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ABSTRACT

Flow matching (FM) has shown promising results in data-driven planning. How-
ever, it inherently lacks formal guarantees for ensuring state and action constraints,
whose satisfaction is a fundamental and crucial requirement for the safety and ad-
missibility of planned trajectories on various systems. Moreover, existing FM
planners do not ensure the dynamical consistency, which potentially renders tra-
jectories inexecutable. We address these shortcomings by proposing SAD-Flower,
a novel framework for generating Safe, Admissible, and Dynamically consistent
trajectories. Our approach relies on an augmentation of the flow with a virtual
control input. Thereby, principled guidance can be derived using techniques from
nonlinear control theory, providing formal guarantees for state constraints, action
constraints, and dynamic consistency. Crucially, SAD-Flower operates without re-
training, enabling test-time satisfaction of unseen constraints. Through extensive
experiments across several tasks, we demonstrate that SAD-Flower outperforms
various generative-model-based baselines in ensuring constraint satisfaction.

1 INTRODUCTION

Generative models have recently emerged as powerful tools for trajectory planning, with diffusion
models (Ho et al., 2020) and flow matching (FM) (Lipman et al., 2023) enabling the generation
of complex, long-horizon behaviors by directly learning from data. Unlike traditional data-driven
planners that combine learned dynamics with optimization routines (Posa et al., 2014; Kalakrishnan
et al., 2011), generative approaches avoid model exploitation—where optimizers produce trajecto-
ries that perform well under the model but fail in reality due to approximation errors (Talvitie, 2014;
Ke et al., 2019). By training models to generate full trajectories that implicitly encode system dy-
namics, generative planners naturally capture multimodal (Huang et al., 2025), high-dimensional
behaviors while mitigating compounding errors and supporting task compositionality. These advan-
tages make generative approaches increasingly attractive for real-world planning and control tasks.

Despite these advantages, a critical limitation of generative model planners lies in their inability to
guarantee constraint satisfaction – specifically, state and action constraints. State constraints ensure
safety (Wabersich et al., 2023) (e.g., avoiding collisions), while action constraints guarantee admis-
sibility (Shen et al., 2018) (e.g., respecting torque or power limits), which makes these constraints
essential in domains such as robotics (Craig, 2009). However, constraint satisfaction at individual
time steps is insufficient: since trajectories are sequences of states (and actions), subsequent states in
trajectories cannot be chosen independently (Kelly, 2017). For a planned trajectory to be physically
realizable and its guarantees to transfer from plan to execution, the trajectory must be dynamically
consistent, i.e., states must evolve according to the dynamics of the system for which the trajec-
tory is planned. However, existing generative planners offer no inherent mechanism to enforce such
properties, and the non-static nature of real-world environments often leads constraints to be un-
derrepresented, or entirely absent, in the training data. These factors make constraint satisfaction
particularly challenging at test time and motivate the need for formally grounded methods that can
reliably ensure safety, admissibility, and consistency in generated trajectories.

A number of recent works have explored constrained planning for generative models by incorporat-
ing constraints into the training phase (Ho & Salimans, 2022; Ajay et al., 2023; Zheng et al., 2023),
injecting guidance signals during sampling (Dhariwal & Nichol, 2021; Yuan et al., 2023; Kondo
et al., 2024; Xiao et al., 2025), or applying post-processing (Mazé & Ahmed, 2023) corrections af-
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ter generation. While these approaches improve constraint adherence, they remain fundamentally
limited. Training-time methods struggle to handle unseen constraints, guidance-based techniques
offer only soft biases without guarantees, and post-processing can distort the distribution learned by
the generative model. These issues highlight three key challenges that need to be jointly addressed:
(1) guaranteeing state and action constraint satisfaction, (2) ensuring dynamic consistency so that
trajectories are physically valid, and (3) handling novel test-time constraints without retraining.

To address these challenges, we propose SAD-Flower – a novel control-augmented flow matching
framework designed to generate Safe, Admissible, and Dynamically consistent trajectories. Inspired
by guidance-based approaches, SAD-Flower introduces a virtual control input into the generation
process. This control-theoretic interpretation of the sampling process enables a principled design of
test-time guidance signals to ensure strong guarantees. The foundation of the design lies in a novel
reformulation of state and action constraints into Control Barrier Function (CBF) conditions (Ames
et al., 2017) for the generation process, while dynamic consistency is transformed into a Control
Lyapunov Function (CLF) condition (Sontag, 1983). We exploit these conditions to design prin-
cipled guidance signals via constrained optimal control problems, which can be solved efficiently
using quadratic program solvers, such that SAD-Flower can handle novel constraints at test time
without retraining. Unlike general constraint-projection approaches (Römer et al., 2025; Bouvier
et al., 2025), which can significantly deviate from the original distribution learned by the genera-
tive model, we leverage prescribed-time control concepts (Song et al., 2017) to flexibly schedule
constraint enforcement. This allows us to formally prove the safety, admissibility, and dynamic
consistency of trajectories generated by SAD-Flower. These theoretical guarantees translate into
empirical performance: across a range of domains, SAD-Flower consistently ensures constraint sat-
isfaction while achieving competitive or superior task performance compared to existing generative
planners. Notably, SAD-Flower remains robust even under increasingly stricter test-time constraints,
validating its reliability in challenging deployment scenarios.

2 RELATED WORK

Diffusion and Flow-Based Generative Models for Planning. Recent advances in generative
modeling, including diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021)
and flow-matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023), have shown remarkable
performance across various domains such as image generation (Dhariwal & Nichol, 2021; Du et al.,
2020) and language modeling (Liu et al., 2023; Saharia et al., 2022). These generative approaches
have also been successfully applied to data-driven planning, where the model learns to imitate expert
behavior from datasets. For example, some works generate entire state-action trajectories directly
using one (Janner et al., 2022; Zheng et al., 2023) or two separate models (Zhou et al., 2024), while
others predict high-level trajectories and rely on a downstream controller to compute low-level ac-
tions (Chi et al., 2023; Ajay et al., 2023). However, these generative model planners operate without
mechanisms to ensure that generated trajectories respect real-world constraints. In particular, they
lack formal guarantees for satisfying state and action constraints, as well as dynamic consistency.

Constraint-Aware Generative Model Planner. To address the issue of constraint satisfaction, sev-
eral recent works have explored constraint-aware planning based on generative models. Guidance-
based methods (Dhariwal & Nichol, 2021; Yuan et al., 2023; Kondo et al., 2024; Ma et al., 2025;
Carvalho et al., 2023) incorporate constraints by injecting gradients of auxiliary cost functions into
the sampling process. While this encourages constraint satisfaction, it provides only a soft inductive
bias without formal guarantees. Classifier-free guidance (Ho & Salimans, 2022) leverages infor-
mation, such as constraint violation (Ajay et al., 2023) during training, enabling constraint-aware
generation. However, these approaches require additional labeled data and have limited generaliza-
tion to novel constraints. Similarly, DDAT (Bouvier et al., 2025) incorporates projection into the
feasible set during training and inference but relies on strong assumptions, such as convexity of the
constraint set. Post-processing approaches (Mazé & Ahmed, 2023; Giannone et al., 2023) attempt to
enforce constraints by optimizing generated samples after denoising. However, these modifications
are unaware of the learned data distribution and can produce samples that significantly drift from it.

