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ABSTRACT

We study 14 large language models (LLMs) fine-tuned for chat and find that
their maximum softmax probabilities (MSPs) are consistently miscalibrated on
multiple-choice Q&A. However, those MSPs might still encode useful uncertainty
information. Specifically, we hypothesized that wrong answers would be associ-
ated with smaller MSPs compared to correct answers. Via rigororous statistical
testing, we show that this hypothesis holds for models which perform well on
the underlying Q&A task. We also find a strong direction correlation between
Q&A accuracy and MSP correctness prediction, while finding no correlation be-
tween Q&A accuracy and calibration error. This suggests that within the current
fine-tuning paradigm, we can expect correctness prediction but not calibration to
improve as LLM capabilities progress. To demonstrate the utility of correctness
prediction, we show that when models have the option to abstain, performance
can be improved by selectively abstaining based on the MSP of the initial model
response, using only a small amount of labeled data to choose the MSP threshold.

1 INTRODUCTION

Large language models (LLMs) have demonstrated profound capabilities in many domains, but
continue to sometimes generate plausible-sounding false responses (Huang et al., 2023). In one
high-profile case, an LLM-based system invented a litany of nonexistent court cases, leading to
formal sanctions for two lawyers (Mangan, 2023). Although ongoing work has reduced the rate of
these mistakes,1 LLMs will inevitably face situations that surpass the boundaries of their existing
knowledge. In those situations, it is unrealistic to expect these models (or any intelligent agents,
including humans) to always make perfect decisions. Rather than confidently misleading users,
LLMs should be able to detect unfamiliar situations and act cautiously (e.g., decline to answer).

In this paper, we study whether LLMs can determine the correctness of their own answers to
multiple-choice questions. If so, this would directly enable LLMs to decline to answer when they are
likely to be incorrect. Prior work fine-tunes LLMs with labeled data to recognize questions beyond
their knowledge (Kadavath et al., 2022; Zhang et al., 2023). However, this approach is costly and
could interfere with other capabilities of the model. More broadly, such approaches do not answer
the fundamental scientific question of whether LLMs already possess the necessary information to
decide when to abstain. In other words, can this ability be invoked rather than learned?

We investigate the maximum softmax probability (MSP) as a potential source of innate uncertainty
information. Specifically, our goal is to understand the relationship between the MSP of an LLM
response and the correctness of that response.

We evaluate 14 LLMs fine-tuned for chat (henceforth“chat LLMs” for brevity) on five different Q&A
datasets with two different phrasings (Figure 1). These LLMs cover a range of sizes, capabilities and
architectures, and include both open-source and proprietary models. To our knowledge, our work
is the most comprehensive study on LLM correctness-awareness. This comprehensiveness bolsters
the robustness of our claims, but also enables cross-model comparisons which reveal novel insights.

1See, for example, https://huggingface.co/spaces/hallucinations-leaderboard/leaderboard.
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Below is a multiple-choice question. Choose the
letter which best answers the question. Keep your
response as brief as possible; just state the letter
corresponding to your answer, followed by a pe-
riod, with no explanation.

Question:
In the nitrogen cycle, nitrogen can return to the
lithosphere directly from the atmosphere by
A. lightning.
B. cellular respiration.
C. air pollution.
D. condensation.

Response:

You will be asked a multiple-choice question. Re-
spond with the letter which corresponds to the cor-
rect answer, followed by a period. There is no
need to provide an explanation, so your response
should be very short. Now here is the question:

In the nitrogen cycle, nitrogen can return to the
lithosphere directly from the atmosphere by
A. lightning.
B. cellular respiration.
C. air pollution.
D. condensation.

Answer:

Figure 1: The two prompt phrasings we used, demonstrated on an example question.

1.1 CALIBRATION OF THE MAXIMUM SOFTMAX PROBABILITY

We first ask whether the MSP is calibrated (DeGroot & Fienberg, 1983; Nguyen & O’Connor,
2015), meaning that among responses with an MSP of p%, p% are correct. Calibrated MSPs enable
fully unsupervised abstention policies with theoretical guarantees: a calibrated model which answers
only when the MSP is higher than 1− ε guarantees that the chance of an incorrect answer is at most
ε. However, we show that this approach is not generally viable for chat LLMs. Figure 2 (left)
shows that most LLMs in our study have poorly calibrated MSPs. In particular, the MSPs are
consistently overconfident. Furthermore, improved performance on the underlying Q&A task does
not necessarily translate to better calibration: Figure 2 (right) shows no correlation between Q&A
accuracy and calibration error. This is one of the cross-model comparisons mentioned above.
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Figure 2: Left: calibration graph across all datasets using 10 quantile bins (i.e., each bin contains the same
number of data points, and there are 10 data points per model). Most models exhibit clear overconfidence.
Right: we aggregate the data from the left graph to a single data point per model, capturing the model’s
expected calibration error (the mean over bins of the absolute difference between the average MSP and the
fraction of correct answers in that bin) and average Q&A accuracy. The Q&A accuracy for each model
is averaged across the five datasets and two phrasings. The Pearson correlation coefficient is r = −0.21
(p = 0.47), indicating no correlation.

1.2 CORRECTNESS PREDICTION WITHOUT CALIBRATION

Even if the MSP cannot be directly interpreted as the probability of correctness, it might still be
predictive of correctness. As a simplified example, consider a model whose MSP is consistently 0.9
for correct responses and 0.8 for incorrect responses. This model is clearly miscalibrated, but its
MSP perfectly predicts correctness.
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Through rigorous statistical testing, we demonstrate that the MSPs of chat LLMs can indeed pre-
dict correctness. Moreover, the predictiveness is stronger for models which perform better on the
underlying Q&A task. This second cross-model comparison suggests that the ability to predict cor-
rectness will strengthen as the general capabilities of LLMs improve (e.g., by scaling up data and
model sizes). The same is not true of calibration, as discussed above. These contrasting results
reveal a novel dichotomy between two approaches to uncertainty quantification.

1.3 EXPERIMENT DESIGN IN BRIEF

Before detailing our results on correctness prediction, we outline our experiment design. We hypoth-
esized that wrong answers on multiple-choice Q&A tasks would be associated with lower MSPs. We
chose multiple-choice Q&A because there is exactly one correct answer: this allows us to study the
core hypothesis of whether MSPs are predictive of correctness without having to deal with more
complex issues such as degrees of correctness or multiple valid phrasings of the same correct an-
swer.

We evaluated our hypothesis on 14 popular LLMs. Each model was tested on each of the five
multiple-choice Q&A datasets used in the Hugging Face Open LLM leaderboard (Beeching et al.,
2023), which is the state-of-the-art for benchmarking open-source LLMs. To test our hypothesis in
the simplest setting possible, we used a plain zero-shot prompting style, with two different prompt
phrasings (Figure 1).

