
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAD-FLOWER: FLOW MATCHING FOR SAFE, ADMIS-
SIBLE, AND DYNAMICALLY CONSISTENT PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow matching (FM) has shown promising results in data-driven planning. How-
ever, it inherently lacks formal guarantees for ensuring state and action constraints,
whose satisfaction is a fundamental and crucial requirement for the safety and ad-
missibility of planned trajectories on various systems. Moreover, existing FM
planners do not ensure the dynamical consistency, which potentially renders tra-
jectories inexecutable. We address these shortcomings by proposing SAD-Flower,
a novel framework for generating Safe, Admissible, and Dynamically consistent
trajectories. Our approach relies on an augmentation of the flow with a virtual
control input. Thereby, principled guidance can be derived using techniques from
nonlinear control theory, providing formal guarantees for state constraints, action
constraints, and dynamic consistency. Crucially, SAD-Flower operates without re-
training, enabling test-time satisfaction of unseen constraints. Through extensive
experiments across several tasks, we demonstrate that SAD-Flower outperforms
various generative-model-based baselines in ensuring constraint satisfaction.

1 INTRODUCTION

Generative models have recently emerged as powerful tools for trajectory planning, with diffusion
models (Ho et al., 2020) and flow matching (FM) (Lipman et al., 2023) enabling the generation
of complex, long-horizon behaviors by directly learning from data. Unlike traditional data-driven
planners that combine learned dynamics with optimization routines (Posa et al., 2014; Kalakrishnan
et al., 2011), generative approaches avoid model exploitation—where optimizers produce trajecto-
ries that perform well under the model but fail in reality due to approximation errors (Talvitie, 2014;
Ke et al., 2019). By training models to generate full trajectories that implicitly encode system dy-
namics, generative planners naturally capture multimodal (Huang et al., 2025), high-dimensional
behaviors while mitigating compounding errors and supporting task compositionality. These advan-
tages make generative approaches increasingly attractive for real-world planning and control tasks.

Despite these advantages, a critical limitation of generative model planners lies in their inability to
guarantee constraint satisfaction – specifically, state and action constraints. State constraints ensure
safety (Wabersich et al., 2023) (e.g., avoiding collisions), while action constraints guarantee admis-
sibility (Shen et al., 2018) (e.g., respecting torque or power limits), which makes these constraints
essential in domains such as robotics (Craig, 2009). However, constraint satisfaction at individual
time steps is insufficient: since trajectories are sequences of states (and actions), subsequent states in
trajectories cannot be chosen independently (Kelly, 2017). For a planned trajectory to be physically
realizable and its guarantees to transfer from plan to execution, the trajectory must be dynamically
consistent, i.e., states must evolve according to the dynamics of the system for which the trajec-
tory is planned. However, existing generative planners offer no inherent mechanism to enforce such
properties, and the non-static nature of real-world environments often leads constraints to be un-
derrepresented, or entirely absent, in the training data. These factors make constraint satisfaction
particularly challenging at test time and motivate the need for formally grounded methods that can
reliably ensure safety, admissibility, and consistency in generated trajectories.

A number of recent works have explored constrained planning for generative models by incorporat-
ing constraints into the training phase (Ho & Salimans, 2022; Ajay et al., 2023; Zheng et al., 2023),
injecting guidance signals during sampling (Dhariwal & Nichol, 2021; Yuan et al., 2023; Kondo
et al., 2024; Xiao et al., 2025), or applying post-processing (Mazé & Ahmed, 2023) corrections af-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ter generation. While these approaches improve constraint adherence, they remain fundamentally
limited. Training-time methods struggle to handle unseen constraints, guidance-based techniques
offer only soft biases without guarantees, and post-processing can distort the distribution learned by
the generative model. These issues highlight three key challenges that need to be jointly addressed:
(1) guaranteeing state and action constraint satisfaction, (2) ensuring dynamic consistency so that
trajectories are physically valid, and (3) handling novel test-time constraints without retraining.

To address these challenges, we propose SAD-Flower – a novel control-augmented flow matching
framework designed to generate Safe, Admissible, and Dynamically consistent trajectories. Inspired
by guidance-based approaches, SAD-Flower introduces a virtual control input into the generation
process. This control-theoretic interpretation of the sampling process enables a principled design of
test-time guidance signals to ensure strong guarantees. The foundation of the design lies in a novel
reformulation of state and action constraints into Control Barrier Function (CBF) conditions (Ames
et al., 2017) for the generation process, while dynamic consistency is transformed into a Control
Lyapunov Function (CLF) condition (Sontag, 1983). We exploit these conditions to design prin-
cipled guidance signals via constrained optimal control problems, which can be solved efficiently
using quadratic program solvers, such that SAD-Flower can handle novel constraints at test time
without retraining. Unlike general constraint-projection approaches (Römer et al., 2025; Bouvier
et al., 2025), which can significantly deviate from the original distribution learned by the genera-
tive model, we leverage prescribed-time control concepts (Song et al., 2017) to flexibly schedule
constraint enforcement. This allows us to formally prove the safety, admissibility, and dynamic
consistency of trajectories generated by SAD-Flower. These theoretical guarantees translate into
empirical performance: across a range of domains, SAD-Flower consistently ensures constraint sat-
isfaction while achieving competitive or superior task performance compared to existing generative
planners. Notably, SAD-Flower remains robust even under increasingly stricter test-time constraints,
validating its reliability in challenging deployment scenarios.

2 RELATED WORK

Diffusion and Flow-Based Generative Models for Planning. Recent advances in generative
modeling, including diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021)
and flow-matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023), have shown remarkable
performance across various domains such as image generation (Dhariwal & Nichol, 2021; Du et al.,
2020) and language modeling (Liu et al., 2023; Saharia et al., 2022). These generative approaches
have also been successfully applied to data-driven planning, where the model learns to imitate expert
behavior from datasets. For example, some works generate entire state-action trajectories directly
using one (Janner et al., 2022; Zheng et al., 2023) or two separate models (Zhou et al., 2024), while
others predict high-level trajectories and rely on a downstream controller to compute low-level ac-
tions (Chi et al., 2023; Ajay et al., 2023). However, these generative model planners operate without
mechanisms to ensure that generated trajectories respect real-world constraints. In particular, they
lack formal guarantees for satisfying state and action constraints, as well as dynamic consistency.

Constraint-Aware Generative Model Planner. To address the issue of constraint satisfaction, sev-
eral recent works have explored constraint-aware planning based on generative models. Guidance-
based methods (Dhariwal & Nichol, 2021; Yuan et al., 2023; Kondo et al., 2024; Ma et al., 2025;
Carvalho et al., 2023) incorporate constraints by injecting gradients of auxiliary cost functions into
the sampling process. While this encourages constraint satisfaction, it provides only a soft inductive
bias without formal guarantees. Classifier-free guidance (Ho & Salimans, 2022) leverages infor-
mation, such as constraint violation (Ajay et al., 2023) during training, enabling constraint-aware
generation. However, these approaches require additional labeled data and have limited generaliza-
tion to novel constraints. Similarly, DDAT (Bouvier et al., 2025) incorporates projection into the
feasible set during training and inference but relies on strong assumptions, such as convexity of the
constraint set. Post-processing approaches (Mazé & Ahmed, 2023; Giannone et al., 2023) attempt to
enforce constraints by optimizing generated samples after denoising. However, these modifications
are unaware of the learned data distribution and can produce samples that significantly drift from it.

Control-Theoretic Enforcement in Generative Planning. Several works have proposed control-
theoretic techniques to enforce constraints. The works (Xiao et al., 2025; Botteghi et al., 2023; Dai
et al., 2025) employ Control Barrier Functions (CBFs) (Ames et al., 2017) to enforce state con-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

straints during the denoising process. However, these methods neglect action constraints and often
produce trajectories that are not dynamically consistent and suffer from the local trap problem (Xiao
et al., 2025). Control Lyapunov functions (CLFs) (Sontag, 1983) are leveraged together with CBFs
in (Mizuta & Leung, 2024) to improve safety and stability, but formal guarantees are missing, and
action constraints are not addressed. A constrained optimal control layer is integrated into the de-
noising process in (Römer et al., 2025) to enforce state and action constraints. Since it performs non-
convex optimization throughout the entire sampling process, it exhibits a high computational cost
and potentially steers samples prematurely before they reflect meaningful structure (Fan et al., 2025).

3 PROBLEM SETTING

We formally define the trajectory planning problem with safety, admissibility and dynamic consis-
tency constraints as follows.

System Model. We consider a nonlinear dynamical system with state s(k) ∈ Rn and action a(k) ∈
Rm at time k, evolving as

s(k + 1) = f(s(k),a(k)), (1)
where f is the (possibly unknown) transition function. A trajectory is defined as a sequence of state-
action pairs, τ = {(s(0),a(0)), . . . , (s(H − 1),a(H − 1))}. Given a dataset of expert trajectories
D = {τ (n)}Nn=1, our goal is to learn planning new trajectories that both imitate expert behavior and
respect all deployment constraints.

Constraints. To ensure reliable real-world execution, every generated trajectory must, at every time
step, satisfy: (1) Safety: the state remains within a safe set S (e.g., avoid collisions; eq. (SC));
(2) Admissibility: the action is within an admissible set A (e.g., satisfy torque or speed limits;
eq. (AC)); and (3) Dynamic Consistency: the trajectory obeys the system dynamics (eq. (DC)).
Neglecting any of these leads to unsafe, infeasible, or unrealizable plans: for example, trajectories
may pass through obstacles (violating safety), demand unattainable actions (violating admissibility),
or include state transitions that cannot be executed by the system (violating dynamics).

Formally, these requirements are posed on the distribution pθ(τ) of the learned planner as follows:

∀τ ∼ pθ(τ) : s(k) ∈ S, ∀k = 0, . . . , H − 1, (SC)

∀τ ∼ pθ(τ) : a(k) ∈ A, ∀k = 0, . . . , H − 1, (AC)

∀τ ∼ pθ(τ) : s(k + 1) = f(s(k),a(k)), ∀k = 0, . . . ,H − 1. (DC)

Objective. Given expert data D and constraint sets S, A, our goal is to learn a generative model
pθ(τ) that (i) matches the expert trajectory distribution, and (ii) ensures all sampled trajectories sat-
isfy eqs. (SC), (AC), and (DC). This setting motivates methods that can flexibly enforce constraints,
even as requirements change at test time.

