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Figure 1: In this paper, we propose Diff3DS, a novel differentiable rendering framework for generating
view-consistent 3D sketch from flexible inputs such as a single image or text.
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ABSTRACT

3D sketches are widely used for visually representing the 3D shape and structure
of objects or scenes. However, the creation of 3D sketch often requires users
to possess professional artistic skills. Existing research efforts primarily focus
on enhancing the ability of interactive sketch generation in 3D virtual systems.
In this work, we propose Diff3DS, a novel differentiable rendering framework
for generating view-consistent 3D sketch by optimizing 3D parametric curves
under various supervisions. Specifically, we perform perspective projection to
render the 3D rational Bézier curves into 2D curves, which are subsequently
converted to a 2D raster image via our customized differentiable rasterizer. Our
framework bridges the domains of 3D sketch and raster image, achieving end-
to-end optimization of 3D sketch through gradients computed in the 2D image
domain. Diff3DS can enable a series of novel 3D sketch generation tasks, including
text-to-3D sketch and image-to-3D sketch, supported by the popular distillation-
based supervision, such as Score Distillation Sampling. Extensive experiments
have yielded promising results and demonstrated the potential of our framework.
Project page isathttps://yiboz2001.github.io/Dif£3DS/

1 INTRODUCTION

3D sketches, which utilize strokes to emphasize abstraction and visually encapsulate the 3D shape and
structure of objects or scenes, serve as indispensable tools for visualizing concepts and ideas. Existing
research efforts have primarily focused on exploring how to enable interactive creation of 3D sketch
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in 3D virtual systems (Wesche & Seidell 2001} \Grimm & Joshil [2012;Bae et al.| [2008)) and immersive
environments (Yu et al., 2021a} [Xin et al., 2008} |[Kim et al., 2023} [Jiang et al., [2021; [Kim & Bae,
20165 |Yu et al.,[2021bj |Arora & Singhl |2021; [Yue et al., 2017). Such interactive 3D sketch creation
tools provide artists with unprecedented freedom, allowing them to draw their inspirations directly in
the immersive 3D environment. However, it usually requires users to possess professional artistic
skills and experience for 3D operation, making the 3D sketch creation less friendly for ordinary
users. There is a notable absence of a user-friendly 3D sketch generation method in the community.
Moreover, in the area of wire art generation, 3D sketch or 3D curves are also widely studied to abstract
the desired visual concepts from diverse inputs, e.g., 3D surfaces (Yang et al., 2021)), multi-view
images (Liu et al.||2017) and text (Tojo et al.,|2024; |Qu et al., |2024). These representations provide
essential shape and structure of the artwork as well as hold significant potential as intermediate
formats for tasks such as 3D reconstruction. However, generating view-consistent 3D sketches from
flexible inputs, such as text or a single image, remains largely unexplored.

In recent years, content reconstruction or generation via differentiable rendering has gained great
attention in the fields of computer graphics and vision research. The goal is to convert the traditional
rendering pipeline into a differentiable image synthesis process and employ the 2D image supervision
to optimize the object or scene representation. For example, NeRF (Mildenhall et al.,[2021) bridges
the 3D neural representation and raster image domain with a differentiable volume rendering pipeline,
and has contributed to the further development of the 3D generation (Mohammad Khalid et al.| [2022;
Tsalicoglou et al.|, |2024; [Jain et al., [2022; |Poole et al., 2023} [Lin et al., [2023) by leveraging the
continuous advancements in multimodal supervision (Radford et al., [2021; [Poole et al.,|2023). For
the generation of vectorized or parametric content, differentiable rendering has also been investigated
(L1 et al., 2020; [Schaldenbrand et al., [2022; Frans et al., 2022} Jain et al.| [2023; | Xing et al., [2023; Qu
et al.| 2023} Xing et al.| 2024; Banerjee et al.,[2024; [Vinker et al., 2022} [2023; Thamizharasan et al.,
2024bga)). One representative work is Diff VG (Li et al., [2020), which proposes a differentiable 2D
vector graphics rasterizer to compute gradients from raster images and optimize the vectorized image
(e.g., 2D Bézier curves and other parametric shapes) via back-propagation. For generation of sketch,
CLIPasso generates 2D sketches using Diff VG to optimize the parameters of the 2D Bézier curves
directly with respect to a CLIP-based perceptual loss. Recently, 3Doodle (Choti et al., | 2024)) generates
view-consistent 3D sketches of the target object by directly optimizing the parameters of 3D strokes
to minimize the perceptual losses for given multi-view images. It also proposes a differentiable 3D
curve rendering pipeline which integrates Diff VG as a key component. Although 3Doodle achieves
promising results for generating 3D sketches, its optimization requires supervision from multiview
images, which makes it more like a reconstruction pipeline instead of a more flexible generation
pipeline. Meanwhile, its performance is constrained by the inherent limitations of Diff VG’s original
design. It relies on an approximate perspective projection to obtain the 2D sketch rendering and
ignores the depth order of the curves, which may lead to color conflicts in the 3D sketch and limit its
effectiveness on more complex tasks like colored sketch generation.

