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Abstract
As the issue of robustness in AI systems becomes
vital, statistical learning techniques that are reli-
able even in presence of partly contaminated data
have to be developed. Preference data, in the form
of (complete) rankings in the simplest situations,
are no exception and the demand for appropri-
ate concepts and tools is all the more pressing
given that technologies fed by or producing this
type of data (e.g. search engines, recommending
systems) are now massively deployed. However,
the lack of vector space structure for the set of
rankings (i.e. the symmetric group Sn) and the
complex nature of statistics considered in ranking
data analysis make the formulation of robustness
objectives in this domain challenging. In this pa-
per, we introduce notions of robustness, together
with dedicated statistical methods, for Consen-
sus Ranking the flagship problem in ranking data
analysis, aiming at summarizing a probability dis-
tribution on Sn by a median ranking. Precisely,
we propose specific extensions of the popular con-
cept of breakdown point, tailored to consensus
ranking, and address the related computational
issues. Beyond the theoretical contributions, the
relevance of the approach proposed is supported
by an experimental study.

1. Introduction
One of the keys to the path of a trustworthy AI is undeniably
the design of statistical learning techniques that can resist, to
a certain extent, possible corruptions of the training dataset.
The analysis of the influence of atypical observations on
the outputs of machine-learning algorithms has received in-
creasing interest in the AI literature these last few years and
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has recently motivated a wide variety of dedicated works
(refer to Lugosi & Mendelson (2019); Lerasle et al. (2019)
for instance), revisiting in particular seminal concepts in
Robust Statistics such as the ε-contamination model, where
the training dataset is supposedly contaminated by a frac-
tion ε ∈ (0, 1) of outliers (Huber, 1964). It is the goal of
this paper to investigate the statistical analysis of ranking
data from the perspective of robustness. Ranking data are
indeed ubiquitous in modern technologies such as search
engines or recommending systems and the question of their
reliability in presence of corrupted data is a scientific chal-
lenge. Given the nature of preference data, observable in
the form of permutations (complete rankings, i.e. elements
of the symmetric group Sn) in the simplest case, informa-
tive statistics based on the latter are far from being simple.
This is mainly due to the lack of vector space structure on
Sn and the impossibility of averaging directly such data.
A major problem in ranking data analysis referred to as
Consensus Ranking or Ranking Aggregation, and which the
present article focuses on, consists in its simplest formula-
tion in summarizing a ranking distribution (i.e. a probability
distribution on Sn) by a median ranking (Kemeny, 1959).
Even though this problem has a long history in social choice
theory, see e.g. De Condorcet et al. (1785); de Borda (1781),
it has been the subject of much attention within the machine-
learning community, see e.g. Procaccia & Shah (2016); Jiao
et al. (2016) among many others, references being far too
numerous to be listed exhaustively. While most documented
works concern the issue of computing (approximately) me-
dian rankings with theoretical guarantees, this paper studies
in contrast the robustness properties of consensus ranking
methods by means of a novel approach, extending that de-
veloped in Huber & Ronchetti (2009) for multivariate data.
We emphasize that this angle is original to the best of our
knowledge and distinguishes itself from related results in
social choice theory, where median rankings are identified
with voting rules. In line with these works, the well-known
Gibbard-Satterthwaite theorem (Gibbard et al., 1973; Sat-
terthwaite, 1975) states that every reasonable voting rule
can be manipulated. We point out that there has been a
wide body of research devoted to characterizing the com-
plexity of computing manipulations, NP-hardness result on
manipulation being considered as a guarantee for robustness
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(Bartholdi III et al., 1989; Davies et al., 2011; Brandt et al.,
2016). However, beyond-worst-case analysis shows that the
problems are easy in practice (Zuckerman et al., 2009). In
the present article, we complement these works on the issue
of robustness to vote manipulation by investigating how the
seminal concept of breakdown point, a popular measure of
robustness of estimators in multivariate statistical analysis,
may apply to consensus ranking. Basically, it can be defined
as the proportion of outliers or (possibly deliberately) cor-
rupted observations that can contaminate the data sample
without jeopardizing the statistic. As will be shown, one
of the main difficulties faced in the context considered here
lies in the fact that consensus rankings are often obtained by
solving an optimization problem and no closed analytical
form for the solutions is available in general. Consequently,
the computation of breakdown points of ranking statistics
is generally a computational challenge. Our main proposal
here consists in relaxing the constraint stipulating that the
summary of a ranking distribution should be necessarily
represented by a single ranking (i.e. a strict order on the
set of items indexed by i ∈ {1, . . . , n}), or equivalently
by a point mass on Sn. Instead, we suggest summarizing a
ranking distribution by a bucket ranking (i.e. a weak order
on the set {1, . . . , n}), the possibility of observing ties
in the orderings considered being shown to have crucial
advantages regarding robustness.

The paper is organized as follows. In Section 2, basics in
ranking aggregation and the notion of breakdown function
are introduced, as well as the contributions of our paper.
Section 3 focus on robustness, by detailing our theoretical
results on the breakdown functions for the classical median,
extending this concept to bucket rankings, and providing an
optimization algorithm to estimate it in practice. Section 4 is
dedicated to the definition of our robust statistic, called the
Downward Merge statistic. Finally, experiments are done
in Section 5 to highlight the usefulness of our Downward
Merge statistic for solving Robust Consensus Ranking tasks.

2. Framework and Problem Statement
We start with a reminder of key concepts in ranking data
analysis and Robust Statistics. The interested reader can
refer to Alvo & Yu (2014); Huber & Ronchetti (2009) for
more details. Here and throughout, a ranking over a set of
n ≥ 1 items is represented as a permutation σ ∈ Sn where
Sn is the symmetric group. By convention, the rank r of
an item i ∈ [n] is r = σ(i). For any measurable space X ,
M1

+(X ) is the set of probability measures on X , TV(p, q)
the total variation distance between p and q inM1

+(X ).

2.1. Ranking Data and Summary Statistics

The descriptive analysis of probability distributions, or
datasets for their empirical counterparts, is a fundamen-

tal problem in statistics. For distributions on Euclidean
spaces such as Rd, this problem has been widely studied and
covered by the literature, with the study of statistics ranging
from the simplistic sample mean to more sophisticated data
functionals, such as U/L/R/M -statistics or depth functions
for instance (van der Vaart, 1998).