4 BACKGROUND: LEARNING TO PLAN WITH FLOW MATCHING

When a trajectory data set D of an expert planner is given, Flow Matching (FM) (Lipman et al., 2023;
Zheng et al., 2023) is an effective technique to learn the distribution p(τ) of the data D. In FM, the
unknown distribution p(τ) is considered as the desired endpoint of a probability path pθt (τ), t ∈
[0, 1]. The remainder of the probability path pθt (τ) is characterized by a time-dependent vector field
vθ
t : [0, 1]×R(n+m)H → R(n+m)H parameterized by θ that acts on samples τ0 ∼ p0(τ) via the flow

τ̇t =
d
dtτt = vθ

t (τt), (2)

whereby the prior p0(τ) is typically set to a Gaussian (Lipman et al., 2023). By prescribing a path
from samples τ0 of p0(τ) to data trajectories τ1 via a scheduled interpolation τt = α(t)τ1+β(t)τ0
with α, β such that α(0) = 0, β(1) = 0 and α(t) + β(t) = 1, the distribution learning problem is
transformed into the supervised learning problem

LCFM(θ) = Et∼U [0,1],τt∼pθ
t (τ),τ1∼p(τ)||vθ

t (τt)− vt(τ0, τ1)||22, (3)

where vt(τ0, τ1) = α̇(t)τ1 + β̇(t)τ0 follows from the interpolation. Minimizing this cost function
via stochastic gradient descent, vθ

t (τt) can be efficiently trained using the trajectory data set D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Given an initial state s0 and a trained vector field vθ
t (τt), we sample a random trajectory τ0 from

the prior distribution p0 and numerically solve the ordinary differential equation (ODE) in eq. (2)
using τ0 as the initial condition to obtain τ1. Thereby, the trajectories effectively become samples
τ1 ∼ pθ(τ), where pθ(τ) is implicitly represented through vθ

t (τt). While such samples can
be directly used in planning, they generally do not satisfy the safety, admissibility, and dynamic
consistency constraints in eqs. (SC), (AC), and (DC).
Remark 4.1. To allow plans with given initial states s0, we only need to condition the initial distri-
bution on s(0) = s0 and ensure τ̇

s(0)
t = 0 for all t ∈ [0, 1]. For training, s0 is chosen as the first

state of trajectories in the data set, while arbitrary values can be set when sampling trajectories.

5 CONTROL AUGMENTED FLOW MATCHING FOR CONSTRAINED PLANNING

Despite the power of FM-based planners for trajectory generation, ensuring safety, admissibility,
and dynamic consistency remains challenging, particularly under new test-time constraints. We
address this with SAD-Flower, a control-augmented flow matching framework that provides formal
guarantees for constraint satisfaction. In Section 5.1, we outline the control-theoretic intuition and
its integration with FM. Section 5.2 details how constraint-aware quadratic programming augments
sampling, and Section 5.3 presents theoretical guarantees of convergence and constraint satisfaction.

5.1 CONTROL AUGMENTATION FOR SAFETY, ADMISSIBILITY AND DYNAMIC CONSISTENCY

To ensure the satisfaction of safety (eq. (SC)), admissibility (eq. (AC)) and dynamic consistency
(eq. (DC)), we extend the formulation in eq. (2) at test time to a controlled dynamical system

τ̇t = vθ
t (τt) + ut, (4)

where the vector fieldvθ
t (τt) represents the drift, while ut is a control input. By choosing ut = 0,

we recover standard flow matching as a special case of this formulation. Framing the problem in
this way enables us to view the requirements in eqs. (SC), (AC), and (DC) as system properties, so
that their satisfaction becomes a matter of control design with the following specifications.

From State/Action Constraints to Barrier Specifications. State and action constraints are set in-
clusion conditions, which require the controlled flow in eq. (4) to converge to and subsequently
maintain constraint satisfaction. This behavior can be formalized via control barrier functions
(CBFs) (Ames et al., 2017), whose level sets can encode the constraint sets A and S. Thereby,
we express state and action constraints as a condition on the growth of CBFs along the flow.

From Dynamic Consistency to Lyapunov Specifications. Dynamic consistency is an equality con-
dition, whose violation needs to decay to 0 along the flow in eq. (4). This property can be formalized
using control Lyapunov functions (CLF) (Sontag, 1983) – energy-like, non-negative functions with
a minimum of 0 at the desired equilibrium. Hence, we formulate dynamic consistency as a condition
on the decay of a CLF along the flow.

Prescribed-time Specifications. While FM simulates ODEs for time intervals t ∈ [0, 1], Lyapunov
and barrier specifications usually relate to asymptotic guarantees with t → ∞. This discrepancy
necessitates the scheduling of a sufficiently fast growth of CBFs and decrease of CLFs along the
flow, which corresponds to a prescribed-time specification for control (Song et al., 2017).

Our approach – SAD-Flower – splits the numerical integration of eq. (4) into two phases as
illustrated in Fig. 1. In the uncontrolled phase (0 ≤ t < T0), trajectories evolve under the learned
FM vector field without intervention (ut = 0) to preserve sample diversity (Fan et al., 2025). In
the controlled phase (T0 ≤ t ≤ 1), the control law ut satisfying CLF, CBF, and prescribed-time
specifications is applied when integrating eq. (4). Thereby, the activation time T0 ∈ (0, 1)
allows SAD-Flower to effectively balance generative flexibility with formal guarantees on safety
(eq. (SC)), admissibility (eq. (AC)), and dynamic consistency (eq. (DC)).

5.2 CONTROL DESIGN USING CONTROL LYAPUNOV AND BARRIER FUNCTIONS

Given the control specifications in Section 5.1, the actual control design problem remains. We first
derive dedicated CBF and CLF constraints, which employ scheduling functions to ensure a sufficient
growth/decrease rate. These constraints are exploited in an optimization-based control law.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝝉!

Integrate 𝝉̇! = 𝒗!𝜽(𝝉!) with FM vector field

	𝐬(0) 𝐚(0) … 𝐬(H-1) 𝐚(H-1)

SAD trajectory 𝝉𝟏

𝝉"!

𝝉#
t

k

Sample random initial trajectory 𝝉$ ∼ 𝑝$

Integrate 𝝉̇! = 𝒗!𝜽 𝝉! + 𝒖! with controller eq. (5)

	𝐬(0) 𝐚(0) … 𝐬(H-1) 𝐚(H-1)

	𝐬(0) 𝐚(0) … 𝐬(H-1) 𝐚(H-1)

Algorithm 1: Planning by SAD Flower

1: Input: pretrained flow model vθ
t (τt)

2: Initialize τ0 ∼ p0(τ)

3: Solve ODE τ̇t = vθ
t (τt) in [0, T0)

4: Solve ODE τ̇t = vθ
t (τt)+ut in [T0, 1]

with our controller (5) to get τ1
5: Output: SAD trajectory τ1

Figure 1: Overview of the trajectory generation using our proposed SAD-Flower.

Control Barrier Constraints. Since state/action constraints are specified separately for each time
step, we design state CBFs hs

k(τt) and action CBFs ha
k(τt) for each time step k = 0, . . . , H−1.

Each CBF itself is defined as a signed distance function (SDF) (Park et al., 2019; Long et al., 2021),
which measures the distance to the boundary of the set S and A, respectively, and assigns a sign
based on the inclusion in the constraint set.1 Thus, these functions are only positive if states s(k) and
actions a(k) are inside the sets S and A, respectively. Non-negativity of the CBFs can be ensured by
constraining the evolution of the CBF values along the flow, which results in the derivative condition

ḣs
k(τt) ≥ −φ(t)hs

k(τt), ∀k = 1, . . . , H − 1, (CBF-s)

ḣa
k(τt) ≥ −φ(t)ha

k(τt), ∀k = 0, . . . , H − 1, (CBF-a)

where ḣs/a
k (τt) = ∇Th

s/a
k (τt)

(
vθ
t (τt) + ut

)
(Ames et al., 2017) and φ(t) is a scheduling function

that we will design later.

Control Lyapunov Constraints. For defining a suitable CLF, we sum up the squared consistency
errors of a trajectory, i.e., V (τt) = 1

2

∑H−1
k=1 ||s(k) − f(s(k − 1),a(k − 1))||2. This function is

only 0 if the trajectory τt is dynamically consistent, such that we constrain the evolution of its value
along the flow to be negative via

V̇ (τt) ≤ −φ(t)V (τt), (CLF)

where V̇ (τt) = ∇TV (τt)
(
vθ
t (τt) + ut

)
(Sontag, 1983) and φ(t) is a scheduling function that we

will design later. Computing ∇TV (τt) requires access to f . In some robotic domains this infor-
mation is available through high fidelity simulators (Gaz et al., 2019; Howell et al., 2022; Acosta
et al., 2022). If there exists no accurate physics-based simulator, e.g., for contact-rich manipulation
tasks, a dynamics model can also be learned from the trajectory data. The learning errors directly
correlate to the magnitude of dynamic consistency violations (Curi et al., 2020), such that practical
consistency can still be achieved given sufficiently precise learned model.

Prescribed-time Scheduling. To guarantee that the CBFs are positive and the CLF is 0 at the
terminal time t = 1 regardless of its state at t = T0, we employ a scheduling function φ(t) = c

(1−t)2

with some constant c > 0. Due to the steep growth of φ for t → 1, the constraints in eqs. (CBF-s),
(CBF-a) and (CLF) become increasingly more restrictive. This ensures that positivity of CBFs and
a vanishing CLF are ensured at some time t < 1 (Song et al., 2023).

Constrained Minimum-Norm Optimal Control. To ensure the satisfaction of CLF and CBF con-
straints, we formulate the minimum-norm optimal control problem

ut =minu ||u||2 s.t. eqs. (CBF-s), (CBF-a) and (CLF) hold, (5)

which ensures them by construction, while simultaneously minimizing the perturbation of the
learned vector field vθ

t (τt). Even though this optimization problem often consists of a large num-
ber of optimization variables and constraints, it can be solved comparatively efficiently since it is
a quadratic program (QP). This renders the numerical integration of eq. (4) with the control law in
eq. (5) computationally tractable when using dedicated QP solvers.

1For a formal definition of the CBFs hs
k(τt) and ha

k(τt), see Appendix A

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.3 THEORETICAL GUARANTEES FOR CONSTRAINT SATISFACTION AND CONSISTENCY.

Due to the strong theoretical foundations of CBFs and CLFs, strong guarantees for safety, admissi-
bility, and dynamic consistency can be provided as shown in the following result.2

Theorem 5.1. Assume that the QP in eq. (5) is feasible for all t ∈ [T0, 1]. Then, the solution τt of
eq. (4) with control law ut = 0 for t < T0 and ut defined in eq. (5) for t ≥ T0 satisfies eqs. (SC),
(AC), and (DC) at t = 1 for all initial conditions τ0.

