

000 001 002 003 004 005 006 007 ROBUST FINE-TUNING FROM NON-ROBUST PRE- 008 TRAINED MODELS: MITIGATING SUBOPTIMAL 009 TRANSFER WITH EPSILON-SCHEDULING 010 011 012

013 **Anonymous authors**
014 Paper under double-blind review
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Fine-tuning pretrained models is a standard and effective workflow in modern
032 machine learning. However, robust fine-tuning (RFT), which aims to simultaneously
033 achieve adaptation to a downstream task and robustness to adversarial
034 examples, remains challenging. Despite the abundance of non-robust pretrained
035 models in open-source repositories, their potential for RFT is less understood.
036 We address this knowledge gap by systematically examining RFT from such non-
037 robust models. Our experiments reveal that fine-tuning non-robust models with a
038 robust objective, even under small perturbations, can lead to poor performance, a
039 phenomenon that we dub *suboptimal transfer*. In challenging scenarios (eg, diffi-
040 cult tasks, high perturbation), the resulting performance can be so low that it may
041 be considered a transfer failure. We find that fine-tuning using a robust objec-
042 tive impedes task adaptation at the beginning of training and eventually prevents
043 optimal transfer. However, we propose a novel heuristic, *Epsilon-Scheduling*, a
044 schedule over perturbation strength used during training that promotes optimal
045 transfer. Additionally, we introduce *expected robustness*, a metric that captures
046 performance across a range of perturbations, providing a more comprehensive
047 evaluation of the accuracy-robustness trade-off for diverse models at test time.
048 Extensive experiments on a wide range of configurations (six pretrained models
049 and five datasets) show that *Epsilon-Scheduling* successfully prevents *suboptimal*
050 *transfer* and consistently improves expected robustness.
051
052

1 INTRODUCTION

053 Fine-tuning pretrained models (backbones) on a downstream task is the standard workflow in ma-
054 chine learning, spanning natural language processing (Koroteev, 2021) and computer vision (Gold-
055 blum et al., 2023). This workflow offers clear benefits: (i) reusing a single foundation model
056 across tasks (Devlin et al., 2019), (ii) faster convergence, (iii) better generalization than training
057 from scratch (Yosinski et al., 2014), and (iv) reduced computation (Weiss et al., 2016), especially
058 when labelled data is scarce (Pan & Yang, 2010).

059 However, in high-stakes applications, adversarial vulnerability remains a major concern (Biggio
060 et al., 2013; Goodfellow et al., 2015). Adversarial Training (AT) (Madry et al., 2018) and its vari-
061 ants (Zhang et al., 2019; Wang et al., 2020; Ding et al., 2020; Shafahi et al., 2019a; Wong et al.,
062 2020) are the most successful empirical defenses (Croce et al., 2021). Robust fine-tuning (RFT)
063 is the integration of these methods in fine-tuning on downstream tasks (Shafahi et al., 2019b; Liu
064 et al., 2023; Xu et al., 2024; Hua et al., 2024). Unlike standard fine-tuning, RFT must balance task
065 adaptation with robustness – a trade-off that makes it considerably harder (Xu et al., 2024).

066 Most prior works assume access to robust backbones (Hua et al., 2024; Liu et al., 2023; Xu et al.,
067 2024); however, in practice, nearly all widely used pretrained models from public repositories are
068 non-robust (Wolf et al., 2020). Robust pretraining is costly and less common, and because pre-
069 training pipelines typically prioritize broad general-purpose features, robustness is often treated as
070 a property to be acquired downstream (Heuillet et al., 2025). This makes the development of RFT
071 strategies for non-robust backbones not only consistent with current practice but also necessary to
072 close the gap between research and deployment.
073
074

Figure 1: **RFT can lead to *suboptimal transfer* even when optimizing for small perturbation strengths (ε_g).** The severity is highly model- and dataset-dependent.

We adopt the standard RFT approach based on classical adversarial training (Madry et al., 2018), which optimizes a robust objective using adversarial examples generated at a target perturbation strength (commonly $4/255$ or $8/255$ in the ℓ_∞ -norm). We apply this procedure to robustly fine-tune various backbones across multiple datasets and perturbation levels. Our experiments reveal that, even for small perturbation strengths, standard RFT often leads to ***suboptimal transfer***: performance (clean accuracy) falls short of that achieved by standard fine-tuning (without perturbation) and is often too low to qualify it as a successful transfer. The severity of this effect depends on both the backbone and the downstream task (Figure 1).

When fine-tuning on a downstream task with a robust objective results in near-random performance, the benefits of using a pretrained model are diminished. This raises the question: do standard pretrained models fail to offer a beneficial initialization for training a robust model? In this study, we explore the challenges associated with robust fine-tuning using standard pretrained models and propose a novel approach to address these obstacles. In contrast to standard fine-tuning, where model adaptation to the downstream task occurs immediately, our study reveals that in robust fine-tuning, *task adaptation is delayed until later epochs*. This delay seems to eventually lead to ***suboptimal transfer***, and we observe that the duration of the delay correlates negatively with transfer performance.

Based on our findings, we propose ***Epsilon-Scheduling***, a schedule over the perturbation strength during RFT to encourage optimal transfer. This novel heuristic is a two-hinge linear schedule that begins with standard fine-tuning (zero perturbation) for early epochs and linearly increases to the target perturbation at final epochs (see Figure 2). This strategy effectively prevents ***suboptimal transfer*** and improves both accuracy and robustness.

Figure 2: ***Epsilon-Scheduling***

To better evaluate the fine-tuned models, we introduce a complementary evaluation metric, dubbed ***expected robustness***. This proposed metric evaluates the expectation of the model accuracy across the full perturbation range from zero (clean accuracy) to the target robustness threshold. The ***expected robustness*** provides a concise, yet comprehensive measure of the accuracy–robustness trade-off, grounded in a practical threat model. We demonstrate that it offers valuable insights for model selection. Under this metric, ***Epsilon-Scheduling*** consistently outperforms the standard robust-finetuning, even when worst-case robustness at the target threshold is similar or lower.

Summary of Contributions Our main contributions are: **(i)** We show that robust fine-tuning from non-robust backbones often leads to ***suboptimal transfer***, even at small perturbation strengths, where performance can fall significantly below standard fine-tuning. **(ii)** We find that robust finetuning results in task adaptation delay compared to standard finetuning and that this delay strongly correlates with ***suboptimal transfer***. **(iii)** We propose ***Epsilon-Scheduling***, a two-hinge linear schedule to adjust the training perturbation strength, which effectively mitigates the challenges associated with optimizing adversarial loss. **(iv)** We introduce ***expected robustness***, a new evaluation metric capturing the full accuracy–robustness trade-off, and report performance using this metric for the first time. **(v)** Through extensive experiments, we show that ***Epsilon-Scheduling*** consistently prevents suboptimal transfer and improves expected robustness across both moderate ($4/255$) and high ($8/255$) perturbation regimes.

Figure 3: **RFT delays task adaptation.** Validation clean accuracy under standard fine-tuning ($\epsilon_g = 0$) and RFT-fix with $\epsilon_g \in [1/255, 9/255]$ on three datasets. The crosses indicate the onset of task adaptation (when validation accuracy exceeds 5%). Stronger perturbations cause longer delays and more severe suboptimal transfer. See Section 4 for analysis.

2 RELATED WORK

Adversarial Robustness in Transfer Learning with Robust-FineTuning There are two main ways to achieve adversarial robustness in Transfer Learning: Robust Distillation (Goldblum et al., 2020; Dong et al., 2024) and Robust Fine-Tuning. Prior works on RFT focus on robust backbones (Liu et al., 2023; Xu et al., 2024; Hua et al., 2024). TWINS (Liu et al., 2023) employs two networks with shared parameters to separately track pretraining and downstream batch statistics. However, Liu et al. (2023) do not apply it to non-robust backbones claiming that "robust pre-training is indispensable to downstream robustness". AutoLoRA (Xu et al., 2024) disentangles natural and adversarial objectives using a LoRA branch for the former and a robust pretrained extractor for the latter, though it relies on TRADES loss (Zhang et al., 2019), which is harder to scale than standard adversarial training (Madry et al., 2018). Xu et al. (2024) show that robust pretraining is necessary for AutoLoRA and register the worst performance for the non-robust pretraining. RoLi (Hua et al., 2024) preserves robustness by initializing the classifier head via adversarial linear probing before performing RFT. (Hua et al., 2024) explicitly argue that robust pretraining is a prerequisite for RoLi by showing that linear probing with a robust objective on a non-robust backbone fails dramatically and therefore does not provide a good initialization. In summary, all these approaches assume robust pretrained features. In contrast, we are the first to propose an RFT method targeting non-robust backbones.