Formally, for each LLM-dataset-phrasing combination, we studied a binary classification task: given
a multiple-choice question and the LLM’s response, predict whether the response is correct. We
hypothesized that the MSP classifier would be able to discriminate between correct and incorrect
answers better than random chance. We also studied a classifier based on the maximum pre-softmax
logit (“Max Logit”).2

Our primary success metric was the Area Under the Receiver Operating Characteristic curve (AU-
ROC) (Bradley, 1997). The AUROC of a binary classifier ranges from 0% to 100%, where 0%
corresponds to getting every prediction wrong, 50% is random chance, and 100% is perfect clas-
sification. AUROC is also equivalent to the probability that a randomly chosen positive instance
is ranked higher than a randomly chosen negative instance. Conveniently, AUROC is threshold-
independent: it captures the model’s performance across the entire range of possible thresholds.3

We have attached the code for all of our experiments and analysis as supplementary material.

1.4 RESULTS

We computed the AUROC for each possible combination of LLM, dataset, prompt phrasing, and
classifier (MSP or Max Logit). We could not compute Max Logit AUROCs for the OpenAI models
(GPT3.5 Turbo and GPT4 Turbo) because the OpenAI API only provides softmax probabilities and
not pre-softmax logits. This resulted in 260 AUROC data points: 140 for MSP and 120 for Max
Logit. Among the 10 LLMs with the best average Q&A accuracy (percentage of questions answered
correctly), the AUROC outperformed random chance with p < 10−4 for 99/100 MSP data points
and 78/80 Max Logit data points (Table 1). The other four LLMs exhibited statistically significant
AUROC only for 20/40 MSP data points and 15/40 Max Logit data points. The most accurate LLM
– GPT4 Turbo – obtained an impressive average AUROC of 86%. See Section 4 for details.

We also found a strong direct correlation between average Q&A accuracy and average AUROC: the
Pearson correlation coefficients for MSP AUROC and Max Logit AUROC were r = 0.83 (p =<
10−3) and r = 0.91 (p < 10−4), respectively (Figure 3). This contrasts with calibration error
(Figure 2), which exhibited no correlation with Q&A accuracy (r = −0.21, p = 0.47).

In addition to demonstrating the predictive power of the MSP and maximum logit, we provide a
proof-of-concept for how this information can be leveraged to reduce LLM harm in practice. We
analyzed a variant of the original Q&A task where models can also abstain and receive 1 point per
correct answer, 0 points per abstention, and −c points per wrong answer. Unlike AUROC, this
metric is not threshold independent, so we must choose a specific threshold. To do so, we used 20

2Max Logit has no notion of calibration, since it is not a probability.
3Note that calibration error is also threshold independent.
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Table 1: Main AUROC results. AUROC and Q&A values are percentages, averaged over ten data points (five
datasets and two phrasings). The p < 10−4 columns indicate how many of those ten data points yielded p
values below 10−4 for the null hypothesis that AUROC = 50%. The p-values are from the Mann-Whitney U
test; see Section 4 for details.

MSP Max Logit
LLM Q&A Accuracy AUROC p < 10−4 AUROC p < 10−4

Falcon 7B 29.1 51.8 1/10 51.7 0/10
Falcon 40B 44.2 59.6 7/10 55.1 4/10
Llama 2 7B 40.6 57.3 6/10 55.9 5/10
Llama 2 13B 46.7 60.1 6/10 58.0 6/10
Llama 2 70B 58.3 69.4 10/10 63.3 8/10
Llama 3 8B 58.6 71.2 10/10 68.9 10/10
Llama 3 70B 78.4 81.7 10/10 72.6 10/10
Mistral 7B 56.9 63.5 10/10 62.7 10/10
Mixtral 8x7B 69.0 61.6 10/10 62.4 10/10
SOLAR 10.7B 67.2 59.9 9/10 65.2 10/10
Yi 6B 52.1 66.8 10/10 61.7 10/10
Yi 34B 69.0 67.5 10/10 66.4 10/10
GPT3.5 Turbo 67.3 75.7 10/10 – –
GPT4 Turbo 86.6 85.5 10/10 – –
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Figure 3: Average AUROC vs average Q&A accuracy for MSP (left) and Max Logit (right). These plots use the
same data as Table 1. The Pearson correlation coefficients were r = 0.83 (p < 10−3) for MSP and r = 0.91
(p < 10−4) for Max Logit, indicating strong correlations.

randomly chosen labeled data points (i.e., 20 questions and their answers). We found that for both
c = 1 and c = 2, selectively abstaining based on the MSP and/or maximum logit led to substantial
improvements over the base models. See Section 5 for details.

In summary, we show the following:

1. LLM MSPs are miscalibrated, and this does not improve as model capabilities improve.

2. LLM MSPs (and maximum logits) still predict correctness, and this does improve as model
capabilities improve.

3. A small amount of labeled data is sufficient to translate correctness prediction into a simple
yet effective abstention method.

Combining with the results of Kadavath et al. (2022), we conclude that fine-tuning degrades cali-
bration of LLMs and this effect is not mitigated as models become more capable. However, this
procedure only distorts rather erases uncertainty information in LLMs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Kadavath et al. (2022). The most relevant prior paper is Kadavath et al. (2022), who study LLM
correctness-awareness in a variety of domains. There are three key differences between their work
and ours.

The first is that they primarily study raw pretrained (i.e., not fine-tuned) LLMs. In particular, their
well-known finding that LLMs are well-calibrated applies only to raw pretrained models. In this
way, our work complements theirs by showing that their finding of good calibration fails to gener-
alize to LLMs fine-tuned for chat. (They actually briefly study one fine-tuned model and find that it
is quite miscalibrated.) Correctness-awareness may also be more important for fine-tuned models,
since the casual user is less likely to interact with raw pretrained LLMs.

The second is that Kadavath et al. (2022) only study MSP calibration and not MSP correctness
prediction.4 This may be because good calibration immediately yields theoretically grounded cor-
rectness prediction, so for raw pretrained models, good calibration may be sufficient. However, our
finding that chat LLMs have miscalibrated MSPs motivates the separate question of wheter MSPs
can predict correctness.

The third is comprehensiveness. Kadavath et al. (2022) only test a single series of models, while we
test seven series of models (14 models total). Our comprehensiveness crucially enables cross-model
comparisons, as discussed in Section 1. In particular, we have statistical evidence suggesting that the
correlation between correctness prediction and Q&A accuracy (and the lack of a correlation between
calibration and Q&A accuracy) may extend to models that do not even exist yet. In contrast, it is
harder to claim that the findings of Kadavath et al. (2022) generalize to other models, since they
essentially have a sample size of one.

Other work on LLM calibration. Several other papers have studied MSP calibration in LLMs
(OpenAI, 2023; Krause et al., 2023; Tian et al., 2023; Zhou et al., 2024). These papers have found
some evidence that chat LLMs produce overconfident MSPs, but the papers use different exper-
imental conditions and most of the papers study only a single model or family of models. To our
knowledge, we are the first to present a comprehensive and unified evaluation of the MSP calibration
of LLMs fine-tuned for chat.