This result shows that the validity of the safety, admissibility, and dynamic consistency guarantees
essentially depends on the feasibility of the minimum-norm optimal control law in eq. (5), which is
a fundamental requirement for a well-defined solution τ1. While feasibility hinges on three tech-
nical conditions, it is not an issue in practice for the designed CLF and CBF constraints. Firstly,
infeasibility often occurs only on sets of trajectories τ with zero measure, such that it does not occur
during the numerical integration of eq. (4). Secondly, many strategies for recovering feasibility ex-
ist, e.g., via slack variables (Boyd & Vandenberghe, 2004). If there exists a non-empty time interval
including t = 1 after employing such a recovery strategy, it follows from Theorem 5.1 that eqs.
(SC), (AC), and (DC) remain guaranteed. Hence, feasibility is usually not a practical concern.

6 EXPERIMENT

6.1 EXPERIMENT SETTING

We evaluate all methods in 4 different benchmark tasks: Maze2d, Hopper, and Walker2d from the
D4RL problem set (Fu et al., 2020), and Kuka Block-Stacking (Janner et al., 2022).3

• Maze2d (Fu et al., 2020) is a navigation task where a point mass is moved from an initial state to
a specified goal. Actions are artificially constrained to [−0.1, 0.1]. State constraints are defined
for two novel obstacles, which do not block feasible paths and therefore still allow the task to be
completed. Training data is generated by a navigation planner for the given maze. We evaluate
on two maze configurations: Large and Umaze.

• Hopper and Walker2d (Fu et al., 2020) are locomotion tasks where a one-legged and a bipedal
robot must move forward by jumping and walking, respectively. Actions are constrained to the
range [−1, 1]. State constraints are imposed by requiring the robot’s torso center to remain below
a prescribed height (default: 1.6), creating a conflict with the objective of fast forward movement.
We evaluate two datasets: demonstrations from a partially trained soft actor-critic policy (Haarnoja
et al., 2018) (Medium) and a mixture of expert and partially trained policy data (Med-Expert).

• Kuka Block-Stacking (Janner et al., 2022) is a manipulation task where a 7-DOF robotic arm
must stack a set of blocks. Unlike the other tasks, no action constraints or dynamic consistency re-
quirements are enforced; only state constraints are applied, allowing us to study a variant of trajec-
tory planning focused solely on state feasibility. These constraints ensure that self-collisions of the
robot are avoided. Training data is generated using the PDDLStream planner (Garrett et al., 2020).

Evaluation Metrics. We evaluate the safety and admissibility violation of a trajectory via its max-
imal distance to the constraint sets S and A, which we can effectively express through the CBFs as
−mink min{hs,a

k (τ), 0}. Thus, a value of 0 means constraint satisfaction, while positive values im-
ply a violation. Dynamical consistency is measured using the Lyapunov function, such that large val-
ues indicate inconsistency. The performance of planned trajectories is measured by normalized total
rewards for D4RL tasks and binary success rewards for stacking, as defined in Janner et al. (2022).

Baselines: We compare our proposed SAD-Flower against the following generative planners:

• Diffuser (Janner et al., 2022) generates trajectories using a diffusion model, without considering
safety, admissibility, or dynamic consistency.

• Truncation (Trunc) (Brockman et al., 2016) enforces constraints by truncating the trajectory
generated from the diffusion model.

• Classifier Guidance (CG) (Dhariwal & Nichol, 2021) augments diffusion-based trajectory gen-
eration with constraint-gradient guidance during sampling.

2A proof and extended discussion of the theorem’s assumptions can be found in Appendix B.
3Details of the experimental setting are provided in the Appendix. D

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• Flow Matching (FM) (Feng et al., 2025) trains a model with FM to generate trajectories, which
is used as a baseline that does not incorporate safety, admissibility, or dynamic consistency.

• SafeDiffuser (S-Diffuser) (Xiao et al., 2025) generates trajectories via diffusion, while projecting
states onto the constraint sets using a CBF at each sampling step.

• Decision Diffuser (D-Diffuser) (Ajay et al., 2023) trains a conditional diffusion model to
generate state trajectories conditioned on task information and constraints, with the corresponding
actions inferred from a learned inverse dynamics model.

6.2 CONSTRAINED-PLANNING PERFORMANCE ACROSS BENCHMARKS

As shown in Table 1, our method consistently satisfies safety and admissibility constraints while
matching the planning performance of other methods across tasks. Although perfect dynamical con-
sistency is not reached, the remaining violations are minor and mainly due to numerical integration
of eq. (4). These results demonstrate the effectiveness of our control-theoretic mechanism, which
guarantees constraint satisfaction at test time. SAD-Flower achieves this performance at the cost of
merely a small computation time increase compared to existing methods (Appendix, Table 13).

In the navigation tasks of Maze2D, SAD-Flower achieves high rewards while maintaining complete
constraint satisfaction. Since the task goals and imposed constraints are not in conflict, our method
effectively balances planning performance and constraint adherence. Among baselines, SafeDiffuser
employs a constraint-following mechanism during the diffusion sampling process to enforce state
constraints, but it fails to guarantee admissibility. In contrast, Diffuser and FM achieve high rewards
at the cost of violations in both safety and admissibility.

Table 1: Performance of the proposed SAD-Flower and baselines across navigation, locomotion, and
manipulation tasks. The methods are compared on the maximum safety and admissibility constraint
violations of planned trajectories, the magnitude of the dynamic consistency violation, and the model
accuracy expressed through the reward. Truncate is not applicable in Maze2d (Umaze) due to more
complex safety constraints, such that truncation becomes non-trivial (Xiao et al., 2025).

Experiment Metric Diffuser Trunc CG FM S-Diffuser D-Diffuser Ours

Maze2d
(Large)

safety 0.43±0.39 0.10±0.25 0.27±0.37 0.37±0.39 0.00±0.00 0.83±0.24 0.00±0.00
admissib. 0.89±0.01 0.88±0.07 0.87±0.02 0.90±0.00 0.91±0.02 0.90±0.03 0.00±0.00

dyn. consist. 0.06±0.03 0.06±0.03 0.44±0.16 0.02±0.00 0.09±0.06 2.78±0.06 0.01 ± 0.01
reward 1.40±0.26 1.39±0.26 0.40±0.33 1.43±0.20 1.20±0.06 0.38±0.18 1.42± 0.52

Maze2d
(Umaze)

safety 0.04±0.20 — 0.51±0.33 0.11±0.22 0.87±3.77 0.05±0.15 0.00±0.00
admissib. 0.90±0.01 — 0.88±0.03 0.01±0.00 0.90±0.02 0.89±0.02 0.00±0.00

dyn. consist. 0.05±0.02 — 0.68±0.18 0.01±0.01 0.10±0.10 1.80±0.11 0.01±0.01
reward 1.11±0.44 — 0.06±0.32 2.62±1.09 1.06±0.35 0.60±0.33 2.66±0.88

Hopper
(Med-Expert)

safety 0.01±0.02 0.05±0.04 0.07±0.03 0.11±0.08 0.05±0.04 0.10±0.02 0.00±0.00
admissib. 0.21±0.05 0.18±0.04 0.26±0.07 0.17±0.05 0.18±0.04 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.41±0.04 0.79±0.10 0.23±0.02 0.36±0.06 0.16±0.01 0.01±0.01
reward 1.06±0.18 0.50±0.12 0.73±0.22 1.02±0.20 0.53±0.19 1.12±0.01 0.93±0.23

Hopper
(Medium)

safety 0.01±0.02 0.05±0.03 0.00±0.00 0.39±0.13 0.01±0.01 0.15±0.01 0.00±0.00
admissib. 0.21±0.05 0.18±0.04 0.16±0.03 0.32±0.21 0.18±0.04 0.00±0.00 0.00±0.00

dyn. consist. 0.46±0.01 0.47±0.01 0.95±0.02 0.42±0.39 0.47±0.01 0.18±0.01 0.01±0.01
reward 0.44±0.05 0.45±0.06 0.39±0.03 0.49±0.05 0.45±0.06 0.48±0.08 0.34±0.03

Walker2d
(Med-Expert)

safety 0.06±0.04 0.06±0.05 0.02±0.03 0.40±0.11 0.09±0.07 0.04±0.04 0.00±0.00
admissib. 0.67±0.18 0.62±0.14 0.72±0.18 0.15±0.02 0.58±0.20 0.00±0.00 0.00±0.00

dyn. consist. 0.71±0.05 0.72±0.05 0.83±0.91 0.44±0.01 0.79±0.03 0.69±0.05 0.04±0.04
reward 1.06±0.23 0.56±0.29 0.39±0.19 1.07±0.01 0.59±0.21 0.95±0.24 0.89±0.32

Walker2d
(Medium)

safety 0.03±0.03 0.02±0.01 0.02±0.02 0.21±0.15 0.02±0.02 0.09±0.04 0.00±0.00
admissib. 0.56±0.10 0.44±0.19 0.54±0.14 0.48±0.06 0.52±0.12 0.00±0.00 0.00±0.00

dyn. consist. 0.68±0.08 0.65±0.08 0.72±0.38 0.40±0.06 0.64±0.07 1.52±0.05 0.07±0.15
reward 0.57±0.26 0.50±0.26 0.55±0.28 0.73±0.15 0.49±0.23 0.76±0.16 0.42±0.23

KUKA Block
Stacking

safety 0.23±0.09 0.00±0.00 0.22±0.09 0.02±0.04 0.00±0.00 0.14±0.13 0.00±0.00
reward 0.46±0.23 0.45±0.21 0.45±0.23 0.44±0.20 0.49±0.23 0.55±0.26 0.45±0.21

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Stuck in Local Trap
(a) Safediffuser

Unstable with Jitter
(b) Ours w/ few ODE steps

Smooth and Feasible
(c) Ours w/ full steps

Figure 2: (a) Without enforcing dynamic consistency, applying state and action constraints can
result in significant outliers, known as the local trap problem (Xiao et al., 2025). (b) Our method
satisfies constraints, but using too few numerical integration steps for the ODE introduces jitter in
the trajectory. (c) With sufficient integration steps, our method produces dynamically consistent
trajectories while satisfying unseen constraints (red ellipses).

In locomotion tasks, where dynamics are more complex, SAD-Flower is the only method that sat-
isfies all constraints while maintaining strong dynamical consistency. Its slightly lower rewards
compared to baselines stem from conflicts between the imposed height constraint and the jumping
or walking behaviors required for high returns, making safety violations directly correlated with
the rewards that reflect planning performance. For instance, CG achieves planning performance
comparable to SAD-Flower in Hopper (Med-Expert) when both methods avoid safety violations.
While some methods, such as Decision Diffuser, consistently ensure admissibility, all struggle with
dynamical consistency due to the complexity of the robot dynamics.