Defining similar notions for probability distributions on Sn,
the space of rankings, is challenging due to the absence
of vector space structure. However, fueled by the recent
surge of applications using preference data, such as e.g. rec-
ommender systems, the statistical analysis of ranking data
has recently regained attention and certain classic problems
have been revisited, as for instance those related to consen-
sus rankings and their generalization ability (see e.g. Korba
et al. (2017) and the references therein) or to the extension
of depth functions to ranking data (Goibert et al., 2022).

Central tendency or location. Statistics measuring cen-
trality, such as the mean (or the median for univariate distri-
bution), can be seen as barycenters of the sampling observa-
tions w.r.t a certain distance. Consensus Ranking / Ranking
Aggregation extends this idea to probability distributions
on Sn (Deza & Deza, 2009). Given a (pseudo-)metric d
defined on Sn and a distribution p ∈M1

+(Sn), a ranking
median σmed

p,d ∈ Sn can be defined as

σmed
d (p) := argmin

σ∈Sn

EΣ∼p(d(σ,Σ)). (1)

A well-studied instance of ranking median is the Kemeny
consensus, which corresponds to the situation where d is
the Kendall Tau distance: for all σ, ν in Sn,

dτ (σ, ν) =
2

n(n− 1)

∑
i<j

1[σ(i)<σ(j)]1[ν(i)>ν(j)] (2)

Another common choice is the Borda count when d is the
Spearman Rho, see Appendix A for more details. More-
over, when d is the Kendall tau, Borda is a O(n log n),
5-approximation of the Kemeny ranking (Caragiannis et al.,
2013; Jiao et al., 2016; Coppersmith et al., 2010), which is
a NP-hard to compute (Dwork et al., 2001).

More complex statistics based on ranking data. Often,
the information carried by a location statistic must be com-
plemented. For instance, a notion of dispersion or shape is
generally key to assessing convergence results or building
confidence regions. To this end, the notion of statistical
depth function has been developed for multivariate data (in
Euclidean spaces) (see (Zuo & Serfling, 2000) and the ref-
erences therein) and recently adapted to ranking, refer to
(Goibert et al., 2022). However, as more complex statistics
are more likely to exhibit robustness issues, we focus on
simple statistics estimating location for ranking distribution.
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2.2. Robust Statistics

To evaluate the robustness of a statistic, the notion of break-
down function has been introduced in the seminal work of
(Huber, 1964). Informally, the breakdown function for a
statistic T on a distribution p measures the minimal attack
budget required for an adversarial distribution to change the
outcome of the statistic T by an amount at least δ > 0.

Definition 2.1. (BREAKDOWN FUNCTION) Let X and Y
be measurable spaces, p ∈ M1

+(X ), T : M1
+(X ) → Y

a measurable function and d a metric on Y . For any level
δ ≥ 0, the breakdown function of the functional T at p is

ε⋆d,p,T (δ) = inf

®
ε > 0

∣∣∣∣∣ sup
q:TV(p,q)≤ε

d(T (p), T (q)) ≥ δ

´
.

In the traditional case X = Y = R, the level δ is generally
set to +∞ and the budget required is referred to as break-
down point. In the extreme case, when T is the identity
and δ = 0+, ε⋆ quantifies the budget of attack under which
identifiability of the distribution is possible (which requires
the additional knowledge that p belongs to some family).

Application to Ranking Data. In Agarwal et al. (2020)
such a study on identifiability is provided for the Bradley-
Terry-Luce (Bradley & Terry, 1952; Luce, 1959) model un-
der a budget constraint on pairwise marginals rather than the
Total Variation, and Jin et al. (2018) on the Heterogeneous
Thurstone Models (Thurstone, 1927). However, summary
statistics, such as a central tendency, are generally harder
to break than the full distribution itself, so the breakdown
function provides a finer quantification of robustness than
the identifiability of the distribution. Since the distances on
Sn are bounded, in general, the full breakdown function
needs to be considered and one cannot focus only on a par-
ticular level such as δ = 0+ or δ = +∞. From here and
throughout, the distance d and the attack amplitude δ are
normalized to lie between 0 and 1.

The robustness of the median statistic when an adversary
is allowed to attack with any strategy a pairwise model has
also been studied (Datar et al., 2022). They characterize the
robustness of two statistics in terms of the L2 distance on
distributions. We propose in Definition 2.1 a more general
and natural measure for robustness as a function of the
distance between the true and a corrupted statistic.

Bucket Rankings as a robustness candidate. In rankings,
adversarial attacks often target pairs of items that are “close”
in some sense (Agarwal et al., 2020): consecutive ranks, a
pairwise marginal probability close to 1

2 , . . . Thus, a simple
and efficient way to robustify a ranking median is to accept
ties, rather than being restricted to a strict order.

2.3. Challenges and Contributions

There is a wide number of median statistic studies motivated
by the lack of analytical expression and the computational
and statistical challenges that arise in the estimation process.
However, robustness results for ranking statistics are rare
and not rigorous enough for comparing different estimators.

Contribution 1. Using Definition 2.1 with the Kendall tau
distance provides a straightforward measure of robustness
for ranking medians. In Section 3.1 we provide a lower-
bound on the breakdown function for a ranking median
(Theorem 3.2) and a tight upper-bound for the Kemeny
consensus (Theorem 3.2).

Moreover, slight perturbations in the pairwise relations of
items that are similar to each other can imply breaking a
median estimator, showing a lack of robustness. It is natural
to propose more robust estimators by allowing pairs of items
to be “equally ranked”, i.e., by considering bucket ranking
statistics. However, generalizations of the breakdown func-
tion for bucket rankings require the use of Kendall tau for
buckets, which is computationally impractical.

Contribution 2. In Section 3.2 we propose an extension of
the breakdown function for bucket rankings which is built
upon a Hausdorff generalization of the Kendall tau distance.
We also develop an optimization algorithm to approximate
this breakdown function that overcomes the computational
issue of having a piece-wise constant objective function.

We illustrate and show empirically that bucket rankings are
more robust median estimators than rankings. However,
finding the optimal bucket order statistic requires exhaus-
tively searching the space of bucket rankings Πn, which
is even larger than the space of permutations, of factorial
cardinality, and therefore, it is totally infeasible.

Contribution 3. In Section 4 we propose a general method
for robustifying medians: given a ranking median, our algo-
rithm successively merges “similar” items together into the
same bucket. We evaluate this statistic in Section 5, show-
ing an improvement of robustness w.r.t. Kemeny’s median
without sacrificing its precision.