Tuning Perturbation Strength in Adversarial Training Adapting the perturbation strength during training has been explored in various forms. Early work used a linear ramp-up in Interval Bound Propagation (Gowal et al., 2018). Ding et al. (2020) connected margin maximization to minimal adversarial loss, motivating adaptive, sample-specific perturbation strengths, though such instance-wise selection (Balaji et al., 2019) is computationally costly. They also proposed PGDLS (PGD with Linear Scaling), which linearly increases perturbation strength but shows gains only at large perturbations (24/255). Other strategies include sampling the perturbation strength from a Beta distribution (Chamon & Ribeiro, 2020) and curriculum schemes that gradually increase the number of attack steps (Cai et al., 2018). Pang et al. (2021) reports that linear warmup provides limited gains in ResNets, whereas Debenedetti et al. (2023) finds that it improves both clean and robust accuracy in vision transformers. Unlike prior works, which apply to adversarial training from scratch, our study is on transfer learning. Our formulation generalizes linear warmup, and we show that the benefits consistently hold across tasks and architectures, including ResNets, using the new *expected robustness* metric.

Adversarial Defense Evaluation Standard evaluation (Croce et al., 2021) compares clean and robust accuracy at a target perturbation strength under strong attacks or ensembles (Carlini & Wagner, 2017; Madry et al., 2018; Croce & Hein, 2020b; Cinà et al., 2025), yet it obfuscates what happens at intermediate perturbation strengths. A related recommendation is to check that accuracy decreases with stronger perturbations (Carlini et al., 2019), but this test is unquantified and serves only as an informal validation (Debenedetti et al., 2023). In contrast, our notion of *expected robustness* formalizes this decrease and interpolates between clean and worst-case performance at a specific target perturbation strength. Another class of metrics interpolates between worst-case and average-case robustness (Rice et al., 2021; Li et al., 2021), the latter defined against random or natural perturbations (Hendrycks & Dietterich, 2019; Han et al., 2024). However, this approach does not capture the trade-off between clean and worst-case performance.

Figure 4: **The expected robustness metric offers a valuable perspective for model selection.** The larger the area under the curve (shaded area), the higher the expected robustness. The values in the legend indicate the clean accuracy and the evaluation at ε_g .

3 BACKGROUND

Consider a classification task to map instances x of a d -dimensional input space $\mathcal{X} \subset \mathbb{R}^d$ to corresponding labels y in the set $\mathcal{Y} = \{1, 2, \dots, K\}$. Unlike training from scratch to learn a classifier $f_\theta : \mathcal{X} \mapsto \mathcal{Y}$ from randomly initialized parameters θ on a training dataset drawn iid from a data distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, supervised fine-tuning uses a pretrained feature extractor (backbone) $h_{\theta_1} : \mathcal{X} \mapsto \mathcal{Z}$ that maps inputs to a representation space \mathcal{Z} and a randomly initialized classifier head $c_{\theta_2} : \mathcal{Z} \mapsto \mathcal{Y}$ such that $f_{\{\theta_1, \theta_2\}} = c_{\theta_2} \circ h_{\theta_1}$. This work focuses on full fine-tuning where both θ_1 and θ_2 are trainable parameters. The performance of the fine-tuned model is measured by its accuracy, i.e., the probability that a prediction is correct for an instance drawn from \mathcal{D} . We will refer to this as clean accuracy (or transfer accuracy).

Adversarial Training (AT) Given a target evaluation threshold for perturbation strength ε_{goal} (ε_g for convenience) in ℓ_p -norm ($\|x\|_p = (\sum_i x_i)^{1/p}$, $p > 0$), adversarial training aims to train a classifier f such that it maximizes the robust accuracy $\text{Acc}_{\varepsilon_g}(f)$. The robust accuracy is the probability that a prediction remains correct for any input x under a perturbation δ of maximum norm ε_g . Classical adversarial training (Madry et al., 2018) minimizes the adversarial risk at a perturbation threshold ε_g as a surrogate objective for $\text{Acc}_{\varepsilon_g}(f)$:

$$R_{\varepsilon_g}(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left(\max_{\|\delta\|_p < \varepsilon_g} L_{\text{CE}}(f(x + \delta), y) \right) \quad (1)$$

where L_{CE} is the cross-entropy loss. In practice, the empirical counterpart of the risk $R_{\varepsilon}(f)$ is minimized, and adversarial perturbations δ are generated using a few iterations of Projected Gradient Descent (PGD) under an ℓ_p -norm constraint.

In this work, we refer to **robust fine-tuning** (RFT) as supervised fine-tuning with classical adversarial training. The standard practice in RFT for achieving robustness at a target evaluation threshold ε_g is to directly minimize the empirical risk at ε_g throughout the fine-tuning process (Madry et al., 2018; Hua et al., 2024). In this setup, the perturbation strength used to generate adversarial examples remains fixed at ε_g across all fine-tuning epochs. We refer to this baseline strategy as RFT-`fix` (or `fix`).

4 CHARACTERIZING SUBOPTIMAL TRANSFERS IN ROBUST FINE-TUNING

When we perform robust fine-tuning with excessively strong perturbations ε_g that severely corrupt the inputs, clean accuracy is expected to reach chance level, as the training samples will become unrecognisable, drifting away from the task data distribution \mathcal{D} (Carlini et al., 2019). Yet, a question remains: how much clean accuracy degrades as ε_g increases given a pretrained model and a dataset? To investigate this question, we conduct an experiment with two non-robust backbones: SWIN (Liu et al., 2021) and ViT (Dosovitskiy et al., 2021), across five datasets: Cub (Wah et al., 2011), Dogs (Khosla et al., 2011), Caltech (Griffin et al., 2007), Cars (Krause et al., 2013)), and Aircraft (Maji et al., 2013)). See Appendix A for details on backbones and their pretraining.

Suboptimal Transfer We apply RFT-`fix` with target perturbation strengths ε_g in $[1/255, 9/255]$ and compare performance (clean accuracy) to standard fine-tuning ($\varepsilon_g = 0$). While low clean accuracies for RFT-`fix` from non-robust backbones have been reported on Caltech at $\varepsilon_g = 8/255$ (Liu et al., 2023; Hua et al., 2024), our experiments reveal a broader picture. Figure 1 shows distinct trends in clean accuracy degradation as ε_g increases. Even for tiny perturbations ($\varepsilon_g = 1/255$),

Model	Dataset Setting	Aircraft			Caltech			Cars			Cub			Dogs		
		Clean	Adv.	E. adv.												
ViT	fix	6.40	2.80	4.48	68.14	41.64	55.07	12.70	4.90	8.20	42.82	15.12	27.79	56.40	19.97	36.93
	shed	58.60	13.20	34.95	78.73	41.69	60.71	73.40	19.10	46.71	73.40	23.63	48.09	70.69	15.69	41.62
SWIN	fix	7.70	4.80	6.11	79.97	57.16	69.19	60.20	29.70	44.74	72.25	41.87	57.55	61.89	26.89	44.17
	shed	73.80	32.00	53.75	85.43	56.39	72.04	84.70	43.20	66.41	82.29	41.61	63.82	72.70	24.32	48.50
CNX	fix	7.60	4.50	5.86	83.27	61.54	73.08	69.60	43.20	57.52	76.34	47.08	62.59	68.90	31.61	50.61
	shed	78.40	38.00	59.40	89.41	61.45	77.23	88.90	57.70	75.85	85.17	44.99	67.30	78.39	26.31	53.19
R50	fix	8.40	2.90	4.56	67.47	40.02	53.74	4.20	2.90	3.49	49.19	19.35	33.58	57.05	19.80	37.73
	shed	53.10	11.10	29.40	76.55	34.74	55.67	70.00	19.30	43.44	70.06	19.59	43.62	69.11	15.94	41.11
ClipViT	fix	5.00	3.30	4.16	31.91	15.49	23.00	4.90	3.00	3.74	13.95	3.64	7.97	7.89	3.29	5.39
	shed	69.80	33.90	52.79	74.83	46.64	60.99	86.70	58.60	75.01	74.35	35.67	55.54	63.17	20.87	41.05
ClipCNX	fix	3.10	2.50	2.82	61.76	42.13	51.54	2.80	1.60	2.23	28.89	14.33	20.92	23.90	11.33	17.14
	shed	81.70	50.70	67.88	81.19	52.68	67.71	90.90	74.10	84.33	79.06	42.11	61.45	70.85	25.85	48.19

Table 1: At moderate perturbation regime ($4/255$), *Epsilon-Scheduling*, mitigates *suboptimal transfers* and consistently improves expected robustness. See Table 2 for $\varepsilon_g = 8/255$

accuracy can drop by up to 14% compared to the standard finetuning with $\varepsilon_g = 0$. At the commonly used threshold $\varepsilon_g = 4/255$, the minimum drop is 10%. In extreme cases, RFT-*fix* fails to adapt effectively, with clean accuracy falling below 5%, making it practically unusable. We refer to this phenomenon as *suboptimal transfer*, where RFT-*fix* yields a clean accuracy substantially lower than standard fine-tuning, at times to the point of ineffectiveness or failure.

