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ABSTRACT

Fine-tuning pretrained models is a standard and effective workflow in modern
machine learning. However, robust fine-tuning (RFT), which aims to simulta-
neously achieve adaptation to a downstream task and robustness to adversarial
examples, remains challenging. Despite the abundance of non-robust pretrained
models in open-source repositories, their potential for RFT is less understood.
We address this knowledge gap by systematically examining RFT from such non-
robust models. Our experiments reveal that fine-tuning non-robust models with a
robust objective, even under small perturbations, can lead to poor performance, a
phenomenon that we dub suboptimal transfer. In challenging scenarios (eg, diffi-
cult tasks, high perturbation), the resulting performance can be so low that it may
be considered a transfer failure. We find that fine-tuning using a robust objec-
tive impedes task adaptation at the beginning of training and eventually prevents
optimal transfer. However, we propose a novel heuristic, Epsilon-Scheduling, a
schedule over perturbation strength used during training that promotes optimal
transfer. Additionally, we introduce expected robustness, a metric that captures
performance across a range of perturbations, providing a more comprehensive
evaluation of the accuracy-robustness trade-off for diverse models at test time.
Extensive experiments on a wide range of configurations (six pretrained models
and five datasets) show that Epsilon-Scheduling successfully prevents suboptimal
transfer and consistently improves expected robustness.

1 INTRODUCTION

Fine-tuning pretrained models (backbones) on a downstream task is the standard workflow in ma-
chine learning, spanning natural language processing (Koroteev, 2021) and computer vision (Gold-
blum et al., 2023). This workflow offers clear benefits: (i) reusing a single foundation model
across tasks (Devlin et al., 2019), (ii) faster convergence, (iii) better generalization than training
from scratch (Yosinski et al., 2014), and (iv) reduced computation (Weiss et al., 2016), especially
when labelled data is scarce (Pan & Yang, 2010).

However, in high-stakes applications, adversarial vulnerability remains a major concern (Biggio
et al., 2013; Goodfellow et al., 2015). Adversarial Training (AT) (Madry et al., 2018) and its vari-
ants (Zhang et al., 2019; Wang et al., 2020; Ding et al., 2020; Shafahi et al., 2019a; Wong et al.,
2020) are the most successful empirical defenses (Croce et al., 2021). Robust fine-tuning (RFT)
is the integration of these methods in fine-tuning on downstream tasks (Shafahi et al., 2019b; Liu
et al., 2023; Xu et al., 2024; Hua et al., 2024). Unlike standard fine-tuning, RFT must balance task
adaptation with robustness – a trade-off that makes it considerably harder (Xu et al., 2024).

Most prior works assume access to robust backbones (Hua et al., 2024; Liu et al., 2023; Xu et al.,
2024); however, in practice, nearly all widely used pretrained models from public repositories are
non-robust (Wolf et al., 2020). Robust pretraining is costly and less common, and because pre-
training pipelines typically prioritize broad general-purpose features, robustness is often treated as
a property to be acquired downstream (Heuillet et al., 2025). This makes the development of RFT
strategies for non-robust backbones not only consistent with current practice but also necessary to
close the gap between research and deployment.
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Figure 1: RFT can lead to suboptimal transfer even when optimizing for small perturbation
strenghts (εg). The severity is highly model- and dataset-dependent.

We adopt the standard RFT approach based on classical adversarial training (Madry et al., 2018),
which optimizes a robust objective using adversarial examples generated at a target perturbation
strength (commonly 4/255 or 8/255 in the ℓ∞-norm). We apply this procedure to robustly fine-tune
various backbones across multiple datasets and perturbation levels. Our experiments reveal that,
even for small perturbation strengths, standard RFT often leads to suboptimal transfer: performance
(clean accuracy) falls short of that achieved by standard fine-tuning (without perturbation) and is
often too low to qualify it as a successful transfer. The severity of this effect depends on both the
backbone and the downstream task (Figure 1).

When fine-tuning on a downstream task with a robust objective results in near-random performance,
the benefits of using a pretrained model are diminished. This raises the question: do standard pre-
trained models fail to offer a beneficial initialization for training a robust model? In this study, we
explore the challenges associated with robust fine-tuning using standard pretrained models and pro-
pose a novel approach to address these obstacles. In contrast to standard fine-tuning, where model
adaptation to the downstream task occurs immediately, our study reveals that in robust fine-tuning,
task adaptation is delayed until later epochs. This delay seems to eventually lead to suboptimal
transfer, and we observe that the duration of the delay correlates negatively with transfer perfor-
mance.
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Figure 2: Epsilon-Scheduling

Based on our findings, we propose Epsilon-Scheduling, a sched-
ule over the perturbation strength during RFT to encourage op-
timal transfer. This novel heuristic is a two-hinge linear sched-
ule that begins with standard fine-tuning (zero perturbation) for
early epochs and linearly increases to the target perturbation at
final epochs (see Figure 2). This strategy effectively prevents
suboptimal transfer and improves both accuracy and robustness.

To better evaluate the fine-tuned models, we introduce a comple-
mentary evaluation metric, dubbed expected robustness. This
proposed metric evaluates the expectation of the model accuracy across the full perturbation range
from zero (clean accuracy) to the target robustness threshold. The expected robustness provides a
concise, yet comprehensive measure of the accuracy–robustness trade-off, grounded in a practical
threat model. We demonstrate that it offers valuable insights for model selection. Under this metric,
Epsilon-Scheduling consistently outperforms the standard robust-finetuning, even when worst-case
robustness at the target threshold is similar or lower.

Summary of Contributions Our main contributions are: (i) We show that robust fine-tuning from
non-robust backbones often leads to suboptimal transfer, even at small perturbation strengths, where
performance can fall significantly below standard fine-tuning. (ii) We find that robust finetuning re-
sults in task adaptation delay compared to standard finetuning and that this delay strongly correlates
with suboptimal transfer. (iii)We propose Epsilon-Scheduling, a two-hinge linear schedule to adjust
the training perturbation strength, which effectively mitigates the challenges associated with opti-
mizing adversarial loss. (iv) We introduce expected robustness, a new evaluation metric capturing
the full accuracy–robustness trade-off, and report performance using this metric for the first time. (v)
Through extensive experiments, we show that Epsilon-Scheduling consistently prevents suboptimal
transfer and improves expected robustness across both moderate (4/255) and high (8/255) perturbation
regimes.
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Figure 3: RFT delays task adaptation. Validation clean accuracy under standard fine-tuning (εg = 0) and
RFT-fix with εg ∈ [1/255, 9/255] on three datasets.The crosses indicate the onset of task adaptation (when
validation accuracy exceeds 5%). Stronger perturbations cause longer delays and more severe suboptimal
transfer. See Section 4 for analysis.