Orthogonal to our work, Tian et al. (2023) devise prompting strategies to obtain calibrated verbalized
confidence estimates from LLMs. Beyond numerical probability, recent work considers alternative
media for expressing uncertainty such as natural language (Lin et al., 2022a; Mielke et al., 2022;
Xiong et al., 2023; Zhou et al., 2024) or set-based similarity metrics (Lin et al., 2023).

Training LLMs to abstain. Another line of work fine-tunes LLMs to predict the correctness of their
answers (Kadavath et al., 2022; Yin et al., 2023; Zhang et al., 2023). This approach has a different
focus than our work: our goal is to understand the fundamental relationship between MSPs and cor-
rectness, not to design a state-of-the-art abstention method. Our Q&A-with-abstention experiments
are intended as a simple proof of concept of our correctness prediction findings. In other words, our
primary contribution is scientific, not methodological.

Abstaining based on the MSP. The idea of abstaining based on the MSP was originally introduced
by Chow (1970) in the context of pattern recognition. This technique was recently explored for
LLMs by Gupta et al. (2024), although their setting is different. Also, their experiments only use
FLAN-T5 models. In contrast, we test 14 different LLMs: this enables cross-model comparisons,
leading to a novel correlation between Q&A accuracy and correctness prediction AUROC.

Beyond LLMs. Moving further afield, uncertainty quantification is an important topic in many
areas of NLP (Hu et al., 2023). Identifying data points on which a model is uncertain is a com-
mon heuristic in active learning (Settles, 2009; Tharwat & Schenck, 2023). Popular approaches
rely on model output distribution, such as least confidence (Culotta & McCallum, 2005; Settles &
Craven, 2008), margin sampling (Scheffer et al., 2001), and maximum entropy (Settles & Craven,
2008). Calibration (Bennet, 2000; DeGroot & Fienberg, 1983; Desai & Durrett, 2020; Guo et al.,
2017; Nguyen & O’Connor, 2015; Niculescu-Mizil & Caruana, 2005) examines whether a model’s
predicted probability of an event accurately reflects the actual likelihood of that event occurring in

4They do study correctness prediction in the different context of training LLMs to abstain. Those results are
discussed in a separate paragraph below.
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the real world. In the context of error detection through model probabilities, Nguyen & O’Connor
(2015) propose using MSP as an indicator for identifying incorrect predictions in coreference reso-
lution tasks. Subsequently, Hendrycks et al. (2020) demonstrate that MSPs from pre-trained BERT
models are effective in filtering out anomalous and out-of-distribution inputs. The MSP has also
been used to detect mistakes and out-of-distribution inputs in vision tasks (Hendrycks & Gimpel,
2017; Hendrycks et al., 2022).

3 EXPERIMENT DESIGN IN FULL

As discussed, we patterned our evaluation after the original Hugging Face Open LLM leaderboard
(Beeching et al., 2023). We used all five multiple-choice Q&A datasets5 from that leaderboard:
ARC-Challenge (Clark et al.), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021),
TruthfulQA (Lin et al., 2022b), and WinoGrande (Sakaguchi et al., 2021). We randomly sampled
6,000 questions from each dataset, except for those with fewer than 6,000, in which case we used
all of the questions (ARC-Challenge and TruthfulQA have 2,590 and 817 questions, respectively).

We tested 14 LLMs: 12 open-source and two proprietary. The open-source LLMs were chosen based
on a combination of performance on the aforementioned leaderboard and the number of downloads
on Hugging Face. The open-source models we selected are Falcon (7B and 40B)6 (Almazrouei et al.,
2023), Llama 2 (7B, 13B, 70B) (Touvron et al., 2023), Llama 3 (8B, 70B) (AI@Meta, 2024), Mistral
7B v0.2 (Jiang et al., 2023), Mixtral 8x7B (Jiang et al., 2024), SOLAR 10.7B (Kim et al., 2023), and
Yi (6B and 34B) (01-ai, 2023). We used the fine-tuned “chat" or “instruct" versions of all models,
as these have been specifically trained to answer user queries. All of the open-source LLMs were
accessed through the Hugging Face interface and were run with dynamic 4-bit quantization, which
has been shown to preserve performance while significantly reducing computational requirements
(Dettmers et al., 2023). The experiments on open-source LLMs took about three weeks on two
NVIDIA RTX A6000 GPUs.

We also tested two proprietary LLMs for which we could obtain softmax probabilities through an
API: OpenAI’s GPT3.5 Turbo (Brown et al., 2020; Ouyang et al., 2022) and GPT4 Turbo (OpenAI,
2023). Unfortunately, the OpenAI API does not provide pre-softmax logits, so we could not com-
pute Max Logit AUROCs for those two models. These experiments took only a few days and cost
approximately $100.

We wanted to test our hypothesis in its simplest form, so we used a plain zero-shot prompting
style, with two different prompt phrasings (Figure 1).7 The Hugging Face Open LLM leaderboard
also uses a plain prompting style (i.e., no chain-of-thought or other advanced techniques). The
leaderboard does use few-shot prompting, ranging from 5-shot to 25-shot depending on the dataset.
We tried using the same number of in-context examples, but this made the experiments prohibitively
slow. We were able to run complete experiments with one-shot prompting, which produced similar
results to our zero-shot results.

3.1 COMPUTING MSP AND MAX LOGIT

Let V be a set of tokens (a vocabulary) and let x be a sequence of tokens from V . For each token
y ∈ V and prefix x, an LLM computes a logit value L(y;x). It then applies a softmax function to
the logits to derive the probability of y being the next token:

P (y | x) = exp(L(y;x))∑
z∈V exp(L(z;x))

The Max Logit of token y is maxy∈V L(y;x) and the MSP is maxy∈V P (y | x). Note that the Max
Logit and MSP both correspond to the same token: argmaxy∈V L(y;x) = argmaxy∈V P (y | x).
In our experiments, we formulated each question as a prompt (Figure 1), then used greedy decoding
to generate a response (i.e., we always picked the token with the maximum logit).

5The leaderboard also includes the GSM8k dataset, which we excluded since it is not multiple-choice.
6Falcon also has a 180B version, which we did not test due to computational constraints.
7Note that the two proprietary models may use advanced prompting or reasoning techniques under the hood.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For typical supervised learning classification tasks such as those studied in Hendrycks & Gimpel
(2017) and Hendrycks et al. (2022), there is a single MSP and maximum logit per response. How-
ever, an LLM response can consist of multiple tokens and the model produces an MSP and Max
Logit for each token. To address this issue, we extracted from the response a single token that in-
dicates the LLM’s answer to the question. Specifically, we searched the output string for the first
occurrence of “A.”, “B.”, “C.”, etc, then recorded the MSP and Max Logit corresponding to that
capital letter token. If there was no such occurrence, we searched instead for just “A”, “B”, “C”,
etc, or the text of one of the options (e.g. for the question in Figure 1, this would be “lightning",
“cellular respiration", etc.). The same search process was used for both computing MSP/Max Logit
and evaluating correctness.