Control-Theoretic Enforcement in Generative Planning. Several works have proposed control-
theoretic techniques to enforce constraints. The works (Xiao et al., 2025; Botteghi et al., 2023; Dai
et al., 2025) employ Control Barrier Functions (CBFs) (Ames et al., 2017) to enforce state con-
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straints during the denoising process. However, these methods neglect action constraints and often
produce trajectories that are not dynamically consistent and suffer from the local trap problem (Xiao
et al., 2025). Control Lyapunov functions (CLFs) (Sontag, 1983) are leveraged together with CBFs
in (Mizuta & Leung, 2024) to improve safety and stability, but formal guarantees are missing, and
action constraints are not addressed. A constrained optimal control layer is integrated into the de-
noising process in (Römer et al., 2025) to enforce state and action constraints. Since it performs non-
convex optimization throughout the entire sampling process, it exhibits a high computational cost
and potentially steers samples prematurely before they reflect meaningful structure (Fan et al., 2025).

3 PROBLEM SETTING

We formally define the trajectory planning problem with safety, admissibility and dynamic consis-
tency constraints as follows.

System Model. We consider a nonlinear dynamical system with state s(k) ∈ Rn and action a(k) ∈
Rm at time k, evolving as

s(k + 1) = f(s(k),a(k)), (1)
where f is the (possibly unknown) transition function. A trajectory is defined as a sequence of state-
action pairs, τ = {(s(0),a(0)), . . . , (s(H − 1),a(H − 1))}. Given a dataset of expert trajectories
D = {τ (n)}Nn=1, our goal is to learn planning new trajectories that both imitate expert behavior and
respect all deployment constraints.

Constraints. To ensure reliable real-world execution, every generated trajectory must, at every time
step, satisfy: (1) Safety: the state remains within a safe set S (e.g., avoid collisions; eq. (SC));
(2) Admissibility: the action is within an admissible set A (e.g., satisfy torque or speed limits;
eq. (AC)); and (3) Dynamic Consistency: the trajectory obeys the system dynamics (eq. (DC)).
Neglecting any of these leads to unsafe, infeasible, or unrealizable plans: for example, trajectories
may pass through obstacles (violating safety), demand unattainable actions (violating admissibility),
or include state transitions that cannot be executed by the system (violating dynamics).

Formally, these requirements are posed on the distribution pθ(τ ) of the learned planner as follows:

∀τ ∼ pθ(τ ) : s(k) ∈ S, ∀k = 0, . . . , H − 1, (SC)

∀τ ∼ pθ(τ ) : a(k) ∈ A, ∀k = 0, . . . , H − 1, (AC)

∀τ ∼ pθ(τ ) : s(k + 1) = f(s(k),a(k)), ∀k = 0, . . . ,H − 1. (DC)

Objective. Given expert data D and constraint sets S, A, our goal is to learn a generative model
pθ(τ ) that (i) matches the expert trajectory distribution, and (ii) ensures all sampled trajectories sat-
isfy eqs. (SC), (AC), and (DC). This setting motivates methods that can flexibly enforce constraints,
even as requirements change at test time.

4 BACKGROUND: LEARNING TO PLAN WITH FLOW MATCHING

When a trajectory data set D of an expert planner is given, Flow Matching (FM) (Lipman et al., 2023;
Zheng et al., 2023) is an effective technique to learn the distribution p(τ ) of the data D. In FM, the
unknown distribution p(τ ) is considered as the desired endpoint of a probability path pθt (τ ), t ∈
[0, 1]. The remainder of the probability path pθt (τ ) is characterized by a time-dependent vector field
vθ
t : [0, 1]×R(n+m)H → R(n+m)H parameterized by θ that acts on samples τ0 ∼ p0(τ ) via the flow

τ̇t =
d
dtτt = vθ

t (τt), (2)

whereby the prior p0(τ ) is typically set to a Gaussian (Lipman et al., 2023). By prescribing a path
from samples τ0 of p0(τ ) to data trajectories τ1 via a scheduled interpolation τt = α(t)τ1+β(t)τ0
with α, β such that α(0) = 0, β(1) = 0 and α(t) + β(t) = 1, the distribution learning problem is
transformed into the supervised learning problem

LCFM(θ) = Et∼U [0,1],τt∼pθ
t (τ ),τ1∼p(τ )||vθ

t (τt)− vt(τ0, τ1)||22, (3)

where vt(τ0, τ1) = α̇(t)τ1 + β̇(t)τ0 follows from the interpolation. Minimizing this cost function
via stochastic gradient descent, vθ

t (τt) can be efficiently trained using the trajectory data set D.
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Given an initial state s0 and a trained vector field vθ
t (τt), we sample a random trajectory τ0 from

the prior distribution p0 and numerically solve the ordinary differential equation (ODE) in eq. (2)
using τ0 as the initial condition to obtain τ1. Thereby, the trajectories effectively become samples
τ1 ∼ pθ(τ ), where pθ(τ ) is implicitly represented through vθ

t (τt). While such samples can
be directly used in planning, they generally do not satisfy the safety, admissibility, and dynamic
consistency constraints in eqs. (SC), (AC), and (DC).
Remark 4.1. To allow plans with given initial states s0, we only need to condition the initial distri-
bution on s(0) = s0 and ensure τ̇

s(0)
t = 0 for all t ∈ [0, 1]. For training, s0 is chosen as the first

state of trajectories in the data set, while arbitrary values can be set when sampling trajectories.

5 CONTROL AUGMENTED FLOW MATCHING FOR CONSTRAINED PLANNING

Despite the power of FM-based planners for trajectory generation, ensuring safety, admissibility,
and dynamic consistency remains challenging, particularly under new test-time constraints. We
address this with SAD-Flower, a control-augmented flow matching framework that provides formal
guarantees for constraint satisfaction. In Section 5.1, we outline the control-theoretic intuition and
its integration with FM. Section 5.2 details how constraint-aware quadratic programming augments
sampling, and Section 5.3 presents theoretical guarantees of convergence and constraint satisfaction.

5.1 CONTROL AUGMENTATION FOR SAFETY, ADMISSIBILITY AND DYNAMIC CONSISTENCY

To ensure the satisfaction of safety (eq. (SC)), admissibility (eq. (SC)) and dynamic consistency
(eq. (DC)), we extend the formulation in eq. (2) at test time to a controlled dynamical system

τ̇t = vθ
t (τt) + ut, (4)

where the vector fieldvθ
t (τt) represents the drift, while ut is a control input. By choosing ut = 0,

we recover standard flow matching as a special case of this formulation. Framing the problem in
this way enables us to view the requirements in eqs. (SC), (SC), and (DC) as system properties, so
that their satisfaction becomes a matter of control design with the following specifications.

From State/Action Constraints to Barrier Specifications. State and action constraints are set in-
clusion conditions, which require the controlled flow in eq. (4) to converge to and subsequently
maintain constraint satisfaction. This behavior can be formalized via control barrier functions
(CBFs) (Ames et al., 2017), whose level sets can encode the constraint sets A and S. Thereby,
we express state and action constraints as a condition on the growth of CBFs along the flow.

From Dynamic Consistency to Lyapunov Specifications. Dynamic consistency is an equality con-
dition, whose violation needs to decay to 0 along the flow in eq. (4). This property can be formalized
using control Lyapunov functions (CLF) (Sontag, 1983) – energy-like, non-negative functions with
a minimum of 0 at the desired equilibrium. Hence, we formulate dynamic consistency as a condition
on the decay of a CLF along the flow.

Prescribed-time Specifications. While FM simulates ODEs for time intervals t ∈ [0, 1], Lyapunov
and barrier specifications usually relate to asymptotic guarantees with t → ∞. This discrepancy
necessitates the scheduling of a sufficiently fast growth of CBFs and decrease of CLFs along the
flow, which corresponds to a prescribed-time specification for control (Song et al., 2017).