2 RELATED WORK

Adversarial Robustness in Transfer Learning with Robust-FineTuning There are two main
ways to achieve adversarial robustness in Transfer Learning: Robust Distillation (Goldblum et al.,
2020; Dong et al., 2024) and Robust Fine-Tuning. Prior works on RFT focus on robust backbones
(Liu et al., 2023; Xu et al., 2024; Hua et al., 2024). TWINS (Liu et al., 2023) employs two net-
works with shared parameters to separately track pretraining and downstream batch statistics. How-
ever, Liu et al. (2023) do not apply it to non-robust backbones claiming that ”robust pre-training
is indispensable to downstream robustness”. AutoLoRA (Xu et al., 2024) disentangles natural and
adversarial objectives using a LoRA branch for the former and a robust pretrained extractor for the
latter, though it relies on TRADES loss (Zhang et al., 2019), which is harder to scale than standard
adversarial training (Madry et al., 2018). Xu et al. (2024) show that robust pretrainning is necessary
for AutoLoRA and register the worst performance for the non-robust pretraining. RoLi (Hua et al.,
2024) preserves robustness by initializing the classifier head via adversarial linear probing before
performing RFT. (Hua et al., 2024) explicitly argue that robust pretraining is a prerequisite for RoLi
by showing that linear probing with a robust objective on a non-robust backbone fails dramatically
and therefore does not provide a good initialization. In summary, all these approaches assume ro-
bust pretrained features. In contrast, we are the first to propose an RFT method targeting non-robust
backbones.

Tuning Perturbation Strength in Adversarial Training Adapting the perturbation strength dur-
ing training has been explored in various forms. Early work used a linear ramp-up in Interval Bound
Propagation (Gowal et al., 2018). Ding et al. (2020) connected margin maximization to minimal
adversarial loss, motivating adaptive, sample-specific perturbation strengths, though such instance-
wise selection (Balaji et al., 2019) is computationally costly. They also proposed PGDLS (PGD
with Linear Scaling), which linearly increases perturbation strength but shows gains only at large
perturbations (24/255). Other strategies include sampling the perturbation strength from a Beta dis-
tribution (Chamon & Ribeiro, 2020) and curriculum schemes that gradually increase the number of
attack steps (Cai et al., 2018). Pang et al. (2021) reports that linear warmup provides limited gains
in ResNets, whereas Debenedetti et al. (2023) finds that it improves both clean and robust accuracy
in vision transformers. Unlike prior works, which apply to adversarial training from scratch, our
study is on transfer learning. Our formulation generalizes linear warmup, and we show that the
benefits consistently hold across tasks and architectures, including ResNets, using the new expected
robustness metric.

Adversarial Defense Evaluation Standard evaluation (Croce et al., 2021) compares clean and ro-
bust accuracy at a target perturbation strength under strong attacks or ensembles (Carlini & Wagner,
2017; Madry et al., 2018; Croce & Hein, 2020b; Cinà et al., 2025), yet it obfuscates what happens at
intermediate perturbation strengths. A related recommendation is to check that accuracy decreases
with stronger perturbations (Carlini et al., 2019), but this test is unquantified and serves only as an
informal validation (Debenedetti et al., 2023). In contrast, our notion of expected robustness for-
malizes this decrease and interpolates between clean and worst-case performance at a specific target
perturbation strength. Another class of metrics interpolates between worst-case and average-case
robustness (Rice et al., 2021; Li et al., 2021), the latter defined against random or natural perturba-
tions (Hendrycks & Dietterich, 2019; Han et al., 2024). However, this approach does not capture the
trade-off between clean and worst-case performance.
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Figure 4: The expected robustness metric offers a valuable perspective for model selection. The
larger the area under the curve (shaded area), the higher the expected robustness. The values in the
legend indicate the clean accuracy and the evaluation at εg .

3 BACKGROUND

Supervised Fine-Tuning Consider a classification task to map instances x of a d-dimensional
input space X ⊂ Rd to corresponding labels y in the set Y = {1, 2, ...,K}. Unlike training from
scratch to learn a classifier fθ : X 7→ Y from randomly initialized parameters θ on a training dataset
drawn iid from a data distribution D on X × Y , supervised fine-tuning uses a pretrained feature
extractor (backbone) hθ1 : X 7→ Z that maps inputs to a representation space Z and a randomly
initialized classifier head cθ2 : Z 7→ Y such that f{θ1,θ2} = cθ2 ◦ hθ1 . This work focuses on full
fine-tuning where both θ1 and θ2 are trainable parameters. The performance of the fine-tuned model
is measured by its accuracy, i.e., the probability that a prediction is correct for an instance drawn
from D. We will refer to this as clean accuracy (or transfer accuracy).

Adversarial Training (AT) Given a target evaluation threshold for perturbation strength εgoal

(εg for convenience) in ℓp-norm (∥x∥p = (
∑

i xi)
1/p, p > 0), adversarial training aims to train

a classifier f such that it maximizes the robust accuracy Accεg (f). The robust accuracy is the
probability that a prediction remains correct for any input x under a perturbation δ of maximum
norm εg . Classical adversarial training (Madry et al., 2018) minimizes the adversarial risk at a
perturbation threshold εg as a surrogate objective for Accεg (f):

Rεg (f) = E(x,y)∼D

(
max

∥δ∥p<εg
LCE(f(x+ δ), y)

)
(1)

where LCE is the cross-entropy loss. In practice, the empirical counterpart of the risk Rε(f) is
minimized, and adversarial perturbations δ are generated using a few iterations of Projected Gradient
Descent (PGD) under an ℓp-norm constraint.

In this work, we refer to robust fine-tuning (RFT) as supervised fine-tuning with classical adversar-
ial training. The standard practice in RFT for achieving robustness at a target evaluation threshold
εg is to directly minimize the empirical risk at εg throughout the fine-tuning process (Madry et al.,
2018; Hua et al., 2024). In this setup, the perturbation strength used to generate adversarial exam-
ples remains fixed at εg across all fine-tuning epochs. We refer to this baseline strategy as RFT-fix
(or fix).

4 CHARACTERIZING SUBOPTIMAL TRANSFERS IN ROBUST FINE-TUNING

When we perform robust fine-tuning with excessively strong perturbations εg that severely corrupt
the inputs, clean accuracy is expected to reach chance level, as the training samples will become
unrecognisable, drifting away from the task data distribution D (Carlini et al., 2019). Yet, a question
remains: how much clean accuracy degrades as εg increases given a pretrained model and a dataset?
To investigate this question, we conduct an experiment with two non-robust backbones: SWIN (Liu
et al., 2021) and ViT (Dosovitskiy et al., 2021), across five datasets: Cub (Wah et al., 2011), Dogs
(Khosla et al., 2011), Caltech (Griffin et al., 2007)), Cars (Krause et al., 2013)), and Aircraft
(Maji et al., 2013)). See Appendix A for details on backbones and their pretraining.