If the search failed, we recorded the MSP and Max Logit as zero, and labeled the LLM’s response
as wrong.8 We considered excluding these questions but decided that practically speaking, these
“unparseable” responses did not correctly answer the question and thus should be treated as wrong.

This search process was chosen to maximize the chance of extracting a legitimate answer from the
LLM response, but the specifics of the search process (e.g., whether “A.” or “lightning” has prece-
dence) did not significantly alter the results. Most models almost always responded in the correct
format. Only weaker models like Falcon 7B had issues in this regard (and even then, ambiguous
answers were fairly rare).

3.2 AGGREGATING RESULTS ACROSS DATASETS

Grouping the questions from all datasets together to compute a single AUROC per model would un-
dervalue datasets with fewer questions. Instead, we computed a separate AUROC for each available
combination of model, dataset, prompt phrasing, and classifier (MSP vs Max Logit).9 All in all, we
recorded 260 AUROC data points (14 models × 5 datasets × 2 phrasings × 2 classifiers, exclud-
ing Max Logit for OpenAI models) and 140 Q&A accuracy data points (14 models × 5 datasets ×
2 phrasings) over a total of 599,396 prompts (14 models × 21,407 questions across datasets × 2
phrasings). We then calculated per-model unweighted averages to get the results in Table 1.

4 PREDICTING ANSWER CORRECTNESS WITH MSP AND MAX LOGIT

Section 1.4 covers the most important elements of our AUROC results for MSP and Max Logit. We
do not repeat those results here and instead proceed directly to other considerations.

Statistical significance. We conducted a series of hypothesis tests to confirm that our AUROC
results were statistically significant. We used the Mann-Whitney U test (Mann & Whitney, 1947;
Wilcoxon, 1945) which directly tests the null hypothesis that the classifier’s true AUROC is 50%
(i.e., random guessing). In our case, a significant Mann-Whitney test affirms the hypothesis that
our classifier can distinguish between (1) questions where the LLM got the correct answer and (2)
questions where the LLM got the wrong answer. As the non-parametric equivalent of the t-test, the
U test requires the data to be independent but not normally distributed, which our randomly-sampled
multiple choice questions satisfy.

For each available combination of model, dataset, prompt phrasing, and classifier (MSP and Max
Logit), we tested the null hypothesis that the true AUROC was equal to 50%. This resulted in a
total of 260 Mann-Whitney U tests. Table 1 reports the number of p-values which were below 10−4

for each model and classifier. We chose the significance threshold of α = 10−4 to account for
a Bonferroni correction (Bonferroni, 1936), whichis applied when performing multiple hypothesis
tests (in our case, 220) to ensure that the chance of falsely rejecting any null hypothesis is small.
Starting from the standard threshold of α = 0.05, the Bonferroni correction yields α = 0.05/220 ≈
2.3× 10−4. We adhere to the stricter threshold of 1× 10−4 for simplicity.

WinoGrande. WinoGrande was by far the hardest dataset for our classification task (Table 2).
Our best hypothesis for this discrepancy is that WinoGrande is intentionally adversarial and tries to
“trick" the model. An illustrative question from this dataset is “Neil told Craig that he has to take

8This occurred for 1535 /599,396 responses (0.3%), mostly for weaker models. Across the Yi, Llama 3, and
GPT models, only 50/256,884 responses (0.02%) had this issue.

9The Python module sklearn was used to compute AUROC.
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Table 2: Average Q&A accuracy and AUROCs per dataset. All values are percentages, averaged over the then
models and two prompts.

Q&A Accuracy MSP AUROC Max Logit AUROC

ARC-Challenge 69.5 71.9 67.2
HellaSwag 58.3 67.8 62.2
MMLU 54.4 68.5 64.1
TruthfulQA 45.8 66.6 62.0
WinoGrande 59.3 57.9 54.5

care of the child for the day because did it last time." Even for some humans, it could be unclear
whether Neil is assuming responsibility or assigning responsibility. One wrinkle is that the Q&A
accuracy on WinoGrande is comparable to other datasets, so it is not the case that this dataset is
“harder” in general: it is harder only for predicting correctness. Regardless, despite WinoGrande’s
average MSP AUROC of 57.9%, GPT4 Turbo still achieved an AUROC of 77.7% on this dataset
(Table 11), suggesting that this difficulty is surmountable for sufficiently capable models.

Weak correlation between model size and AUROC. The Pearson correlation coefficients between
model size and AUROC were r = 0.58 (p = 0.05) and r = 0.40 (p = 0.20) for MSP and Max
Logit, respectively (Figure 4). It is unsurprising that some correlation exists, due to the known
correlation between size and model capabilities (e.g., Q&A accuracy) and our correlation between
Q&A accuracy and AUROC. However, the relatively weak correlation between model size and AU-
ROC may suggest that adding more parameters does not directly improve predictive power of these
classifiers outside of improving the model’s overall capabilities. The OpenAI models were excluded
from these charts because we do not know their size.
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Figure 4: Average AUROC vs model size for MSP (left) and Max Logit (right). The Pearson correlation
coefficients for MSP and Max Logit were r = 0.58 (p = 0.05) and r = 0.40 (p = 0.20) respectively. GPT3.5
Turbo and GPT4 Turbo were excluded since we do not know their sizes.

Impact of prompt phrasing. The two phrasings in Figure 1 did not yield significantly different re-
sults (Figure 5). This suggests that our results are robust to minor modifications to prompt phrasing.

5 PROOF-OF-CONEPT: REDUCING WRONG ANSWERS BY ABSTENTION

In Section 4, we showed that the MSP and maximum logit contain useful statistical signals for
predicting correctness. To illustrate the utility of this finding, we now revisit the original Q&A task
but allow models to selectively abstain based on the MSP or Max Logit.

For each classifier (MSP or Max Logit) and a given threshold, we conducted the following exper-
iment. First, we computed the classifier value (MSP or maximum logit) based on the initial LLM
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Figure 5: Average AUROC vs Q&A accuracy based on prompt phrasing (see Figure 1). All values are averaged
over the five datasets.

response, the same way we did in our AUROC experiments. If the classifier value was below the
threshold, we recorded the model’s answer as “abstain”, and otherwise recorded the original answer.

These experiments use the exact same data as the AUROC experiments, but we evaluate the results
differently. We awarded 1 point per correct answer, 0 points per abstention, and −c points per wrong
answer, normalized by the total number of questions. We ran two versions of this experiment: once
for c = 1 (“balanced score") and c = 2 (“conservative score"). For c = 1, the benefit of a correct
answer is equal to the cost of a wrong answer. However, wrong answers are much worse in many
situations (e.g., medical diagnoses), justifying c = 2. Our experiment design was partly inspired by
Kang et al. (2024), who use an even more extreme penalty of c = 4.