Our approach – SAD-Flower – splits the numerical integration of eq. (4) into two phases as
illustrated in Fig. 1. In the uncontrolled phase (0 ≤ t < T0), trajectories evolve under the learned
FM vector field without intervention (ut = 0) to preserve sample diversity (Fan et al., 2025). In
the controlled phase (T0 ≤ t ≤ 1), the control law ut satisfying CLF, CBF, and prescribed-time
specifications is applied when integrating eq. (4). Thereby, the activation time T0 ∈ (0, 1)
allows SAD-Flower to effectively balance generative flexibility with formal guarantees on safety
(eq. (SC)), admissibility (eq. (AC)), and dynamic consistency (eq. (DC)).

5.2 CONTROL DESIGN USING CONTROL LYAPUNOV AND BARRIER FUNCTIONS

Given the control specifications in Section 5.1, the actual control design problem remains. We first
derive dedicated CBF and CLF constraints, which employ scheduling functions to ensure a sufficient
growth/decrease rate. These constraints are exploited in an optimization-based control law.

4
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	𝐬(0) 𝐚(0) … 𝐬(H-1) 𝐚(H-1)

SAD trajectory 𝝉𝟏

𝝉"!

𝝉#
t

k

Sample random initial trajectory 𝝉$ ∼ 𝑝$

Integrate 𝝉̇! = 𝒗!𝜽 𝝉! + 𝒖! with controller eq. (5)

	𝐬(0) 𝐚(0) … 𝐬(H-1) 𝐚(H-1)

	𝐬(0) 𝐚(0) … 𝐬(H-1) 𝐚(H-1)

Algorithm 1: Planning by SAD Flower

1: Input: pretrained flow model vθ
t (τt)

2: Initialize τ0 ∼ p0(τ )

3: Solve ODE τ̇t = vθ
t (τt) in [0, T0)

4: Solve ODE τ̇t = vθ
t (τt)+ut in [T0, 1]

with our controller (5) to get τ1
5: Output: SAD trajectory τ1

Figure 1: Overview of the trajectory generation using our proposed SAD-Flower.

Control Barrier Constraints. Since state/action constraints are specified separately for each time
step, we design state CBFs hs

k(τt) and action CBFs ha
k(τt) for each time step k = 0, . . . , H−1.

Each CBF itself is defined as a signed distance function (SDF) (Park et al., 2019; Long et al., 2021),
which measures the distance to the boundary of the set S and A, respectively, and assigns a sign
based on the inclusion in the constraint set.1 Thus, these functions are only positive if states s(k) and
actions a(k) are inside the sets S and A, respectively. Non-negativity of the CBFs can be ensured by
constraining the evolution of the CBF values along the flow, which results in the derivative condition

ḣs
k(τt) ≥ −φ(t)hs

k(τt), ∀k = 1, . . . , H − 1, (CBF-s)

ḣa
k(τt) ≥ −φ(t)ha

k(τt), ∀k = 0, . . . , H − 1, (CBF-a)

where ḣs/a
k (τt) = ∇Th

s/a
k (τt)

(
vθ
t (τt) + ut

)
(Ames et al., 2017) and φ(t) is a scheduling function

that we will design later.

Control Lyapunov Constraints. For defining a suitable CLF, we sum up the squared consistency
errors of a trajectory, i.e., V (τt) = 1

2

∑H−1
k=1 ||s(k) − f(s(k − 1),a(k − 1))||2. This function is

only 0 if the trajectory τt is dynamically consistent, such that we constrain the evolution of its value
along the flow to be negative via

V̇ (τt) ≤ −φ(t)V (τt), (CLF)

where V̇ (τt) = ∇TV (τt)
(
vθ
t (τt) + ut

)
(Sontag, 1983) and φ(t) is a scheduling function that we

will design later. Note that the computation of ∇TV (τt) requires knowledge of f , but a model of it
can be learned from the trajectory data if the true dynamical system in eq. (1) is unknown.

Prescribed-time Scheduling. To guarantee that the CBFs are positive and the CLF is 0 at the
terminal time t = 1 regardless of its state at t = T0, we employ a scheduling function φ(t) = c

(1−t)2

with some constant c > 0. Due to the steep growth of φ for t → 1, the constraints in eqs. (CBF-s),
(CBF-a) and (CLF) become increasingly more restrictive. This ensures that positivity of CBFs and
a vanishing CLF are ensured at some time t < 1 Song et al. (2023).

Constrained Minimum-Norm Optimal Control. To ensure the satisfaction of CLF and CBF con-
straints, we formulate the minimum-norm optimal control problem

ut =minu ||u||2 s.t. eqs. (CBF-s), (CBF-a) and (CLF) hold, (5)

which ensures them by construction, while simultaneously minimizing the perturbation of the
learned vector field vθ

t (τt). Even though this optimization problem often consists of a large num-
ber of optimization variables and constraints, it can be solved comparatively efficiently since it is
a quadratic program (QP). This renders the numerical integration of eq. (4) with the control law in
eq. (5) computationally tractable when using dedicated QP solvers.

5.3 THEORETICAL GUARANTEES FOR CONSTRAINT SATISFACTION AND CONSISTENCY.

Due to the strong theoretical foundations of CBFs and CLFs, strong guarantees for safety, admissi-
bility, and dynamic consistency can be provided as shown in the following result.2

1For a formal definition of the CBFs hs
k(τt) and ha

k(τt), see Appendix A
2A proof and extended discussion of the theorem’s assumptions can be found in Appendix B.
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Theorem 5.1. Assume that the QP in eq. (5) is feasible for all t ∈ [T0, 1]. Then, the solution τt of
eq. (4) with control law ut = 0 for t < T0 and ut defined in eq. (5) for t ≥ T0 satisfies eqs. (SC),
(AC), and (DC) at t = 1 for all initial conditions τ0.

This result shows that the validity of the safety, admissibility, and dynamic consistency guarantees
essentially depends on the feasibility of the minimum-norm optimal control law in eq. (5), which is
a fundamental requirement for a well-defined solution τ1. While feasibility hinges on three tech-
nical conditions, it is not an issue in practice for the designed CLF and CBF constraints. Firstly,
infeasibility often occurs only on sets of trajectories τ with zero measure, such that it does not occur
during the numerical integration of eq. (4). Secondly, many strategies for recovering feasibility ex-
ist, e.g., via slack variables (Boyd & Vandenberghe, 2004). If there exists a non-empty time interval
including t = 1 after employing such a recovery strategy, it follows from Theorem 5.1 that eqs.
(SC), (AC), and (DC) remain guaranteed. Hence, feasibility is usually not a practical concern.

6 EXPERIMENT

6.1 EXPERIMENT SETTING

We evaluate all methods in 4 different benchmark tasks: Maze2d, Hopper, and Walker2d from the
D4RL problem set (Fu et al., 2020), and Kuka Block-Stacking (Janner et al., 2022).3

• Maze2d (Fu et al., 2020) is a navigation task where a point mass is moved from an initial state to
a specified goal. Actions are artificially constrained to [−0.1, 0.1]. State constraints are defined
for two novel obstacles, which do not block feasible paths and therefore still allow the task to be
completed. Training data is generated by a navigation planner for the given maze. We evaluate
on two maze configurations: Large and Umaze.