Insights on Task Difficulty and Backbone Selection The severity of *suboptimal transfer* depends on both the backbone and the task, with the task being the more differentiating factor (see Figure Figure 1). Easier tasks (e.g., Caltech, wide variety of objects) exhibit smaller performance drops than more challenging ones (e.g., Aircraft, highly similar categories). As expected, the choice of SWIN as backbone is better than ViT (Hua et al., 2024). However, the notion of “task difficulty” is also model-dependent: (Dogs < Cub for SWIN but Dogs > Cub for ViT). This demonstrates that task difficulty is a property that emerges from the interaction between model and dataset (Zilly et al., 2019; Jankowski et al., 2025), rather than by data features alone (Cao et al., 2024). Our experiments further suggest that with respect to adversarial robustness, the perturbation strength may also play a role: Dogs is easier than Cub for perturbations below $\varepsilon_g = 4/255$, but becomes comparable or more difficult at higher strengths.

Robust Fine-Tuning Delays Task Adaptation Figure 3 shows that in standard fine-tuning ($\varepsilon_g = 0$), the model adapts to the downstream task almost immediately – validation accuracy rises from the first epoch – since there is no robustness constraint that competes with task adaptation. With $\varepsilon_g > 0$, RFT-*fix* distorts task-relevant features, which prevents early adaptation and delays the onset of task adaptation. For example, at $\varepsilon_g = 4/255$, adaptation begins around epoch 10 for Caltech, epoch 25 for Cars, and after epoch 30 for Aircraft. If we precisely measure the delay time as the epoch from which the validation accuracy starts being above 5%, the correlation between the delay times and the severity of the *suboptimal transfer* is very high (above 90%, see Appendix B.1 for details). The delay shortens the effective adaptation period, likely leading to *suboptimal transfer* with increased severity at higher perturbation thresholds. To the best of our knowledge, the delayed onset of task adaptation in robust fine-tuning has not been previously reported, which is an interesting insight that could open up new opportunities for improvement.

5 EPSILON-SCHEDULING AND EXPECTED ROBUSTNESS

The analysis in section 4 demonstrates that a robust objective at high perturbation strengths is detrimental in RFT from a non-robust pretrained model, eventually leading to *suboptimal transfer*, with performance subpar of what is expected from the pretraining advantage. Based on this finding, we propose *Epsilon-Scheduling*, a simple schedule over the perturbation strength to mitigate this effect.

Epsilon-Scheduling In contrast with RFT-*fix*, we perform RFT for target perturbation strength ε_g by minimizing an empirical counterpart of $R_\varepsilon(f)$ where ε follows a schedule during the fine-tuning, given for each epoch t as a proportion $\alpha(t) \geq 0$ of ε_g : $\varepsilon(t) = \alpha(t)\varepsilon_g$. We propose a two-hinge linear scheduler illustrated in Figure 2 and defined by:

$$\alpha(t) = \begin{cases} 0 & : t < T_1 \\ \frac{t-T_1}{T_2-T_1} & : T_1 \leq t < T_2 \\ 1 & : t \geq T_2. \end{cases}$$

This strategy begins by training over T_1 epochs without robustness ($\varepsilon = 0$), then linearly increases from $\varepsilon = 0$ to $\varepsilon = \varepsilon_g$ over $T_2 - T_1$ epochs, to finally remain constant ($\varepsilon = \varepsilon_g$) from epoch T_2 . Note

Model	Dataset Setting	Aircraft			Caltech			Cars			Cub			Dogs		
		Clean	Adv.	E. adv.												
ViT	fix	3.00	2.00	2.50	44.95	19.52	31.43	3.60	2.00	2.74	17.40	2.80	8.56	8.64	2.88	5.35
	sched	57.00	6.70	27.72	72.86	26.89	49.28	68.10	9.00	35.18	64.74	9.79	33.93	56.86	5.79	25.81
SWIN	fix	4.20	2.70	3.47	68.87	38.10	53.40	13.20	5.60	8.66	45.89	13.60	28.56	46.05	11.08	26.69
	sched	69.20	22.40	45.12	80.27	38.67	60.26	78.00	23.50	53.57	74.80	21.07	47.34	60.49	8.73	31.14
CNX	fix	1.60	1.50	1.48	59.85	33.95	46.34	5.30	2.60	3.98	5.02	2.28	3.56	27.33	7.73	16.28
	sched	75.00	28.80	50.90	84.99	41.82	64.92	85.60	35.90	65.04	80.69	24.28	53.07	68.94	9.78	36.51
R50	fix	1.30	0.90	0.74	53.59	26.78	39.93	1.50	1.20	1.34	30.89	8.27	17.84	27.14	6.95	15.61
	sched	42.80	5.30	20.38	67.56	23.01	44.03	57.10	8.50	29.56	59.49	8.68	29.95	50.89	6.92	25.26
ClipViT	fix	3.60	2.20	3.05	23.02	7.29	14.52	3.00	2.50	2.73	11.11	2.30	5.73	2.20	1.38	1.77
	sched	65.80	25.40	44.84	70.68	33.70	51.67	84.70	38.60	64.47	67.64	18.05	41.79	54.28	8.94	27.78
ClipCNX	fix	1.80	1.30	1.62	51.94	28.37	39.44	1.30	1.10	1.25	6.37	2.30	4.05	8.36	3.97	5.98
	sched	79.20	34.50	59.09	76.53	37.20	56.83	90.00	55.20	77.14	73.58	22.75	47.77	62.67	11.36	33.85

Table 2: **At high perturbation regime ($\varepsilon_g/255$), RFT-**fix** mostly fails and *Epsilon-Scheduling* preserves performance.** See Table 1 for $\varepsilon_g = 4/255$.

that this generalizes the linear warmups mentioned in prior work (Pang et al., 2021; Debenedetti et al., 2023) for $T_1 = 0, T_2 \neq T_1$, while falling back to RFT-**fix** for $T_1 = T_2 = 0$.

From a transfer learning perspective, this strategy can be viewed as follows: *begin with task adaptation, then gradually shift to the robust objective, and conclude by minimizing the target robust objective*. Here, T_1 denotes the adaptation phase, i.e., the time for the model to reach good clean accuracy, while T_2 controls the steepness of the transition from 0 to ε_g . In the following, we refer to this strategy as RFT-**scheduler** (or simply **scheduler**). Considering that stronger perturbations make task adaptation harder (i.e., cause adaptation delays), RFT-**scheduler** can be viewed as a curriculum learning strategy that first exposes the model to easier examples before gradually introducing harder ones (Cai et al., 2018; Pang et al., 2021; Debenedetti et al., 2023).

Expected Robustness Evaluation While RFT targets low adversarial risk $R_{\varepsilon_g}(f)$, models are usually evaluated both for clean accuracy $\text{Acc}_0(f)$ and robust accuracy $\text{Acc}_{\varepsilon_g}(f)$. We propose to extend this classical evaluation to take into account intermediary perturbation strengths within the range $[0, \varepsilon_g]$ and define the *expected robustness* metric as the expectation under uniform distribution U of the accuracy over $[0, \varepsilon_g]$:

$$\text{Acc}_{[0, \varepsilon_g]}(f) := \mathbb{E}_{\varepsilon \sim U[0, \varepsilon_g]} [\text{Acc}_\varepsilon(f)] = \frac{1}{\varepsilon_g} \int_0^{\varepsilon_g} \text{Acc}_\varepsilon(f) d\varepsilon = \frac{1}{\varepsilon_g} \text{AUC}_{\varepsilon_g}(f),$$

where $\text{AUC}_{\varepsilon_g}(f)$ represents the area under the accuracy curve from 0 to ε_g (Figure 4, panels 2 and 4). This can be estimated using the trapezoidal rule to numerically approximate the integral. See Appendix A for additional details. When comparing two models with similar accuracies, particularly in the presence of a clean–robust trade-off, the distinct patterns observed at intermediate perturbation strengths (Figure 4, panels 1 and 3) can inform model selection, which *expected robustness* summarizes quantitatively.