In the Kuka Block-Stacking task, which excludes admissibility and dynamical consistency require-
ments, SAD-Flower leverages the simplified setting to guarantee safety while achieving rewards
competitive with other safety-enforcing baselines. This highlights both the effectiveness and flexi-
bility of our proposed approach.

6.3 WHY DOES SAD-FLOWER WORK EFFECTIVELY?

We analyze three key properties of SAD-Flower that contribute to its effectiveness.

Dynamic consistency prevents local traps. Safety and admissibility can be enforced by projecting
states or actions back into the constraint sets, but this can introduce sharp discontinuities in the tra-
jectory, as illustrated in Fig. 2(a) for SafeDiffuser in Maze2D. This phenomenon, known as the local
trap problem (Xiao et al., 2025), arises because constraints are treated independently at each trajec-
tory step. In contrast, SAD-Flower enforces dynamic consistency by coupling consecutive states and
actions through the CLF, ensuring coherent evolution during integration of the flow. This coupling
prevents misaligned guidance and eliminates the risk of local traps, as demonstrated in Fig. 2(c).

0.2 0.4 0.6 0.8
Activation time T0

6

7

8

9
×10 3

(a) Impact of Activation Time

100 1000
ODE steps

0.0

0.1

0.2

0.3

(b) Impact of Number of ODE Steps

1.25

1.50

1.75

1.4

1.6

1.8

Consistency Rewards

Figure 3: Effect of increasing the number of ODE
steps for solving eq. (4) and the activation time T0

of controller eq. (5) on the consistency and perfor-
mance of trajectories.

Delayed control activation avoids prema-
ture interventions. At the beginning of the
flow sampling process, sample distributions are
relatively unstructured, and applying control
signals too early can push trajectories away
from behaviors captured by the learned gen-
erative planner. Perturbations introduced in
this phase are propagated throughout the flow
in eq. (4), potentially degrading performance.
SAD-Flower mitigates this issue by activating
guidance only after a prescribed flow time T0.
As shown in Fig. 3 (left) for Maze2D, even a
small T0 suffices to achieve high rewards, while
a larger T0 can further improve performance.
Dynamic consistency violations increase only marginally with larger T0. Safety and admissibility
are satisfied across all T0 values in our experiments (not shown due to space). These results high-
light the effectiveness of our control-theoretic formulation, which allows delayed activation of CLF
and CBF guidance without compromising constraints or dynamic consistency.

QP vs. non-convex optimization. To assess the benefits of our QP-based formu-
lation, we compare SAD-Flower with DPCC (Römer et al., 2025), a recent method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.35
Constraint level

0

1

2
Safety

0.0 0.2 0.35
Constraint level

0.0

0.5

1.0

1.5

Admissibility

0.0 0.2 0.35
Constraint level

0.0

0.5

1.0

1.5

Dynamic Consistency

0.0 0.2 0.35
Constraint level

0.5

1.0

Rewards

Diffuser Trunc CG FM S-Diffuser D-Diffuser Ours

Figure 4: Performance of the proposed SAD-Flower and baselines depending on level of constraint
tightening for the Hopper (Med-Expert) benchmark.

that also integrates optimal control into generative planning to enforce safety, ad-
missibility, and dynamic consistency. DPCC applies control from the earliest
stages and relies on full-system non-convex optimization at every sampling step.

Table 2: Benefits of QPs in SAD-flower
compared to general non-convex opti-
mization of DPCC (Römer et al., 2025).

Experiment Metric DPCC Ours

Hopper
(Med-Expert)

safety 0.01±0.03 0.00±0.00
admissib. 0.00±0.00 0.00±0.00

dyn. consist. 0.01±0.01 0.01±0.01
reward 0.61±0.07 0.93±0.23

comp. time [s] 4.24±1.64 0.06±0.00

As shown in Table 2 for Hopper (Med-Expert), both
methods achieve comparable levels of admissibility and
dynamic consistency, but DPCC incurs much higher
computation per sampling step and lower rewards.
This highlights the efficiency of SAD-Flower gained
without any loss of constraint satisfaction by enabling
the usage of QP solvers compared to general non-convex
optimization methods. Note though that the enforcement
of constraints does still not come for free with QPs since
the integration steps of the uncontrolled ODE merely
takes 0.01s on average.

6.4 HOW RELIABLE IS SAD-FLOWER?

To highlight the reliability of SAD-Flower, we demonstrate its behavior when approaching the ex-
tremes in terms of approximations for implementation and problem difficulty.

Reducing integration accuracy. We first illustrate the reliability of SAD-Flower when the accuracy
of integrating the controlled ODE in eq. (4) is small, which we measure through the number of
ODE discretization steps. As illustrated on the right of Fig. 3, increasing the number of ODE steps
improves dynamic consistency since the controller in eq. (5) has more opportunities to intervene.
Even with as few as 25 ODE steps, the inconsistency is relatively small and corresponds only to
minor jittering behavior in the trajectories as illustrated in Fig. 2. With ≈ 100 ODE steps, dynamic
consistency is practically achieved. Safety and admissibility are ensured for the whole range of con-
sidered ODE steps (not depicted). In contrast, the rewards continue to grow for finer discretizations,
which cause higher computational complexity. Thus, SAD-Flower allows to trade-off performance
and complexity, while simultaneously ensuring constraint satisfaction and dynamic consistency.

Handling stricter test-time constraints. To evaluate the robustness of our method under unseen
conditions, we test it with increasingly restrictive constraints. For this, we reduce the allowed torso
height by 0.2 and 0.35 in the Hopper environment. As shown in Fig. 4, SAD-Flower maintains per-
fect constraint satisfaction even under significantly stricter settings. Although the rewards achieved
by SAD-Flower decrease with tighter constraints, this effect is caused by the conflict of constraints
and objective. Thus, other methods enforcing state constraints, e.g., SafeDiffuser, also exhibit this
behavior. Notably, the rewards of SAD-Flower are generally at least on par with these methods,
even though the baselines exhibit significant admissibility and dynamic consistency violations. This
clearly demonstrates the strong robustness of SAD-Flower in handling unseen test-time constraints.

Table 3: Performance of SAD-Flower
and FM in a dexterous grasping scenario.

Experiment Metric FM Ours

Adroit-Hand
(Relocate)

safety 0.15±0.21 0.00±0.00
admissib. 0.62±0.19 0.00±0.00

dyn. consist. 0.07±0.04 0.06±0.09
reward 1.07±0.08 1.05±0.05

Scalability in high-dimensional tasks. To evaluate the
scalability of our approach in complex, contact-rich ma-
nipulation settings, we additionally consider the D4RL
Adroit Relocate task, which involves a 39-dimensional
state space and a 30-dimensional action space. This dex-
terous grasping environment poses significant challenges
due to the need for precise contact interactions and high-
dimensional control. We define the state constraint via

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the arm’s position to avoid collisions and the action constraint through actuator limits. As shown in
Table 3, standard flow matching achieves moderate task success but suffers from frequent violations
of safety and admissibility constraints due to unconstrained sampling. In contrast, SAD-Flower
consistently satisfies both state and action constraints, demonstrating its ability to scale to high-
dimensional robotic systems while maintaining constraint enforcement. This result underscores the
robustness and generality of our control-augmented framework in realistic manipulation tasks.

Sensitivity analysis of constraint-enforcement strength. We conduct an ablation study on the
LargeMaze task to assess the sensitivity of SAD-Flower to the hyperparameter c, which modu-
lates the strength of constraint enforcement. While the main experiments use c = 0.5, we vary
it from 1.0 to 0.2. As shown in Table 4, SAD-Flower maintains perfect safety and admissibility
across all tested values. Violations of dynamic consistency remain negligible and stable, while task
performance varies moderately. These results demonstrate that SAD-Flower achieves constraint
satisfaction without requiring precise hyperparameter tuning, highlighting its practical reliability.

Robustness under imperfect dynamics models. To evaluate the robustness of our method un-
der model approximation errors, we simulate degraded dynamics by training the forward model on
progressively smaller subsets of the Hopper-Medium dataset. As shown in Table 5, SAD-Flower
maintains full constraint satisfaction even with only 10% of the original data, and dynamic consis-
tency remains stable across these settings. Degradation becomes apparent only when the dataset
is reduced to 0.01%, at which point safety violations emerge. These results demonstrate that SAD-
Flower is tolerant to moderately inaccurate dynamics models and that training a sufficiently accurate
model is feasible in practice.

Table 4: Sensitivity of SAD-Flower to the hyperparameter c.

Experiment Metric 1.0 0.8 0.6 0.4 0.2

Maze2d
(Large)

safety 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
admissib. 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

dyn. consist. 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.02± 0.01

reward 1.38±0.59 1.54±0.59 1.46±0.52 1.47±0.53 1.29± 0.73

Table 5: Effect of training dataset size on dynamic consistency and constraint satisfaction.

Experiment Metric 90% 70% 50% 30% 10% 0.01%

Hopper
(Medium)

safety 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.02±0.09

admissib. 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

dyn. consist. 0.01±0.02 0.01±0.01 0.01±0.01 0.01±0.02 0.01±0.01 0.04±0.02

reward 0.35±0.01 0.33±0.04 0.35±0.07 0.39±0.07 0.38±0.03 0.36±0.03

7 CONCLUSION

We presented SAD-Flower, a control-augmented flow matching framework that ensures safe, admis-
sible, and dynamically consistent trajectory planning. By reformulating flow matching as a control-
lable dynamical system with a virtual control input, our method leverages Control Barrier Function
and Control Lyapunov Function conditions scheduled using prescribed-time control principles to
enforce constraints at test time without retraining. Experiments across navigation, locomotion, and
manipulation tasks show that SAD-Flower achieves perfect constraint satisfaction, avoids local traps,
and maintains competitive task performance. These results establish it as a practical, theoretically
grounded solution for real-world deployment. Looking ahead, extending SAD-Flower to stochastic
dynamics, complex constraint geometries, and online replanning offers promising directions for safe
and reliable generative trajectory planning.

REPRODUCIBILITY STATEMENT

Code. Our method is implemented based on the publicly available codebase from (Feng et al.,
2025) at https://github.com/AI4Science-WestlakeU/flow_guidance. The code

10

https://github.com/AI4Science-WestlakeU/flow_guidance

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

for our method will be released upon acceptance. Implementation and experimental details are
provided in section 6 of the main text, with further information in the Appendix.

Theory. Our theoretical claims in Section 5.3 are supported by complete proofs in Appendix B.

Datasets. We evaluate our method on a variety of public datasets across locomotion, navigation,
and manipulation tasks. Full descriptions of the datasets can be found in Section 6 and Appendix D.

Compute. All experiments were conducted using NVIDIA Tesla P100 GPUs. Additional informa-
tion on hardware and computational resources is provided in Appendix G.

