the
precise actions you should perform, considering the application’s
present circumstances, and specify any necessary parameters for
implementing that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Few shots:
<few_shots>

135

7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343

Under review as a conference paper at ICLR 2025

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation and provide the reasoning for what you should do for the
next step to complete the task. Then, you should output the exact
action you want to execute in the application.

Pay attention to all UI items and contents in the image. DO NOT make
assumptions about the layout! If the image includes a mouse cursor,
pay close attention to the coordinates of the pointer tip, not the
centre of the mouse cursor.

You should respond to me with the following information, and you MUST
respond one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" means the overall task was successful
? If successful, ignore questions 2 to 9.
2. Which skill in the Skill Library "<$skill_library$>" has the
closest semantics to the current subtask "<$subtask_description$>"?
If there is an answer, select it as the output action, ignore
questions 3 to 9.
3. Prefer keyboard operation instead of mouse operation. Are there
any keyboard actions, such as using shortcut keys or pressing "enter
", to finish current step or overall task? If there is, please
specify which it is, ignore questions 4 to 9.
4. If the UI element you want to operate doesn’t exist in the current
screenshot. you can choose to scroll mouse to find target UI element

.
5. Always try pressing "enter" first instead of clicking it with the
mouse, if the button you want to click is active.
6. If mouse actions are necessary, use that specify bounding box
label ID (if shown in the current screenshot) as parameter, rather

136

7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397

Under review as a conference paper at ICLR 2025

than directly generating normalized x and y coordinates. If there is
any relevant label ID, please specify which it is.
7. If the previous action is unsuccessful, don’t reapeat previous
action. If there is an alternative action, please specify what it is.
Such as click different label ID or use different shortcut keys.
8. If you anticipate that the next step involves scrolling mouse,
confirm that the last executed action was a click at the appropriate
ui element. If not, it is mandatory to click on the corresponding ui
element before proceeding with scrolling.
9. If you anticipate that the next step involves typing text, confirm
that the last executed action was a click at the appropriate input

box. If not, it is mandatory to click on the corresponding input box
before proceeding with typing.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid actions et. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Before scrolling mouse, ensure that the last executed action
involved clicking on the relevant input box. If the last action was
not a click on this input box, the required action MUST be to click
on the corresponding input box before proceeding.
4. Before typing text, ensure that the last executed action involved
clicking on the relevant ui element. If the last action was not a
click on this ui element, the required action MUST be to click on the
corresponding ui element before proceeding.
5. Given the current situation and task, you should only choose the
most suitable action from the valid action set. You cannot use
actions that are not in the valid action set to control the
application.
6. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose skill click_on_label(
label_id, mouse_button).
7. When you want to add a image or effect, use the skill
double_click_on_label(x, y, mouse_button).
8. When you save a project, use the skill save_project().

Key_reason_of_last_action: Summarize the key reasons why you output this
action.

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below.

Decision_Making_Reasoning:
1. ...
2. ...
3. ...
...

137

7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451

Under review as a conference paper at ICLR 2025

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

Prompt 43: Feishu: Information Gathering prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ an office communication application on the PC
includign chat, calendar, and other workplace features. You can
handle a wide range of tasks in the application using the keyboard,
shortcut keys, and mouse operations. For each step, you will get one
or more observation images, which are screenshots of the computer
screen. Your advanced capabilities enable you to process and
interpret these application screenshots and other relevant
information in detail. The screenshots include numerical tags (label
IDs) and bounding boxes marking some UI items.

Image introduction:
<$image_introduction$>

Overall task:
<$task_description$>

Subtask description:
<$subtask_description$>

Image_Description:
1. Please describe the screenshot image in detail. Pay attention to any

details in the image, if any, especially critical icons, open menus,
dialogs, and open panels or sections. Focus on the image contents and
the situation in the application.

2. If the image includes a mouse cursor, please describe what UI element
the mouse is currently located near. Pay attention to the coordinates
of the pointer tip, not the center of the mouse cursor.

3. Pay attention to all UI items and contents in the image. Do not make
assumptions about the layout.

4. Make sure to describe the active area of the screen too. The area
where user interaction is probably happening, not only the general
menus or layout of the screenshot.