The expected robustness metric also evaluates performance under a more realistic threat model where inputs may or may not be altered. Clean accuracy corresponds to the idealized case where inputs are never perturbed, while robust accuracy at ε_g assumes that all inputs are perturbed with a budget of ε_g . In contrast, expected robustness estimates the accuracy when perturbations of size up to ε_g are applied at random (here, uniformly). While our choice of a uniform distribution serves as a good option from a use-case-agnostic perspective, the distribution of perturbations can be tailored to align with the relevant threat model for a specific application. With the uniform distribution, each adversarial strength is weighted equally, however, for example, with a Dirac distribution centered at 0 (ε_g), it falls back to clean accuracy (worst case robust accuracy).

6 EXPERIMENTAL EVALUATION

We provide an overview of the experimental setup—including backbones, datasets, parameters T_1 and T_2 for *Epsilon-Scheduling*, and training and evaluation procedures. Additional details for reference and reproducibility are provided in Appendix A.

Backbones: We perform experiments using six non-robust backbones, selected to cover two prominent architecture families (attention-based and convolutional-based) and two pretraining paradigms (supervised and multi-modal). Transformers: *Swin-Base* (Liu et al., 2021) and *ViT-Base* (Dosovitskiy et al., 2021); convolutional architectures: *ConvNext-Base* (Liu et al., 2022) and *ResNet-50* (He et al., 2016); CLIP models (Radford et al., 2021): *CLIP-ViT* and *CLIP-ConvNext*.

Figure 5: *Epsilon-Scheduling* mitigates suboptimal transfers and consistently improves expected robustness.Figure 6: *Epsilon-Scheduling* preserves task adaptation while improving robustness ($\epsilon_g=4/255$).

Downstream Datasets: We evaluate fine-tuning performance on five low-data downstream tasks: bird species classification on **CUB-200-2011** (Wah et al. (2011), 200 classes), dog breed classification on **Stanford Dogs** (Khosla et al. (2011), 120 classes), object recognition on **Caltech256** (Griffin et al. (2007), 257 classes), car model classification on **Stanford Cars** (Krause et al. (2013), 196 classes), and aircraft variant classification on **FGVC-Aircraft** (Maji et al. (2013), 100 classes).

Choice of T_1 and T_2 for *Epsilon-Scheduling*: To obtain values of T_1 and T_2 that are general enough for most cases, we use measurements from the most severe instance of *suboptimal transfer* in Section 4 (SWIN-Aircraft). We define the adaptation phase as the epoch when validation accuracy reaches 90% of its final value, which occurs at epoch 11. Accordingly, we set $T_1 = 12$, corresponding to about 25% of the total training epochs, sufficient for the model to reach high clean accuracy. Since the average task-adaptation delay in RFT-fix is observed around epoch 37, we set $T_2 = 37$, i.e., roughly 75% of the total epochs, so that the model is trained with perturbation strengths smaller than ϵ_g during the delay period.

Training and Evaluation We follow a similar setup described in Hua et al. (2024). We train for 50 epochs and generate adversarial examples using APGD (Croce & Hein, 2020b) (instead of PGD) with cross-entropy loss as in prior work (Singh et al., 2023; Heuillet et al., 2025), which removes the need for manual tuning. The number of APGD steps is 7 for training and 10 for evaluation (Hua et al., 2024). Results are reported for the models at the end of training because overfitting of the adversarial accuracy is negligible (Figure 6). The evaluation is conducted in the ℓ_∞ -norm, which is the most widely studied norm in the literature (Croce et al., 2021; Ngnawé et al., 2024), using two standard evaluation thresholds: $\epsilon_g = 4/255$ (moderate perturbation) and $\epsilon_g = 8/255$ (high perturbation). For each model, we report the clean accuracy (**clean**), APGD accuracy (**adv.**), and the expected APGD accuracy (E. adv.) over the interval $[0, \epsilon_g]$. We provide in Appendix B.2 a few additional results for SWIN, with the more expensive evaluation AutoAttack (Croce & Hein, 2020b), a diverse ensemble of four attacks containing untargeted APGD-CE, targeted APGD-DLR, targeted FAB (Croce & Hein, 2020a), and black-box Square Attack (Andriushchenko et al., 2020).

Figure 7: **Epsilon-Scheduling discovers a different local optimum.** *Left:* Illustrative example of the difference between RFT-fix and RFT-scheduler. *Center and right:* Evolution of validation loss (Clean and Adversarial) for the SWIN backbone on the Cars dataset with $\epsilon_g = 4/255$.

6.1 EPSILON-SCHEDULING PERFORMANCE IN RFT

Results are reported in Table 1 for the moderate perturbation regime ($\epsilon_g = 4/255$), in Table 2 for the high perturbation regime ($\epsilon_g = 8/255$), and in Figure 5 for the aggregated analysis.

Moderate Perturbation Regime ($\epsilon_g = 4/255$) Table 1 shows that while RFT-fix often fails to transfer with low clean accuracy, RFT-scheduler achieves high clean accuracy for most models and maintains a decent adversarial accuracy. While RFT-fix sometimes achieves better adversarial accuracy (in 9 out of 30 configurations), our scheduling strategy consistently yields higher clean and expected accuracy. These results show that even at moderate perturbations ($4/255$), *Epsilon-Scheduling* prevents the steep degradation incurred by RFT-fix, allowing models to retain strong clean performance while achieving improved or similar adversarial accuracy at non-trivial levels.

High Perturbation Regime ($\epsilon_g = 8/255$) At stronger perturbations, performance naturally declines, as shown in Table 2. RFT-fix almost always fails to transfer, yielding very low accuracies. In contrast, RFT-scheduler consistently improves clean accuracy and achieves higher expected robustness in all 30 configurations. For adversarial accuracy alone, the scheduler outperforms in 28 out of 30 cases.

Overall, as shown in the aggregated results (Figure 5), *Epsilon-Scheduling* consistently improves expected robustness through significant gains in clean accuracy, even when a robustness–accuracy trade-off exists or when robustness is similar across datasets and backbones. This contrasts with linear warmups in adversarial training from scratch, which benefit vision transformers but not residual networks (Pang et al., 2021; Debenedetti et al., 2023).

6.2 RESULTS ANALYSIS

In order to further analyze *Epsilon-Scheduling*, we consider three datasets representing different levels of task difficulty, as determined by the severity of suboptimal transfer in Section 4: Aircraft (high), Cars (medium), and Caltech (low).

Epsilon-Scheduling promotes task adaptation while improving robustness Figure 6 shows the validation accuracy during training. Standard fine-tuning quickly reaches high clean accuracy without robustness, whereas RFT-fix improves robustness but degrades clean accuracy. In contrast, RFT-scheduler, achieves a high clean accuracy during the first stage and once perturbation strengths start passing above zero, robust accuracy rises while clean accuracy remains surprisingly high and stable.