BIBLIOGRAPHY

Brian Acosta, William Yang, and Michael Posa. Validating robotics simulators on real-world im-
pacts. IEEE Robotics and Automation Letters, 7(3):6471–6478, 2022.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision-making? The Eleventh International
Conference on Learning Representations, 2023.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. The Eleventh International Conference on Learning Representations, 2023.

Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2017.

Nicolò Botteghi, Federico Califano, Mannes Poel, and Christoph Brune. Trajectory generation, con-
trol, and safety with denoising diffusion probabilistic models. arXiv preprint arXiv:2306.15512,
2023.

Jean-Baptiste Bouvier, Kanghyun Ryu, Kartik Nagpal, Qiayuan Liao, Koushil Sreenath, and Ne-
gar Mehr. Ddat: Diffusion policies enforcing dynamically admissible robot trajectories. arXiv
preprint arXiv:2502.15043, 2025.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1916–1923. IEEE, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016.

John J Craig. Introduction to robotics: mechanics and control, 3/E. Pearson Education India, 2009.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement learn-
ing through optimistic policy search and planning. Advances in Neural Information Processing
Systems, 33:14156–14170, 2020.

Xiaobing Dai, Zewen Yang, Dian Yu, Shanshan Zhang, Hamid Sadeghian, Sami Haddadin, and
Sandra Hirche. Safe flow matching: Robot motion planning with control barrier functions. arXiv
preprint arXiv:2504.08661, 2025.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:
Towards real-time diffusion planning. Advances in Neural Information Processing Systems, 37:
122556–122583, 2024.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based mod-
els. Advances in Neural Information Processing Systems, 33:6637–6647, 2020.

Weichen Fan, Amber Yijia Zheng, Raymond A Yeh, and Ziwei Liu. Cfg-zero*: Improved classifier-
free guidance for flow matching models. arXiv preprint arXiv:2503.18886, 2025.

Lang Feng, Pengjie Gu, Bo An, and Gang Pan. Resisting stochastic risks in diffusion planners with
the trajectory aggregation tree. arXiv preprint arXiv:2405.17879, 2024.

Ruiqi Feng, Chenglei Yu, Wenhao Deng, Peiyan Hu, and Tailin Wu. On the guidance of flow
matching. In Forty-second International Conference on Machine Learning, 2025.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings of the
international conference on automated planning and scheduling, volume 30, pp. 440–448, 2020.

Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and Alessandro De Luca.
Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using
penalty-based optimization. IEEE Robotics and Automation Letters, 4(4):4147–4154, 2019.

Giorgio Giannone, Akash Srivastava, Ole Winther, and Faez Ahmed. Aligning optimization trajec-
tories with diffusion models for constrained design generation. Advances in neural information
processing systems, 36:51830–51861, 2023.

David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order, volume
224. Springer, 1977.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Taylor A Howell, Simon Le Cleac’h, Jan Brüdigam, J Zico Kolter, Mac Schwager, and Zachary
Manchester. Dojo: A differentiable physics engine for robotics. arXiv preprint arXiv:2203.00806,
2022.

Tzu-Yuan Huang, Sihua Zhang, Xiaobing Dai, Alexandre Capone, Velimir Todorovski, Stefan Sos-
nowski, and Sandra Hirche. Learning-based prescribed-time safety for control of unknown sys-
tems with control barrier functions. IEEE Control Systems Letters, 8:1817–1822, 2024.

Tzu-Yuan Huang, Armin Lederer, Nicolas Hoischen, Jan Brüdigam, Xuehua Xiao, Stefan Sos-
nowski, and Sandra Hirche. Toward near-globally optimal nonlinear model predictive control
via diffusion models. Learning for Dynamics and Control, 2025.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. International Conference on Machine Learning, 2022.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal. Stomp:
Stochastic trajectory optimization for motion planning. In 2011 IEEE international conference
on robotics and automation, pp. 4569–4574. IEEE, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Modeling the long term future in model-based reinforcement learning. In
International Conference on Learning Representations, 2019.

Matthew Kelly. An introduction to trajectory optimization: How to do your own direct collocation.
SIAM review, 59(4):849–904, 2017.

Kota Kondo, Andrea Tagliabue, Xiaoyi Cai, Claudius Tewari, Olivia Garcia, Marcos Espitia-
Alvarez, and Jonathan P How. Cgd: Constraint-guided diffusion policies for uav trajectory plan-
ning. arXiv preprint arXiv:2405.01758, 2024.

Kyowoon Lee and Jaesik Choi. Local manifold approximation and projection for manifold-aware
diffusion planning. arXiv preprint arXiv:2506.00867, 2025.

Kyowoon Lee, Seongun Kim, and Jaesik Choi. Refining diffusion planner for reliable behavior
synthesis by automatic detection of infeasible plans. Advances in Neural Information Processing
Systems, 36:24223–24246, 2023.

Jinhao Liang, Jacob K Christopher, Sven Koenig, and Ferdinando Fioretto. Simultaneous multi-
robot motion planning with projected diffusion models. arXiv preprint arXiv:2502.03607, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. The Eleventh International Conference on Learning Representations,
2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. arXiv
preprint arXiv:2301.12503, 2023.

Kehan Long, Cheng Qian, Jorge Cortés, and Nikolay Atanasov. Learning barrier functions with
memory for robust safe navigation. IEEE Robotics and Automation Letters, 6(3):4931–4938,
2021.

Haofei Lu, Yifei Shen, Dongsheng Li, Junliang Xing, and Dongqi Han. Habitizing diffusion plan-
ning for efficient and effective decision making. arXiv preprint arXiv:2502.06401, 2025.

Hao Ma, Sabrina Bodmer, Andrea Carron, Melanie Zeilinger, and Michael Muehlebach. Constraint-
aware diffusion guidance for robotics: Real-time obstacle avoidance for autonomous racing. arXiv
preprint arXiv:2505.13131, 2025.

François Mazé and Faez Ahmed. Diffusion models beat gans on topology optimization. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 37, pp. 9108–9116, 2023.

Kazuki Mizuta and Karen Leung. Cobl-diffusion: Diffusion-based conditional robot planning in
dynamic environments using control barrier and lyapunov functions. In 2024 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 13801–13808. IEEE, 2024.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory optimization of rigid
bodies through contact. The International Journal of Robotics Research, 33(1):69–81, 2014.

Ralf Römer, Alexander von Rohr, and Angela P Schoellig. Diffusion predictive control with con-
straints. Learning for Dynamics and Control, 2025.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Peiyao Shen, Xuebo Zhang, and Yongchun Fang. Complete and time-optimal path-constrained
trajectory planning with torque and velocity constraints: Theory and applications. IEEE/ASME
Transactions on Mechatronics, 23(2):735–746, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Andreas Sochopoulos, Nikolay Malkin, Nikolaos Tsagkas, João Moura, Michael Gienger, and Sethu
Vijayakumar. Fast flow-based visuomotor policies via conditional optimal transport couplings.
arXiv preprint arXiv:2505.01179, 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. International
Conference on Learning Representations, 2021.

Yongduan Song, Yujuan Wang, John Holloway, and Miroslav Krstic. Time-varying feedback for
regulation of normal-form nonlinear systems in prescribed finite time. Automatica, 83:243–251,
2017. ISSN 0005-1098.

Yongduan Song, Yujuan Wang, and Miroslav Krstic. Time-varying feedback for stabilization in
prescribed finite time. International Journal of Robust and Nonlinear Control, 29(3):618–633,
2019.

Yongduan Song, Hefu Ye, and Frank L Lewis. Prescribed-time control and its latest developments.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(7):4102–4116, 2023.

Eduardo D. Sontag. A lyapunov-like characterization of asymptotic controllability. SIAM Journal
on Control and Optimization, 21(3):462–471, 1983.

Erik Talvitie. Model regularization for stable sample rollouts. In UAI, pp. 780–789, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Kim P Wabersich, Andrew J Taylor, Jason J Choi, Koushil Sreenath, Claire J Tomlin, Aaron D
Ames, and Melanie N Zeilinger. Data-driven safety filters: Hamilton-jacobi reachability, control
barrier functions, and predictive methods for uncertain systems. IEEE Control Systems Magazine,
43(5):137–177, 2023.

Han Wang, Kostas Margellos, and Antonis Papachristodoulou. Relaxed compatibility between con-
trol barrier and lyapunov functions. In 2024 UKACC 14th International Conference on Control
(CONTROL), pp. 125–126, 2024. doi: 10.1109/CONTROL60310.2024.10531901.

Yanwei Wang, Lirui Wang, Yilun Du, Balakumar Sundaralingam, Xuning Yang, Yu-Wei Chao,
Claudia Pérez-D’Arpino, Dieter Fox, and Julie Shah. Inference-time policy steering through
human interactions. In 2025 IEEE International Conference on Robotics and Automation (ICRA),
pp. 15626–15633. IEEE, 2025.

Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, Ramin Hasani, Mathias Lechner, and Daniela Rus.
Safediffuser: Safe planning with diffusion probabilistic models. In The Fifteenth International
Conference on Learning Representations, 2025.

Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
motion diffusion model. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 16010–16021, 2023.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Guangyao Zhou, Sivaramakrishnan Swaminathan, Rajkumar Vasudeva Raju, J Swaroop Guntupalli,
Wolfgang Lehrach, Joseph Ortiz, Antoine Dedieu, Miguel Lázaro-Gredilla, and Kevin Murphy.
Diffusion model predictive control. arXiv preprint arXiv:2410.05364, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

Table of Contents
A Signed Distance Functions 15

B Proofs of Theoretical Results 15
B.1 Feasibility of CBF constraints . 15
B.2 Feasibility of CLF Constraints . 16
B.3 Proof of Theorem 5.1 . 17

C Additional Experiment Details and Results 17

D Environment details 18

E Constraint Settings in Each Tasks 19

F Training detail 20

G Computational resources 21

H The Use of Large Language Models (LLMs) 21

I Computation Analysis 22

J Additional Related Work 22

K Deployment on Real-World Robotic Platforms 23

L Comparison with constraint-aware baselines 23

A SIGNED DISTANCE FUNCTIONS

Given sets S and A, the signed distance functions are defined as the minimal distance to a point on
the boundary ∂S and ∂A of the sets, with the sign indicating if the state/action along the trajectory
is in the corresponding sets. This formally leads to the following functions

hs
k(τ) =

{
mins∈∂S ||s(k)−s|| if s ∈ S
−mins∈∂S ||s(k)−s|| else

ha
k(τ) =

{
mina∈∂A ||a(k)−a|| if a ∈ A
−mina∈∂A ||a(k)−a|| else.