3. Robustness - Breakdown Function for
Ranking and Bucket Rankings

This section first details how to apply the notion of break-
down function ε⋆d,p,T . This allows providing insights into
the robustness of classical location statistics such as the Ke-
meny consensus. These results advocate for the introduction
of a more robust type of statistics based on bucket orders
that are also developed in this section.
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3.1. Breakdown Function for the Kemeny Consensus

We explore the robustness of ranking medians σmed
d (p) as

defined in Equation (1) for different metrics d over Sn as
defined by the breakdown function ε⋆dτ ,p,T

. In particular, it
is possible to tightly sandwich the breakdown function for
the Kemeny median.

Theorem 3.1. For p ∈M1
+(Sn), σ⋆

p = σmed
dτ

(p) (Kemeny
median) and δ ≥ 0, if ε+(δ) ≤ 2p(σ∗

p) then ε⋆dτ ,p,σ⋆
p
(δ) ≤

ε+(δ) with

ε+(δ) = min
σ∈Sn

dτ (σ,σ
⋆
p)≥δ

max
ν∈Sn

dτ (ν,σ
⋆
p)<δ

EΣ∼p [dτ (Σ, σ)− dτ (Σ, ν)]

dτ (σ⋆
p, σ)− dτ (σ⋆

p , ν)
.

Proof Sketch. Detailed Proof can be found in Appendix C.1
The proof relies on showing that, for ε > 0, the attack
distribution q̄ε = p− ε

21[·=σ∗
p]
+ ε

21[·=σ⋆,rev
p ], where σ⋆,rev

p

is the reverse of σ⋆
p , is in the feasible set of the optimization

problem supq:TV(p,q)≤ε dτ (σ
∗
p , σ

∗
q ) (see Definition 2.1).

Using q̄ε provides a way to link ε and δ. The condition
ε+(δ) ≤ 2p(σ⋆

p) ensures q̄ε is well-defined.

It is also possible to provide a lower bound on the breakdown
function for any generic ranking median.

Theorem 3.2. For p ∈ M1
+(Sn), m and d being two

metrics on Sn, σ⋆
p = σmed

d (p) and δ ≥ 0, we have
ε⋆m,p,σ⋆

p
(δ) ≥ ε−(δ) with

ε−(δ) = min
σ∈Sn

m(σ,σ⋆
p)≥δ

max
ν∈Sn
ν ̸=σ

EΣ∼p [d(Σ, σ)− d(Σ, ν)]

maxσ′∈Sn
d(σ′, σ)− d(σ′, ν)

Proof. Detailed proof can be found in Appendix C.2.
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Figure 1. An illustration of ε+(δ) and ε−(δ) (from Theorem 3.1
and Theorem 3.2) for a distribution on permutations of 4 items.
For Borda and the median associated with Spearman footrule, only
the lower bound is displayed.

Figure 1 shows that no choice of d makes the median uni-
formly more robust than another. Then, unfortunately, it

also illustrates the fragility of median statistics against cor-
ruption of the distribution. In this example, impacting the
distribution p by less than 5% allows changing the Kemeny
median by flipping more than half item pairs (δ ≥ 0.5).

Sensitivity to similar items. To further illustrate the
fragility of Kemeny’s median, Figure 2 shows its breakdown
function on specific distributions. As could be expected, if
all items are almost indifferent (uniform distribution - pur-
ple curve), then a ranking median is very fragile: a small
nudge on p is enough to change the Kemeny median from
one ranking to its reverse. On the contrary, when p is a point
mass at a given ranking (blue curve), it requires a large
attack on p to impact the median.

The green curve shows a weakness in the median: despite p
being concentrated on two neighbouring rankings (identical
up to a pair of adjacent items), the robustness is very low
for δ ≤ 0.2. This highlights a mechanism underlying adver-
sarial attacks in real-world recommender systems (ex: fake
reviews...): at a small cost, it is possible to be systematically
ranked on top of close alternatives. This calls for using the
natural alternative to (strict) rankings, which incorporates
indifference between items: bucket rankings.
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Figure 2. Breakdown function for Kemeny’s median for different
distributions p. ”Uniform” denotes an almost uniform distribution;
”Point mass” an almost point mass distribution, and ”Bucket” an
almost point mass distribution on two neighboring rankings.

3.2. Bucket Ranking - Extended Ranking Consensus

Intuitively, bucket rankings are rankings with ties allowed.
Formally, they can equivalently be defined as a total preorder
– i.e. a homogeneous binary relation that satisfies transitivity
and reflexivity (preorder) in which any two elements are
comparable (total) – or as a strict weak ordering – i.e. a
strict total order over equivalence classes of items (buckets).

Definition 3.3. (BUCKET RANKING) A bucket order π is a
strict weak order defined by an ordered partition of [n], i.e.
a sequence (π(1), . . . , π(k)) of k ≥ 1 pairwise disjoint non
empty subsets (buckets) of [n] such that:

4



Robust Consensus Ranking

(i) i ≺π j ⇔ ∃l < l′ ∈ [k], (i, j) ∈ π(l) × π(l′),

(ii) i ∼π j ⇔ ∃l ∈ [k], (i, j) ∈ π(l) × π(l),

We denote Πn the set of bucket rankings, which is of size∑n
k=1 k!S(n, k)

1 (vs n! for Sn).

The indifference between items that bucket rankings can
incorporate is an interesting feature to gain robustness, be-
cause the statistic can output alternatives between several
strict orders, making it harder to attack.

As sets of permutations. A bucket ranking π ∈ Πn can be
equivalently mapped to a subset of permutations, generated
through the different ways to break ties. We say that a
permutation σ ∈ Sn is compatible with a bucket ranking
π ∈ Πn – denoted σ ∈ π – if for any i, j ∈ [n], σ(i) <
σ(j) ⇔ i ≺π j or i ∼π j. For two bucket orders π1, π2,
we say that π1 is stricter that π2, denoted π1 ⊆ π2, iff for
any σ ∈ Sn, σ ∈ π1 ⇒ σ ∈ π2.

As a distribution. Being a set of permutations, a bucket
order π ∈ Πn can also be seen as a uniform distribution
with restricted support. This point of view is particularly
intuitive from a robustness perspective: a randomized output
is generally harder to attack for an adversary.

Distances between bucket rankings. A key to applying
the breakdown function from Definition 2.1 to bucket orders
statistics is to have a metric on Πn that extends those defined
on Sn. To this end, we use the previous remark that weak
orders are sets of rankings as well as a classical Hausdorff
extension of metrics to sets. More precisely, we define:

Definition 3.4. (NON-SYMMETRIC HAUSDORFF) Let d be
a metric on Sn. The non-symmetric Hausdorff pseudoquasi-
metric between two bucket rankings π1, π2 ∈ Πn is

HNS
d (π1, π2) = max

σ2∈π2

min
σ1∈π1

d(σ1, σ2) .