5. DO NOT describe overlayed bounding boxes in this description, only the
relevant UI items themselves. Focus on the state of the application

UI and what the key UI items of interest for the task would be.
Describe any relevant open panels, dialogs, menus, etc.

Target_object_name:
As an application expert and a helpful assistant, you can determine the

most relevant UI items for completing the current subtask, if needed.
What item should be detected to complete the task based on the

current screenshot and the current subtask? You should obey the
following rules:

1. The item should be present in the screen and relevant to the current
subtask or overall task. Just name the item, without any modifiers or
extra information.

2. If the item of itnerest of not on the current screen, only output "
Target items not in current screen".

2. If no explicit item is specified, only output "null".
3. If there is no need to detect a target item in this state, only output

"null". You must output this field in the response.

138

7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505

Under review as a conference paper at ICLR 2025

Reasoning_of_object: Why was this item chosen, or why is there no need to
detect an UI item at this stage?

You should only respond in the format described below and not output
comments or other information. DO NOT change the titles of any
response items.

Image_Description:
1. ...
2. ...
3. ...

Target_object_name:
name

Reasoning_of_object:
...

Prompt 44: Feishu: Self Reflection prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ on the PC and can handle a wide range of tasks
in the application using the keyboard, shortcut keys, and mouse
operations. For each step, you will get one or more observation
images, which are screenshots of the computer screen. Your advanced
capabilities enable you to process and interpret these application
screenshots and other relevant information in detail.

You MUST examine all inputs, interpret the in-application and OS contexts
, and determine whether the executed action has taken the correct
effect.

Overall task description:
<$task_description$>

Execution step images:
<$image_introduction$>

Current image description:
<$current_image_description$>

Last executed action with parameters used:
<$previous_action_call$>

Implementation of the last executed action:
<$action_code$>

Error report for the last executed action:
<$executing_action_error$>

Key reason for the last action:
<$key_reason_of_last_action$>

Success_Detection flag for the overall task:
<$success_detection$>

Valid action set in Python format to select the next action:
<$skill_library$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

139

7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559

Under review as a conference paper at ICLR 2025

Self_Reflection_Reasoning: You need to answer the following questions,
step by step, to describe your reasoning based on the last action and
sequential screenshots of the application during the execution of

the last action. Any action involving x and y coordinates is an
action involving movement.

1. What is the last executed action not based on the sequential
screenshots?

2. Was the last executed action successful? Give reasons. You should
refer to the following rules:

- If the action involves moving the mouse, it is considered unsuccessful
when the mouse position remains unchanged or moved in an incorrect
way across sequential screenshots, regardless of background elements
and other items.

- If the position to move the mouse to was incorrect and the mouse didn’t
reach the target UI element, pay more attention to the accurate

coordinates to move to.
- Are you sure the latest screenshot shows UI items that correspond to

the success of the previous action?
- If the action seemed to have no effect, pay attention to the latest

mouse position. Did it move? Did it get closer to the target UI
element? Where the target coordinates in the action wrong? The
position of the mouse cursor on the screenshot shows their location.

- Was some unrelated UI item triggered by the last action?
3. If the last action is not executed successfully, what is the most

probable cause? You should give only one cause and refer to the
following rules:

- The reasoning for the last action could be wrong.
- If it was an action involving moving the mouse or the text cursor, the

most probable cause was that the coordinates used were incorrect.
- If you already tried the same action more than one time and there was

no effect. DO NOT REPEAT the same action again until you have tried
something else.

- If it is an interaction action, the most probable cause was that the
action was unavailable or not activated at the current state.

- If an unrelated change happened in the UI, the most probable cause was
that the action triggered an incorrect UI element.

- If there is an error report, analyze the cause based on the report.

Success_Detection:
Based on the last action, the current screenshots and the

Success_Detection flag, determine whether the overall task was
successful. This assessment should consider the overall task’s
success, not just individual actions.

- If the task was unsuccessful, specify the reason of failure and which
steps are missing.

- If the task was successful, ONLY output "SUCCESSFUL".