• Hopper and Walker2d (Fu et al., 2020) are locomotion tasks where a one-legged and a bipedal
robot must move forward by jumping and walking, respectively. Actions are constrained to the
range [−1, 1]. State constraints are imposed by requiring the robot’s torso center to remain below
a prescribed height (default: 1.6), creating a conflict with the objective of fast forward movement.
We evaluate two datasets: demonstrations from a partially trained soft actor-critic policy (Haarnoja
et al., 2018) (Medium) and a mixture of expert and partially trained policy data (Med-Expert).

• Kuka Block-Stacking (Janner et al., 2022) is a manipulation task where a 7-DOF robotic arm
must stack a set of blocks. Unlike the other tasks, no action constraints or dynamic consistency re-
quirements are enforced; only state constraints are applied, allowing us to study a variant of trajec-
tory planning focused solely on state feasibility. These constraints ensure that self-collisions of the
robot are avoided. Training data is generated using the PDDLStream planner (Garrett et al., 2020).

Evaluation Metrics. We evaluate the safety and admissibility violation of a trajectory via its max-
imal distance to the constraint sets S and A, which we can effectively express through the CBFs as
−mink min{hs,a

k (τ ), 0}. Thus, a value of 0 means constraint satisfaction, while positive values im-
ply a violation. Dynamical consistency is measured using the Lyapunov function, such that large val-
ues indicate inconsistency. The performance of planned trajectories is measured by normalized total
rewards for D4RL tasks and binary success rewards for stacking, as defined in Janner et al. (2022).

Baselines: We compare our proposed SAD-Flower against the following generative planners:

• Diffuser (Janner et al., 2022) generates trajectories using a diffusion model, without considering
safety, admissibility, or dynamic consistency.

• Truncation (Trunc) (Brockman et al., 2016) enforces constraints by truncating the trajectory
generated from the diffusion model.

• Classifier Guidance (CG) (Dhariwal & Nichol, 2021) augments diffusion-based trajectory gen-
eration with constraint-gradient guidance during sampling.

• Flow Matching (FM) (Feng et al., 2025) trains a model with FM to generate trajectories, which
is used as a baseline that does not incorporate safety, admissibility, or dynamic consistency.

• SafeDiffuser (S-Diffuser) (Xiao et al., 2025) generates trajectories via diffusion, while projecting
states onto the constraint sets using a CBF at each sampling step.

3Details of the experimental setting are provided in the Appendix. D
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• Decision Diffuser (D-Diffuser) (Ajay et al., 2023) trains a conditional diffusion model to
generate state trajectories conditioned on task information and constraints, with the corresponding
actions inferred from a learned inverse dynamics model.

6.2 CONSTRAINED-PLANNING PERFORMANCE ACROSS BENCHMARKS

As shown in Table 1, our method consistently satisfies safety and admissibility constraints while
matching the planning performance of other methods across tasks. Although perfect dynamical con-
sistency is not reached, the remaining violations are minor and mainly due to numerical integration
of eq. (4). These results demonstrate the effectiveness of our control-theoretic mechanism, which
guarantees constraint satisfaction at test time.

In the navigation tasks of Maze2D, SAD-Flower achieves high rewards while maintaining complete
constraint satisfaction. Since the task goals and imposed constraints are not in conflict, our method
effectively balances planning performance and constraint adherence. Among baselines, SafeDiffuser
employs a constraint-following mechanism during the diffusion sampling process to enforce state
constraints, but it fails to guarantee admissibility. In contrast, Diffuser and FM achieve high rewards
at the cost of violations in both safety and admissibility.

In locomotion tasks, where dynamics are more complex, SAD-Flower is the only method that sat-
isfies all constraints while maintaining strong dynamical consistency. Its slightly lower rewards
compared to baselines stem from conflicts between the imposed height constraint and the jumping
or walking behaviors required for high returns, making safety violations directly correlated with
the rewards that reflect planning performance. For instance, CG achieves planning performance

Table 1: Performance of the proposed SAD-Flower and baselines across navigation, locomotion, and
manipulation tasks. The methods are compared on the maximum safety and admissibility constraint
violations of planned trajectories, the magnitude of the dynamic consistency violation, and the model
accuracy expressed through the reward. Truncate is not applicable in Maze2d (Umaze) due to more
complex safety constraints, such that truncation becomes non-trivial (Xiao et al., 2025).

Experiment Metric Diffuser Trunc CG FM S-Diffuser D-Diffuser Ours

Maze2d
(Large)

safety 0.43±0.39 0.10±0.25 0.27±0.37 0.37±0.39 0.00±0.00 0.83±0.24 0.00±0.00
admissib. 0.89±0.01 0.88±0.07 0.87±0.02 0.90±0.00 0.91±0.02 0.90±0.03 0.00±0.00

dyn. consist. 0.06±0.03 0.06±0.03 0.44±0.16 0.02±0.00 0.09±0.06 2.78±0.06 0.01±0.11
reward 1.40±0.26 1.39±0.26 0.4±0.33 1.43±0.20 1.20±0.06 0.38±0.18 1.42±0.52

Maze2d
(Umaze)

safety 0.04±0.20 — 0.51±0.33 0.11±0.22 0.87±3.77 0.05±0.15 0.00±0.00
admissib. 0.90±0.01 — 0.88±0.03 0.01±0.00 0.90±0.02 0.89±0.02 0.00±0.00

dyn. consist. 0.05±0.02 — 0.68±0.18 0.01±0.01 0.10±0.10 1.80±0.11 0.01±0.01
reward 1.11±0.44 — 0.06±0.32 2.62±1.09 1.06±0.35 0.60±0.33 2.66±0.88

Hopper
(Med-Expert)

safety 0.01±0.02 0.05±0.04 0.07±0.03 0.11±0.08 0.05±0.04 0.10±0.02 0.00±0.00
admissib. 0.21±0.05 0.18±0.04 0.26±0.07 0.17±0.05 0.18±0.04 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.41±0.04 0.79±0.10 0.23±0.02 0.36±0.06 0.16±0.01 0.01±0.01
reward 1.06±0.18 0.50±0.12 0.73±0.022 1.02±0.20 0.53±0.19 1.12±0.01 0.93±0.23

Hopper
(Medium)

safety 0.01±0.02 0.05±0.03 0.00±0.00 0.39±0.13 0.01±0.01 0.15±0.01 0.00±0.00
admissib. 0.21±0.05 0.18±0.04 0.16±0.03 0.32±0.21 0.18±0.04 0.00±0.00 0.00±0.00

dyn. consist. 0.46±0.01 0.47±0.01 0.95±0.02 0.42±0.39 0.47±0.01 0.18±0.01 0.01±0.01
reward 0.44±0.05 0.45±0.06 0.39±0.03 0.49±0.05 0.45±0.06 0.48±0.08 0.34±0.03

Walker2d
(Med-Expert)

safety 0.06±0.04 0.06±0.05 0.02±0.03 0.40±0.11 0.09±0.07 0.04±0.04 0.00±0.00
admissib. 0.67±0.18 0.62±0.14 0.72±0.18 0.15±0.02 0.58±0.20 0.00±0.00 0.00±0.00

dyn. consist. 0.71±0.05 0.72±0.05 0.83±0.91 0.44±0.01 0.79±0.03 0.69±0.05 0.04±0.04
reward 1.06±0.23 0.56±0.29 0.39±0.19 1.07±0.01 0.59±0.21 0.95±0.24 0.89±0.32