Suboptimal Transfer We apply RFT-fix with target perturbation strengths εg in [1/255, 9/255] and
compare performance (clean accuracy) to standard fine-tuning (εg = 0). While low clean accuracies
for RFT-fix from non-robust backbones have been reported on Caltech at εg = 8/255 (Liu
et al., 2023; Hua et al., 2024), our experiments reveal a broader picture. Figure 1 shows distinct
trends in clean accuracy degradation as εg increases. Even for tiny perturbations (εg = 1/255),
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Dataset Aircraft Caltech Cars Cub Dogs
Model Setting Clean Adv. E. adv. Clean Adv. E. adv. Clean Adv. E. adv. Clean Adv. E. adv. Clean Adv. E. adv.
ViT fix 6.40 2.80 4.48 68.14 41.64 55.07 12.70 4.90 8.20 42.82 15.12 27.79 56.40 19.97 36.93

sched 58.60 13.20 34.95 78.73 41.69 60.71 73.40 19.10 46.71 73.40 23.63 48.09 70.69 15.69 41.62
SWIN fix 7.70 4.80 6.11 79.97 57.16 69.19 60.20 29.70 44.74 72.25 41.87 57.55 61.89 26.89 44.17

sched 73.80 32.00 53.75 85.43 56.39 72.04 84.70 43.20 66.41 82.29 41.61 63.82 72.70 24.32 48.50

CNX fix 7.60 4.50 5.86 83.27 61.54 73.08 69.60 43.20 57.52 76.34 47.08 62.59 68.90 31.61 50.61
sched 78.40 38.00 59.40 89.41 61.45 77.23 88.90 57.70 75.85 85.17 44.99 67.30 78.39 26.31 53.19

R50 fix 8.40 2.90 4.56 67.47 40.02 53.74 4.20 2.90 3.49 49.19 19.35 33.58 57.05 19.80 37.73
sched 53.10 11.10 29.40 76.55 34.74 55.67 70.00 19.30 43.44 70.06 19.59 43.62 69.11 15.94 41.11

ClipViT fix 5.00 3.30 4.16 31.91 15.49 23.00 4.90 3.00 3.74 13.95 3.64 7.97 7.89 3.29 5.39
sched 69.80 33.90 52.79 74.83 46.64 60.99 86.70 58.60 75.01 74.35 35.67 55.54 63.17 20.87 41.05

ClipCNX fix 3.10 2.50 2.82 61.76 42.13 51.54 2.80 1.60 2.23 28.89 14.33 20.92 23.90 11.33 17.14
sched 81.70 50.70 67.88 81.19 52.68 67.71 90.90 74.10 84.33 79.06 42.11 61.45 70.85 25.85 48.19

Table 1: At moderate perturbation regime (4/255), Epsilon-Scheduling, mitigates suboptimal transfers
and consistently improves expected robustness. See Table 2 for εg = 8/255

accuracy can drop by up to 14% compared to the standard finetuning with ϵg = 0. At the commonly
used threshold εg = 4/255, the minimum drop is 10%. In extreme cases, RFT-fix fails to adapt
effectively, with clean accuracy falling below 5%, making it practically unusable. We refer to this
phenomenon as suboptimal transfer, where RFT-fix yields a clean accuracy substantially lower
than standard fine-tuning, at times to the point of ineffectiveness or failure.

Insights on Task Difficulty and Backbone Selection The severity of suboptimal transfer de-
pends on both the backbone and the task, with the task being the more differentiating factor (see
Figure Figure 1). Easier tasks (e.g., Caltech, wide variety of objects) exhibit smaller performance
drops than more challenging ones (e.g., Aircraft, highly similar categories). As expected, the
choice of SWIN as backbone is better than ViT (Hua et al., 2024). However, the notion of “task
difficulty” is also model-dependent: (Dogs < Cub for SWIN but Dogs > Cub for ViT). This
demonstrates that task difficulty is a property that emerges from the interaction between model and
dataset (Zilly et al., 2019; Jankowski et al., 2025), rather than by data features alone (Cao et al.,
2024). Our experiments further suggest that with respect to adversarial robustness, the perturbation
strength may also play a role: Dogs is easier than Cub for perturbations below εg = 4/255, but
becomes comparable or more difficult at higher strengths.

Robust Fine-Tuning Delays Task Adaptation Figure 3 shows that in standard fine-tuning (εg =
0), the model adapts to the downstream task almost immediately – validation accuracy rises from the
first epoch – since there is no robustness constraint that competes with task adaptation. With εg > 0,
RFT-fix distorts task-relevant features, which prevents early adaptation and delays the onset of task
adaptation. For example, at εg = 4/255, adaptation begins around epoch 10 for Caltech, epoch
25 for Cars, and after epoch 30 for Aircraft. If we precisely measure the delay time as the
epoch from which the validation accuracy starts being above 5%, the correlation between the delay
times and the severity of the suboptimal transfer is very high (above 90%, see Appendix B.1 for de-
tails). The delay shortens the effective adaptation period, likely leading to suboptimal transfer with
increased severity at higher perturbation thresholds. To the best of our knowledge, the delayed onset
of task adaptation in robust fine-tuning has not been previously reported, which is an interesting
insight that could open up new opportunities for improvement.

5 EPSILON-SCHEDULING AND EXPECTED ROBUSTNESS

The analysis in section 4 demonstrates that a robust objective at high perturbation strengths is detri-
mental in RFT from a non-robust pretrained model, eventually leading to suboptimal transfer, with
performance subpar of what is expected from the pretraining advantage. Based on this finding, we
propose Epsilon-Scheduling, a simple schedule over the perturbation strength to mitigate this effect.

Epsilon-Scheduling In contrast with RFT-fix, we perform RFT for target perturbation strength
εg by minimizing an empirical counterpart of Rε(f) where ε follows a schedule during the fine-
tuning, given for each epoch t as a proportion α(t) ≥ 0 of εg: ε(t) = α(t)εg . We propose a
two-hinge linear scheduler illustrated in Figure 2 and defined by:

α(t) =


0 : t < T1

t−T1

T2−T1
: T1 ≤ t < T2

1 : t ≥ T2.

This strategy begins by training over T1 epochs without robustness (ε = 0), then linearly increases
from ε = 0 to ε = εg over T2 −T1 epochs, to finally remain constant (ε = εg) from epoch T2. Note

5
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Dataset Aircraft Caltech Cars Cub Dogs
Model Setting Clean Adv. E. adv. Clean Adv. E. adv. Clean Adv. E. adv. Clean Adv. E. adv. Clean Adv. E. adv.
ViT fix 3.00 2.00 2.50 44.95 19.52 31.43 3.60 2.00 2.74 17.40 2.80 8.56 8.64 2.88 5.35

sched 57.00 6.70 27.72 72.86 26.89 49.28 68.10 9.00 35.18 64.74 9.79 33.93 56.86 5.79 25.81
SWIN fix 4.20 2.70 3.47 68.87 38.10 53.40 13.20 5.60 8.66 45.89 13.60 28.56 46.05 11.08 26.69

sched 69.20 22.40 45.12 80.27 38.67 60.26 78.00 23.50 53.57 74.80 21.07 47.34 60.49 8.73 31.14