Even though it is not a metric, HNS
d is well-suited to ranking

with ties. Intuitively, its lack of symmetry allows differenti-
ating adversarial attacks whose effect is on the strict part of
the bucket order (e.g. swapping two items that are strictly
ordered) from those whose effect is ”only” to disambiguate
a tie. More precisely, if π2 ⊆ π1, then HNS

d (π1, π2) = 0.
Depending on the application, one may want to focus on the
first type of attacks, in which case HNS

d is a suitable choice
to define the breakdown function as ε⋆HNS

d ,p,T . Otherwise, it
is possible (and usual) to symmetrize the Hausdorff metric.

Definition 3.5. (1/2-SYMMETRIC HAUSDORFF) Let d be
a metric on Sn. The 1/2-symmetric Hausdorff metric be-

1S(n, k) are Stirling numbers of the second kind.

tween two bucket rankings π1, π2 ∈ Πn is defined by

H
(1/2)
d (π1, π2) =

1

2

(
HNS

d (π1, π2) +HNS
d (π2, π1)

)
.

Usual symmetrization of the Hausdorff metric uses a maxi-
mum rather than an average (Fagin et al., 2006). However,
under the Kendall-tau distance, the average version is com-
putationally simpler (see Appendix D for more details).

3.3. The Breakdown Function in Ranking Data Analysis
- Definition and Estimation

Definition. Putting all the pieces together, from now on,
the statistic T :M1

+(Sn)→ Πn summarizes a distribution
over Sn by a bucket ranking in Πn. Then, we use either
H

(NS)
dτ

(π1, π2) (see Definition 3.4) or H(1/2)
dτ

(π1, π2) on
Πn where dτ is the Kendall tau (see Equation (2)). Finally,
the breakdown function ε⋆

H
(NS)
dτ

,p,T
is the result of the fol-

lowing optimization problem

inf

®
ε > 0

∣∣∣∣∣ sup
q:TV(p,q)≤ε

H
(NS)
dτ

(T (p), T (q)) ≥ δ

´
(3)

The Empirical Breakdown Function. Computing a
closed-form expression for the breakdown point for any
statistic T and distribution p is challenging in general. How-
ever, it can be estimated empirically: the extended expres-
sion of the breakdown function in Equation (3) can be sim-
plified so that it is the solution to the following Lagrangian-
relaxed optimization problem.

inf
q∈∆Sn

sup
λ≥0

1/2∥p−q∥1+λ(δ−H
(NS)
dτ

(T (p), T (q))) (4)

Smoothing. As H
(NS)
dτ

(T (p), T (q))) is piece-wise con-
stant as a function of q (with a combinatorial number of
pieces), Problem (4) cannot directly be solve using stan-
dard optimization techniques. To solve this issue, we used
a smoothing procedure by convolving this function with a
smoothing kernel kγ with scale γ. Thus, after the relaxation,
the optimization problem (4) becomes:

inf
q∈∆Sn

sup
λ≥0

1/2∥p− q∥1 + λ(δ − ρT (p, q)), (5)

with

ρT (p, q) = H
(NS)
dτ

(T (p), T (q)) ⋆ kγ(q)

=

∫
u

H
(NS)
dτ

(T (p), T (u))× kγ(q − u)du,
(6)

On a practical note, a simple way to build a convolu-
tion kernel kγ on a simplex like M1

+(Sn), is to use a
convolution kernel κγ on the whole euclidean space –
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for instance an independent Gaussian density κγ(x) =
1√

(2πγ)n!
exp
¶
(−xTx

2γ2 )
©

– and set kγ to be the density of

the push-forward through a softmax function. We denote
εγp,T (δ) the limiting value of ∥p−q∥1/2 at the solution of (5).
Note the bias induced by such definition of kγ fades away
when γ goes to 0 in the same way as the bias induced by the
convolution. This smoothing ensures ρT is a continuous, dif-
ferentiable function with respect to q. Moreover, it can easily
be estimated using a Monte-Carlo sampling, using the fol-
lowing remark: ρT (p, q) = Eu∼k(p,γ)

(H
(NS)
dτ

(T (u), T (q)).

Optimization. When using Monte-Carlo estimation for
ρT , Equation (5) is a stochastic saddle-point problem. To
solve such problems, gradient/ascent has a rate of conver-
gence ofO(t1/2) for its ergodic average (t being the number
of steps) (Nemirovski & Rubinstein, 2002). Our empirical
optimization algorithm for computing the breakdown func-
tions relies on stochastic gradient descent and is able to
provide good approximations, as illustrated in Figure 4. We
denote ε̂γp,T (δ) = ∥p− q̄t∥1, where q̄t is the ergodic average
of the iterates (qs)s≤t obtained during the optimization.

Let’s make a couple of remarks on the empirical breakdown
function ε̂γp,T . First, it is a noisy estimate of εγp,T as ρT
and its gradients are estimated via Monte-Carlo. Thus, the
choice of γ and t should trade-off the variance of ε̂γp,T and
the bias |εγp,T − ε⋆dτ ,p,T

|. Second, as the term ∥p − q∥1 is
minimized in (5), it is expected ε̂γp,T over-estimates εγp,T .

4. Robust Consensus Ranking Statistics
As proved by Theorem 3.1, the classical median statistics
as defined by (1) can be easily broken, which motivates
defining more robust statistics, based on bucket rankings.
As illustrated by Figure 2, the weakness of median statistics
comes from being “forced” to rank all items, even those
which are (almost) indistinguishable. Bucket rankings seem
to be a natural solution to this problem, but what is a good
way to build a bucket order statistic?

As H
(NS)
dτ

defines a (pseudoquasi-) distance on Πn, we
could adapt the idea of a median as in (1) for bucket rankings.
However, contrarily Borda medians which can be computed
in a scalable way (Caragiannis et al., 2013), Hausdorff-
based medians would require to optimize over Πn. As
its cardinality is larger than Sn this problem can be more
computationally challenging than Kemeny’s median.

A more scalable approach is to start from a ranking median
such as the Kemeny or Borda consensus and to robustify
it using a plug-in method based on merging items that are
close into buckets. Figure 3 illustrates this idea. The left
graph describes pairwise marginal probabilities for which
the Kemeny consensus is A ≺ B ≺ C ≺ D. Intuitively,

merging either C and D (as P(C ≺ D) = 0.51) or B and
C (as P(B ≺ C) = 0.52) leads to bucket rankings (i) and
(ii), which will be harder to attack. However, this example
also highlights that there is no unique way of merging items.
For instance, if the constraint is to only merge items whose
pairwise preference probability is in [0.4, 0.6], it is possible
to merge B,C or C,D, but not B,C,D as P(B ≺ D) =
0.7: pairwise indistinguishability is not transitive.