You should only respond in the format as described below.
Self_Reflection_Reasoning:
1. ...
2. ...
3. ...

Success_Detection:
...

Prompt 45: Feishu: Task Inference prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ on the PC and can handle a wide range of tasks
in the application using the keyboard, shortcut keys, and mouse
operations. For each step, you will get one or more observation
images, which are screenshots of the computer screen. Your advanced

140

7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613

Under review as a conference paper at ICLR 2025

capabilities enable you to process and interpret these application
screenshots and other relevant information in detail.

You will receive a sequence of <$event_count$> screenshots, corresponding
descriptions of recent events, and a summary of the history of

events before the last screenshot. Please summarize the events for
future decision-making and also propose the most suitable subtasks to
execute next, given the overall target task.

Here is some helpful information to help you do the summarization and
propose the subtask.

Overall task description:
<$task_description$>

Previous proposed subtask for the task:
<$subtask_description$>

Previous reasoning for proposing the subtask:
<$subtask_reasoning$>

Image introduction:
<$image_introduction$>

Last executed action:
<$previous_action$>

Error report for the last executed action:
<$executing_action_error$>

Key decision-making reasoning for the last executed action:
<$previous_reasoning$>

Self-reflection for the last executed action:
<$self_reflection_reasoning$>

Success_Detection for the overall task:
<$success_detection$>

The following is the summary of history that happened before the last
screenshot:

<$previous_summarization$>

History_summary: Summarize what happened in the past experience,
especially the last step according to the decision-making reasoning
and self-reflection reasoning for the last executed action. The
summarization needs to be precise, concrete, highly related to the
task, and follow the rules below.

1. Summarize the tasks from the history and the current task. What is the
current progress of the task? For example, to open a file, you first
need to select the file, then open it by clicking somewhere or using
the keyboard. Subtasks may have other pre-requisites.

2. Record the successful actions and organize them into events, step by
step.

3. Which subtask has been completed? Which subtasks have not?
4. Do not forget the information and key events in the previous steps of

the overall task.

Subtask_reasoning: Decide whether the previous subtask is finished and
whether it is necessary to propose a new subtask. The subtask should
be straightforward, contribute to the target task, and be most
suitable for the current situation; which should be completed within
a few actions. You should respond with:

1. How to finish the target task? You should analyze it step by step.
2. What is the current progress of the target task according to the

analysis in question 1? Please do not make any assumptions if needed

141

7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667

Under review as a conference paper at ICLR 2025

information is not mentioned previously. You should assume that you
are doing the task from scratch. Please strictly follow the
description and requirements in the current overall task.

3. What is the previous subtask? Has the previous subtask finished
according to self-reflection? Or is it improper for the current
situation? If the last subtask already finished or now is improper,
please select a new one. Otherwise you should reuse the last subtask.

4. If you propose a new subtask, give the reasons why it is more feasible
in the current situation in the application. Please strictly follow

the description and requirements in the current overall task.
5. The proposed subtask needs to be precise and concrete within one

sentence. It should not be directly related to any skills.

You should only respond in the format described below, and you should not
output comments or other information.

History_summary:
The summary of past events is...

Subtask_reasoning:
1. ...
2. ...
...

Subtask_description:
The current subtask is ...

Prompt 46: Feishu: Action Planning prompt.

You an expert helpful AI assistant which follows instructions and
performs desktop computer tasks as instructed. You have expert
knowledge of ’Feishu’ on the PC and can handle a wide range of tasks
in the application using the keyboard, shortcut keys, and mouse
operations. For each step, you will get one or more observation
images, which are screenshots of the computer screen. Your advanced
capabilities enable you to process and interpret these application
screenshots and other relevant information in detail.

Utilizing these insights, you will identify the most suitable in-
application action to take next, given the current task. You control
the application and can execute actions from the available actions to
manipulate its UI. Upon evaluating the provided information, you

MUST choose the precise actions to perform, considering the
applications’s present circumstances, and specify any necessary
parameters to execute that action.

Here is some helpful information to help you make the decision.