CNX fix 1.60 1.50 1.48 59.85 33.95 46.34 5.30 2.60 3.98 5.02 2.28 3.56 27.33 7.73 16.28
sched 75.00 28.80 50.90 84.99 41.82 64.92 85.60 35.90 65.04 80.69 24.28 53.07 68.94 9.78 36.51

R50 fix 1.30 0.90 0.74 53.59 26.78 39.93 1.50 1.20 1.34 30.89 8.27 17.84 27.14 6.95 15.61
sched 42.80 5.30 20.38 67.56 23.01 44.03 57.10 8.50 29.56 59.49 8.68 29.95 50.89 6.92 25.26

ClipViT fix 3.60 2.20 3.05 23.02 7.29 14.52 3.00 2.50 2.73 11.11 2.30 5.73 2.20 1.38 1.77
sched 65.80 25.40 44.84 70.68 33.70 51.67 84.70 38.60 64.47 67.64 18.05 41.79 54.28 8.94 27.78

ClipCNX fix 1.80 1.30 1.62 51.94 28.37 39.44 1.30 1.10 1.25 6.37 2.30 4.05 8.36 3.97 5.98
sched 79.20 34.50 59.09 76.53 37.20 56.83 90.00 55.20 77.14 73.58 22.75 47.77 62.67 11.36 33.85

Table 2: At high perturbation regime (8/255), RFT-fix mostly fails and Epsilon-Scheduling preserves
performance. See Table 1 for εg = 4/255.

that this generalizes the linear warmups mentioned in prior work (Pang et al., 2021; Debenedetti
et al., 2023) for T1 = 0, T2 ̸= T1, while falling back to RFT-fix for T1 = T2 = 0.

From a transfer learning perspective, this strategy can be viewed as follows: begin with task adap-
tation, then gradually shift to the robust objective, and conclude by minimizing the target robust
objective. Here, T1 denotes the adaptation phase, i.e., the time for the model to reach good clean
accuracy, while T2 controls the steepness of the transition from 0 to εg . In the following, we refer
to this strategy as RFT-scheduler (or simply scheduler). Considering that stronger perturba-
tions make task adaptation harder (i.e., cause adaptation delays), RFT-scheduler can be viewed
as a curriculum learning strategy that first exposes the model to easier examples before gradually
introducing harder ones (Cai et al., 2018; Pang et al., 2021; Debenedetti et al., 2023).

Expected Robustness Evaluation While RFT targets low adversarial risk Rεg (f), models are
usually evaluated both for clean accuracy Acc0(f) and robust accuracy Accεg (f). We propose to
extend this classical evaluation to take into account intermediary perturbation strengths within the
range [0, εg] and define the expected robustness metric as the expectation under uniform distribution
U of the accuracy over [0, εg]:

Acc[0,εg](f) := Eε∼U [0,εg]

[
Accε(f)

]
=

1

εg

∫ εg

0

Accε(f) dε =
1

εg
AUCεg (f),

where AUCεg (f) represents the area under the accuracy curve from 0 to εg (Figure 4, panels 2 and
4). This can be estimated using the trapezoidal rule to numerically approximate the integral. See Ap-
pendix A for additional details. When comparing two models with similar accuracies, particularly
in the presence of a clean–robust trade-off, the distinct patterns observed at intermediate perturba-
tion strengths (Figure 4, panels 1 and 3) can inform model selection, which expected robustness
summarizes quantitatively.

The expected robustness metric also evaluates performance under a more realistic threat model
where inputs may or may not be altered. Clean accuracy corresponds to the idealized case where
inputs are never perturbed, while robust accuracy at εg assumes that all inputs are perturbed with a
budget of εg . In contrast, expected robustness estimates the accuracy when perturbations of size up
to εg are applied at random (here, uniformly). While our choice of a uniform distribution serves as
a good option from a use-case-agnostic perspective, the distribution of perturbations can be tailored
to align with the relevant threat model for a specific application. With the uniform distribution, each
adversarial strength is weighted equally, however, for example, with a Dirac distribution centered at
0 (ϵg), it falls back to clean accuracy (worst case robust accuracy).

6 EXPERIMENTAL EVALUATION

We provide an overview of the experimental setup–including backbones, datasets, parameters T1 and
T2 for Epsilon-Scheduling, and training and evaluation procedures. Additional details for reference
and reproducibility are provided in Appendix A.

Backbones: We perform experiments using six non-robust backbones, selected to cover two
prominent architecture families (attention-based and convolutional-based) and two pretraining
paradigms (supervised and multi-modal). Transformers: Swin-Base (CNX, (Liu et al., 2021) and
ViT-Base (Dosovitskiy et al., 2021); convolutional architectures: ConvNext-Base (Liu et al., 2022)
and ResNet-50 (He et al., 2016); CLIP models (Radford et al., 2021): CLIP-ViT and CLIP-ConvNext.
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Figure 5: Epsilon-Scheduling mitigates suboptimal transfers and consistently improves expected robust-
ness even when robust accuracy is equivalent. Aggregated results from Table 1 and Table 2.
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Figure 6: Epsilon-Scheduling preserves task adaptation while improving robustness (4/255).

Downstream Datasets: We evaluate fine-tuning performance on five low-data downstream tasks:
bird species classification on CUB-200-2011 (Wah et al. (2011), 200 classes), dog breed classifica-
tion on Stanford Dogs (Khosla et al. (2011), 120 classes), object recognition on Caltech256 (Grif-
fin et al. (2007), 257 classes), car model classification on Stanford Cars (Krause et al. (2013), 196
classes), and aircraft variant classification on FGVC-Aircraft (Maji et al. (2013), 100 classes).

Choice of T1 and T2 for Epsilon-Scheduling: To obtain values of T1 and T2 that are general
enough for most cases, we use measurements from the most severe instance of suboptimal transfer
in Section 4 (SWIN-Aircraft). We define the adaptation phase as the epoch when validation
accuracy reaches 90% of its final value, which occurs at epoch 11. Accordingly, we set T1 = 12,
corresponding to about 25% of the total training epochs, sufficient for the model to reach high clean
accuracy. Since the average task-adaptation delay in RFT-fix is observed around epoch 37, we
set T2 = 37, i.e., roughly 75% of the total epochs, so that the model is trained with perturbation
strengths smaller than εg during the delay period.

Training and Evaluation We follow a similar setup described in Hua et al. (2024). We train for
50 epochs and generate adversarial examples using APGD (Croce & Hein, 2020b) (instead of PGD)
with cross-entropy loss as in prior work (Singh et al., 2023; Heuillet et al., 2025), which removes
the need for manual tuning. The number of APGD steps is 7 for training and 10 for evaluation
(Hua et al., 2024). Results are reported for the models at the end of training because overfitting
of the adversarial accuracy is negligible (Figure 6). The evaluation is conducted in the ℓ∞-norm,
which is the most widely studied norm in the literature (Croce et al., 2021; Ngnawe et al., 2024),
using two standard evaluation thresholds: εg = 4/255 (moderate perturbation) and εg = 8/255 (high
perturbation). For each model, we report the clean accuracy (clean), APGD accuracy (adv.), and
the expected APGD accuracy (E. adv.) over the interval [0, εg]. We provide in Appendix B.2 a few
additional results for SWIN, with the more expensive evaluation AutoAttack (Croce & Hein, 2020b),
a diverse ensemble of four attacks containing untargeted APGD-CE, targeted APGD-DLR, targeted
FAB (Croce & Hein, 2020a), and black-box Square Attack (Andriushchenko et al., 2020).
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Figure 7: Epsilon-Scheduling discovers a different local optimum. Left: Illustrative example of the dif-
ference between RFT-fix and RFT-scheduler. Center and right: Evolution of validation loss (Clean and
Adversarial) for the SWIN backbone on the Cars dataset with εg = 4/255.