(6)

B PROOFS OF THEORETICAL RESULTS

B.1 FEASIBILITY OF CBF CONSTRAINTS

Theorem B.1. Assume that φ(t) = c
(t−1)2 with constant c ∈ R+. If hs

k and ha
k are differentiable,

then, for each τ , there exists a u jointly satisfying eq. (CBF-s) and eq. (CBF-a).

Proof. Since the constraints defined in eqs. (CBF-s) and (CBF-a) concern independent variables,
individual feasibility of each constraint implies joint feasibility of all of them. Due to the assumed
differentiability of hs,a

k and the definition of SDFs implying ||∇hs,a
k (τ)|| = 1, u can always be

chosen such ∇Ths,a
k (τ)u takes an arbitrary value. Thus, the constraints defined in eqs. (CBF-s)

and (CBF-a) are always feasible.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The assumption on the differentiability of hs
k and ha

k is required as the signed distance functions
(SDF) eq. (6) are generally not smooth. However, they are differentiable almost everywhere for sets
with smooth boundary under weak assumptions (Gilbarg & Trudinger, 1977). Non-differentiable
set boundaries can be overcome by increasing the number of CBF constraints via a decomposition
of S̄ and Ā into suitable subsets S̄i and Āi, such that the SDFs can be computed with respect to
the subsets instead. For example, this approach immediately yields linear functions of the form
ha
k,i(τ) = ā± ai(k) for individual elements ai(k) of actions when defining suitable subsets Āi for

the the commonly employed box constraints ||ai(k)||∞ ≤ ā with some constant a ∈ R+. Thus the
differentiability assumption in Theorem B.1 is rather technical and often not relevant in practice for
the usage of SDFs in CBF constraints (Long et al., 2021).

B.2 FEASIBILITY OF CLF CONSTRAINTS

Theorem B.2. Assume that φ(t) = c
(t−1)2 with constant c ∈ R+. If {(s,a) : det(∂

∂sf(s,a)) =

0 ∧ det(∂
∂af(s,a)) = 0} = ∅, then, for each τ , there exists a u satisfying eq. (CLF).

Proof. Let

ℓk(τ) =
(
τ s(k+1) − f(τ s(k), τa(k))

)
. (7)

Then, the gradient of V is given by

∇V (τ) =



−∂f(τs(0),τa(0))
∂τs(0) ℓ0(τ)

−∂f(τs(0),τa(0))
∂τa(0) ℓ0(τ)

ℓ0(τ)− ∂f(τs(1),τa(1))
∂τs(1) ℓ1(τ)

−∂f(τs(1),τa(1))
∂τa(1) ℓ1(τ)

...
ℓH−2(τ)− ∂f(τs(H−1),τa(H−1))

∂τs(H−1) ℓH−1(τ)

−∂f(τs(H−1),τa(H−1))
∂τa(H−1) ℓH−1(τ)

ℓH−1(τ)
0


. (8)

In the following, we will show by contradiction that ∇V (τ) = 0 if and only if ℓk(τ) = 0 for all
k = 0, . . . ,H−1. For this purpose, assume that ∇V (τ) = 0 and ℓi ̸= 0 for some i = 1, . . . ,H−1.

If rank(∂f(τ
s(i),τa(i))
∂τa(i)) ̸= 0, ∇V (τ) ̸= 0 is trivially contradicted. If rank(∂f(τ

s(i),τa(i))
∂τs(i)) ̸= 0,

∇V (τ) = 0 requires ℓi−1 ̸= 0. Hence, we can consider the same two cases as for ℓi ̸= 0. By

repeating this procedure and always considering the case rank(∂f(τ
s(k),τa(k))
∂τs(k)) ̸= 0, we eventually

end up with the condition

∂f(τ s(0), τa(0))

∂τ s(0)
ℓ0(τ) = 0 ∧ rank(∂f(τ

s(0),τa(0))
∂τa(0)) ̸= 0 ∧ ℓ0 ̸= 0, (9)

which cannot be satisfied. Thus, ∇V (τ) ̸= 0 holds if ℓk(τ) ̸= 0 for some k. Consequently, there
always exists a u such that eq. (CLF) is satisfied rendering the constraint feasible.

To ensure the feasibility of CLF constraints, we again need one technical assumption: Through
infinitesimal changes of states or actions, the dynamics f can be changed in arbitrary directions. If
this property is not satisfied, ∇V (τ) does not necessarily provide information about directions for
reducing the violation of eq. (DC). Note that matrices with rank deficiency have zero measure among
all matrices, such that infeasibilities related to a violation of the rank condition in Theorem B.2 occur
only at isolated states (except for special cases of dynamics, e.g., piecewise constant dynamics).
Thus, the rank condition is usually satisfied almost everywhere for many relevant systems, which is
sufficient for the feasibility of the CLF constraint in eq. (CLF) in practice.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: Performance under progressively tightened constraints in the locomotion task. As the
allowed torso height decreases, the admissibility constraint becomes stricter, creating a conflict with
the task objective of jumping forward.

B.3 PROOF OF THEOREM 5.1

Proof of Theorem 5.1. Due to the assumed feasibility of constraints, eq. (4) controlled by eq. (5)
satisfies eq. (CBF-s), eq. (CBF-a), and eq. (CLF), i.e., prescribed-time CBF and CLF conditions
are satisfied. As hs,a

k is positive inside S/A, negative outside, and zero on the boundaries of these
sets, it corresponds to a prescribed-time control barrier function (Huang et al., 2024). Therefore,
it immediately follows from (Huang et al., 2024, Theorem 1) that hs,a

k (τ1) > 0 at t = 1, which
implies satisfaction of safety (eq. (SC)) and admissibility (eq. (AC)) by construction. Since V is
positive definite, it corresponds to a prescribed-time control Lyapunov function (Song et al., 2019).
Hence, it immediately follows from (Song et al., 2017, Theorem 2) that V (τ1) = 0, which implies
satisfaction of eq. (DC) by construction.

While the two constraints in eq. (CBF-s) and eq. (CBF-a) concern independent variables, the ad-
dition of constraint eq. (CLF) introduces a coupling between the constraints. This coupling can
cause infeasibility at some trajectories τ in general, but technical conditions exist that exclude them
(Wang et al., 2024). Moreover, these infeasibilities are not an issue from a practical perspective since
they often affect isolated τ or small subsets of trajectories usually not occurring while numerically
integrating eq. (4).

C ADDITIONAL EXPERIMENT DETAILS AND RESULTS

Robustness to Stricter Test-Time Constraints. We evaluate the robustness of SAD-Flower by
tightening the test-time constraint on torso height (Fig. 5) in the Hopper environment, decreasing the
upper bound from 1.6 to 1.4 and 1.25 settings not encountered during training. As shown in Table 6,
our method maintains perfect satisfaction of both safety and admissibility constraints across all levels
of difficulty, despite the increasingly restrictive conditions. This demonstrates SAD-Flower’s strong
generalization to stricter, unseen constraints at test time. While task rewards decrease modestly—as
expected due to the heightened challenge—our method consistently preserves formal guarantees of
constraint satisfaction, validating the effectiveness of prescribed-time control as a flexible enforce-
ment mechanism even under distributional shifts.

Comparision with DPCC (Römer et al., 2025). To provide a more comprehensive comparison
with optimization-based generative planning, we evaluate SAD-Flower against three DPCC variants
(Römer et al., 2025): DPCC-T, which selects samples with minimal deviation from the previous
timestep; DPCC-C, which minimizes cumulative projection cost; and DPCC-R, which selects sam-
ples randomly after projection. All DPCC variants leverage full-system nonlinear optimization at
each denoising step to enforce constraints. As shown in Table 7, while all DPCC variants succeed in
satisfying admissibility and achieving dynamic consistency, they exhibit consistently higher safety
violations (up to 0.02) even when we apply the constraint tightening technique (using height=1.5
under the constraint with height=1.6) and incur significantly greater computational cost—up to 25×
slower than SAD-Flower. These issues likely stem from performing optimization over early-stage
noisy samples, which may be difficult or even infeasible to correct without distorting future structure.
Furthermore, the lower planning reward across all DPCC variants (0.61–0.65 vs. 0.93) suggest that

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Performance of the proposed SAD-Flower and baselines depending on constraint tightness.
Constraints for the Hopper are tightened via lower admissible heights.

Experiment Metric Diffuser Truncate CG FM S-Diffuser D-Diffuser Ours

Hopper
(height=1.6)

safety 0.01±0.02 0.05±0.04 0.07±0.03 0.11±0.08 0.05±0.04 0.10±0.02 0.00±0.00
admissib. 0.21±0.05 0.18±0.04 0.26±0.07 0.17±0.05 0.18±0.04 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.41±0.04 0.79±0.10 0.23±0.02 0.36±0.06 0.16±0.01 0.01±0.01
reward 1.06±0.18 0.50±0.12 0.73±0.22 1.02±0.20 0.53±0.19 1.12±0.01 0.93±0.23

Hopper
(height=1.4)

safety 0.28±0.08 0.12±0.09 0.04±0.03 1.24±0.07 0.12±0.09 0.22±0.03 0.00±0.00
admissib. 0.21±0.05 0.22±0.09 1.79±0.33 0.19±0.10 0.20±0.08 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.40±0.08 1.06±0.03 0.01±0.01 0.44±0.06 0.13±0.01 0.01±0.01

reward 1.06±0.18 0.39±0.17 0.32±0.15 1.03±0.17 0.35±0.10 1.11±0.02 0.26±
0.02

Hopper
(height=1.25)

safety 0.40±0.04 0.00±0.00 0.01±0.01 2.10±0.07 0.00±0.00 0.37±0.02 0.00±0.00
admissib. 0.21±0.05 0.30±0.05 1.38±0.27 0.05±0.10 0.30±0.05 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.46±0.21 1.79±0.08 0.01±0.01 0.46±0.21 0.15±0.01 0.01±0.01
reward 1.06±0.18 0.13±0.02 0.10±0.05 1.02±0.16 0.13±0.02 0.78±0.02 0.17±0.00

Table 7: The performance of the proposed SAD-Flower with QP and DPCC (Römer et al., 2025)
with nonlinear optimization. Constraint for the Hopper is the same as the admissible heights in
Table 1. Three DPCCs are proposed in their work. DPCC-T (Temporal consistency) selects the
trajectory that deviates the least from the previous timestep, DPCC-C (Cumulative projection cost)
selects the trajectory that has been modified the least by the projection operation, and DPCC-R
(Random) selects the trajectory randomly.