Insight on the optimization process with *Epsilon-Scheduling* From an optimization standpoint, RFT-scheduler seems to converge to a distinct local minimum of the adversarial loss compared to the one achieved by RFT-fix, as illustrated in Figure 7 (left). The local minimum attained by RFT-scheduler is notably characterized by a lower value of the clean loss, whilst reaching a comparable value of the adversarial loss around epoch $T_2 = 37$. Xu et al. (2024) found that the gradient of clean loss and the adversarial loss can point in opposite directions. Our experiments appear to confirm that this indeed happens when initializing at a non-robust pretrained model. We observe that standard fine-tuning effectively minimizes the clean loss (Figure 7, center), but this comes at the expense of increasing the adversarial loss (Figure 7, right). In contrast, during the first 20 epochs, RFT-fix appears to struggle to reduce the adversarial loss while the clean loss remains nearly equal to the adversarial loss. However, the optimization trajectory of RFT-scheduler initially aligns with that of standard fine-tuning, resulting in a low clean loss value. Subsequently,

		$\varepsilon_g = 4/255$												$\varepsilon_g = 8/255$																											
		Aircraft						Caltech						Cars						Aircraft						Caltech						Cars									
Model	Setting	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.										
432	RobViT	fix	63.00	43.30	53.29	78.67	57.73	68.59	72.90	49.30	62.23	51.60	25.10	37.91	73.16	41.89	57.48	62.10	24.40	43.16	433	RobSWIN	fix	63.50	34.80	49.14	82.22	57.93	70.86	78.00	43.40	62.05	65.10	23.00	42.88	79.57	41.12	60.97	78.60	24.30	52.39
		sched	63.50	34.80	49.14	82.22	57.93	70.86	78.00	43.40	62.05	71.60	43.30	57.84	77.39	45.87	61.95	67.00	31.90	50.62																					
434	RobCNX	fix	74.00	56.50	66.19	82.64	61.12	72.59	83.10	60.10	72.42	74.70	48.00	62.22	79.77	49.87	65.50	80.30	50.00	67.51	435	RobR50	fix	77.20	49.90	64.99	84.88	58.71	73.11	86.60	54.20	73.15	74.90	38.00	57.44	81.86	43.43	63.88	84.20	39.10	63.88
		sched	78.30	62.00	70.74	85.20	67.11	77.03	86.10	68.40	78.69	78.00	36.50	57.07	85.74	48.93	69.35	87.60	45.10	70.38																					
436		63.10	41.80	52.14	71.25	48.83	60.29	72.10	45.80	59.61	60.30	32.50	45.62	65.25	36.60	50.19	59.60	24.30	41.89	437	RobR50	fix	66.50	36.20	51.14	75.49	47.60	61.79	78.10	44.20	62.29	66.90	24.70	44.26	71.90	34.08	52.35	76.80	22.90	50.37	
		sched	66.50	36.20	51.14	75.49	47.60	61.79	78.10	44.20	62.29	66.90	24.70	44.26	71.90	34.08	52.35	76.80	22.90	50.37																					

Table 3: *Epsilon-Scheduling* on robust backbones. The scheduler (sched) improves clean accuracy at the cost of a decrease in robustness achieved in fix, but overall, the expected robustness is still improved.

RFT-scheduler effectively reduces the adversarial loss while maintaining a minimal degradation in clean loss. This allows RFT-scheduler to achieve a balance that appears difficult for RFT-fix.

Effect *Epsilon-scheduling* on robust backbones Table 3 shows that robust backbones are indeed more resilient to large perturbations under RFT-fix than their non-robust counterparts, reducing the need for *Epsilon-Scheduling*. Nevertheless, RFT-scheduler still consistently boosts clean accuracy relative to RFT-fix, although at the cost of reduced robustness. On the easy task (Caltech), the trade-off is in favour of the scheduler. A key takeaway is that *Epsilon-Scheduling* substantially reduces the large clean-accuracy gap previously observed between RFT from non-robust backbones and their robust equivalents (Liu et al., 2023; Hua et al., 2024), even if robustness at target ε_g is not fully matched.

6.3 ABLATION AND SENSITIVITY ANALYSIS

We summarize the effect of the hyperparameters T_1 and T_2 of *Epsilon-Scheduling* in Appendix C.1 as follows. (i) T_2 have the most significant influence with the control of steepness $(1/(T_2 - T_1), T_1 \neq T_2)$. When T_2 is close to T_1 , clean accuracy decreases, whereas robust accuracy increases; this eventually leads to suboptimal transfer. This is in line with the motivation for linear warmup in Debenedetti et al. (2023), although they do not study this effect. (ii) Increasing T_1 increases clean accuracy, up to a threshold beyond which further increasing T_1 has no apparent effect.

Special cases Only delaying the robust objective without following with gradual linear increase, i.e., a schedule that switches directly from 0 to ε_g ($T_1 > 0, T_1 = T_2$), is unstable: validation accuracy drops sharply to its initial value and does not recover during training unless T_1 is small enough. *Linear warmups* ($T_1 = 0, T_2 > 0$) without the delay still improve over fix, provided T_2 is sufficiently large to ensure low steepness, thus having only very small perturbations early in training to avoid distorting features. The *end-to-end linear* schedule ($T_1 = 0, T_2 = 50$) comes close to the performance of the scheduler, though the latter remains superior.

Targeting directly the expected robustness A possible strategy to directly minimize the expected robustness risk ($\mathbb{E}_{\varepsilon \sim U[0, \varepsilon_g]} R_\varepsilon(f)$) is via Monte Carlo estimation with a single sample, which is equivalent to training with an ε randomly drawn from $U[0, \varepsilon_g]$ at each epoch. Results in Appendix C.2 show that the random uniform strategy (uniform) often results in *suboptimal transfer*, except on relatively easy datasets such as Caltech. This behaviour is normal: the expected perturbation strength is $\varepsilon_g/2$, making it likely that high perturbation levels appear early in training, thereby impeding effective transfer.

Automated Scheduler Based on our analysis, we can derive a simple *automatic epsilon-scheduler (auto)* driven by the validation accuracy. The procedure starts with $\varepsilon = 0$ and then initiates a linear increase from T_1 to the end of training, where T_1 is automatically selected as the point at which the validation accuracy converges. Convergence is detected by monitoring the change in validation accuracy with patience of 5 epochs and a tolerance of 2%. Table 4 presents the results obtained with this automatic scheduler, which show that although it has less expected robustness compared to RFT-scheduler, it effectively mitigates suboptimal transfer and provides strong performance across tasks.

486	487	Model	Setting	$\epsilon = 4/255$								$\epsilon = 8/255$									
				Aircraft			Caltech			Cars		Aircraft			Caltech			Cars			
				Clean	Adv.	E.Adv.	Clean	Adv.	E.Adv.	Clean	Adv.	E.Adv.	Clean	Adv.	E.Adv.	Clean	Adv.	E.Adv.			
488	489	SWIN	fix	7.70	4.80	6.11	79.97	57.16	69.19	60.20	29.70	44.74	4.20	2.70	3.47	68.87	38.10	53.40	13.20	5.60	8.66
			sched	73.80	32.00	53.75	85.43	56.39	72.04	84.70	43.20	66.41	69.20	22.40	45.12	80.27	38.67	60.26	78.00	23.50	53.57
			auto	73.30	29.40	52.96	85.63	54.18	71.29	84.20	38.40	64.30	68.40	18.60	42.69	81.71	35.82	59.92	79.20	18.70	51.43
490	491	CNX	fix	7.60	4.50	5.86	83.27	61.54	73.08	69.60	43.20	57.52	1.60	1.50	1.48	59.85	33.95	46.34	5.30	2.60	3.98
			sched	78.40	38.00	59.40	89.41	61.45	77.23	88.90	57.70	75.85	75.00	28.80	50.90	84.99	41.82	64.92	85.60	35.90	65.04
			auto	79.10	31.60	56.61	90.14	58.30	76.26	89.00	50.30	72.56	76.20	23.60	49.65	86.48	38.39	64.35	86.20	29.90	63.49

Table 4: **Results on an automated scheduler derived from our analysis** for SWIN and ConvNext (CNX) on Aircraft, Caltech, and Cars, at $\epsilon = 4/255$ (left block) and $\epsilon = 8/255$ (right block).

7 CONCLUSION

We present the phenomenon of *suboptimal transfer* in robust fine-tuning from non-robust backbones and its connection with delayed task adaptation. To address this, we propose *Epsilon-Scheduling*, a heuristic perturbation schedule over perturbation strength, and demonstrate that it effectively mitigates this phenomenon, using commonly used metrics as well as the introduced *expected robustness*. Our findings underscore the practical potential of scheduling in robust transfer learning and motivate further exploration of fine-tuning strategies from non-robust pretrained backbones.

Limitations and Future Work. Although *Epsilon-Scheduling* yields significant improvements, robustness can still be limited even when clean accuracy is high, highlighting the potential for future research to further enhance performance. This work opens doors to exploring other scheduling strategies, either heuristic, theoretically motivated, or learning-based. Extending the analysis to other vision tasks, such as detection or segmentation, applying the framework to parameter-efficient methods like LoRA, and investigating whether similar dynamics occur in other modalities, such as natural language processing, remain open questions. Studying these cases may require special considerations such as task-specific losses or hyperparameters.