6.1 EPSILON-SCHEDULING PERFORMANCE IN RFT

Results are reported in Table 1 for the moderate perturbation regime (εg = 4/255), in Table 2 for the
high perturbation regime (εg = 8/255), and in Figure 5 for the aggregated analysis.

Moderate Perturbation Regime (εg = 4/255) Table 1 shows that while RFT-fix often fails to
transfer with low clean accuracy, RFT-scheduler achieves high clean accuracy for most models
and maintains a decent adversarial accuracy. While RFT-fix sometimes achieves better adversarial
accuracy (in 9 out of 30 configurations), our scheduling strategy consistently yields higher clean
and expected accuracy. These results show that even at moderate perturbations (4/255), Epsilon-
Scheduling prevents the steep degradation incurred by RFT-fix, allowing models to retain strong
clean performance while achieving improved or similar adversarial accuracy at non-trivial levels.

High Perturbation Regime (εg = 8/255) At stronger perturbations, performance naturally de-
clines, as shown in Table 2. RFT-fix almost always fails to transfer, yielding very low accuracies.
In contrast, RFT-scheduler consistently improves clean accuracy and achieves higher expected
robustness in all 30 configurations. For adversarial accuracy alone, the scheduler outperforms in 28
out of 30 cases.

Overall, as shown in the aggregated results (Figure 5), Epsilon-Scheduling consistently improves
expected robustness through significant gains in clean accuracy, even when a robustness–accuracy
trade-off exists or when robustness is similar across datasets and backbones. This contrasts with lin-
ear warmups in adversarial training from scratch, which benefit vision transformers but not residual
networks (Pang et al., 2021; Debenedetti et al., 2023).

6.2 RESULTS ANALYSIS

In order to further analyze Epsilon-Scheduling, we consider three datasets representing different lev-
els of task difficulty, as determined by the severity of suboptimal transfer in Section 4: Aircraft
(high), Cars (medium), and Caltech (low).

Epsilon-Scheduling promotes task adaptation while improving robustness Figure 6 shows the
validation accuracy during training. Standard fine-tuning quickly reaches high clean accuracy with-
out robustness, whereas RFT-fix improves robustness but degrades clean accuracy. In contrast,
RFT-scheduler, achieves a high clean accuracy during the first stage and once perturbation
strengths start passing above zero, robust accuracy rises while clean accuracy remains surprisingly
high and stable.

Insight on the optimization process with Epsilon-Scheduling From an optimization standpoint,
RFT-scheduler seems to converge to a distinct local minimum of the adversarial loss compared
to the one achieved by RFT-fix, as illustrated in Figure 7 (left). The local minimum attained by
RFT-scheduler is notably characterized by a lower value of the clean loss, whilst reaching a
comparable value of the adversarial loss around epoch T2 = 37. Xu et al. (2024) found that the
gradient of clean loss and the adversarial loss can point in opposite directions. Our experiments
appear to confirm that this indeed happens when initializing at a non-robust pretrained model. We
observe that standard fine-tuning effectively minimizes the clean loss (Figure 7, center), but this
comes at the expense of increasing the adversarial loss (Figure 7, right). In contrast, during the first
20 epochs, RFT-fix appears to struggle to reduce the adversarial loss while the clean loss remains
nearly equal to the adversarial loss. However, the optimization trajectory of RFT-scheduler
initially aligns with that of standard fine-tuning, resulting in a low clean loss value. Subsequently,
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εg = 4/255 εg = 8/255

Aircraft Caltech Cars Aircraft Caltech Cars

Model Setting Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv.

RobViT fix 63.00 43.30 53.29 78.67 57.73 68.59 72.90 49.30 62.23 51.60 25.10 37.91 73.16 41.89 57.48 62.10 24.40 43.16
sched 63.50 34.80 49.14 82.22 57.93 70.86 78.00 43.40 62.05 65.10 23.00 42.88 79.57 41.12 60.97 78.60 24.30 52.39

RobSWIN fix 74.00 56.50 66.19 82.64 61.12 72.59 83.10 60.10 72.42 71.60 43.30 57.84 77.39 45.87 61.95 67.00 31.90 50.62
sched 77.20 49.90 64.99 84.88 58.71 73.11 86.60 54.20 73.15 74.90 38.00 57.44 81.86 43.43 63.88 84.20 39.10 63.88

RobCNX fix 78.30 62.00 70.74 85.20 67.11 77.03 86.10 68.40 78.69 74.70 48.00 62.22 79.77 49.87 65.50 80.30 50.00 67.51
sched 80.20 49.70 65.59 87.92 66.89 78.53 88.40 63.90 77.99 78.00 36.50 57.07 85.74 48.93 69.35 87.60 45.10 70.38

RobR50 fix 63.10 41.80 52.14 71.25 48.83 60.29 72.10 45.80 59.61 60.30 32.50 45.62 65.25 36.60 50.19 59.60 24.30 41.89
sched 66.50 36.20 51.14 75.49 47.60 61.79 78.10 44.20 62.29 66.90 24.70 44.26 71.90 34.08 52.35 76.80 22.90 50.37

Table 3: Epsilon-Scheduling on robust backbones. The scheduler (sched) improves clean accuracy at
the cost of a decrease in robustness achieved in fix, but overall, the expected robustness is still improved.

RFT-scheduler effectively reduces the adversarial loss while maintaining a minimal degradation
in clean loss. This allows RFT-scheduler to achieve a balance that appears difficult for RFT-fix.

Effect Epsilon-scheduling on robust backbones Table 3 shows that robust backbones are indeed
more resilient to large perturbations under RFT-fix than their non-robust counterparts, reducing the
need for Epsilon-Scheduling. Nevertheless, RFT-scheduler still consistently boosts clean accu-
racy relative to RFT-fix, although at the cost of reduced robustness. On the easy task (Caltech),
the trade-off is in favour of the scheduler. A key takeaway is that Epsilon-Scheduling sub-
stantially reduces the large clean-accuracy gap previously observed between RFT from non-robust
backbones and their robust equivalents (Liu et al., 2023; Hua et al., 2024), even if robustness at
target ϵg is not fully matched.