Choosing the threshold. Unlike when computing the AUROC, here we must choose a specific
confidence threshold for whether the model should abstain. To do so, we randomly selected a
training set of k questions, and then for each model, chose the threshold which performed best on
those k questions. We discovered that k = 20 performed almost as well as using half of all questions.
Although k = 10 still outperformed the baseline, performance was much worse compared to k = 20.
For this reason, we used k = 20 as the default value, but we also report results for k = 10 (Table 5)
and k = half of all questions (Table 6) in the appendix. All tables and figures other than Tables 5
and 6 use k = 20.

5.1 RESULTS

For each LLM, each classifier, and each c ∈ {1, 2}, Table 3 reports the scores obtained by the
base LLM and the augmented LLM on the test set, where the augmented LLM used the threshold
determined by training set. Figure 6 (in Appendix A) shows the performance of each model across
the entire range of possible thresholds.

Our method outperformed or matched the base LLM in all conditions, and substantially outper-
formed the base LLM on the conservative score metric. As expected, models with low initial scores
exhibited the most dramatic improvements. For example, any model with a negative initial score
can trivially improve to 0 by abstaining on every question. (Table 4 shows the abstention frequency
for each LLM-classifier pair.) More generally, the higher the fraction of correct answers, the more
likely the model is to accidentally abstain on a correct answer. As a result, it is unsurprising that
models with high initial scores showed only modest improvements on the balanced score metric.

These results show how the uncertainty signals from softmax probabilities and/or logits can be
leveraged to improve performance on practical language tasks. Further details on our Q&A-with-
abstention results can be found in Appendix A.
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Table 3: Results on Q&A with abstention. “Balanced" and “conservative" correspond to -1 and -2 points per
wrong answer, respectively. Correct answers and abstentions are always worth +1 and 0 points, respectively.
The total number of points is divided by the total number of questions (then scaled up by 100 for readability)
to obtain the values shown in the table. We highlight the best method for each model.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -41.9 -1.1 -0.3 -112.9 -2.7 -1.0
Falcon 40B -11.6 1.9 0.5 -67.4 -0.4 0.0
Llama 2 7B -19.0 -6.4 -5.0 -78.5 -6.6 -0.3
Llama 2 13B -6.6 4.9 4.6 -59.9 -2.5 -1.5
Llama 2 70B 16.6 21.4 19.3 -25.1 7.7 2.3
Llama 3 8B 17.1 23.5 20.7 -24.3 10.3 9.8
Llama 3 70B 56.8 56.8 56.8 35.2 46.5 42.4
Mistral 7B 13.7 17.0 15.6 -29.4 -1.5 4.8
Mixtral 8x7B 38.0 38.4 38.4 7.1 15.8 12.3
SOLAR 10.7B 34.4 35.0 34.4 1.5 9.4 13.8
Yi 6B 4.2 14.5 9.5 -43.6 4.9 -2.4
Yi 34B 37.8 39.6 38.2 6.8 18.8 16.4
GPT3.5 Turbo 34.5 38.8 – 1.7 27.0 –
GPT4 Turbo 73.3 73.6 – 60.0 65.2 –

6 CONCLUSION AND FUTURE WORK

The capabilities of AI systems have advanced rapidly over the past several years and will likely
continue to grow. In order to ensure that AI is beneficial for society, we believe it is paramount to
understand the risks of such systems and take steps to address those risks. In this paper, we focus on
one particular risk: harmful responses from LLMs. We use the simple idea of noticing when one is
uncertain and then acting cautiously to avert these harmful responses.

One limitation of our work is the restriction to multiple-choice questions, which simplifies the prob-
lem in several ways. First, it removes the need to distinguish between multiple correct answers
(“aleatoric uncertainty”) and no good answers (“epistemic uncertainty”), both of which could re-
sult in low MSPs. The restriction to multiple-choice also enabled us to tie the LLM’s answer to a
single token and thus a single MSP. Future work could handle free-response questions by aggregat-
ing MSPs across tokens in a clever way. A further challenge could be multi-step decision-making
problems which may involve aggregating uncertainty not only across multiple tokens in a single
response, but across multiple responses on different time steps.

Another limitation is our reliance on labeled data to transform our scientific insights into a practical
method for abstention. We only used 20 data points, and we only used labeled data to choose the
threshold, but a fully unsupervised method would be advantageous in many settings. However,
we remind the reader that our primary contribution is the scientific finding of good correctness
prediction despite miscalibration, not the proof-of-concept abstention experiments in Section 5.

More broadly, we are excited about developing more robust methods for mistake detection in LLMs,
both for Q&A tasks and for other contexts. We would also like to better understand when and why
these methods fail: are there particular subcategories of unfamiliar situations that are especially
challenging to identify? For example, why was the WinoGrande dataset so much harder for our
correctness prediction task?
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A MORE DETAILS ON Q&A-WITH-ABSTENTION EXPERIMENT RESULTS

Figure 6 is based on the same data as Table 3, but shows each model’s performance across the entire
range of possible thresholds. A threshold of zero corresponds to the base LLM and the black dot
indicates the threshold chosen during the training phase (using 20 labeled data points), which is
also the threshold used to compute the score in Table 3 using 20 data points. One can see that the
chosen thresholds are not quite optimal, but 20 data points was still enough to produce substantial
improvements over the baseline of not abstaining.
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Figure 6: Results for Q&A with abstention over the entire range of possible thresholds. The base LLM corre-
sponds to a threshold of zero. The black dot corresponds to the threshold selected via the training set, which
determines the MSP and Max Logit scores in Table 3.

Table 4 presents the average abstention frequencies across all datasets, corresponding to the scores
from Table 3. We also provide dataset-level versions of Table 4 in Appendix C.

Finally, Tables 5 and 6 are analogues of Table 3 using 10 data points and half of all data points for
training, respectively.
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Table 4: Frequency of abstention on in the Section 5 experiments.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B 0 81.5 98.7 0 95.2 98.7
Falcon 40B 0 87.0 93.4 0 97.7 99.1
Llama 2 7B 0 37.2 47.0 0 87.3 98.7
Llama 2 13B 0 75.8 66.8 0 80.9 87.7
Llama 2 70B 0 14.7 13.8 0 66.6 60.8
Llama 3 8B 0 31.2 57.4 0 52.0 57.4
Llama 3 70B 0 0.0 0.0 0 42.4 25.4
Mistral 7B 0 15.0 11.7 0 49.6 69.9
Mixtral 8x7B 0 2.4 2.2 0 26.6 59.2
SOLAR 10.7B 0 4.7 0.0 0 27.5 35.8
Yi 6B 0 51.7 66.6 0 70.3 66.6
Yi 34B 0 10.5 3.9 0 25.4 20.6
GPT3.5 Turbo 0 30.8 – 0 61.2 –
GPT4 Turbo 0 9.6 – 0 9.6 –