From a theoretical perspective, although we offer an explanation based on the discrepancy between the clean and robust loss landscapes in the vicinity of the pretrained model, a deeper understanding of robust fine-tuning in this setting remains an open challenge. Our findings point to several important open problems: **(i)** What mechanisms underlie suboptimal transfer: is delayed task adaptation the only cause of suboptimal transfer or are there other factors? **(ii)** Can we find other approaches to mitigate delayed task adaptation different from Epsilon-Scheduling? **(iii)** What mathematical theory can account for suboptimal transfer or delayed task adaptation? **(iv)** If robust pretraining is not indispensable, what specific properties (if any) in pretraining really matter for downstream robustness and allow effective robust fine-tuning?

Pursuing these directions promises to unlock more effective strategies for robust fine-tuning and yield more substantial progress towards achieving robustness in downstream tasks.

REPRODUCIBILITY STATEMENT

Our study is designed to be fully reproducible. All backbones and datasets are publicly available, with details and references provided in Section 6 and Appendix A, where we also cite the prior work underlying our design choices. Details on the estimation of expected robustness are given in Appendix A.

We provide an anonymized GitHub repository containing the implementation, the results of the hyperparameter optimization, all the data used to generate the paper’s figures and tables, and a script to reproduce them. The repository also includes step-by-step instructions for downloading datasets and pretrained models, creating Python environments, and launching experiments.

Finally, details on compute resources and expected run times are reported in Appendix A.

Link to anonymized GitHub Repository: <https://anonymous.4open.science/r/EpsilonScheduling-9F8E>

540 REFERENCES

542 Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
543 tack: a query-efficient black-box adversarial attack via random search. In *European conference*
544 *on computer vision*, 2020.

545 Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial training: Improved
546 accuracy tradeoffs in neural nets. *arXiv preprint arXiv:1910.08051*, 2019.

548 Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
549 gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In *Joint*
550 *European conference on machine learning and knowledge discovery in databases*, 2013.

551 Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In *Proceedings of the*
552 *Twenty-Seventh International Joint Conference on Artificial Intelligence*, 2018.

553 Bryan Bo Cao, Abhinav Sharma, Lawrence O’Gorman, Michael Coss, and Shubham Jain. A
554 lightweight measure of classification difficulty from application dataset characteristics. In *In-*
555 *ternational Conference on Pattern Recognition*, pp. 439–455. Springer, 2024.

557 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
558 *ieee symposium on security and privacy*, 2017.

559 Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
560 Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
561 robustness. *arXiv preprint arXiv:1902.06705*, 2019.

562 Luiz Chamon and Alejandro Ribeiro. Probably approximately correct constrained learning. *Ad-*
563 *vances in Neural Information Processing Systems*, 2020.

565 Antonio Emanuele Cinà, Jérôme Rony, Maura Pintor, Luca Demetrio, Ambra Demontis, Battista
566 Biggio, Ismail Ben Ayed, and Fabio Roli. Attackbench: Evaluating gradient-based attacks for
567 adversarial examples. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2025.

568 Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive
569 boundary attack. In *International Conference on Machine Learning*, 2020a.

571 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
572 of diverse parameter-free attacks. In *International conference on machine learning*, 2020b.

573 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
574 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversar-
575 ial robustness benchmark. In *Thirty-fifth Conference on Neural Information Processing Systems*
576 *Datasets and Benchmarks Track*, 2021.

577 Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
578 transformers. In *2023 IEEE Conference on Secure and Trustworthy Machine Learning*, 2023.

580 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
581 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of*
582 *the North American Chapter of the Association for Computational Linguistics: Human Language*
583 *Technologies*, 2019.

584 Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma training: Direct
585 input space margin maximization through adversarial training. In *International Conference on*
586 *Learning Representations*, 2020.

587 Junhao Dong, Piotr Koniusz, Junxi Chen, Z Jane Wang, and Yew-Soon Ong. Robust distillation
588 via untargeted and targeted intermediate adversarial samples. In *Proceedings of the IEEE/CVF*
589 *Conference on Computer Vision and Pattern Recognition*, 2024.

591 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
592 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
593 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In *International Conference on Learning Representations*, 2021.

594 Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation. In
 595 *Proceedings of the AAAI conference on artificial intelligence*, 2020.
 596

597 Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli,
 598 Prithvijit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, et al. Battle of the back-
 599 bones: A large-scale comparison of pretrained models across computer vision tasks. *Advances in
 600 Neural Information Processing Systems*, 2023.

601 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 602 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning
 603 Representations*, 2015.

604 Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
 605 sato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
 606 bound propagation for training verifiably robust models. *arXiv preprint arXiv:1810.12715*, 2018.

607

608 Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Technical
 609 report, California Institute of Technology, 2007.

610

611 Tessa Han, Suraj Srinivas, and Himabindu Lakkaraju. Characterizing data point vulnerability as
 612 average-case robustness. In *Proceedings of the Fortieth Conference on Uncertainty in Artificial
 613 Intelligence*, 2024.

614 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 615 nition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 616 2016.

617 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 618 ruptions and perturbations. In *International Conference on Learning Representations*, 2019. URL
 619 <https://openreview.net/forum?id=HJz6tCiCqYm>.

620

621 Maxime Heuillet, Rishika Bhagwatkar, Jonas Ngnawé, Yann Pequignot, Alexandre Larouche, Chris-
 622 tian Gagné, Irina Rish, Ola Ahmad, and Audrey Durand. A guide to robust generalization: The
 623 impact of architecture, pre-training, and optimization strategy. *arXiv preprint arXiv:2508.14079*,
 624 2025.

625 Andong Hua, Jindong Gu, Zhiyu Xue, Nicholas Carlini, Eric Wong, and Yao Qin. Initialization mat-
 626 ters for adversarial transfer learning. In *Proceedings of the IEEE/CVF Conference on Computer
 627 Vision and Pattern Recognition*, 2024.

628

629 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
 630 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
 631 Farhadi, and Ludwig Schmidt. Openclip, 2021.

632 Robert Jankowski, Filippo Radicchi, M Serrano, Marián Boguñá, and Santo Fortunato. Task
 633 complexity shapes internal representations and robustness in neural networks. *arXiv preprint
 634 arXiv:2508.05463*, 2025.

635

636 Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for
 637 fine-grained image categorization: Stanford dogs. In *Proceedings of the IEEE/CVF Conference
 638 on Computer Vision and Pattern Recognition Workshop on Fine-Grained Visual Categorization*,
 639 2011.

640 Mikhail V Koroteev. Bert: a review of applications in natural language processing and understand-
 641 ing. *arXiv preprint arXiv:2103.11943*, 2021.

642

643 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 644 categorization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 645 Workshop on Fine-Grained Visual Categorization*, 2013.

646 Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
 647 A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning
 Research*, 2018.

648 Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. Tilted empirical risk minimization.
 649 In *International Conference on Learning Representations*, 2021.
 650

651 Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan
 652 He, Hui Xue, and Shibaob Zheng. A comprehensive study on robustness of image classification
 653 models: Benchmarking and rethinking. *International Journal of Computer Vision*, 2025.

654 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 655 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 656 IEEE/CVF International Conference on Computer Vision*, 2021.

657 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 658 A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 659 Pattern Recognition*, 2022.

660 Ziquan Liu, Yi Xu, Xiangyang Ji, and Antoni B Chan. Twins: A fine-tuning framework for improved
 661 transferability of adversarial robustness and generalization. In *Proceedings of the IEEE/CVF
 662 conference on computer vision and pattern recognition*, 2023.

663 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 664 Towards deep learning models resistant to adversarial attacks. In *International Conference on
 665 Learning Representations*, 2018.

666 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 667 visual classification of aircraft. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 668 and Pattern Recognition Workshop on Fine-Grained Visual Categorization*, 2013.

669 S. Marcel and R. Rodriguez. Torchvision image transformations, 2016.

670 Jonas Ngawye, Sabyasachi Sahoo, Yann Batiste Pequignot, Frederic Precioso, and Christian Gagné.
 671 Detecting brittle decisions for free: Leveraging margin consistency in deep robust classifiers. In
 672 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

673 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on knowledge
 674 and data engineering*, 2010.

675 Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial
 676 training. In *International Conference on Learning Representations*, 2021.

677 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 678 Learning transferable visual models from natural language supervision. In *International Conference
 679 on Machine Learning*, 2021.