4.1. Naı̈ve Merge Statistic

In order to formalize the latter intuition and to derive a
first (naı̈ve) plug-in rule, we define the pairwise preference
probability between two items, which provides a relevant
notion of closeness between items.

Definition 4.1. (PAIRWISE PROBABILITIES). For p ∈
M1

+(Sn), the pairwise preference probability between
items i and j, denoted Pi,j , is defined for i ̸= j by:
Pi,j = PΣ∼p(Σ(i) < Σ(j)). By convention, Pii = 0.5.
We define the pairwise matrix of p as P := [Pi,j ]1≤i,j≤n.

Then, given a bucket ranking π ∈ Πn, we formalize the
notion that two buckets can be merged, with the constraint
of not changing the strict order between buckets. To this end,
we define P̄i(π), the strongest deviation from indifference
between any two items within the ith bucket π(i).

P̄i(π) = max
¶
|Pl,l′ − 0.5| : (l, l′) ∈ π(i)

©
(7)

Then, one needs to quantify the value of P̄i(π) that would
result from merging bucket i to bucket j,

P̄ij(π) = max


∣∣∣∣Pl,l′ −

1

2

∣∣∣∣ : (l, l′) ∈ ⋃
l∈[n]
i≤l≤j

π(l)

 (8)

Finally, given a threshold θ ∈ [0, 0.5] on the acceptable
deviation from indifference, we define the set of pairs of
buckets that can be merged while keeping P̄ below θ,

G(π, θ) =
{
(i, j) ∈ [n]2 : P̄ij(π) ≤ θ

}
(9)

The first intuition is to merge buckets iteratively, starting
with the most indifferent ones, as described in Algorithm 1.

Termination of Algorithm 1 is guaranteed by the fact that the
number of buckets in π strictly decreases at each iteration.
Then, by definition of G(π, θ), the resulting bucket ranking
π is such that any of its bucket i satisfies P̄i(π) ≤ θ – i.e. no
two items with higher deviation than θ have been merged.

Despite being very natural, this algorithm suffers from an
important limitation: when changing the threshold θ, its out-
put only spans a limited subset of valid bucket rankings. In
the example provided by Figure 3, the naı̈ve merge method

6
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A B

C D

0.69

0.9
0.9

0.7
0.52

0.51

A B

C,D

(i)

A

D

B,C

(ii)

A,B

C,D

(iii)

A

B,C,D

(iii)

Figure 3. Left: Directed Graph that summarizes a pairwise marginal probability matrix. (i-iv) Graph representations of bucket orders that
are compatible with merging items which pairwise preference probability is below 0.52 (i, ii) and below 0.7 (iii,iv).

Algorithm 1 Naı̈ve Merge

Input: Pairwise matrix P , Ranking median σ, threshold
θ ∈ [0, 0.5].
π ← σ // σ as a bucket ranking
repeat
(i∗, j∗) = argmin(i,j)∈G(π,θ) P̄ij(π)

update π by merging all buckets between i∗ and j∗
π(i) ← π(i) for i < i∗

π(i∗) ←
⋃

l∈[n],i∗≤l≤j∗ π
(l)

π(i−j∗+i∗) ← π(i) for i > j∗

until G(π, θ) = ∅
Output: π

plugged-in on the Kemeny consensus can only output (i) and
(iii). Whatever the value of θ, it can never output (ii) or (iv).
This limitation is induced by its outputs being a monotonic
(w.r.t. to inclusion) function of θ – i.e. for θ1 ≤ θ2, the
resulting bucket rankings satisfy πθ1 ⊆ πθ2 .

4.2. Downward Merge Statistic

Overcoming this limitation only requires a small change
in the algorithm which results in our main plug-in method
named Downward Merge, shown in Algorithm 2. Down-
ward Merge algorithm selects the two buckets (i∗, j∗) whose
deviation from indifference P̄ij(π) is maximal among those
P̄ij(π) ≤ θ. 2 Then, all the buckets l such that i∗ ≤ l ≤ j∗

are merged. This process is repeated while there exist pairs
of buckets whose deviation from indifference P̄ij(π) ≤ θ
and thus termination is guaranteed.

The Downward Merge method is thus able to span a larger
set of bucket orders when varying θ. In the example from
Figure 3, the Downward Merge method plugged-in on the
Kemeny consensus can generate all four bucket rankings
(i-iv) for θ ∈ {0.51, 0.52, 0.69, 0.7)}.

The computation of the Downward Merge plugin is quite
efficient: in the general setting, its complexity scales in

2Instead of taking the most similar buckets, as in the previous
statistic, we take the most different pair among those that are
“similar enough”.

Algorithm 2 Downward Merge

Input: Pairwise matrix P , Ranking median σ, threshold
θ ∈ [0, 0.5].
π ← σ // σ as a bucket ranking
repeat

(i∗, j∗) = argmax(i,j)∈G(π,θ) P̄ij(π)

update π by merging all buckets between i∗ and j∗
π(i) ← π(i) for i < i∗

π(i∗) ←
⋃

l∈[n],i∗≤l≤j∗ π
(l)

π(i−j∗+i∗) ← π(i) for i > j∗

until G(π, θ) = ∅
Output: π

O(n3), which can be made more efficient in more spe-
cific cases. For example, if the distribution is strongly SST
(meaning that it satisfies: ∀(i, j, k), pi,j ≥ max(pi,k, pk,j)),
the complexity reduces to O(n2 log(n)); in the top-k /
soft top-k ranking setting, the complexity is O(k3) where
k = o(n); and finally, in the ”small threshold” case, mean-
ing #(i, j)|pi,j ≤ θ ≤ o(n), where θ is the threshold, then
it is O(n log(n)). Note that this latter case is reasonable
(especially for large values of n) since the purpose of our
plugin is to robustify ranking statistics while not losing too
much on precision: this means we prefer creating a small
number of buckets rather than a large number.

The next experimental section illustrates the robustness im-
provement brought by this plug-in method over a ranking
median.