Table 5: Q&A with abstention results using 10 questions as training data. See Table 3 for an explanation of the
scoring scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -41.9 -1.5 -5.2 -112.9 -2.7 -1.0
Falcon 40B -11.6 -6.2 -6.6 -67.4 -3.4 -2.6
Llama 2 7B -19.0 -7.7 -17.3 -78.4 -2.8 -1.5
Llama 2 13B -6.6 -1.2 4.6 -60.0 -3.6 -7.5
Llama 2 70B 16.6 21.4 19.4 -25.0 7.7 2.4
Llama 3 8B 17.1 22.6 17.3 -24.3 10.4 8.1
Llama 3 70B 56.8 56.8 56.8 35.2 47.3 35.2
Mistral 7B 13.7 15.1 15.0 -29.4 -6.4 -12.5
Mixtral 8x7B 38.0 38.3 38.2 7.1 4.9 12.6
SOLAR 10.7B 34.4 34.4 34.4 1.6 9.6 1.6
Yi 6B 4.3 13.2 10.5 -43.6 5.3 -2.4
Yi 34B 37.9 39.4 37.4 6.8 13.4 16.4
GPT3.5 Turbo 34.5 38.4 – 1.8 26.3 –
GPT4 Turbo 73.3 73.3 – 59.9 59.9 –
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Table 6: Q&A with abstention results using 50% of all questions as training data. See Table 3 for an explanation
of the scoring scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -41.2 0.0 0.0 -111.8 0.0 0.0
Falcon 40B -11.1 1.9 0.7 -66.7 0.0 0.0
Llama 2 7B -19.2 -0.2 0.2 -78.8 0.0 0.0
Llama 2 13B -6.8 5.1 4.7 -60.3 1.0 0.1
Llama 2 70B 16.9 23.6 19.4 -24.6 7.2 4.5
Llama 3 8B 17.2 23.9 23.1 -24.2 12.6 11.6
Llama 3 70B 56.2 57.7 56.4 34.2 48.4 42.2
Mistral 7B 12.6 16.7 15.6 -31.0 0.0 5.2
Mixtral 8x7B 37.7 38.6 38.2 6.6 15.3 15.0
SOLAR 10.7B 34.7 35.4 35.0 2.0 8.9 12.7
Yi 6B 3.1 13.7 9.9 -45.3 5.3 2.1
Yi 34B 37.2 39.6 37.7 5.8 20.7 17.2
GPT3.5 Turbo 34.8 38.9 – 2.2 27.6 –
GPT4 Turbo 73.4 74.0 – 60.1 66.0 –

B CAVEAT FOR FALCON 7B

Initially, many of Falcon 7B’s responses fell into the “unparseable" category described in Sec-
tion 3.1. Upon investigation, we found that many of these responses were simply a period or an
end-of-text token. Removing the final newline in the prompt resolved this behavior, so we believe
that this newline was somehow convincing the model that was conversation was “over". These initial
results had the side effect of making it very easy to detect wrong answers, since a solitary period is
obviously not a correct answer. For this reason, we removed the final newline for Falcon 7B only.
We considered removing the final newline for all models or excluding Falcon 7B entirely, but we
felt that our chosen approach would be more scientifically honest. As Falcon 7B performed by far
the worst on both Q&A and AUROC even with this concession, we do not think this decision holds
much import, but we report it for transparency.
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C DATASET-LEVEL RESULTS

For the curious reader, this section presents dataset-level versions of Table 1 (AUROC and Q&A
accuracy), Table 3 (results for Q&A with abstention), and Table 4 (frequency of abstention on Q&A
with abstention experiments).

Table 7: AUROC results for ARC-Challenge. See Table 7 for more explanation.

MSP Max Logit
LLM Q&A Accuracy AUROC p < 10−4 AUROC p < 10−4

Falcon 7B 25.3 50.4 0/2 50.9 0/2
Falcon 40B 55.2 64.3 2/2 57.6 1/2
Llama 2 7B 45.9 63.4 2/2 61.3 2/2
Llama 2 13B 58.1 64.9 2/2 62.8 2/2
Llama 2 70B 74.4 77.8 2/2 69.2 2/2
Llama 3 8B 74.7 81.8 2/2 78.7 2/2
Llama 3 70B 92.3 89.7 2/2 82.3 2/2
Mistral 7B 70.9 67.9 2/2 67.8 2/2
Mixtral 8x7B 84.3 65.4 2/2 66.7 2/2
SOLAR 10.7B 80.8 61.4 2/2 70.8 2/2
Yi 6B 68.1 75.3 2/2 65.1 2/2
Yi 34B 84.6 70.7 2/2 73.2 2/2
GPT3.5 Turbo 83.1 85.1 2/2 – 2/2
GPT4 Turbo 95.7 88.9 2/2 – 2/2

Table 8: AUROC results for HellaSwag. See Table 7 for more explanation.

MSP Max Logit
LLM Q&A Accuracy AUROC p < 10−4 AUROC p < 10−4

Falcon 7B 24.7 50.1 0/2 49.9 0/2
Falcon 40B 43.4 61.5 2/2 58.8 2/2
Llama 2 7B 40.9 58.5 2/2 54.7 1/2
Llama 2 13B 49.8 62.3 2/2 58.7 2/2
Llama 2 70B 64.3 70.0 2/2 64.4 2/2
Llama 3 8B 65.6 73.4 2/2 70.8 2/2
Llama 3 70B 77.7 81.6 2/2 70.4 2/2
Mistral 7B 51.8 62.8 2/2 62.3 2/2
Mixtral 8x7B 65.5 58.5 2/2 60.1 2/2
SOLAR 10.7B 78.8 63.1 2/2 67.1 2/2
Yi 6B 39.5 68.2 2/2 62.5 2/2
Yi 34B 75.5 73.7 2/2 67.0 2/2
GPT3.5 Turbo 72.5 76.6 2/2 – 2/2
GPT4 Turbo 88.1 88.3 2/2 – 2/2
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Table 9: AUROC results for MMLU. See Table 7 for more explanation.

MSP Max Logit
LLM Q&A Accuracy AUROC p < 10−4 AUROC p < 10−4

Falcon 7B 25.7 49.1 0/2 49.4 0/2
Falcon 40B 44.0 61.4 2/2 52.4 1/2
Llama 2 7B 40.2 62.2 2/2 59.3 2/2
Llama 2 13B 47.1 63.4 2/2 62.2 2/2
Llama 2 70B 56.3 71.3 2/2 64.8 2/2
Llama 3 8B 56.3 76.2 2/2 74.5 2/2
Llama 3 70B 75.0 83.5 2/2 78.6 2/2
Mistral 7B 52.7 64.5 2/2 64.3 2/2
Mixtral 8x7B 64.4 63.9 2/2 65.6 2/2
SOLAR 10.7B 57.4 62.5 2/2 68.5 2/2
Yi 6B 50.7 68.9 2/2 63.0 2/2
Yi 34B 64.0 66.0 2/2 66.2 2/2
GPT3.5 Turbo 64.7 80.5 2/2 – 2/2
GPT4 Turbo 81.4 85.2 2/2 – 2/2

Table 10: AUROC results for TruthfulQA. See Table 7 for more explanation.