Walker2d
(Medium)

safety 0.03±0.03 0.02±0.01 0.02±0.02 0.21±0.15 0.02±0.02 0.09±0.04 0.00±0.00
admissib. 0.56±0.10 0.44±0.19 0.54±0.14 0.48±0.06 0.52±0.12 0.00±0.00 0.00±0.00

dyn. consist. 0.68±0.08 0.65±0.08 0.72±0.38 0.40±0.06 0.64±0.07 1.52±0.05 0.07±0.15
reward 0.57±0.26 0.50±0.26 0.55±0.28 0.73±0.15 0.49±0.23 0.76±0.16 0.42±0.23

KUKA Block
Stacking

safety 0.23±0.09 0.00±0.00 0.22±0.09 0.02±0.04 0.00±0.00 0.14 ±0.13 0.00±0.00
reward 0.46±0.23 0.45±0.21 0.45±0.23 0.44±0.20 0.49±0.23 0.55±0.26 0.45±0.21
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Stuck in Local Trap
(a) Safediffuser

Unstable with Jitter
(b) Ours w/ few ODE steps

Smooth and Feasible
(c) Ours w/ full steps

Figure 2: (a) Without enforcing dynamic consistency, applying state and action constraints can
result in significant outliers, known as the local trap problem (Xiao et al., 2025). (b) Our method
satisfies constraints, but using too few numerical integration steps for the ODE introduces jitter in
the trajectory. (c) With sufficient integration steps, our method produces dynamically consistent
trajectories while satisfying unseen constraints (red ellipses).

comparable to SAD-Flower in Hopper (Med-Expert) when both methods avoid safety violations.
While some methods, such as Decision Diffuser, consistently ensure admissibility, all struggle with
dynamical consistency due to the complexity of the robot dynamics.

In the Kuka Block-Stacking task, which excludes admissibility and dynamical consistency require-
ments, SAD-Flower leverages the simplified setting to guarantee safety while achieving rewards
competitive with other safety-enforcing baselines. This highlights both the effectiveness and flexi-
bility of our proposed approach.

6.3 WHY DOES SAD-FLOWER WORK EFFECTIVELY?

We analyze three key properties of SAD-Flower that contribute to its effectiveness.

Dynamic consistency prevents local traps. Safety and admissibility can be enforced by projecting
states or actions back into the constraint sets, but this can introduce sharp discontinuities in the tra-
jectory, as illustrated in Fig. 2(a) for SafeDiffuser in Maze2D. This phenomenon, known as the local
trap problem (Xiao et al., 2025), arises because constraints are treated independently at each trajec-
tory step. In contrast, SAD-Flower enforces dynamic consistency by coupling consecutive states and
actions through the CLF, ensuring coherent evolution during integration of the flow. This coupling
prevents misaligned guidance and eliminates the risk of local traps, as demonstrated in Fig. 2(c).

0.2 0.4 0.6 0.8
Activation time T0

6

7

8

9
×10 3

(a) Impact of Activation Time

100 1000
# ODE steps

0.0

0.1

0.2

0.3

(b) Impact of Number of ODE Steps

1.25

1.50

1.75

1.4

1.6

1.8

Consistency Rewards

Figure 3: Effect of increasing the number of ODE
steps for solving eq. (4) and the activation time T0

of controller eq. (5) on the consistency and perfor-
mance of trajectories.

Delayed control activation avoids prema-
ture interventions. At the beginning of the
flow sampling process, sample distributions are
relatively unstructured, and applying control
signals too early can push trajectories away
from behaviors captured by the learned gen-
erative planner. Perturbations introduced in
this phase are propagated throughout the flow
in eq. (4), potentially degrading performance.
SAD-Flower mitigates this issue by activating
guidance only after a prescribed flow time T0.
As shown in Fig. 3 (left) for Maze2D, even a
small T0 suffices to achieve high rewards, while
a larger T0 can further improve performance.
Dynamic consistency violations increase only marginally with larger T0. Safety and admissibility
are satisfied across all T0 values in our experiments (not shown due to space). These results high-
light the effectiveness of our control-theoretic formulation, which allows delayed activation of CLF
and CBF guidance without compromising constraints or dynamic consistency.

QP vs. Non-convex Optimization. To assess the benefits of our QP-based formula-
tion, we compare SAD-Flower with DPCC (Römer et al., 2025), a recent method that
also integrates optimal control into generative planning to enforce safety, admissibility, and
dynamic consistency. DPCC applies control from the earliest stages and relies on full-
system non-convex optimization at every sampling step. As shown in Table 2 for Hop-
per (Med-Expert), both methods achieve comparable levels of admissibility and dynamic con-
sistency, but DPCC incurs much higher computation per sampling step and lower rewards.
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0.0 0.2 0.35
Constraint level

0

1

2
Safety

0.0 0.2 0.35
Constraint level

0.0

0.5

1.0

1.5

Admissibility

0.0 0.2 0.35
Constraint level

0.0

0.5

1.0

1.5

Dynamic Consistency

0.0 0.2 0.35
Constraint level

0.5

1.0

Rewards

Diffuser Trunc CG FM S-Diffuser D-Diffuser Ours

Figure 4: Performance of the proposed SAD-Flower and baselines depending on level of constraint
tightening for the Hopper (Med-Expert) benchmark.

Table 2: Benefits of QPs in SAD-flower
compared to general non-convex opti-
mization of DPCC (Römer et al., 2025).

Experiment Metric DPCC Ours

Hopper
(Med-Expert)

safety 0.01±0.03 0.00±0.00
admissib. 0.00±0.00 0.00±0.00

dyn. consist. 0.01±0.01 0.01±0.01
reward 0.61±0.07 0.93±0.23

comp. time [s] 4.24±1.64 0.06±0.00

This highlights the efficiency of SAD-Flower gained
without any loss of constraint satisfaction by enabling
the usage of QP solvers compared to general non-convex
optimization methods. Note though that the enforcement
of constraints does still not come for free with QPs since
the integration steps of the uncontrolled ODE merely
takes 0.01s on average.

6.4 HOW RELIABLE IS SAD-FLOWER?

To highlight the reliability of SAD-Flower, we demonstrate its behavior when approaching the ex-
tremes in terms of approximations for implementation and problem difficulty.

Reducing integration accuracy. We first illustrate the reliability of SAD-Flower when the accuracy
of integrating the controlled ODE in eq. (4) is small, which we measure through the number of
ODE discretization steps. As illustrated on the right of Fig. 3, increasing the number of ODE steps
improves dynamic consistency since the controller in eq. (5) has more opportunities to intervene.
Even with as few as 25 ODE steps, the inconsistency is relatively small and corresponds only to
minor jittering behavior in the trajectories as illustrated in Fig. 2. With ≈ 100 ODE steps, dynamic
consistency is practically achieved. Safety and admissibility are ensured for the whole range of con-
sidered ODE steps (not depicted). In contrast, the rewards continue to grow for finer discretizations,
which cause higher computational complexity. Thus, SAD-Flower allows to trade-off performance
and complexity, while simultaneously ensuring constraint satisfaction and dynamic consistency.

Handling stricter test-time constraints. To evaluate the robustness of our method under unseen
conditions, we test it with increasingly restrictive constraints. For this, we reduce the allowed torso
height by 0.2 and 0.35 in the Hopper environment. As shown in Fig. 4, SAD-Flower maintains per-
fect constraint satisfaction even under significantly stricter settings. Although the rewards achieved
by SAD-Flower decrease with tighter constraints, this effect is caused by the conflict of constraints
and objective. Thus, other methods enforcing state constraints, e.g., SafeDiffuser, also exhibit this
behavior. Notably, the rewards of SAD-Flower are generally at least on par with these methods,
even though the baselines exhibit significant admissibility and dynamic consistency violations. This
clearly demonstrates the strong robustness of SAD-Flower in handling unseen test-time constraints.