680 Leslie Rice, Anna Bair, Huan Zhang, and J Zico Kolter. Robustness between the worst and average
 681 case. *Advances in Neural Information Processing Systems*, 2021.

682 Christoph et al. Schuhmann. Laion-5b: An open large-scale dataset for training next generation
 683 image–text models. *Advances in Neural Information Processing Systems, Datasets and Bench-
 684 marks Track*, 2022. arXiv:2210.08402.

685 Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
 686 Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! *Ad-
 687 vances in neural information processing systems*, 2019a.

688 Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and Tom
 689 Goldstein. Adversarially robust transfer learning. *arXiv preprint arXiv:1905.08232*, 2019b.

690 Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for ima-
 691 genet: Architectures, training and generalization across threat models. *Advances in Neural Infor-
 692 mation Processing Systems*, 2023.

693 Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and
 694 Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision transformers.
 695 *Transactions on Machine Learning Research*, 2022.

702 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 703 birds-200-2011 dataset. Technical report, California Institute of Technology, 2011.
 704

705 Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
 706 adversarial robustness requires revisiting misclassified examples. In *International Conference on*
 707 *Learning Representations*, 2020.

708 Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. *Journal of*
 709 *Big Data*, 2016.

710 Ross Wightman, Hugo Touvron, and Herve Jegou. Resnet strikes back: An improved training
 711 procedure in timm. In *NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future*, 2021.

713 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 714 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 715 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 716 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
 717 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural*
 718 *Language Processing: System Demonstrations*, 2020.

719 Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training.
 720 In *International Conference on Learning Representations*, 2020.

721

722 Xilie Xu, Jingfeng Zhang, and Mohan Kankanhalli. Autolora: an automated robust fine-tuning
 723 framework. In *The Twelfth International Conference on Learning Representations*, 2024.

724 Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
 725 neural networks? *Advances in neural information processing systems*, 2014.

727 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 728 Theoretically principled trade-off between robustness and accuracy. In *International conference*
 729 *on machine learning*, 2019.

730 Julian Zilly, Lorenz Hetzel, Andrea Censi, and Emilio Frazzoli. Quantifying the effect of represen-
 731 tations on task complexity. *arXiv preprint arXiv:1912.09399*, 2019.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Shorthand (Configuration Name)	757 HuggingFace ID	758 References
759 ViT (vit_b, sup, in1k)	760 timm/vit_base_patch16_224.augreg_in1k	761 Steiner et al. (2022)
762 SWIN (swin_b, sup, in22k-in1k)	763 timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k	764 Liu et al. (2021)
765 CNX (convnext_b, sup, in22k-in1k)	766 timm/convnext_base_fb_in22k_ft_in1k	767 Liu et al. (2022)
768 ClipViT (vit_b, clip, laion2b)	769 timm/vit_base_patch16_clip_224.laion2b	770 Ilharco et al. (2021)
771 ClipCNX (convnext_b, clip, laion2b)	772 laion/CLIP-convnext_base_w-laion2B-s13B-b82K	773 Schuhmann (2022)
774 R50 (resnet50, sup, in1k)	775 timm/resnet50.a1_in1k	776 Wightman et al. (2021)
777 RobCNX (robust_convnext_b, sup, in1k)	778	779 Liu et al. (2025)
780 RobSWIN (robust_swin_b, sup, in22k-in1k)	781	782 Liu et al. (2025)
783 RobR50 (robust_resnet50, sup, in1k)	784	785 Liu et al. (2025)
786 RobViT (robust_vit_b, sup, in1k)	787	788 Liu et al. (2025)

Table 5: Pretrained non-robust and robust models used with HuggingFace IDs and references. The model name indicates the architecture (<{vit, swin, convnext, resnet50}>, the training type (sup: supervised, clip: multimodal), and the dataset: **in1k** = ImageNet-1k, **in22k** = ImageNet-22k, **in22k-in1k** = pretrained on ImageNet-22k then fine-tuned on ImageNet-1k, **laion2b** = LAION-2B.

APPENDIX

A EXPERIMENTAL SETUP DETAILS

Pretrained Models The non-robust backbones come from *timm* (PyTorch Image Models) and are publicly available on HuggingFace. The robust models are publicly released by ARES and can be accessed at github.com/thu-ml/ares/. A summary of all models used in this work is provided in Table 5.

Training Splits and Data Augmentations We use train-val-test split from Hua et al. (2024) for Caltech, Cub, Stanford Dogs; and from Heuillet et al. (2025) for Aircraft and Stanford Cars. Training augmentations consist of standard preprocessing methods commonly used for ImageNet and high-resolution images (Marcel & Rodriguez, 2016): random horizontal flips ($p = 0.5$), color jitter (brightness, contrast, and saturation set to 0.25), and random rotations. As done in Robustbench (Croce et al., 2021), images are resized to 224x224 with pixel values in the range [0, 1], and data normalization and standardization are directly integrated into the model.

Hyperparameters Optimization We use the AdamW optimizer with a cosine learning rate scheduler that includes a warmup period. We select the learning rate and weight decay via hyperparameter optimization (HPO) based on clean accuracy. HPO is performed only for the `fix` setting, and the resulting hyperparameters are reused for the `scheduler` setting to ensure a fair comparison. We search learning rate and weight decay values in the range 10^{-5} to 10^{-1} , using the ASHAS scheduler, a variant of Hyperband Li et al. (2018).. The exploration budget is 30 minutes for all configurations. HPO results are available in the code repository.

Additional Evaluation Details The expected robustness is estimated by using the trapezoidal rule with evaluations made with steps $1/255$, so for example with $\varepsilon_g = 4/255$:

$$\text{AUC}_{4/255}(f) = \frac{1}{4} \sum_{i=0}^3 \frac{\text{Acc}_{\frac{i}{255}}(f) + \text{Acc}_{\frac{i+1}{255}}(f)}{2}.$$

Compute Resources Experiments were conducted using a 4xNVIDIA H100 GPU with 80GB of Memory. The duration for a single case of robust fine-tuning ranges from approximately 15 minutes to one hour in distributed mode. An evaluation of robust accuracy for ε_g from 0 to 16 can run in 5 minutes or less with APGD. The same evaluations with AutoAttack require a minimum of 4 hours; the most expensive models can go up to 24 hours or more.

Figure 8: **Delay times increases with perturbation strength.** We take the delay time here as the epoch from which the validation accuracy starts being above 5%. In some cases, the model never goes beyond this threshold until the end of training at 50 epochs. See Section 4

Figure 9: **Delay times strongly correlates with suboptimal transfer performance.** The final validation accuracy is lower because task adaptation starts at later epochs. See Section 4

B ADDITIONAL RESULTS

B.1 TASK ADAPTATION DELAYS

We report detailed results on the increase in task adaptation delay time with growing perturbation strength (Figure 8), as well as the correlation between delay times and the severity of suboptimal transfer (Figure 9).

B.2 AUTOATTACK RESULTS

AutoAttack (Croce & Hein, 2020b) is a stronger and more diverse attack on the models, but is more expensive. We evaluate a few cases (SWIN on {Cars, Aircraft} x {4/255, 8/255}). Results can be found in Table 6 and Figure 10. Although it takes substantially more time, the results are close to evaluations with APGD.

C ABLATION AND SENSITIVITY ANALYSIS

C.1 ABLATION AND SENSITIVITY ANALYSIS

To evaluate the influence of T_1 and T_2 on the performance of *Epsilon-Scheduling*, we consider multiple configurations, illustrated in Figure 11 (moderate perturbation, 4/255) and Figure 12 (high perturbation, 8/255). These figures illustrate the evolution of validation losses and accuracies during training, along with test set evaluations, showcasing the distinct trends. The corresponding numerical results on the test set are reported in Table 7.

Figure 10: Evaluation with AutoAttack. Numerical values are in Table 6.

ε	Attack	Setting	Aircraft			Cars		
			Clean Acc	Adv.	E. Adv.	Clean Acc	Adv.	E. Adv.
4/255	APGD	fix	7.70	4.80	6.11	60.20	31.9	45.89
		sched	73.80	32.00	53.75	84.70	43.20	66.41
	AutoAttack	fix	7.70	3.30	4.97	60.20	29.90	44.96
		sched	73.80	31.40	53.10	84.70	42.00	66.24
8/255	APGD	fix	4.20	2.70	3.47	6.50	3.2	4.49
		sched	69.20	22.40	45.12	78.00	23.50	53.57
	AutoAttack	fix	4.20	0.80	2.16	6.50	2.40	3.97
		sched	69.20	21.50	44.51	78.00	22.90	52.81

Table 6: AutoAttack results

C.2 DIRECT MINIMIZATION FOR EXPECTED ROBUSTNESS

Since *Epsilon-Scheduling* consistently improves expected robustness, we compare with a direct minimization of the expected robustness risk. The results in Table 8 show *Epsilon-Scheduling* is still superior, and the uniform strategy often leads to suboptimal transfer due to early sampling of high perturbations.