Experiment Metric DPCC-T DPCC-C DPCC-R Ours

Hopper
(Med-Expert)

safety 0.01±0.03 0.02±0.02 0.02±0.02 0.00±0.00
admissib. 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

dyn. consist. 0.01±0.01 0.01±0.00 0.01±0.00 0.01±0.01
reward 0.61±0.07 0.65±0.16 0.64±0.25 0.93±0.23
time 4.24±1.64 4.56±1.72 6.21±2.61 0.06±0.00

early and aggressive control leads to sample deviation from the distribution learned by the generative
model. In contrast, SAD-Flower activates control later using a lightweight QP-based formulation
and preserves both safety and performance, highlighting the advantages of flexible, prescribed-time
constraint enforcement.

D ENVIRONMENT DETAILS

We evaluate our method across a variety of trajectory planning domains, summarized in Table 8. The
benchmark includes navigation (Maze2d-Umaze, Maze2d-Large), locomotion (Hopper, Walker2d),
and robotic manipulation (Kuka Block-Stacking). Environments are simulated using MuJoCo
(Todorov et al., 2012) or PyBullet (Coumans & Bai, 2016), and cover a range of state and action
dimensions.

We use offline datasets to train the generative and control models for each benchmark. As shown in
Table 9, the datasets for locomotion and navigation tasks are retrieved from the D4RL benchmark
suite (Fu et al., 2020), with varying sizes (e.g., medium vs. medium-expert settings). For locomotion
environments, datasets are collected using soft actor-critic (SAC) policies (Haarnoja et al., 2018),
either partially trained or mixed with expert-level demonstrations. For the Kuka block-stacking task
(Janner et al., 2022), data is generated via the PDDLStream planner (Garrett et al., 2020), which
provides feasible robotic manipulation trajectories in structured stacking scenarios.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Settings for each tasks.

Environment Simulator Obs. Dim. Action Dim.
Maze2d-Umaze-v1 MuJoCo 4 2
Maze2d-Large-v1 MuJoCo 4 2
Hopper MuJoCo 11 3
Walker2d MuJoCo 17 6
Kuka Block-Stacking PyBullet 39 -

Table 9: Dataset details for each benchmark environment, including the number of trajectories and
the source or algorithm used to generate the data.

Environment # of Trajectories Source / Generation Method

Maze2d-Umaze-v1 106 D4RL (Fu et al., 2020)
Maze2d-Large-v1 4× 106 D4RL (Fu et al., 2020)
Hopper-medium 106 Partially trained SAC (Haarnoja et al., 2018)
Hopper-medium-expert 2× 106 Mixture of expert and partial SAC
Walker2d-medium 106 Partially trained SAC (Haarnoja et al., 2018)
Walker2d-medium-expert 2× 106 Mixture of expert and partial SAC
Kuka Block-stacking 10,000 PDDLStream planner (Garrett et al., 2020)

E CONSTRAINT SETTINGS IN EACH TASKS

We introduce task-specific state and action constraints to evaluate the ability of generative plan-
ners to handle safety and admissibility under diverse and challenging conditions. The test-time
constraints are deliberately chosen to be more restrictive and often unseen during training, making
constraint satisfaction a non-trivial requirement.

Maze2d. The goal in Maze2d environments is to generate a feasible trajectory from a randomly
sampled initial position to a randomly sampled goal location. The generative model is conditioned
on both endpoints and produces full trajectories through the maze.

To evaluate constraint satisfaction, we introduce two novel, unseen obstacles at test time that do not
completely block the path but add non-trivial planning constraints. The first is a superellipse-shaped
obstacle defined as: (

x− x0

a

)2

+

(
y − y0

b

)2

≥ 1, (10)

where (x, y) ∈ R2 is a trajectory state and (x0, y0) ∈ R2 is the center of the obstacle. The parame-
ters a > 0 and b > 0 control the width and height of the obstacle.

The second is a higher-order polynomial barrier defined as:(
x− x0

a

)4

+

(
y − y0

b

)4

≥ 1. (11)

This formulation results in sharper obstacle boundaries and makes naive post-processing or trajec-
tory truncation ineffective due to the nonlinearity of the feasible region.

The action constraint is also tightened during test time by imposing a box constraint on the control
inputs:

a ∈ [−0.1, 0.1]2. (12)

Both Maze2d-Umaze-v1 and Maze2d-Large-v1 contain these two novel obstacles at test
time to assess generalization to unseen constraints.

Hopper and Walker2d. In the locomotion tasks, we impose test-time constraints that limit the
robot’s vertical motion to avoid collisions with overhead obstacles. Specifically, the height of the
robot’s torso must remain below a fixed roof height z, defined as:

s < z, (13)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where s is the vertical position of the torso. We evaluate this constraint under increasingly restrictive
settings, such as z = 1.6, 1.4, and 1.25, to assess robustness to constraint tightening.

This state constraint is often in conflict with the task objective, which rewards forward jumping
or walking. As a result, satisfying the constraint typically requires sacrificing task performance.
Additionally, the control inputs are constrained by an action box constraint:

a ∈ [−1, 1]d, (14)
where d is the dimensionality of the action space (3 for Hopper and 6 for Walker2d).

Kuka Block-Stacking. For the Kuka block-stacking task, the generative model is conditioned on
object locations and outputs joint trajectories for manipulation. To simulate partial system degrada-
tion or workspace reconfiguration, we apply a tighter state constraint on the robot’s joint positions.
Specifically, we scale the original feasible joint limits by a factor of 0.9:

q ∈ 0.9 · [qmin, qmax], (15)
where qmin and qmax represent the original lower and upper bounds of each joint. No explicit action
constraint is applied in this task.

These constraints, particularly when unseen during training, pose a significant challenge for plan-
ning and provide a rigorous benchmark for evaluating constraint satisfaction and generalization
capabilities.

F TRAINING DETAIL

We provide implementation details of all baseline methods and our proposed approach, including
training configurations, hyperparameters, and model architectures.

All baseline methods are trained using their official or publicly available codebases: Diffuser follows
the implementation of Janner et al. (2022), Truncation, Classifier Guidance, and SafeDiffuser are
implemented based on Xiao et al. (2025), Decision Diffuser follows Ajay et al. (2023), and Flow
Matching uses the codebase from Feng et al. (2025). Our method is built on top of the same Flow
Matching framework from Feng et al. (2025).

Hyperparameters. Table 10 shows the training hyperparameters for all baselines and our method
across different environments. All methods use the same horizon and batch size per environment.
Note that our method shares training settings with the flow matching baseline to ensure a fair com-
parison.

Forward Dynamics Model Training. To support constraint enforcement in SAD-Flower, we train
a forward dynamics model for each environment using the same dataset used to train the generative
models. This ensures a fair comparison without introducing additional supervision. The training
details are summarized in Table 11.

For the Maze2d environments, a known analytical dynamics modelcan also be derived: x(k + 1)
y(k + 1)
vx(k + 1)
vy(k + 1)

 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


 x(k)
y(k)
vx(k)
vy(k)

+

0.5αdt
2 0

0 0.5αdt2

αdt 0
0 αdt

[
ux(k)
uy(k)

]
(16)

where [xk, yk, vx,k, vy,k]
T is the system state representing position and velocity, [ux,k, uy,k]

T is the
input force, dt is the simulation time step, and α is the gear ratio divided by mass (due to primitive
joint control).

Model Architecture. Diffusion-based models (Diffuser, Truncation, Classifier Guidance, SafeD-
iffuser) use the U-Net architecture with residual temporal convolutions, group normalization, and
Mish nonlinearities, as described in (Janner et al., 2022). Flow Matching and SAD-Flower use the
Transformer-based backbone proposed by (Feng et al., 2025), consisting of 8 layers with a hidden
dimension of 256. The forward model in SAD-Flower is a feedforward neural network with 3 hid-
den layers of size 512, where the input dimension is the sum of the observation dimension and the
action dimension, and the output is the observation dimension.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Training hyperparameters for each method across environments.

Maze2d-Umaze Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Maze2d-Large Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Hopper Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Walker2d Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Kuka Block-Stacking Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−5 2e−5 2e−5 2e−5 2e−4 2e−4

Steps 7e5 7e5 7e5 7e5 7e5 7e5

Table 11: Training settings for the forward dynamics models used in SAD-Flower.

Environment Batch Size Learning Rate Steps

Maze2d (Umaze/Large) 256 1 × 10−3 1 × 106

Hopper 256 1 × 10−3 1 × 106

Walker2d 256 1 × 10−3 1 × 106

G COMPUTATIONAL RESOURCES

All experiments were conducted using four high-performance workstations with identical or near-
identical configurations. Each workstation is equipped with an AMD EPYC series CPU, an NVIDIA
Tesla P100 GPU, and 16 GB of GPU memory. The specific hardware details are summarized in
Table 12.

Table 12: Hardware specifications of workstations used for training and evaluation.

Workstation CPU GPU GPU RAM

1 AMD EPYC 7542 NVIDIA Tesla P100 16 GB
2 AMD EPYC 7542 NVIDIA Tesla P100 16 GB
3 AMD EPYC 7742 NVIDIA Tesla P100 16 GB
4 AMD EPYC 7542 NVIDIA Tesla P100 16 GB

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs), e.g., ChatGPT, were employed to assist with editing, rephrasing,
and LaTeX formatting during the paper writing process. No LLMs were involved in formulating
research ideas, theoretical developments, or core experimental designs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I COMPUTATION ANALYSIS

We report the detailed computational costs of SAD-Flower and all baseline methods across our
benchmark tasks in Table 13. As expected, SAD-Flower incurs greater computational cost compared
to unconstrained generative planners such as Diffuser and FM, due to the overhead introduced by
enforcing multiple constraints during sampling. Nonetheless, in some domains—such as Hopper-
Medium-Expert and Kuka Block-Stacking—SAD-Flower achieves lower runtime than SafeDiffuser,
highlighting the efficiency gains enabled by our prescribed-time control formulation. Importantly,
SAD-Flower is the only method that consistently satisfies all three constraint classes—state, action,
and dynamic consistency—across all evaluated domains. No faster baseline provides this level of
safety and reliability.
Table 13: Computation analysis of the proposed SAD-Flower and baselines across navigation, loco-
motion, and manipulation tasks.