6.3 ABLATION AND SENSITIVITY ANALYSIS

We summarize the effect of the hyperparameters T1 and T2 of Epsilon-Scheduling in Ap-
pendix C.1 as follows. (i) T2 have the most significant influence with the control of steepness
(1/(T2−T1), T1 ̸= T2). When T2 is close to T1, clean accuracy decreases, whereas robust accuracy
increases; this eventually leads to suboptimal transfer. This is in line with the motivation for linear
warmup in Debenedetti et al. (2023), although they do not study this effect. (ii) Increasing T1 in-
creases clean accuracy, up to a threshold beyond which further increasing T1 has no apparent effect.

Special cases Only delaying the robust objective without follwing with gradual linear increase,
i.e., a schedule that switches directly from 0 to εg (T1 > 0, T1 = T2), is unstable: validation
accuracy drops sharply to its initial value and does not recover during training unless T1 is small
enough. Linear warmups (T1 = 0, T2 > 0) without the delay still improve over fix, provided T2 is
sufficiently large to ensure low steepness, thus having only very small perturbations early in training
to avoid distorting features. The end-to-end linear schedule (T1 = 0, T2 = 50) comes close to the
performance of the scheduler, though the latter remains superior.

Targeting directly the expected robustness A possible strategy to directly minimize the expected
robustness risk

(
Eε∼U [0,εg ]Rε(f)

)
is via Monte Carlo estimation with a single sample, which is

equivalent to training with an ε randomly drawn from U [0, εg] at each epoch. Results in Appendix
C.2 show that the random uniform strategy (uniform) often results in suboptimal transfer, except
on relatively easy datasets such as Caltech. This behaviour is normal: the expected perturbation
strength is εg/2, making it likely that high perturbation levels appear early in training, thereby im-
peding effective transfer.

Automated Scheduler Based on our analysis, we can derive a simple automatic epsilon-scheduler
(auto) driven by the validation accuracy. The procedure starts with ϵ = 0 and then initiates a linear
increase from T1 to the end of training, where T1 is automatically selected as the point at which
the validation accuracy converges. Convergence is detected by monitoring the change in validation
accuracy with patience of 5 epochs and a tolerance of 2%. Table 4 presents the results obtained
with this automatic scheduler, which show that although it has less expected robustness compared
to RFT-scheduler, it effectively mitigates suboptimal transfer and provides strong performance
across tasks.
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ϵ = 4/255 ϵ = 8/255

Model Setting Aircraft Caltech Cars Aircraft Caltech Cars
Clean Adv. E.Adv. Clean Adv. E.Adv. Clean Adv. E.Adv. Clean Adv. E.Adv. Clean Adv. E.Adv. Clean Adv. E.Adv.

SWIN
fix 7.70 4.80 6.11 79.97 57.16 69.19 60.20 29.70 44.74 4.20 2.70 3.47 68.87 38.10 53.40 13.20 5.60 8.66
sched 73.80 32.00 53.75 85.43 56.39 72.04 84.70 43.20 66.41 69.20 22.40 45.12 80.27 38.67 60.26 78.00 23.50 53.57
auto 73.30 29.40 52.96 85.63 54.18 71.29 84.20 38.40 64.30 68.40 18.60 42.69 81.71 35.82 59.92 79.20 18.70 51.43

CNX
fix 7.60 4.50 5.86 83.27 61.54 73.08 69.60 43.20 57.52 1.60 1.50 1.48 59.85 33.95 46.34 5.30 2.60 3.98
sched 78.40 38.00 59.40 89.41 61.45 77.23 88.90 57.70 75.85 75.00 28.80 50.90 84.99 41.82 64.92 85.60 35.90 65.04
auto 79.10 31.60 56.61 90.14 58.30 76.26 89.00 50.30 72.56 76.20 23.60 49.65 86.48 38.39 64.35 86.20 29.90 63.49

Table 4: Results on an automated scheduler derived from our analysis for SWIN and ConvNext
(CNX) on Aircraft, Caltech, and Cars, at ϵ = 4/255 (left block) and ϵ = 8/255 (right block).

7 CONCLUSION

We present the phenomenon of suboptimal transfer in robust fine-tuning from non-robust backbones
and its connection with delayed task adaptation. To address this, we propose Epsilon-Scheduling, a
heuristic perturbation schedule over perturbation strength, and demonstrate that it effectively miti-
gates this phenomenon, using commonly used metrics as well as the introduced expected robustness.
Our findings underscore the practical potential of scheduling in robust transfer learning and motivate
further exploration of fine-tuning strategies from non-robust pretrained backbones.

Limitations and Future Work. Although Epsilon-Scheduling yields significant improvements,
robustness can still be limited even when clean accuracy is high, highlighting the potential for future
research to further enhance performance. This work opens doors to exploring other scheduling
strategies, either heuristic, theoretically motivated, or learning-based. Extending the analysis to
other vision tasks, such as detection or segmentation, applying the framework to parameter-efficient
methods like LoRA, and investigating whether similar dynamics occur in other modalities, such
as natural language processing, remain open questions. Studying these cases may require special
considerations such as task-specific losses or hyperparameters.

From a theoretical perspective, although we offer an explanation based on the discrepancy between
the clean and robust loss landscapes in the vicinity of the pretrained model, a deeper understanding of
robust fine-tuning in this setting remains an open challenge. Our findings point to several important
open problems: (i) What mechanisms underlie suboptimal transfer: is delayed task adaptation the
only cause of suboptimal transfer or are there other factors? (ii) Can we find other approaches
to mitigate delayed task adaptation different from Epsilon-Scheduling? (iii) What mathematical
theory can account for suboptimal transfer or delayed task adaptation? (iv) If robust pretraining
is not indispensable, what specific properties (if any) in pretraining really matter for downstream
robustness and allow effective robust fine-tuning?

Pursuing these directions promises to unlock more effective strategies for robust fine-tuning and
yield more substantial progress towards achieving robustness in downstream tasks.

REPRODUCIBILITY STATEMENT

Our study is designed to be fully reproducible. All backbones and datasets are publicly available,
with details and references provided in Section 6 and Appendix A, where we also cite the prior
work underlying our design choices. Details on the estimation of expected robustness are given in
Appendix A.

We provide an anonymized GitHub repository containing the implementation, the results of the
hyperparameter optimization, all the data used to generate the paper’s figures and tables, and a script
to reproduce them. The repository also includes step-by-step instructions for downloading datasets
and pretrained models, creating Python environments, and launching experiments.

Finally, details on compute resources and expected run times are reported in Appendix A.

Link to anonymized GitHub Repository: https://anonymous.4open.science/r/EpsilonScheduling-
9F8E
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gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, 2013.

Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018.

Bryan Bo Cao, Abhinav Sharma, Lawrence O’Gorman, Michael Coss, and Shubham Jain. A
lightweight measure of classification difficulty from application dataset characteristics. In In-
ternational Conference on Pattern Recognition, pp. 439–455. Springer, 2024.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy, 2017.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. arXiv preprint arXiv:1902.06705, 2019.