7 CONCLUSION

We presented SAD-Flower, a control-augmented flow matching framework that ensures safe, admis-
sible, and dynamically consistent trajectory planning. By reformulating flow matching as a control-
lable dynamical system with a virtual control input, our method leverages Control Barrier Function
and Control Lyapunov Function conditions scheduled using prescribed-time control principles to
enforce constraints at test time without retraining. Experiments across navigation, locomotion, and
manipulation tasks show that SAD-Flower achieves perfect constraint satisfaction, avoids local traps,
and maintains competitive task performance. These results establish it as a practical, theoretically
grounded solution for real-world deployment. Looking ahead, extending SAD-Flower to stochastic
dynamics, complex constraint geometries, and online replanning offers promising directions for safe
and reliable generative trajectory planning.
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REPRODUCIBILITY STATEMENT

Code. Our method is implemented based on the publicly available codebase from (Feng et al.,
2025) at https://github.com/AI4Science-WestlakeU/flow_guidance. The code
for our method will be released upon acceptance. Implementation and experimental details are
provided in section 6 of the main text, with further information in the Appendix.

Theory. Our theoretical claims in Section 5.3 are supported by complete proofs in Appendix B.

Datasets. We evaluate our method on a variety of public datasets across locomotion, navigation,
and manipulation tasks. Full descriptions of the datasets can be found in Section 6 and Appendix D.

Compute. All experiments were conducted using NVIDIA Tesla P100 GPUs. Additional informa-
tion on hardware and computational resources is provided in Appendix G.
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A SIGNED DISTANCE FUNCTIONS

Given sets S and A, the signed distance functions are defined as the minimal distance to a point on
the boundary ∂S and ∂A of the sets, with the sign indicating if the state/action along the trajectory
is in the corresponding sets. This formally leads to the following functions

hs
k(τ ) =

{
mins∈∂S ||s(k)−s|| if s ∈ S
−mins∈∂S ||s(k)−s|| else

ha
k(τ ) =

{
mina∈∂A ||a(k)−a|| if a ∈ A
−mina∈∂A ||a(k)−a|| else.

(6)

B PROOFS OF THEORETICAL RESULTS

B.1 FEASIBILITY OF CBF CONSTRAINTS

Theorem B.1. Assume that φ(t) = c
(t−1)2 with constant c ∈ R+. If hs

k and ha
k are differentiable,

then, for each τ , there exists a u jointly satisfying eq. (CBF-s) and eq. (CBF-a).

Proof. Since the constraints defined in eqs. (CBF-s) and (CBF-a) concern independent variables,
individual feasibility of each constraint implies joint feasibility of all of them. Due to the assume
differentiability of hs,a

k and the definition of SDFs implying ||∇hs,a
k (τ )|| = 1

2 , u can always be
chosen such ∇Ths,a

k (τ )u takes an arbitrary value. Thus, the constraints defined in eqs. (CBF-s)
and (CBF-a) are always feasible.

The assumption on the differentiability of hs
k and ha

k is required as the signed distance functions
(SDF) eq. (6) are generally not smooth. However, they are differentiable almost everywhere for sets
with smooth boundary under weak assumptions (Gilbarg & Trudinger, 1977). Non-differentiable
set boundaries can be overcome by increasing the number of CBF constraints via a decomposition
of S̄ and Ā into suitable subsets S̄i and Āi, such that the SDFs can be computed with respect to
the subsets instead. For example, this approach immediately yields linear functions of the form
ha
k,i(τ ) = ā± ai(k) for individual elements ai(k) of actions when defining suitable subsets Āi for

14
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the the commonly employed box constraints ||ai(k)||∞ ≤ ā with some constant a ∈ R+. Thus the
differentiability assumption in Theorem B.1 is rather technical and often not relevant in practice for
the usage of SDFs in CBF constraints (Long et al., 2021).

B.2 FEASIBILITY OF CLF CONSTRAINTS

Theorem B.2. Assume that φ(t) = c
(t−1)2 with constant c ∈ R+. If {(s,a) : det( ∂

∂sf(s,a)) =

0 ∧ det( ∂
∂af(s,a)) = 0} = ∅, then, for each τ , there exists a u satisfying eq. (CLF).

Proof. Let

ℓk(τ) =
(
τ s(k+1) − f(τ s(k), τa(k))

)
. (7)

Then, the gradient of V is given by

∇V (τ ) =



−∂f(τs(0),τa(0))
∂τs(0) ℓ0(τ )

−∂f(τs(0),τa(0))
∂τa(0) ℓ0(τ )

ℓ0(τ )− ∂f(τs(1),τa(1))
∂τs(1) ℓ1(τ )

−∂f(τs(1),τa(1))
∂τa(1) ℓ1(τ )

...
ℓH−2(τ )− ∂f(τs(H−1),τa(H−1))

∂τs(H−1) ℓH−1(τ )

−∂f(τs(H−1),τa(H−1))
∂τa(H−1) ℓH−1(τ )

ℓH−1(τ )
0


. (8)

In the following, we will show by contradiction that ∇V (τ ) = 0 if and only if ℓk(τ ) = 0 for all
k = 0, . . . ,H−1. For this purpose, assume that ∇V (τ ) = 0 and ℓi ̸= 0 for some i = 1, . . . ,H−1.

If rank(∂f(τ
s(i),τa(i))
∂τa(i) ) ̸= 0, ∇V (τ ) ̸= 0 is trivially contradicted. If rank(∂f(τ

s(i),τa(i))
∂τs(i) ) ̸= 0,

∇V (τ ) = 0 requires ℓi−1 ̸= 0. Hence, we can consider the same two cases as for ℓi ̸= 0. By

repeating this procedure and always considering the case rank(∂f(τ
s(k),τa(k))
∂τs(k) ) ̸= 0, we eventually

end up with the condition

∂f(τ s(0), τa(0))

∂τ s(0)
ℓ0(τ ) = 0 ∧ rank(∂f(τ

s(0),τa(0))
∂τa(0) ) ̸= 0 ∧ ℓ0 ̸= 0, (9)

which cannot be satisfied. Thus, ∇V (τ ) ̸= 0 holds if ℓk(τ ) ̸= 0 for some k. Consequently, there
always exists a u such that eq. (CLF) is satisfied rendering the constraint feasible.

To ensure the feasibility of CLF constraints, we again need one technical assumption: Through
infinitesimal changes of states or actions, the dynamics f can be changed in arbitrary directions. If
this property is not satisfied, ∇V (τ ) does not necessarily provide information about directions for
reducing the violation of eq. (DC). Note that matrices with rank deficiency have zero measure among
all matrices, such that infeasibilities related to a violation of the rank condition in Theorem B.2 occur
only at isolated states (except for special cases of dynamics, e.g., piecewise constant dynamics).
Thus, the rank condition is usually satisfied almost everywhere for many relevant systems, which is
sufficient for the feasibility of the CLF constraint in eq. (CLF) in practice.

B.3 PROOF OF THEOREM 5.1

Proof of Theorem 5.1. Due to the assumed feasibility of constraints, eq. (4) controlled by eq. (5)
satisfies eq. (CBF-s), eq. (CBF-a), and eq. (CLF), i.e., prescribed-time CBF and CLF conditions
are satisfied. As hs,a

k is positive inside S/A, negative outside, and zero on the boundaries of these
sets, it corresponds to a prescribed-time control barrier function (Huang et al., 2024). Therefore,
it immediately follows from (Huang et al., 2024, Theorem 1) that hs,a

k (τ1) > 0 at t = 1, which
implies satisfaction of safety (eq. (SC)) and admissibility (eq. (AC)) by construction. Since V is
positive definite, it corresponds to a prescribed-time control Lyapunov function (Song et al., 2019).
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Figure 5: Performance under progressively tightened constraints in the locomotion task. As the
allowed torso height decreases, the admissibility constraint becomes stricter, creating a conflict with
the task objective of jumping forward.