Overall task description:
<$task_description$>

Subtask description:
<$subtask_description$>

Few shots:
<few_shots>

Image introduction:
<$image_introduction$>

Current and previous screenshot are the same:
<$image_same_flag$>

Mouse position in the current screenshot is the same as in the previous
screenshot:

<$mouse_position_same_flag$>

142

7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721

Under review as a conference paper at ICLR 2025

Description of current screenshot:
<$image_description$>

Description of label IDs:
<$description_of_bounding_boxes$>

Last executed action:
<$previous_action$>

Key reason for the last action:
<$key_reason_of_last_action$>

Self-reflection for the last executed action:
<$previous_self_reflection_reasoning$>

Summarization of recent history:
<$previous_summarization$>

Valid action set in Python format to select the next action:
<$skill_library$>

Success detection for overall task:
<$success_detection$>

Based on the above information, you should first analyze the current
situation of the application and provide the reasoning behind what
should be the next step to complete the task. Then, you should output
the exact action to be executed in the application.

Pay attention to all UI items and contents in the image. Before changing
values or text in the UI, make sure the values in the screenshot are
not already correct for the subtask. DO NOT make assumptions about
the layout! If the image includes a mouse cursor, pay close attention
to the coordinates of the pointer tip, not the center of the mouse

cursor. You should respond with the following information, and you
MUST answer them one by one.

Decision_Making_Reasoning: You should think step by step and provide
detailed reasoning to determine the next action executed on the
current state of the task.
1. Does "<$success_detection$>" means the overall task was successful
? If successful, ignore questions 2-15. No new action needs to be
taken.
2. You should first describe each item in the screen line by line,
from the top left and moving right. Is the target item in the current
screen? Which item is currently selected?
3. Check whether the UI element you want to operate exists in the
current screenshot. If not, you can choose to move to another part of
the application, or close some recently opened menu item. Also

remember that you can use keyboard shortcuts to accomplish actions,
instead of always using the mouse.
4. Are there any keyboard actions, such as using shortcut keys or
pressing "enter", to finish the current step or the overall task? If
so, please specify which one to use. You can always press "enter"
instead of clicking with the mouse, if the button you want to click
on is active.
5. If a mouse cursor is present in the image, describe near which ID-
labeled bounding box or unlabelled UI item the cursor’s tip is
located, not the center of the cursor.
6. If the current screenshot is the same as the previous screenshot,
DO NOT output the same action as in the previous step, as it was very
likely not useful.
7. In the current screenshot, carefully identify the label ID of the
bounding box most relevant to the current step. If there is text
within this bounding box, please provide the text. If there is no

143

7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775

Under review as a conference paper at ICLR 2025

directly useful bounding box, provide the UI item description or
normalized x, y coordinates.
8. If mouse actions are necessary, specify a bounding box label ID (
if shown in the current screenshot) as parameter. Only directly
generate normalized x, y coordinates if no useful label ID is present
.
9. If not absolutely sure to be clicking at the righ UI item or
location, you can first just move the mouse to it and check for more
information. If it’s the right item, you can click on it in as a
second step.
10. If there is a dialog or menu opened after the previous action,
pay attention to any missing step before clicking on its buttons. For
example, before clicking "Save", make sure a correct file name is

typed in the correct text field.
11. You should not always use the mouse if you know a keyboard
shortcut or a skill to peform the desired action!
12. This is the most critical question. Based on the action rules and
self-reflection, what should be the most suitable action in the

valid action set for the next step? You should analyze the effects of
the action step by step.
13. If the previous action is unsuccessful, consider an alternative
action if possible. If there is an alternative action, please specify
what it is. Such as click different label ID or use different

shortcut keys.
14 If you think the next step will be to typing tex, confirm that
that there is already a text cursor in it or that the last executed
action was a click at the appropriate input area. If neither is true,
it is mandatory to click on the corresponding input box before

proceeding with typing.
15. If you need to interact with an UI item that has no bounding box
label ID, you can use its x, y coordinates. Use normalized values
from 0 to 1.