Luiz Chamon and Alejandro Ribeiro. Probably approximately correct constrained learning. Ad-
vances in Neural Information Processing Systems, 2020.
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Shorthand (Configuration Name) HuggingFace ID References
ViT (vit b,sup,in1k) timm/vit base patch16 224.augreg in1k Steiner et al. (2022)

SWIN (swin b,sup,in22k-in1k) timm/swin base patch4 window7 224.ms in22k ft in1k Liu et al. (2021)
CNX (convnext b,sup,in22k-in1k) timm/convnext base.fb in22k ft in1k Liu et al. (2022)

ClipViT (vit b,clip,laion2b) timm/vit base patch16 clip 224.laion2b Ilharco et al. (2021)
ClipCNX (convnext b,clip,laion2b) laion/CLIP-convnext base w-laion2B-s13B-b82K Schuhmann (2022)

R50 (resnet50,sup,in1k) timm/resnet50.a1 in1k Wightman et al. (2021)
RobCNX (robust convnext b,sup,in1k) Liu et al. (2025)

RobSWIN (robust swin b,sup,in22k-in1k) Liu et al. (2025)
RobR50 (robust resnet50,sup,in1k) Liu et al. (2025)

RobViT (robust vit b,sup,in1k) Liu et al. (2025)

Table 5: Pretrained non-robust and robust models used with HuggingFace IDs and references. The
model name indicates the architecture ({vit, swin, convnext, resnet50}), the training type (sup:
supervised, clip: multimodal), and the dataset: in1k = ImageNet-1k, in22k = ImageNet-22k, in22k-
in1k = pretrained on ImageNet-22k then fine-tuned on ImageNet-1k, laion2b = LAION-2B.

APPENDIX

A EXPERIMENTAL SETUP DETAILS

Pretrained Models The non-robust backbones come from timm (PyTorch Image Models) and are
publicly available on HuggingFace. The robust models are publicly released by ARES and can be
accessed at github.com/thu-ml/ares/. A summary of all models used in this work is provided in
Table 5.

Training Splits and Data Augmentations We use train-val-test split from Hua et al. (2024)
for Caltech, Cub, Stanford Dogs; and from Heuillet et al. (2025) for Aircraft and
Stanford Cars. Training augmentations consist of standard preprocessing methods commonly
used for ImageNet and high-resolution images (Marcel & Rodriguez, 2016): random horizontal flips
(p = 0.5), color jitter (brightness, contrast, and saturation set to 0.25), and random rotations. As
done in Robustbench (Croce et al., 2021), images are resized to 224x224 with pixel values in the
range [0, 1], and data normalization and standardization are directly integrated into the model.

Hyperparameters Optimization We use the AdamW optimizer with a cosine learning rate sched-
uler that includes a warmup period. We select the learning rate and weight decay via hyperparameter
optimization (HPO) based on clean accuracy. HPO is performed only for the fix setting, and the
resulting hyperparameters are reused for the scheduler setting to ensure a fair comparison. We
search learning rate and weight decay values in the range 10−5 to 10−1, using the ASHAS scheduler,
a variant of Hyperband Li et al. (2018).. The exploration budget is 30 minutes for all configurations.
HPO results are available in the code repository.

Additional Evaluation Details The expected robustness is estimated by using the trapezoidal rule
with evaluations made with steps 1/255, so for example with εg = 4/255:

AUC4/255(f) =
1

4

3∑
i=0

Acc i
255

(f) + Acc i+1
255

(f)

2
.

Compute Resources Experiments were conducted using a 4xNVIDIA H100 GPU with 80GB of
Memory. The duration for a single case of robust fine-tuning ranges from approximately 15 minutes
to one hour in distributed mode. An evaluation of robust accuracy for εg from 0 to 16 can run in 5
minutes or less with APGD. The same evaluations with AutoAttack require a minimum of 4 hours;
the most expensive models can go up to 24 hours or more.
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Figure 8: Delay times increases with perturbation strength. We take the delay time here as the
epoch from which the validation accuracy starts being above 5%. In some cases, the model never
goes beyond this threshold until the end of training at 50 epochs. See Section 4
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Figure 9: Delay times strongly correlates with suboptimal transfer performance. The final vali-
dation accuracy is lower because task adaptation starts at later epochs. See Section 4

B ADDITIONAL RESULTS

B.1 TASK ADAPTATION DELAYS

We report detailed results on the increase in task adaptation delay time with growing perturbation
strength (Figure 8), as well as the correlation between delay times and the severity of suboptimal
transfer (Figure 9).

B.2 AUTOATTACK RESULTS

AutoAttack (Croce & Hein, 2020b) is a stronger and more diverse attack on the models, but is more
expensive. We evaluate a few cases (SWIN on {Cars, Aircraft} x {4/255, 8/255}). Results can
be found in Table 6 and Figure 10. Although it takes substantially more time, the results are close to
evaluations with APGD.

C ABLATION AND SENSITIVITY ANALYSIS

C.1 ABLATION AND SENSITIVITY ANALYSIS

To evaluate the influence of T1 and T2 on the performance of Epsilon-Scheduling, we consider
multiple configurations, illustrated in Figure 11 (moderate perturbation, 4/255) and Figure 12 (high
perturbation, 8/255). These figures illustrate the evolution of validation losses and accuracies during
training, along with test set evaluations, showcasing the distinct trends. The corresponding numeri-
cal results on the test set are reported in Table 7.
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Figure 10: Evaluation with AutoAttack. Numerical values are in Table 6.

ϵ Attack Setting Aircraft Cars
Clean Acc Adv. E. Adv. Clean Acc Adv. E. Adv.

4/255
APGD fix 7.70 4.80 6.11 60.20 31.9 45.89

sched 73.80 32.00 53.75 84.70 43.20 66.41

AutoAttack fix 7.70 3.30 4.97 60.20 29.90 44.96
sched 73.80 31.40 53.10 84.70 42.00 66.24

8/255
APGD fix 4.20 2.70 3.47 6.50 3.2 4.49

sched 69.20 22.40 45.12 78.00 23.50 53.57

AutoAttack fix 4.20 0.80 2.16 6.50 2.40 3.97
sched 69.20 21.50 44.51 78.00 22.90 52.81

Table 6: AutoAttack results

C.2 DIRECT MINIMIZATION FOR EXPECTED ROBUSTNESS

Since Epsilon-Scheduling consistently improves expected robustness, we compare with a direct min-
imization of the expected robustness risk. The results in Table 8 show Epsilon-Scheduling is still
superior, and the uniform strategy often leads to suboptimal transfer due to early sampling of high
perturbations.

D STATISTICAL SIGNIFICANCE

We report paired t-test statistics comparing RFT-Fix and RFT-Scheduler at ϵ = 4/255 and ϵ =
8/255 in Table 9. These tests assess whether performance differences between the two strategies
are statistically significant across downstream tasks. A paired t-test measures whether the mean
performance difference between two methods is reliably non-zero; small p-values indicate that the
observed differences are unlikely to occur by chance.

We also report the averages for each metric per model (Table 10) and per dataset (Table 11).