5. Numerical Experiments
In this section, we illustrate the relevance of the statistic
outputted by our Downward Merge plug-in on Kemeny’s
median (called our Downward Merge statistic for short)
by running several illustrative experiments for various set-
tings and comparing with the baseline provided by the usual
Kemeny’s median. The code is available here.
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Figure 4. Breakdown function ε̂γp,T (δ) as a function of attack am-
plitude δ for a bucket distribution p (almost a point mass on two
neighboring rankings) with n = 4. The plain blue line denotes the
theoretical value for Kemeny’s median ε∗p(δ), blue crosses (resp.
red dots) the empirical approximation ε̂γp,T for Kemeny’s median
(resp. Down. Merge statistic for different thresholds θ).

5.1. Empirical Robustness

Our Downward Merge plug-in aims at providing a robusti-
fied statistic. To illustrate its usefulness, we ran experiments
computing the approximate breakdown functions ε̂γp,T (δ)
for the Kemeny’s median as a baseline and our statistic when
varying δ. Figure 4 shows the robustness as a function of
attack amplitude δ and for a hand-picked distribution p that
is almost a point mass on a bucket ranking.

When the threshold is set to a sensible value (here θ = 0.05),
the Downward Merge algorithm outputs a bucket order as
a statistic: thus, the robustness increases very strongly to
reach nearly optimal values even for very small values of δ,
which illustrates its efficiency. When θ = 0.5, the statistic is
the bucket order regrouping all items. In this case, the statis-
tic cannot be broken, and provide optimal values for the
breakdown function. However, such a statistic does not pro-
vide any information about the distribution under analysis:
its accuracy of location is very poor. Formally, the accuracy
of location of a statistic T is defined by its closeness (under
the same metric d used in its definition) to the whole rank-
ing distribution: ALd,p(T ) := ∥d∥∞ − Ep(d(T (p),Σ)),
which is the opposite of the loss, as simply defined by
Lossd,p(T ) = Ep(d(T (p),Σ)). By definition, under metric
d = dτ , Kemeny’s median has the highest accuracy of loca-
tion, i.e. the smallest loss. On the other hand, the Downward
Merge statistic when θ = 0.5 has a very high loss, which
makes it irrelevant in most cases. These observations justify
the analysis of the loss/robustness tradeoff of our Downward
Merge statistic compared to Kemeny’s median.

Figure 5. Loss/Robustness tradeoffs for different p with δ = 1.
Pairs of points linked by a black line denote results for Kemeny’s
median and Down. Merge statistics on the same distribution p
with n = 4. ”Buckets” are hand-picked distributions generated
to be almost a point mass on a bucket order, ”Uniform” (resp.
”Point mass”) ”is an almost uniform (resp. point mass) hand-
picked distribution, and ”PL distribs.” are random Plackett-Luce
distributions.

5.2. Tradeoffs between Loss and Robustness

We ran experiments for various distributions p and com-
puted the loss and the breakdown function of Kemeny’s
median and our Downward Merge algorithm to show the
loss/robustness tradeoff for each statistic. Figure 5 shows
the results for different choices of distribution p when the
number of items n = 4, and for δ = 1/6 (normalized value
of δ that requires at least a switch between two items to
break the statistic).

The point mass (resp. the uniform) distribution represents
the extreme case for which Kemeny’s median is very robust
(resp. not robust at all) and for which we expect no im-
provement from using the Downward Merge statistic. This
intuition is verified in both cases, and we can see that the
Downward Merge statistic yields the same results (in loss
and in robustness) as Kemeny’s median.

The bucket distributions (for which the gap between the
probabilities for two rankings in the bucket order is re-
spectively 0.1 and 0.01) represent the settings to which
our Downward Merge is best suited. As expected, the im-
provement in robustness when using our Downward Merge
statistic is high, and the increase in loss is negligible.

Finally, the Plackett Luce distributions (for which the param-
eters were generated randomly) represent a random setting.
The results are interestingly very similar to those for the
bucket distributions: the gain in robustness is high and the
increase in loss is negligible. This random setting illus-
trates the usefulness of our Downward Merge statistic in
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Figure 6. Loss/Robustness tradeoffs for different real-world
datasets with δ = 1. Pairs of points linked by a black line de-
note results for Kemeny’s median and Down. Merge statistics on
the same dataset.

general cases and shows that, overall, it yields a much better
compromise than Kemeny’s median.

To corroborate these findings, we also ran experiments using
real-world datasets from the preflib library: two Netflix
Prize datasets (resp. with n = 3 and n = 4 items), a Debian
dataset (with n = 5 items) and an Apa dataset (with n = 5
items). The results are shown in Figure 6, and corroborate
the synthetic results: our plugin always provides much better
robustness, while the increase in the loss stays minimal.

6. Conclusion
In this paper, we developed a framework to study robust-
ness in ranks: we defined breakdown functions for rankings,
extended it to bucket rankings, and created an optimiza-
tion algorithm to approximate its value in practice. We
developed our Downward Merge statistic as a plug-in to
the classical Kemeny’s median to provide, as confirmed
by our experiments, not only an improved robustness but
also a better compromise between centrality and robustness.
We ensured our Downward Merge algorithm is scalable
to practical settings, but the evaluation of the breakdown
function remains challenging because of the use of the Total-
Variation distance as a metric for the budget constraint. The
definition and study of further scalable approximations of
the breakdown function are left for future work.
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Korba, A., Clémençon, S., and Sibony, E. A learning the-
ory of ranking aggregation. In Proceedings of the 20th
International Conference on Artificial Intelligence and
Statistics, (AISTATS), 2017.

Lerasle, M., Szabo, Z., Mathieu, T., and Lecué, G. Monk –
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A. Additional Metrics on Sn

The Kendall Tau is the metric used all along the main part of the paper, the proportion of misordered pairs,

dτ (σ, ν) =
2

n(n− 1)

∑
i<j

1[σ(i)<σ(j)]1[ν(i)>ν(j)] .

The Kemeny consensus is the median associated with the Kendall Tau metric.

The Spearman Rho is a normalized quadratic distance between the rank vectors,

dτ (σ, ν) =
6

n(n2 − 1)

∑
i

(ν(i)− σ(i))
2
. (10)

The Borda count is the median associated with the Spearman Rho (e.g. see Calauzènes et al. (2013)).