MSP Max Logit
LLM Q&A Accuracy AUROC p < 10−4 AUROC p < 10−4

Falcon 7B 19.8 59.5 1/2 58.1 0/2
Falcon 40B 26.9 59.3 1/2 56.5 0/2
Llama 2 7B 24.9 51.2 0/2 53.3 0/2
Llama 2 13B 26.4 57.9 0/2 54.4 0/2
Llama 2 70B 44.5 72.1 2/2 66.8 2/2
Llama 3 8B 40.5 67.8 2/2 63.8 2/2
Llama 3 70B 72.1 79.8 2/2 70.9 2/2
Mistral 7B 54.5 68.1 2/2 65.1 2/2
Mixtral 8x7B 67.6 66.4 2/2 64.9 2/2
SOLAR 10.7B 49.9 57.7 1/2 62.3 2/2
Yi 6B 44.2 64.9 2/2 62.6 2/2
Yi 34B 53.7 67.7 2/2 65.5 2/2
GPT3.5 Turbo 55.6 73.1 2/2 – 2/2
GPT4 Turbo 84.4 87.2 2/2 – 2/2
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Table 11: AUROC results for WinoGrande. See Table 7 for more explanation.

MSP Max Logit
LLM Q&A Accuracy AUROC p < 10−4 AUROC p < 10−4

Falcon 7B 49.8 49.8 0/2 50.2 0/2
Falcon 40B 51.5 51.2 0/2 50.4 0/2
Llama 2 7B 50.9 51.0 0/2 51.1 0/2
Llama 2 13B 52.1 51.9 0/2 52.1 0/2
Llama 2 70B 52.2 55.9 2/2 51.5 0/2
Llama 3 8B 55.8 56.9 2/2 56.5 2/2
Llama 3 70B 74.9 74.0 2/2 60.9 2/2
Mistral 7B 54.4 54.0 2/2 54.0 2/2
Mixtral 8x7B 63.2 53.7 2/2 54.6 2/2
SOLAR 10.7B 69.2 55.1 2/2 57.4 2/2
Yi 6B 58.1 56.6 2/2 55.4 2/2
Yi 34B 67.1 59.2 2/2 60.1 2/2
GPT3.5 Turbo 60.4 63.4 2/2 – 2/2
GPT4 Turbo 83.7 77.7 2/2 – 2/2

Table 12: Q&A with abstention results for ARC-Challenge. See Table 3 for an explanation of the scoring
scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -49.3 -1.0 0.0 -123.9 -2.7 0.0
Falcon 40B 10.5 15.8 14.7 -34.2 0.9 0.8
Llama 2 7B -8.1 -2.5 3.8 -62.2 0.9 -16.5
Llama 2 13B 16.2 18.7 17.9 -25.6 5.5 8.4
Llama 2 70B 48.8 50.3 50.0 23.3 39.9 25.2
Llama 3 8B 49.3 53.4 50.2 24.0 40.2 33.7
Llama 3 70B 84.6 84.6 84.6 76.9 76.9 76.9
Mistral 7B 41.9 35.2 37.0 12.8 22.9 23.2
Mixtral 8x7B 68.7 68.7 68.7 53.0 53.0 53.0
SOLAR 10.7B 61.5 61.5 61.5 42.2 42.2 42.2
Yi 6B 36.1 40.2 31.3 4.2 21.3 15.8
Yi 34B 69.2 69.2 65.6 53.8 53.8 53.7
GPT3.5 Turbo 66.3 67.2 – 49.4 58.1 –
GPT4 Turbo 91.4 91.4 – 87.0 87.0 –
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Table 13: Frequency of abstention on ARC-Challenge in the Section 5 experiments.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B 0 97.8 100.0 0 97.8 100.0
Falcon 40B 0 21.4 22.7 0 95.8 97.5
Llama 2 7B 0 14.7 55.7 0 87.5 55.7
Llama 2 13B 0 40.7 55.2 0 57.2 68.9
Llama 2 70B 0 28.9 7.6 0 28.9 55.4
Llama 3 8B 0 20.3 16.7 0 20.3 16.7
Llama 3 70B 0 0.0 0.0 0 0.0 0.0
Mistral 7B 0 40.2 33.9 0 40.2 46.9
Mixtral 8x7B 0 0.0 0.0 0 0.0 0.0
SOLAR 10.7B 0 0.0 0.0 0 0.0 0.0
Yi 6B 0 22.0 37.8 0 22.0 37.8
Yi 34B 0 0.0 14.1 0 0.0 18.7
GPT3.5 Turbo 0 2.7 – 0 26.6 –
GPT4 Turbo 0 0.0 – 0 0.0 –

Table 14: Q&A with abstention results for HellaSwag. See Table 3 for an explanation of the scoring scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -50.5 -30.9 0.0 -125.8 -6.3 0.0
Falcon 40B -13.2 0.9 0.5 -69.7 -1.0 -0.3
Llama 2 7B -18.2 -1.7 -5.8 -77.3 -10.7 -3.9
Llama 2 13B -0.3 6.1 2.4 -50.5 1.2 -1.1
Llama 2 70B 28.6 32.4 30.7 -7.1 8.3 6.1
Llama 3 8B 31.3 35.4 32.1 -3.1 18.4 17.1
Llama 3 70B 55.3 55.3 54.7 32.9 38.2 38.2
Mistral 7B 3.7 10.3 9.8 -44.5 -9.1 1.7
Mixtral 8x7B 31.1 29.0 26.7 -3.3 1.5 3.5
SOLAR 10.7B 57.7 58.3 57.7 36.5 41.1 36.5
Yi 6B -20.9 5.7 0.9 -81.4 1.4 -0.1
Yi 34B 51.0 46.6 48.7 26.4 36.2 32.2
GPT3.5 Turbo 45.0 45.9 – 17.5 31.6 –
GPT4 Turbo 76.1 76.4 – 64.2 69.5 –
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Table 15: Frequency of abstention on HellaSwag in the Section 5 experiments.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B 0 38.6 100.0 0 95.0 100.0
Falcon 40B 0 95.3 77.1 0 95.3 97.1
Llama 2 7B 0 65.5 53.7 0 78.1 95.0
Llama 2 13B 0 84.2 20.9 0 84.2 85.4
Llama 2 70B 0 19.3 8.8 0 19.3 21.8
Llama 3 8B 0 30.6 7.0 0 30.6 54.4
Llama 3 70B 0 0.0 12.4 0 6.8 12.4
Mistral 7B 0 50.9 63.3 0 50.9 85.7
Mixtral 8x7B 0 27.0 35.3 0 85.6 80.1
SOLAR 10.7B 0 7.3 0.0 0 7.3 0.0
Yi 6B 0 62.0 97.0 0 92.8 97.0
Yi 34B 0 32.5 16.8 0 32.5 27.9
GPT3.5 Turbo 0 25.4 – 0 25.4 –
GPT4 Turbo 0 0.5 – 0 11.8 –