E ADDITIONAL RESULTS ON IMAGENETTE

We provide additional results for ImageNette in Table 12
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εg = 4/255 εg = 8/255
T1 T2 Clean Adv. E. Adv. Clean Adv. E. Adv.

0 0 60.20 31.90 45.89 6.50 3.20 4.49
12 67.70 40.20 54.19 36.20 10.50 21.47
30 78.40 44.70 63.41 63.30 21.80 43.34
50 82.30 40.30 63.95 75.40 19.90 49.33

5 5 64.20 29.50 47.26 4.20 2.40 3.26
12 78.40 48.20 64.95 68.00 24.20 47.06
25 81.10 48.60 66.64 74.80 26.00 52.54
50 84.50 35.90 63.32 80.30 18.00 51.58

12 12 1.90 1.40 1.74 1.30 1.30 1.28
30 83.00 47.30 67.09 78.10 26.60 55.06
37 (*) 84.70 43.20 66.41 78.00 23.50 53.57
50 84.80 35.80 63.25 81.10 16.60 51.79

25 25 0.80 0.80 0.80 0.80 0.80 0.80
37 84.00 39.50 64.61 78.40 21.00 51.51
50 84.30 24.80 57.46 81.00 12.10 46.94

Table 7: Effect of hyperparameters T1 and T2. The training dynamics can be found in Figure
11 for εg = 4/255 and Figure 12 for εg = 8/255. (*) RFT-scheduler reported in main text
(T1 = 12, T2 = 37).

εg = 4/255 εg = 8/255

Aircraft Caltech Cars Aircraft Caltech Cars

Model Setting Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv.

SWIN
fix 7.70 4.80 6.11 79.97 57.16 69.19 60.20 29.70 44.74 4.20 2.70 3.47 68.87 38.10 53.40 13.20 5.60 8.66
uniform 30.10 7.90 18.57 83.45 55.49 70.27 70.90 35.30 54.68 7.80 2.00 4.85 76.74 37.31 57.34 53.70 11.30 30.16
sched 73.80 32.00 53.75 85.43 56.39 72.04 84.70 43.20 66.41 69.20 22.40 45.12 80.27 38.67 60.26 78.00 23.50 53.57

R50
fix 8.40 2.90 4.56 67.47 40.02 53.74 4.20 2.90 3.49 1.30 0.90 0.74 53.59 26.78 39.93 1.50 1.20 1.34
uniform 41.50 8.80 22.04 74.95 34.68 54.49 43.10 8.90 23.28 27.40 3.70 12.26 67.55 22.03 43.44 6.20 2.10 3.36
sched 53.10 11.10 29.40 76.55 34.74 55.67 70.00 19.30 43.44 42.80 5.30 20.38 67.56 23.01 44.03 57.10 8.50 29.56

ClipCNX
fix 3.10 2.50 2.82 61.76 42.13 51.54 2.80 1.60 2.23 1.80 1.30 1.62 51.94 28.37 39.44 1.30 1.10 1.25
uniform 7.10 4.30 5.78 72.25 47.07 59.66 8.10 3.90 5.92 3.10 2.20 2.68 61.78 30.35 45.09 3.50 1.30 2.28
sched 81.70 50.70 67.88 81.19 52.68 67.71 90.90 74.10 84.33 79.20 34.50 59.09 76.53 37.20 56.83 90.00 55.20 77.14

Table 8: Epsilon-Scheduling still has better expected robustness than a direct optimization for the ex-
pected robustness risk. In fact the approximation with uniform can still lead to suboptimal transfer.

ϵ = 4/255 ϵ = 8/255

Metric n pairs t-stat p-value t-stat p-value

Clean Acc 30 7.823294 1.255470× 10−8 12.387491 4.170254× 10−13

Adv. 30 4.348780 1.540867× 10−4 5.447550 7.317049× 10−6

E. Adv. 30 6.595568 3.153155× 10−7 9.270810 3.572919× 10−10

Table 9: t-test statistics between RFT-fix and RFT-scheduler for two perturbation magnitudes.
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Figure 11: Effect of hyperparameters on SWIN-Cars for target εg = 4/255. The numerical results
are presented in Table 7. Same plot at ϵg = 8/255 are in Figure 12

Model Setting ϵ = 4/255 ϵ = 8/255

Clean Adv. E. Adv. Clean Adv. E. Adv.

ViT fix 37.29 16.89 26.49 15.59 5.84 10.12
scheduler 70.96 22.66 46.42 63.91 11.63 34.38

SWIN fix 56.40 32.08 44.35 35.64 14.21 24.16
scheduler 79.78 39.50 60.90 72.55 22.87 47.49

CNX fix 61.14 37.59 49.93 19.82 9.61 14.33
scheduler 84.05 45.69 66.59 79.04 28.12 54.09

R50 fix 37.26 16.99 26.62 22.88 8.82 15.09
scheduler 67.76 20.13 42.65 55.57 10.48 29.84

ClipViT fix 12.73 5.74 8.85 8.59 3.13 5.56
scheduler 73.77 39.14 57.08 68.62 24.94 46.11

ClipCNX fix 24.09 14.38 18.93 13.95 7.41 10.47
scheduler 80.74 49.09 65.91 76.40 32.20 54.93

Table 10: Average per model of the clean accuracy, adversarial accuracy, and expected adversarial
accuracy for ϵ = 4/255 and ϵ = 8/255.
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Figure 12: Effect of hyperparameters on SWIN-Cars for target εg = 8/255. The numerical results
can be found in Table 7.

Dataset Setting ϵ = 4 ϵ = 8

Clean Adv. E. Adv. Clean Adv. E. Adv.

Aircraft fix 6.37 3.47 4.66 2.58 1.77 2.14
scheduler 69.23 29.82 49.69 64.83 20.52 41.34

Caltech fix 65.42 43.00 54.27 50.37 25.67 37.51
scheduler 81.02 48.93 65.73 75.48 33.55 54.50

Cars fix 25.73 14.22 19.99 4.65 2.50 3.45
scheduler 82.43 45.33 65.29 77.25 28.45 54.16

Cub fix 47.24 23.56 35.07 19.45 5.26 11.38
scheduler 77.39 34.60 56.64 70.16 17.44 42.31

Dogs fix 46.00 18.82 31.99 19.95 5.66 11.95
scheduler 70.82 21.50 45.61 59.02 8.59 30.06

Table 11: Average per dataset of the clean accuracy, adversarial accuracy, and expected adversarial
accuracy for ϵ = 4/255 and ϵ = 8/255.
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Model Setting ϵ = 4/255 ϵ = 8/255

Clean Adv. E. Adv. Clean Adv. E. Adv.

SWIN fix 97.15 85.07 92.22 94.19 66.17 82.43
scheduler 98.62 85.48 93.67 97.50 69.08 86.93

CNX fix 97.81 88.44 94.09 94.80 68.87 84.08
scheduler 99.29 88.23 95.36 98.27 71.32 89.03

Table 12: Imagenette results for ϵ = 4/255 and ϵ = 8/255.
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