Actions: The best action, or short sequence of actions without gaps, to
execute next to progress in achieving the goal. Pay attention to the
names of the available skills and to the previous skills already
executed, if any. Pay special attention to the coordinates of any
action that needs them. Do not make assumptions about the location of
UI elements or their coordinates, analyse in detail any provided

images. You should also pay more attention to the following action
rules:
1. If "<$success_detection$>" means the overall task was successful
or equal to "True", then output action MUST be empty like ’’. Be
careful to check the task was really successful.
2. You should output actions in Python code format and specify any
necessary parameters to execute that action. Only use function names
and argument names exactly as shown in the valid actions et. If a
function has parameters, you should also include their names and
decide their values, like "press_shift(duration=1)". If it does not
have a parameter, just output the action, like "release_mouse_buttons
()".
3. Before typing text, ensure that the last executed action involved
clicking on the relevant input box. If the last action was not a
click on this input box, the required action MUST be to click on the
corresponding input box before proceeding.
4. Given the current situation and task, you should only choose the
most suitable action from the valid action set. If values in the
screen are already correct, no need for a new action.
5. When you decide to perform a mouse action, if there is bounding
box in the current screenshot, you MUST choose skill click_on_label(
label_id, mouse_button).
6. When you perform a mouse action, always select the target UI
element closest to the UI element of the previous action for
operation.

144

7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829

Under review as a conference paper at ICLR 2025

7. When you decide to operate on a file, such as downloading it,
please pay attention to the path and name of the current file.
8. If upon self-reflection you think the target coordinates were an
issue, you MUST pay close attention to choosing new coordinates that
are not the same or too similar to the previous ones.
9. If upon self-reflection you think the last action was unavailable
at the current state, you SHOULD try to take another action to try to
enable the desired action.
10. If you leave the application incorrectly, you can go back to it
directly using go_back_to_target_application(). No need to use the
mouse.

You should only respond in the format described below. In your reasoning
for the chosen actions, also describe which item you decided to
interact with and why. DO NOT change the title of each item. You
should not output other comments or information besides the format
below:

Decision_Making_Reasoning:
1. ...
2. ...
3. ...

Actions:
‘‘‘python

action(args1=x,args2=y)
‘‘‘

Key_reason_of_last_action:
...

145

	Introduction
	Related Work
	The Cradle Framework
	Environment IO
	Memory
	Reasoning

	Empirical Studies
	General Implementations
	Performance across Environments
	Baseline Comparison
	Ablation Study

	Limitations and Future Work
	Conclusion
	 Appendix
	Game & Task Introduction
	Extended Related Work
	Environments and Benchmarks for Computer Control
	LMM-based Agents for Computer Tasks

	Experimental Cost
	General Implementation
	Red Dead Redemption II
	Introduction to RDR2
	Objectives
	Implementation Details
	Case Studies
	Self-Reflection
	Skill Curation
	Action Execution and Feedback

	Limitations of GPT-4o and GPT-4V

	Stardew Valley
	Introduction to Stardew Valley
	Objectives
	Implementation Details
	Case Studies
	Self-Reflection
	Task-inference

	Limitations of GPT-4o

	Dealer's Life 2
	Introduction to Dealer's Life 2
	Objectives
	Implementation Details
	Case Studies
	Successful Negotiation
	Unsuccessful Negotiation
	Acquiring and Selling of a Counterfeit Item

	Quantitative Evaluation
	Evaluation Metrics

	Cities: Skylines
	Introduction to Cities: Skylines
	Objectives
	Evaluation Metric
	Implementation Details
	Case Studies
	Failure for Road Building.
	Failure for Sufficient Water Supply.

	Software Applications
	Selected Software Applications
	Brief Descriptions

	Software Tasks
	Quantitative Evaluation
	Implementation Details
	Case Studies
	Task Hardness
	Tool Use in CapCut

	Limitations of GPT-4o

	OSWorld
	Introduction to OSWorld
	OSWorld Tasks
	Implementation Details
	Application Target and Setting Challenges
	Case Studies
	Information Gathering
	Planning with Self-reflection

	Quantitative Evaluation

	Cradle Prompts
	Prompts for RDR2
	Prompts for Cities: Skylines
	Prompts for Stardew Valley
	Prompts for Dealer's Life 2
	Prompts for Software Applications