D STATISTICAL SIGNIFICANCE

We report paired *t*-test statistics comparing **RFT-Fix** and **RFT-Scheduler** at $\epsilon = 4/255$ and $\epsilon = 8/255$ in Table 9. These tests assess whether performance differences between the two strategies are statistically significant across downstream tasks. A paired *t*-test measures whether the mean performance difference between two methods is reliably non-zero; small *p*-values indicate that the observed differences are unlikely to occur by chance.

We also report the averages for each metric per model (Table 10) and per dataset (Table 11).

E ADDITIONAL RESULTS ON IMAGENETTE

We provide additional results for ImageNette in Table 12

T1	T2	$\varepsilon_g = 4/255$			$\varepsilon_g = 8/255$		
		Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.
0	0	60.20	31.90	45.89	6.50	3.20	4.49
	12	67.70	40.20	54.19	36.20	10.50	21.47
	30	78.40	44.70	63.41	63.30	21.80	43.34
	50	82.30	40.30	63.95	75.40	19.90	49.33
5	5	64.20	29.50	47.26	4.20	2.40	3.26
	12	78.40	48.20	64.95	68.00	24.20	47.06
	25	81.10	48.60	66.64	74.80	26.00	52.54
	50	84.50	35.90	63.32	80.30	18.00	51.58
	12	1.90	1.40	1.74	1.30	1.30	1.28
12	30	83.00	47.30	67.09	78.10	26.60	55.06
	37 (*)	84.70	43.20	66.41	78.00	23.50	53.57
	50	84.80	35.80	63.25	81.10	16.60	51.79
	25	0.80	0.80	0.80	0.80	0.80	0.80
25	37	84.00	39.50	64.61	78.40	21.00	51.51
	50	84.30	24.80	57.46	81.00	12.10	46.94

Table 7: Effect of hyperparameters T_1 and T_2 . The training dynamics can be found in Figure 11 for $\varepsilon_g = 4/255$ and Figure 12 for $\varepsilon_g = 8/255$. (*) RFT-scheduler reported in main text ($T_1 = 12, T_2 = 37$).

Model	Setting	$\varepsilon_g = 4/255$						$\varepsilon_g = 8/255$											
		Aircraft			Caltech			Cars			Aircraft			Caltech			Cars		
		Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.
SWIN	fix	7.70	4.80	6.11	79.97	57.16	69.19	60.20	29.70	44.74	4.20	2.70	3.47	68.87	38.10	53.40	13.20	5.60	8.66
	uniform	30.10	7.90	18.57	83.45	55.49	70.27	70.90	35.30	54.68	7.80	2.00	4.85	76.74	37.31	57.34	53.70	11.30	30.16
	sched	73.80	32.00	53.75	85.43	56.39	72.04	84.70	43.20	66.41	69.20	22.40	45.12	80.27	38.67	60.26	78.00	23.50	53.57
R50	fix	8.40	2.90	4.56	67.47	40.02	53.74	4.20	2.90	3.49	1.30	0.90	0.74	53.59	26.78	39.93	1.50	1.20	1.34
	uniform	41.50	8.80	22.04	74.95	34.68	54.49	43.10	8.90	23.28	27.40	3.70	12.26	67.55	22.03	43.44	6.20	2.10	3.36
	sched	53.10	11.10	29.40	76.55	34.74	55.67	70.00	19.30	43.44	42.80	5.30	20.38	67.56	23.01	44.03	57.10	8.50	29.56
ClipCNX	fix	3.10	2.50	2.82	61.76	42.13	51.54	2.80	1.60	2.23	1.80	1.30	1.62	51.94	28.37	39.44	1.30	1.10	1.25
	uniform	7.10	4.30	5.78	72.25	47.07	59.66	8.10	3.90	5.92	3.10	2.20	2.68	61.78	30.35	45.09	3.50	1.30	2.28
	sched	81.70	50.70	67.88	81.19	52.68	67.71	90.90	74.10	84.33	79.20	34.50	59.09	76.53	37.20	56.83	90.00	55.20	77.14

Table 8: **Epsilon-Scheduling still has better expected robustness than a direct optimization for the expected robustness risk.** In fact the approximation with uniform can still lead to *suboptimal transfer*.

Metric	n_pairs	$\epsilon = 4/255$			$\epsilon = 8/255$		
		t-stat	p-value	t-stat	p-value		
Clean Acc	30	7.823294	1.255470×10^{-8}	12.387491	4.170254×10^{-13}		
Adv.	30	4.348780	1.540867×10^{-4}	5.447550	7.317049×10^{-6}		
E. Adv.	30	6.595568	3.153155×10^{-7}	9.270810	3.572919×10^{-10}		

Table 9: *t*-test statistics between RFT-fix and RFT-scheduler for two perturbation magnitudes.

Figure 11: Effect of hyperparameters on SWIN-Cars for target $\epsilon_g = 4/255$. The numerical results are presented in Table 7. Same plot at $\epsilon_g = 8/255$ are in Figure 12

Model	Setting	$\epsilon = 4/255$			$\epsilon = 8/255$		
		Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.
ViT	fix	37.29	16.89	26.49	15.59	5.84	10.12
	scheduler	70.96	22.66	46.42	63.91	11.63	34.38
SWIN	fix	56.40	32.08	44.35	35.64	14.21	24.16
	scheduler	79.78	39.50	60.90	72.55	22.87	47.49
CNX	fix	61.14	37.59	49.93	19.82	9.61	14.33
	scheduler	84.05	45.69	66.59	79.04	28.12	54.09
R50	fix	37.26	16.99	26.62	22.88	8.82	15.09
	scheduler	67.76	20.13	42.65	55.57	10.48	29.84
ClipViT	fix	12.73	5.74	8.85	8.59	3.13	5.56
	scheduler	73.77	39.14	57.08	68.62	24.94	46.11
ClipCNX	fix	24.09	14.38	18.93	13.95	7.41	10.47
	scheduler	80.74	49.09	65.91	76.40	32.20	54.93

Table 10: Average per model of the clean accuracy, adversarial accuracy, and expected adversarial accuracy for $\epsilon = 4/255$ and $\epsilon = 8/255$.

Figure 12: Effect of hyperparameters on SWIN-Cars for target $\epsilon_g = 8/255$. The numerical results can be found in Table 7.

Dataset	Setting	$\epsilon = 4$			$\epsilon = 8$		
		Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.
Aircraft	fix	6.37	3.47	4.66	2.58	1.77	2.14
	scheduler	69.23	29.82	49.69	64.83	20.52	41.34
Caltech	fix	65.42	43.00	54.27	50.37	25.67	37.51
	scheduler	81.02	48.93	65.73	75.48	33.55	54.50
Cars	fix	25.73	14.22	19.99	4.65	2.50	3.45
	scheduler	82.43	45.33	65.29	77.25	28.45	54.16
Cub	fix	47.24	23.56	35.07	19.45	5.26	11.38
	scheduler	77.39	34.60	56.64	70.16	17.44	42.31
Dogs	fix	46.00	18.82	31.99	19.95	5.66	11.95
	scheduler	70.82	21.50	45.61	59.02	8.59	30.06

Table 11: Average per dataset of the clean accuracy, adversarial accuracy, and expected adversarial accuracy for $\epsilon = 4/255$ and $\epsilon = 8/255$.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102

Model	Setting	$\epsilon = 4/255$			$\epsilon = 8/255$		
		Clean	Adv.	E. Adv.	Clean	Adv.	E. Adv.
SWIN	fix	97.15	85.07	92.22	94.19	66.17	82.43
	scheduler	98.62	85.48	93.67	97.50	69.08	86.93
CNX	fix	97.81	88.44	94.09	94.80	68.87	84.08
	scheduler	99.29	88.23	95.36	98.27	71.32	89.03

Table 12: Imagenette results for $\epsilon = 4/255$ and $\epsilon = 8/255$.

1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133