Table 16: Q&A with abstention results for MMLU. See Table 3 for an explanation of the scoring scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -48.6 -15.2 -1.4 -122.9 -1.4 -0.7
Falcon 40B -12.0 2.1 -12.0 -68.0 -19.8 -1.7
Llama 2 7B -19.5 -4.6 -3.9 -79.3 -37.2 -0.6
Llama 2 13B -5.9 -1.7 7.0 -58.8 -14.1 -7.9
Llama 2 70B 12.5 18.9 17.3 -31.2 11.3 4.7
Llama 3 8B 12.5 12.8 12.5 -31.3 16.4 9.2
Llama 3 70B 49.9 53.1 49.9 24.9 43.7 41.2
Mistral 7B 5.5 12.8 12.7 -41.8 -5.8 -2.4
Mixtral 8x7B 28.8 29.7 29.5 -6.8 -3.8 -4.8
SOLAR 10.7B 14.9 16.6 21.6 -27.7 -3.8 0.7
Yi 6B 1.5 14.8 9.2 -47.8 5.6 -2.9
Yi 34B 27.9 30.8 27.9 -8.2 5.2 12.3
GPT3.5 Turbo 29.3 38.2 – -6.0 24.9 –
GPT4 Turbo 62.8 64.5 – 44.1 55.4 –
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Table 17: Frequency of abstention on MMLU in the Section 5 experiments.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B 0 69.2 97.1 0 98.9 99.5
Falcon 40B 0 54.0 0.0 0 54.0 95.0
Llama 2 7B 0 39.4 49.8 0 39.4 97.8
Llama 2 13B 0 12.1 63.3 0 54.6 63.3
Llama 2 70B 0 66.6 22.9 0 73.2 74.0
Llama 3 8B 0 0.9 0.1 0 55.9 50.5
Llama 3 70B 0 9.1 0.0 0 27.2 36.5
Mistral 7B 0 27.6 30.3 0 50.0 55.7
Mixtral 8x7B 0 3.2 2.0 0 3.2 2.0
SOLAR 10.7B 0 12.4 31.7 0 42.3 36.1
Yi 6B 0 62.9 42.5 0 68.8 67.5
Yi 34B 0 15.8 0.0 0 19.7 54.6
GPT3.5 Turbo 0 35.3 – 0 35.3 –
GPT4 Turbo 0 11.5 – 0 18.4 –

Table 18: Q&A with abstention results for TruthfulQA. See Table 3 for an explanation of the scoring scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -60.6 -3.6 -1.9 -140.9 -10.8 -5.0
Falcon 40B -46.3 -5.6 0.0 -119.5 -15.7 -1.7
Llama 2 7B -50.8 -34.8 -47.4 -126.2 -62.1 -0.9
Llama 2 13B -47.2 -3.3 -6.3 -120.8 -13.0 -19.2
Llama 2 70B -11.3 7.2 1.1 -66.9 -11.5 -24.5
Llama 3 8B -19.2 -4.8 1.4 -78.8 -1.0 -9.1
Llama 3 70B 44.2 46.5 39.6 16.4 39.0 28.2
Mistral 7B 8.9 11.8 16.1 -36.6 -5.6 -13.6
Mixtral 8x7B 35.3 38.2 34.9 3.0 8.0 13.9
SOLAR 10.7B -0.5 4.2 9.0 -50.7 -10.0 -9.0
Yi 6B -11.6 -3.0 -2.3 -67.5 -7.9 -3.5
Yi 34B 6.9 8.8 6.9 -39.6 -34.3 -18.2
GPT3.5 Turbo 10.9 19.6 – -33.6 13.3 –
GPT4 Turbo 68.9 68.9 – 53.3 60.3 –
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Table 19: Frequency of abstention on TruthfulQA in the Section 5 experiments.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B 0 89.2 95.8 0 89.2 95.8
Falcon 40B 0 85.4 96.5 0 85.4 96.5
Llama 2 7B 0 29.1 3.9 0 50.6 99.3
Llama 2 13B 0 84.0 80.4 0 84.0 80.4
Llama 2 70B 0 36.4 30.0 0 45.9 40.3
Llama 3 8B 0 29.0 66.0 0 81.7 73.4
Llama 3 70B 0 38.5 37.6 0 38.5 37.6
Mistral 7B 0 6.4 24.4 0 38.9 24.4
Mixtral 8x7B 0 24.0 25.1 0 77.1 56.3
SOLAR 10.7B 0 12.9 41.4 0 64.7 57.9
Yi 6B 0 24.3 24.1 0 63.3 83.5
Yi 34B 0 5.1 0.0 0 5.1 23.9
GPT3.5 Turbo 0 67.9 – 0 67.9 –
GPT4 Turbo 0 0.0 – 0 8.1 –

Table 20: Q&A with abstention results for WinoGrande. See Table 3 for an explanation of the scoring scheme.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B -0.5 -0.5 -0.5 -50.8 -10.9 -12.0
Falcon 40B 2.9 2.7 2.9 -45.6 -6.2 -5.9
Llama 2 7B 1.8 2.3 2.3 -47.3 -2.1 -3.1
Llama 2 13B 4.3 2.1 2.9 -43.6 -9.0 -5.6
Llama 2 70B 4.3 6.3 3.7 -43.5 -13.5 -22.6
Llama 3 8B 11.6 11.4 9.4 -32.5 -3.5 1.0
Llama 3 70B 49.8 46.9 47.3 24.7 34.0 25.8
Mistral 7B 8.8 8.0 3.2 -36.9 0.0 1.0
Mixtral 8x7B 26.3 26.3 26.3 -10.5 -10.5 -1.5
SOLAR 10.7B 38.3 35.2 38.3 7.5 8.0 10.6
Yi 6B 16.2 16.2 16.2 -25.7 0.9 -0.1
Yi 34B 34.2 34.2 34.1 1.3 8.6 1.7
GPT3.5 Turbo 20.9 20.1 – -18.6 6.9 –
GPT4 Turbo 67.4 66.2 – 51.1 55.0 –
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Table 21: Frequency of abstention on WinoGrande in the Section 5 experiments.

Balanced Conservative
LLM Base MSP Max Logit Base MSP Max Logit

Falcon 7B 0 0.0 0.0 0 78.3 76.8
Falcon 40B 0 23.3 0.0 0 84.5 86.7
Llama 2 7B 0 5.4 1.9 0 94.3 92.4
Llama 2 13B 0 75.6 59.3 0 75.6 84.0
Llama 2 70B 0 54.0 43.5 0 54.0 43.5
Llama 3 8B 0 21.5 45.5 0 67.7 93.5
Llama 3 70B 0 27.2 9.9 0 27.2 9.9
Mistral 7B 0 17.3 92.4 0 100.0 92.4
Mixtral 8x7B 0 0.0 0.0 0 0.0 44.4
SOLAR 10.7B 0 10.6 0.0 0 57.5 39.0
Yi 6B 0 0.0 0.0 0 85.9 99.8
Yi 34B 0 1.9 1.1 0 25.0 1.1
GPT3.5 Turbo 0 48.8 – 0 59.5 –
GPT4 Turbo 0 11.5 – 0 11.5 –
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