The Spearman footrule is a absolute value distance between the rank vectors,

dτ (σ, ν) =
∑
i

|ν(i)− σ(i)| . (11)

B. Notation for Appendix
For the sake of clarity of the proofs, we switch to matrix notation in the appendix. We fix an arbitrary indexation
{σ(1), . . . , σ(n!)} of Sn. Using this indexation, given a metric d on Sn, we can defined the (symmetric) metric matrix
D = (d(σ(i), σ(j)))i,j∈[n!]. Identifying a ranking σ with its corresponding basis vector ei s.t. σ = σ(i), we write for two
rankings σ, σ′, ν ∈ Sn,

ν⊤Dσ := d(ν, σ) or ν⊤D(σ − σ′) := d(ν, σ)− d(ν, σ′) (12)

Further, a distribution p ∈ M1
+(Sn) on permutation can now be seen as a n!-dimensional vector in Rn!. This allows to

write, for p ∈M1
+(Sn), σ ∈ Sn,

p⊤Dσ := EΣ∼p[d(Σ, σ)] (13)

C. Proof: Bound on Breakdown Function for Ranking Medians
C.1. Upper-bound

We first remind Theorem 3.1.

Theorem 3.1. For p ∈ M1
+(Sn), σ⋆

p = σmed
dτ

(p) (Kemeny median) and δ ≥ 0, if ε+(δ) ≤ 2p(σ∗
p) then ε⋆dτ ,p,σ⋆

p
(δ) ≤

ε+(δ) with

ε+(δ) = min
σ∈Sn

dτ (σ,σ
⋆
p)≥δ

max
ν∈Sn

dτ (ν,σ
⋆
p)<δ

EΣ∼p [dτ (Σ, σ)− dτ (Σ, ν)]

dτ (σ⋆
p , σ)− dτ (σ⋆

p , ν)
.

We re-state the theorem with the matrix notation defined in Appendix B and used all along the appendix.

Theorem C.1. For p ∈ M1
+(Sn), σ⋆

p = σmed
dτ

(p) and Sδ = {σ ∈ Sn|dτ (σ, σ⋆
p) ≥ δ}, if ε+(δ) ≤ 2p(σ⋆

p), then
ε⋆dτ ,p,σ⋆

p
≤ ε+(δ).

ε+(δ) = min
σ∈Sδ

max
ν∈Nδ

p⊤Dτ (σ − ν)

σ⋆
p
⊤Dτ (σ − ν)

, (14)

11
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Proof.

ε⋆dτ ,p,σ⋆
p
= inf

®
ε > 0

∣∣∣∣∣ sup
q:TV(p,q)≤ε

dτ (σ
⋆
p, σ

⋆
q ) ≥ δ

´
(15)

= inf
{
ε > 0

∣∣∃q, s.t.TV(p, q) ≤ ε and dτ (σ
⋆
p, σ

⋆
q ) ≥ δ

}
(16)

= inf

®
ε > 0

∣∣∣∣∣∃q, s.t.TV(p, q) ≤ ε and argmin
σ∈Sn

q⊤Dτσ ⊆ Sδ

´
︸ ︷︷ ︸

=:E

with Sδ = {σ ∈ Sn|dτ (σ, σ⋆
p) ≥ δ} (17)

Further, we define Nδ = Sn \ Sδ, σ⋆,rev
p the reverse of σ⋆

p , i.e., σ⋆,rev
p (i) = σ⋆

p(n − i − 1) and the attack distribution
q̄ε = p− ε

21[·=σ⋆
p]
+ ε

21[·=σ⋆,rev
p ] that removes the probability mass from the median to put it on the farthest point. We also

define E =
{
ε| argminσ∈Sn

q̄⊤ε Dτσ ⊆ Sδ

}
and Ẽ =

{
0 < ε ≤ 2p(σ⋆

p)
∣∣argminσ∈Sn

q̄⊤ε Dτσ ⊆ Sδ

}
⊆ E ∩ (0, 2p(σ⋆

p)].

Let ε > 0 be such that ε ≤ 2p(σ⋆
p). Then

ε ∈ Ẽ ⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, q̄
⊤
ε Dτσ ≤ q̄⊤ε Dτν (18)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, p
⊤Dτ (σ − ν) +

ε

2

(
σ⊤Dτσ

⋆,rev
p − σ⊤Dτσ

⋆
p + ν⊤Dτσ

⋆
p − ν⊤Dτσ

⋆,rev
p

)
≤ 0 (19)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, p
⊤Dτ (σ − ν) ≤ ε

2

Ä
(σ⋆

p − σ⋆,rev
p )

⊤
Dτ (σ − ν)

ä
(20)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ, p
⊤Dτ (σ − ν) ≤ ε

Ä
σ⋆
p
⊤Dτ (σ − ν)

ä
as σ⋆,rev

p
⊤Dτ · = ∥Dτ∥∞ − σ⋆

p
⊤Dτ · (21)

⇔ ∃σ ∈ Sδ,∀ν ∈ Nδ,
p⊤Dτ (σ − ν)

σ⋆
p
⊤Dτ (σ − ν)

≤ ε (22)

⇔ min
σ∈Sδ

max
ν∈Nδ

p⊤Dτ (σ − ν)

σ⋆
p
⊤Dτ (σ − ν)

≤ ε (23)

Now, denoting ε+(δ) = minσ∈Sδ
maxν∈Nδ

p⊤Dτ (σ−ν)
σ⋆
p
⊤Dτ (σ−ν)

, by definition ε+(δ) satisfies Equation (23), which means ε+(δ) ∈
Ẽ iff ε+(δ) ≤ 2p(σ⋆

p). Thus, if ε+(δ) ≤ 2p(σ⋆
p), then

ε+(δ) = inf Ẽ ≥ inf E = ε⋆dτ ,p,σ⋆
p
. (24)

C.2. Lower-bound

We first remind Theorem 3.2.

Theorem 3.2. For p ∈ M1
+(Sn), m and d being two metrics on Sn, σ⋆

p = σmed
d (p) and δ ≥ 0, we have ε⋆m,p,σ⋆

p
(δ) ≥

ε−(δ) with

ε−(δ) = min
σ∈Sn

m(σ,σ⋆
p)≥δ

max
ν∈Sn
ν ̸=σ

EΣ∼p [d(Σ, σ)− d(Σ, ν)]

maxσ′∈Sn
d(σ′, σ)− d(σ′, ν)

We re-state the theorem with the matrix notation defined in Appendix B.

Theorem C.2. For p ∈M1
+(Sn), d and m two metrics on Sn and σ⋆

p = σmed
d (p), we have

ε⋆m,p,σ⋆
p
≥ min

σ∈Sδ

max
ν∈Sn:ν ̸=σ

p⊤D(σ − ν)

∥D(σ − ν)∥∞
, (25)

where Sδ = {σ ∈ Sn|dτ (σ, σ⋆
p) ≥ δ}.
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Proof. Let Sδ, Nδ, E, Ẽ are defined as above.