Hence, it immediately follows from (Song et al., 2017, Theorem 2) that V (τ1) = 0, which implies
satisfaction of eq. (DC) by construction.

While the two constraints in eq. (CBF-s) and eq. (CBF-a) concern independent variables, the ad-
dition of constraint eq. (CLF) introduces a coupling between the constraints. This coupling can
cause infeasibility at some trajectories τ in general, but technical conditions exist that exclude them
(Wang et al., 2024). Moreover, these infeasibilities are not an issue from a practical perspective since
they often affect isolated τ or small subsets of trajectories usually not occurring while numerically
integrating eq. (4).

C ADDITIONAL EXPERIMENT DETAILS AND RESULTS

Robustness to Stricter Test-Time Constraints. We evaluate the robustness of SAD-Flower by
tightening the test-time constraint on torso height (Fig. 5) in the Hopper environment, decreasing the
upper bound from 1.6 to 1.4 and 1.25 settings not encountered during training. As shown in Table 3,
our method maintains perfect satisfaction of both safety and admissibility constraints across all levels
of difficulty, despite the increasingly restrictive conditions. This demonstrates SAD-Flower’s strong
generalization to stricter, unseen constraints at test time. While task rewards decrease modestly—as
expected due to the heightened challenge—our method consistently preserves formal guarantees of
constraint satisfaction, validating the effectiveness of prescribed-time control as a flexible enforce-
ment mechanism even under distributional shifts.

Comparision with DPCC (Römer et al., 2025). To provide a more comprehensive comparison
with optimization-based generative planning, we evaluate SAD-Flower against three DPCC variants
(Römer et al., 2025): DPCC-T, which selects samples with minimal deviation from the previous
timestep; DPCC-C, which minimizes cumulative projection cost; and DPCC-R, which selects sam-
ples randomly after projection. All DPCC variants leverage full-system nonlinear optimization at
each denoising step to enforce constraints. As shown in Table 4, while all DPCC variants succeed in
satisfying admissibility and achieving dynamic consistency, they exhibit consistently higher safety
violations (up to 0.02) even when we apply the constraint tightening technique (using height=1.5
under the constraint with height=1.6) and incur significantly greater computational cost—up to 25×
slower than SAD-Flower. These issues likely stem from performing optimization over early-stage
noisy samples, which may be difficult or even infeasible to correct without distorting future structure.
Furthermore, the lower planning reward across all DPCC variants (0.61–0.65 vs. 0.93) suggest that
early and aggressive control leads to sample deviation from the distribution learned by the generative
model. In contrast, SAD-Flower activates control later using a lightweight QP-based formulation
and preserves both safety and performance, highlighting the advantages of flexible, prescribed-time
constraint enforcement.
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Table 3: Performance of the proposed SAD-Flower and baselines depending on constraint tightness.
Constraints for the Hopper are tightened via lower admissible heights.

Experiment Metric Diffuser Truncate CG FM S-Diffuser D-Diffuser Ours

Hopper
(height=1.6)

safety 0.01±0.02 0.05±0.04 0.07±0.03 0.11±0.08 0.05±0.04 0.10±0.02 0.00±0.00
admissib. 0.21±0.05 0.18±0.04 0.26±0.07 0.17±0.05 0.18±0.04 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.41±0.04 0.79±0.10 0.23±0.02 0.36±0.06 0.16±0.01 0.01±0.01
reward 1.06±0.18 0.50±0.12 0.73±0.022 1.02±0.20 0.53±0.19 1.12±0.01 0.93±0.23

Hopper
(height=1.4)

safety 0.28±0.08 0.12±0.09 0.04±0.03 1.24±0.07 0.12±0.09 0.22±0.03 0.00±0.00
admissib. 0.21±0.05 0.22±0.09 1.79±0.33 0.19±0.10 0.20±0.08 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.40±0.08 1.06±0.03 0.01±0.01 0.44±0.06 0.13±0.01 0.01±0.01
reward 1.06±0.18 0.39±0.17 0.32±0.15 1.03 0.17 0.35±0.10 1.11±0.02 0.26±0.02

Hopper
(height=1.25)

safety 0.40±0.04 0.00±0.00 0.01±0.01 2.10±0.07 0.00±0.00 0.37±0.02 0.00±0.00
admissib. 0.21±0.05 0.30±0.05 1.38±0.27 0.05±0.10 0.30±0.05 0.00±0.00 0.00±0.00

dyn. consist. 0.38±0.03 0.46±0.21 1.79±0.08 0.01±0.01 0.46±0.21 0.15±0.01 0.01±0.01
reward 1.06±0.18 0.13±0.02 0.10±0.05 1.02±0.16 0.13±0.02 0.78±0.02 0.17±0.00

Table 4: The Performance of the proposed SAD-Flower with QP and DPCC (Römer et al., 2025)
with nonlinear optimization. Constraint for the Hopper is the same as the admissible heights in
Table 1. Three DPCCs are proposed in their work. DPCC-T (Temporal consistency) selects the
trajectory that deviates the least from the previous timestep, DPCC-C (Cumulative projection cost)
selects the trajectory that has been modified the least by the projection operation, and DPCC-R
(Random) selects the trajectory randomly.

Experiment Metric DPCC-T DPCC-C DPCC-R Ours

Hopper
(Med-Expert)

safety 0.01±0.03 0.02±0.02 0.02±0.02 0.00±0.00
admissib. 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

dyn. consist. 0.01±0.01 0.01±0.00 0.01±0.00 0.01±0.01
reward 0.61±0.07 0.65±0.16 0.64±0.25 0.93±0.23
time 4.24±1.64 4.56±1.72 6.21±2.61 0.06±0.00
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D ENVIRONMENT DETAILS

We evaluate our method across a variety of trajectory planning domains, summarized in Table 5. The
benchmark includes navigation (Maze2d-Umaze, Maze2d-Large), locomotion (Hopper, Walker2d),
and robotic manipulation (Kuka Block-Stacking). Environments are simulated using MuJoCo
(Todorov et al., 2012) or PyBullet (Coumans & Bai, 2016), and cover a range of state and action
dimensions.

We use offline datasets to train the generative and control models for each benchmark. As shown in
Table 6, the datasets for locomotion and navigation tasks are retrieved from the D4RL benchmark
suite (Fu et al., 2020), with varying sizes (e.g., medium vs. medium-expert settings). For locomotion
environments, datasets are collected using soft actor-critic (SAC) policies (Haarnoja et al., 2018),
either partially trained or mixed with expert-level demonstrations. For the Kuka block-stacking task
(Janner et al., 2022), data is generated via the PDDLStream planner (Garrett et al., 2020), which
provides feasible robotic manipulation trajectories in structured stacking scenarios.

Table 5: Settings for each tasks.

Environment Simulator Obs. Dim. Action Dim.
Maze2d-Umaze-v1 MuJoCo 4 2
Maze2d-Large-v1 MuJoCo 4 2
Hopper MuJoCo 11 3
Walker2d MuJoCo 17 6
Kuka Block-Stacking PyBullet 39 -

Table 6: Dataset details for each benchmark environment, including the number of trajectories and
the source or algorithm used to generate the data.