Experiment Metric Diffuser Trunc CG FM S-Diffuser D-Diffuser Ours
Maze2d (Large) comp. time 0.01±0.01 0.02±0.01 0.04±0.01 0.06±0.02 0.06±0.01 0.01±0.01 0.13±0.01

Maze2d (Umaze) comp. time 0.01±0.01 — 0.04±0.01 0.02±0.01 0.06±0.02 0.01±0.01 0.08±0.02

Hopper (Med-Expert) comp. time 0.05±0.01 0.06±0.02 0.06±0.01 0.01±0.01 0.11±0.02 0.02±0.01 0.06±0.01

Hopper (Medium) comp. time 0.05±0.01 0.06±0.01 0.06±0.02 0.01±0.01 0.09±0.02 0.02±0.01 0.12±0.02

Walker2D (Med-Expert) comp. time 0.06±0.02 0.06±0.01 0.05±0.01 0.01±0.01 0.09±0.02 0.02±0.01 0.09±0.01

Walker2D (Medium) comp. time 0.04±0.01 0.13±0.03 0.21±0.02 0.01±0.01 0.10±0.02 0.02±0.01 0.09±0.01

KUKA Block Stacking comp. time 0.70±0.01 0.84±0.01 0.86±0.01 0.47±0.06 0.78±0.01 0.04±0.01 0.74±0.08

J ADDITIONAL RELATED WORK

Diffusion planning with reliability and constraint enforcement. Recent works have sought to
improve the reliability of diffusion-based planners by modifying sampling strategies or adding post-
hoc corrections, without addressing dynamic consistency or unseen constraints. Lee et al. propose
Refining Diffusion Planner for Reliable Behavior Synthesis and introduce a restoration–gap metric
predicted by a gap predictor to identify error-prone plans (Lee et al., 2023). The restoration gap acts
as refining guidance, and an attribution-map regularizer prevents adversarial guidance, improving
feasibility without altering the core diffusion model.

Feng et al. address stochastic failure modes by aggregating multiple trajectory samples. Their
Trajectory Aggregation Tree (TAT) combines historical and current trajectories into a tree struc-
ture where each branch corresponds to a trajectory and nodes correspond to individual states (Feng
et al., 2024). Unreliable states are marginalized and the most impactful nodes prioritized, yielding a
training-free module deployable without modifying the original diffusion planner.

Wang et al. examine human-in-the-loop alignment. Their Inference-Time Policy Steering (ITPS)
framework injects human interactions into the sampling process of a pretrained policy rather than
fine-tuning on new data Wang et al. (2025). ITPS evaluates various forms of human interaction
and sampling strategies to bias the denoising process toward user-desired subgoals while mitigating
distribution shift.

LoMAP, introduced by Lee and Choi, targets off-manifold drift in guidance. The authors derive a
lower bound on the guidance gap that quantifies manifold deviation and propose a training-free Lo-
cal Manifold Approximation and Projection method Lee & Choi (2025). By projecting the guided
sample onto a low-rank subspace approximated from offline data, LoMAP prevents infeasible tra-
jectory generation and can be incorporated as a plug-in module for hierarchical diffusion planners.

Finally, Liang et al. extend diffusion planning to multi-robot settings. Their Simultaneous Multi-
Robot Motion Planning with Projected Diffusion Models integrates constrained optimization into
every denoising step, producing collision-free and kinematically feasible trajectories in dense multi-
robot environments Liang et al. (2025). The authors introduce a comprehensive benchmark and
report higher success rates compared with classical and learning-based planners.

These methods improve reliability by detecting artifacts, aggregating multiple candidates, steer-
ing policies with human input, projecting onto data manifolds, or enforcing per-step feasibility.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

However, none simultaneously enforce safety, admissibility, and dynamic consistency, nor guaran-
tee adherence to constraints absent from training data. By contrast, SAD-Flower formulates diffu-
sion sampling as a controlled dynamical system. A quadratic-programming controller derived from
control-barrier and control-Lyapunov conditions injects guidance at each denoising step, ensuring
constraint satisfaction and dynamic consistency throughout the entire sampling horizon.

K DEPLOYMENT ON REAL-WORLD ROBOTIC PLATFORMS

Recent works have demonstrated the successful deployment of diffusion- and flow-based models on
physical robotic systems (Chi et al., 2023; Sochopoulos et al., 2025), highlighting the feasibility of
integrating such models into real-world robotic pipelines that involve perception, state estimation,
and control. These results indicate that generative trajectory models can operate effectively outside
of simulation.

SAD-Flower is designed as an open-loop planner that generates full trajectories prior to execution,
without requiring real-time feedback control. This formulation avoids the need to meet strict control-
frequency constraints, making it amenable to practical deployment. Although SAD-Flower solves
a small quadratic program (QP) at each sampling step to enforce constraints, this overhead remains
moderate and does not hinder offline trajectory generation. Moreover, recent advances in efficient
generative planning—such as DiffuserLite (Dong et al., 2024) and Habi (Lu et al., 2025)—can be
directly incorporated into our framework to further accelerate sampling, enabling tighter planning
budgets without sacrificing constraint guarantees.

While our current implementation is focused on simulation, the modular structure of SAD-Flower
makes it compatible with standard deployment pipelines. The forward model used for dynamics
consistency can be learned directly from onboard sensor data, and constraint formulations (e.g.,
actuator limits, workspace boundaries) can be adapted to real-world specifications. As with all
generative models, care must be taken to address sensor noise and execution uncertainty, but our
control-theoretic formulation inherently provides robustness by enforcing constraints throughout
the trajectory.

In summary, SAD-Flower introduces only modest additional computation to existing generative
planners while providing formal guarantees for safety, admissibility, and dynamic consistency.
Given the demonstrated deployability of similar frameworks and the compatibility of our method
with efficient sampling and standard control pipelines, we believe SAD-Flower can be incorporated
into real-world robotic systems with limited adaptation. Investigating such deployment remains an
important direction for future work.

L COMPARISON WITH CONSTRAINT-AWARE BASELINES

We further compare SAD-Flower against two additional constraint-aware baselines: a reject-
sampling method, which offers a simple heuristic for constraint handling, and CoBL-Diffusion
(Mizuta & Leung, 2024), which leverages control-theoretic rewards to encourage constraint sat-
isfaction.

The reject-sampling approach first trains a flow matching model on the original dataset, which in-
cludes trajectories that violate test-time constraints, since those constraints are unseen during train-
ing. At inference, it samples a batch of trajectory candidates and discards those violating constraints,
selecting from the remaining set the trajectory with the least violation. As shown in Table 14, this ap-
proach consistently fails to satisfy constraints across all tasks, including Maze2d, Hopper, Walker2d,
and Kuka Block-Stacking. Both safety and admissibility violations remain non-zero. This con-
firms that post-hoc filtering alone is insufficient when the generative model has no knowledge of
constraint structure—especially under novel test-time constraints. Even though flow matching can
model multimodal behavior patterns, it cannot reliably sample within unseen constraint sets unless
such constraints are explicitly incorporated during inference.

CoBL-Diffusion injects physical constraints into a diffusion model by shaping its denoising pro-
cess with auxiliary rewards derived from Control Barrier Functions (CBFs) and Control Lyapunov
Functions (CLFs). This allows it to softly bias generation toward constraint-adherent behaviors, but
without any formal guarantees. We evaluate CoBL-Diffusion in the LargeMaze environment, using

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

the same horizon and constraints as in other baselines. As shown in Table 15, the method fails to
fully enforce safety and admissibility constraints. This is expected given several key limitations: (1)
it predicts only actions, whereas SAD-Flower jointly generates states and actions, which allows for
more precise control of trajectory behavior; (2) its CBFs target only state constraints, while ours
apply to both state and action spaces; (3) it uses CLFs for general stability, not for ensuring formal
dynamic consistency as we do; and (4) it lacks prescribed-time scheduling, making it difficult to
guarantee constraint satisfaction at the final step. These design choices limit CoBL-Diffusion’s abil-
ity to robustly handle complex, temporally structured constraints. In contrast, SAD-Flower provides
a framework to reliably enforce constraints even under novel test-time scenarios.

Table 14: Performance of SAD-Flower and reject-sample method across all tasks.

Experiment Metric Reject-sample Ours

Maze2d (Large)

safety 0.16± 0.29 0.00 ± 0.00

admissib. 0.90± 0.01 0.00 ± 0.00

dyn. consist. 0.02± 0.01 0.01 ± 0.01

reward 1.52 ± 0.28 1.42± 0.52

Maze2d (Umaze)

safety 0.04± 0.09 0.00 ± 0.00

admissib. 0.91± 0.01 0.00 ± 0.00

dyn. consist. 0.01 ± 0.01 0.01 ± 0.01

reward 2.91 ± 0.65 2.66± 0.88

Hopper (Med-Expert)

safety 0.14± 0.18 0.00 ± 0.00

admissib. 0.05± 0.02 0.00 ± 0.00

dyn. consist. 0.02± 0.01 0.01 ± 0.01

reward 0.49± 0.33 0.93 ± 0.23

Hopper (Medium)

safety 0.03± 0.04 0.00 ± 0.00

admissib. 0.06± 0.03 0.00 ± 0.00

dyn. consist. 0.02± 0.02 0.01 ± 0.01

reward 0.24± 0.14 0.34 ± 0.03

Walker2d
(Med-Expert)

safety 0.08± 0.10 0.00 ± 0.00

admissib. 0.08± 0.08 0.00 ± 0.00

dyn. consist. 0.04 ± 0.06 0.04 ± 0.04

reward 0.97 ± 0.22 0.89± 0.32

Walker2d (Medium)

safety 0.18± 0.15 0.00 ± 0.00

admissib. 0.16± 0.10 0.00 ± 0.00

dyn. consist. 0.07 ± 0.17 0.07 ± 0.15

reward 0.68 ± 0.19 0.42± 0.23

KUKA Block Stacking safety 0.01± 0.01 0.00 ± 0.00

reward 0.44± 0.67 0.45 ± 0.21

Table 15: Performance of SAD-Flower and CoBL-Diffusion in the navigation task.

Experiment Metric CoBL-
Diffusion Ours

Maze2d (Large)

safety 0.01± 0.04 0.00 ± 0.00

admissib. 0.23± 0.33 0.00 ± 0.00

dyn. consist. 0.00±0.00 0.01± 0.01

reward 0.15± 0.18 1.42 ± 0.52

24

	Introduction
	Related Work
	Problem Setting
	Background: Learning to Plan with Flow Matching
	Control Augmented Flow Matching for Constrained Planning
	Control Augmentation for Safety, Admissibility and Dynamic Consistency
	Control Design using Control Lyapunov and Barrier Functions
	Theoretical Guarantees for Constraint Satisfaction and Consistency.

	Experiment
	Experiment setting
	Constrained-Planning Performance Across Benchmarks
	Why Does SAD-Flower Work Effectively?
	How reliable is SAD-Flower?

	Conclusion
	Bibliography
	
	Signed Distance Functions
	Proofs of Theoretical Results
	Feasibility of CBF constraints
	Feasibility of CLF Constraints
	Proof of th:CLF-CBF-All

	Additional Experiment Details and Results
	Environment details
	Constraint Settings in Each Tasks
	Training detail
	Computational resources
	The Use of Large Language Models (LLMs)
	Computation Analysis
	Additional Related Work
	Deployment on Real-World Robotic Platforms
	Comparison with constraint-aware baselines