ε⋆m,p,σ⋆
p
= inf

®
ε > 0

∣∣∣∣∣ sup
q:TV(p,q)≤ε

m(σ⋆
p , σ

⋆
q ) ≥ δ

´
(26)

= inf
{
ε > 0

∣∣∃q, s.t.TV(p, q) ≤ ε and m(σ⋆
p , σ

⋆
q ) ≥ δ

}
(27)

= inf

®
ε > 0

∣∣∣∣∣∃q, s.t.TV(p, q) ≤ ε and argmin
σ∈Sn

q⊤Dσ ⊆ Sδ

´
︸ ︷︷ ︸

=:E

with Sδ = {σ ∈ Sn|m(σ, σ⋆
p) ≥ δ}. (28)

Now,

ε ∈ E ⇔ ∃q, s.t.TV(p, q) ≤ ε and argmin
σ∈Sn

q⊤Dσ ⊆ Sδ (29)

⇔ ∃q ∈ ∆Sn , TV(p, q) ≤ ε and ∃σ ∈ Sδ,∀ν ∈ Sn, q
⊤Dσ ≤ q⊤Dν (30)

⇔ ∃q ∈ ∆Sn , TV(p, q) ≤ ε and ∃σ ∈ Sδ,∀ν ∈ Sn, p
⊤D(σ − ν) ≤ (q− − q+)

⊤
D(σ − ν) (31)

where q+ = (q − p)+ and q− = (p− q)+

⇒ ∃q ∈ ∆Sn , TV(p, q) ≤ ε and ∃σ ∈ Sδ,∀ν ∈ Sn, p
⊤D(σ − ν) ≤ ∥q+ − q−∥1∥D(σ − ν)∥∞ (32)

⇒ ∃σ ∈ Sδ,∀ν ∈ Sn, p
⊤D(σ − ν) ≤ ε∥D(σ − ν)∥∞ as ∥q+ − q−∥1 ≤ ε (33)

⇒ ∃σ ∈ Sδ,∀ν ∈ Sn, s.t.σ ̸= ν,
p⊤D(σ − ν)

∥D(σ − ν)∥∞
≤ ε (34)

⇒ min
σ∈Sδ

max
ν∈Sn:ν ̸=σ

p⊤D(σ − ν)

∥D(σ − ν)∥∞
≤ ε. (35)

Finally,

ε⋆m,p,σ⋆
p
= inf E ≥ min

σ∈Sδ

max
ν∈Sn:ν ̸=σ

p⊤D(σ − ν)

∥D(σ − ν)∥∞
. (36)

D. Hausdorff Extensions of Kendall Tau
We remind first the Kendall-tau distance, defined by:

dτ : (σ1, σ2) ∈ Sn ×Sn →
∑
i<j

1((σ1(i)− σ1(j))(σ2(i)− σ2(j)) < 0)

and the Definitions 3.4 and 3.5 of the Hausdorff extensions of the Kendall tau metric.

Definition 3.4. (NON-SYMMETRIC HAUSDORFF) Let d be a metric on Sn. The non-symmetric Hausdorff pseudoquasi-
metric between two bucket rankings π1, π2 ∈ Πn is

HNS
d (π1, π2) = max

σ2∈π2

min
σ1∈π1

d(σ1, σ2) .

Definition 3.5. (1/2-SYMMETRIC HAUSDORFF) Let d be a metric on Sn. The 1/2-symmetric Hausdorff metric between
two bucket rankings π1, π2 ∈ Πn is defined by

H
(1/2)
d (π1, π2) =

1

2

(
HNS

d (π1, π2) +HNS
d (π2, π1)

)
.

Proposition D.1. For any π1, π2 ∈ Πn, the computation cost of HNS
dτ
(π1, π2) and H

(1/2)
dτ

(π1, π2) is O(n2).

The average Hausdorff distance can be expressed with various expressions, necessitating the following notations (see (Fagin
et al., 2006)):
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1. ∀ i ∈ [[1, n]] π̄(i) =
∑

σ∈π σ(i) is the rank of item i according to weak order π.

2. S(π1, π2) = {(i < j) | π̄1(i) ̸= π̄1(j), [π̄1(i)− π̄1(j)][π̄2(i)− π̄2(j)] < 0} is the set of item pairs (i < j) that are in
different buckets in both π1 and π2, and that are in different orders in π1 and π2.

3. S(π1 \ π2) = {(i < j) | π̄1(i) = π̄1(j) and π̄2(i) ̸= π̄2(j)} is the set of item pairs (i < j) such that both items are in
the same bucket in π1 but in different ones in π2.

4. prof(π) = (prof(π)i,j)i<j , where ∀ i < j,prof(π)i,j = 1/2 if π̄(i) < π̄(j), = 0 if π̄(i) = π̄(j) and = −1/2 if
π̄(i) > π̄(j). prof(π) is called the profile vector of π.

We have the following equivalent expressions for the average Hausdorff distance:

Proposition D.2 (Average Hausdorff distance).

H
(1/2)
K (π1, π2) := #S(π1, π2) +

1

2
(#S(π1 \ π2) + #S(π2 \ π1)) (37)

=
∑
i<j

1 ([π̄1(i)− π̄1(j)][π̄2(i)− π̄2(j)] < 0)+

1

2
1 ([π̄1(i) = π̄1(j)])1 ([π̄2(i) ̸= π̄2(j)])+

1

2
1 ([π̄2(i) = π̄2(j)])1 ([π̄1(i) ̸= π̄1(j)]) (38)

= ∥prof(π1)− prof(π2)∥1 (39)

Avergage Hausdorff distance - Proof. Let π1, π2 be two weak orders associated with buckets (B1
1 , ...B

1
t1) and (B2

1 , ...B
2
t2)

respectively. Such buckets are sets of items i forming a partition of [1, n]] such that i ∈ B1
k iif π̄1(i) =

∑
k′<k #B1

k′ +
#B1

k+1
2 (see (Fagin et al., 2006) for a more formal definition). Let us define, as in (Critchlow, 2012; Fagin et al., 2006),

∀ i ≤ t1,∀ j ≤ t2, ni,j = #(Bi ∩Bj).

Then we have (Critchlow, 2012)[Chapter IV]: H(1/2)
K = 1

2

Ä∑
i<i′,j≥j′ ni,jni′,j′ +

∑
i≤i′,j>j′ ni,jni′,j′

ä
.

By noting that 2#S(π1, π2) =
∑

i<i′,j>j′ ni,jni′,j′ and 2#S(π1 \ π2) =
∑

i=i′,j>j′ ni,jni′,j′ , we derive our first equality.
The second equality directly comes from re-expressing the first one. The third equality comes from (Fagin et al., 2006).
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