Environment # of Trajectories Source / Generation Method

Maze2d-Umaze-v1 106 D4RL (Fu et al., 2020)
Maze2d-Large-v1 4× 106 D4RL (Fu et al., 2020)
Hopper-medium 106 Partially trained SAC (Haarnoja et al., 2018)
Hopper-medium-expert 2× 106 Mixture of expert and partial SAC
Walker2d-medium 106 Partially trained SAC (Haarnoja et al., 2018)
Walker2d-medium-expert 2× 106 Mixture of expert and partial SAC
Kuka Block-stacking 10,000 PDDLStream planner (Garrett et al., 2020)

E CONSTRAINT SETTINGS IN EACH TASKS

We introduce task-specific state and action constraints to evaluate the ability of generative plan-
ners to handle safety and admissibility under diverse and challenging conditions. The test-time
constraints are deliberately chosen to be more restrictive and often unseen during training, making
constraint satisfaction a non-trivial requirement.

Maze2d. The goal in Maze2d environments is to generate a feasible trajectory from a randomly
sampled initial position to a randomly sampled goal location. The generative model is conditioned
on both endpoints and produces full trajectories through the maze.

To evaluate constraint satisfaction, we introduce two novel, unseen obstacles at test time that do not
completely block the path but add non-trivial planning constraints. The first is a superellipse-shaped
obstacle defined as: (

x− x0

a

)2

+

(
y − y0

b

)2

≥ 1, (10)

where (x, y) ∈ R2 is a trajectory state and (x0, y0) ∈ R2 is the center of the obstacle. The parame-
ters a > 0 and b > 0 control the width and height of the obstacle.

The second is a higher-order polynomial barrier defined as:(
x− x0

a

)4

+

(
y − y0

b

)4

≥ 1. (11)
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This formulation results in sharper obstacle boundaries and makes naive post-processing or trajec-
tory truncation ineffective due to the nonlinearity of the feasible region.

The action constraint is also tightened during test time by imposing a box constraint on the control
inputs:

a ∈ [−0.1, 0.1]2. (12)

Both Maze2d-Umaze-v1 and Maze2d-Large-v1 contain these two novel obstacles at test
time to assess generalization to unseen constraints.

Hopper and Walker2d. In the locomotion tasks, we impose test-time constraints that limit the
robot’s vertical motion to avoid collisions with overhead obstacles. Specifically, the height of the
robot’s torso must remain below a fixed roof height z, defined as:

s < z, (13)

where s is the vertical position of the torso. We evaluate this constraint under increasingly restrictive
settings, such as z = 1.6, 1.4, and 1.25, to assess robustness to constraint tightening.

This state constraint is often in conflict with the task objective, which rewards forward jumping
or walking. As a result, satisfying the constraint typically requires sacrificing task performance.
Additionally, the control inputs are constrained by an action box constraint:

a ∈ [−1, 1]d, (14)

where d is the dimensionality of the action space (3 for Hopper and 6 for Walker2d).

Kuka Block-Stacking. For the Kuka block-stacking task, the generative model is conditioned on
object locations and outputs joint trajectories for manipulation. To simulate partial system degrada-
tion or workspace reconfiguration, we apply a tighter state constraint on the robot’s joint positions.
Specifically, we scale the original feasible joint limits by a factor of 0.9:

q ∈ 0.9 · [qmin, qmax], (15)

where qmin and qmax represent the original lower and upper bounds of each joint. No explicit action
constraint is applied in this task.

These constraints, particularly when unseen during training, pose a significant challenge for plan-
ning and provide a rigorous benchmark for evaluating constraint satisfaction and generalization
capabilities.

F TRAINING DETAIL

We provide implementation details of all baseline methods and our proposed approach, including
training configurations, hyperparameters, and model architectures.

All baseline methods are trained using their official or publicly available codebases: Diffuser follows
the implementation of Janner et al. (2022), Truncation, Classifier Guidance, and SafeDiffuser are
implemented based on Xiao et al. (2025), Decision Diffuser follows Ajay et al. (2023), and Flow
Matching uses the codebase from Feng et al. (2025). Our method is built on top of the same Flow
Matching framework from Feng et al. (2025).

Hyperparameters. Table 7 shows the training hyperparameters for all baselines and our method
across different environments. All methods use the same horizon and batch size per environment.
Note that our method shares training settings with the flow matching baseline to ensure a fair com-
parison.

Forward Dynamics Model Training. To support constraint enforcement in SAD-Flower, we train
a forward dynamics model for each environment using the same dataset used to train the generative
models. This ensures a fair comparison without introducing additional supervision. The training
details are summarized in Table 8.
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Table 7: Training hyperparameters for each method across environments.

Maze2d-Umaze Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Maze2d-Large Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Hopper Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Walker2d Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−4 2e−4 2e−4 2e−4 2e−4 2e−4

Steps 2e6 2e6 2e6 1e6 1e6 1e6

Kuka Block-Stacking Diffuser Truncation CG S-Diffuser FM SAD-Flower

Batch Size 32 32 32 32 32 32
Learning Rate 2e−5 2e−5 2e−5 2e−5 2e−4 2e−4

Steps 7e5 7e5 7e5 7e5 7e5 7e5

Table 8: Training settings for the forward dynamics models used in SAD-Flower.

Environment Batch Size Learning Rate Steps

Maze2d (Umaze/Large) 256 1 × 10−3 1 × 106

Hopper 256 1 × 10−3 1 × 106

Walker2d 256 1 × 10−3 1 × 106

For the Maze2d environments, a known analytical dynamics modelcan also be derived: x(k + 1)
y(k + 1)
vx(k + 1)
vy(k + 1)

 =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1


 x(k)
y(k)
vx(k)
vy(k)

+

0.5αdt
2 0

0 0.5αdt2

αdt 0
0 αdt

[
ux(k)
uy(k)

]
(16)

where [xk, yk, vx,k, vy,k]
T is the system state representing position and velocity, [ux,k, uy,k]

T is the
input force, dt is the simulation time step, and α is the gear ratio divided by mass (due to primitive
joint control).

Model Architecture. Diffusion-based models (Diffuser, Truncation, Classifier Guidance, SafeD-
iffuser) use the U-Net architecture with residual temporal convolutions, group normalization, and
Mish nonlinearities, as described in (Janner et al., 2022). Flow Matching and SAD-Flower use the
Transformer-based backbone proposed by (Feng et al., 2025), consisting of 8 layers with a hidden
dimension of 256. The forward model in SAD-Flower is a feedforward neural network with 3 hid-
den layers of size 512, where the input dimension is the sum of the observation dimension and the
action dimension, and the output is the observation dimension.

G COMPUTATIONAL RESOURCES

All experiments were conducted using four high-performance workstations with identical or near-
identical configurations. Each workstation is equipped with an AMD EPYC series CPU, an NVIDIA
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Tesla P100 GPU, and 16 GB of GPU memory. The specific hardware details are summarized in
Table 9.

Table 9: Hardware specifications of workstations used for training and evaluation.

Workstation CPU GPU GPU RAM

1 AMD EPYC 7542 NVIDIA Tesla P100 16 GB
2 AMD EPYC 7542 NVIDIA Tesla P100 16 GB
3 AMD EPYC 7742 NVIDIA Tesla P100 16 GB
4 AMD EPYC 7542 NVIDIA Tesla P100 16 GB

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs), e.g., ChatGPT, were employed to assist with editing, rephrasing,
and LaTeX formatting during the paper writing process. No LLMs were involved in formulating
research ideas, theoretical developments, or core experimental designs.
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