In this paper, we present Diff3DS, a novel differentiable rendering framework for generating view-
consistent 3D sketch from flexible inputs such as a single image or text. Specifically, we represent
the 3D sketch as a set of 3D rational Bézier curves and perform the perspective projection to obtain
the 2D rational Bézier curves. Then, we propose a new differentiable rasterizer based on Diff VG to
accurately render the projected 2D curves based on the depth order, so that more accurate occlusion
relationships between curves can be modeled, especially for colored curves. Our framework supports
end-to-end optimization of 3D curve primitives under flexible supervisions such as the distillation-
based loss. By employing the recent Score Distillation Sampling algorithm to distill prior knowledge
from pre-trained 2D image generation model, we achieve 3D sketch generation from the text or single
image input. We conduct quantitative and qualitative comparisons between Diff3DS and related
methods. The results demonstrate the superiority of our approach in generating view-consistent 3D
sketches. Ablation studies further validate the effectiveness of the key components of our method.
Additionally, analysis of the rasterizer shows its potential for generating colored sketches.

We summarize our contributions as follows: (1) We propose Diff3DS, a novel differentiable rendering
framework for generating view-consistent 3D sketch from flexible inputs such as a single image
or text. (2) We are the first to represent the 3D curve as 3D rational Bézier curve and design a
depth-aware rasterizer that can enable precise and differentiable rendering of both black and colored
3D curves. (3) We conduct comprehensive experiments on novel text-to-3D and image-to-3D sketch
generation tasks and the results demonstrate the superiority of our method.
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2 RELATED WORKS

3D Sketch Generation Existing research on 3D sketch generation mainly focus on interactive
artistic sketch creation within 3D virtual systems (Wesche & Seidell 2001; |Grimm & Joshil, 2012
Bae et al., [2008)), and immersive environments (Yu et al., [ 2021a; Xin et al., [2008}; |Jiang et al.| 2021}
Kim & Bael 2016; Yu et al., 2021b; |Arora & Singh, [2021). However, these works usually require
users to possess professional artistic skills and 3D operation experience, making it less user-friendly
for ordinary users. The recent 3Doodle (Choi et al., [2024) is able to generate expressive 3D sketches
from multiview image observations, but it is more like multiview reconstruction instead of generation
and the quality of the generated results highly depends on the number of observation viewpoints.
By distilling prior knowledge from pre-trained 2D image generation models using methods like
Score Distillation Sampling (Poole et al., 2023} [Liu et al., [2023), we achieve user-friendly and
view-consistent 3D sketch generation from flexible text or single image input.

Differentiable Rendering of Curves There have been several works for differentiable rendering of
curves. DiffVG proposes a differentiable rasterizer for the creation of vector graphics represented
by 2D curves and shapes. DRPG (Worchel & Alexa, 2023) investigates differentiable rendering
of 3D parametric curves and surfaces, by piecewisely approximating the continuous parametric
representations with a triangle mesh. 3Doodle (Choi et al.| [2024) shares a similar differentiable
rendering pipeline with us, including projecting the 3D Bézier curves to 2D Bézier curves, which
are then rendered by the differentiable rasterizer from Diff VG. However, 3Doodle approximates the
perspective projection as an orthographic projection to obtain 2D projected curves and ignores the
depth ordering between the curves. Instead, we perform perspective projection to the 3D rational
Bézier curves and designs a new Diff VG-based ratersizer which can maintain the depth ordering
between the projected 2D rational Bézier curves.

Multimodal-Driven 3D Content Generation Motivated by the success of the text-to-image
research, pioneering works (Poole et al.l [2023; Wang et al., 2023a)) introduce the Score Distillation
Sampling (SDS) algorithm and leverage the pre-trained text-to-image models as prior knowledge
to optimize 3D representations. Subsequent works combine SDS with various differentiable 3D
representations to explore the capabilities of text-to-3D object generation, such as DMTet (Lin
et al.|, 2023; (Chen et al.,[2023)) and 3D Gaussians (Tang et al.l|2024; Yi et al., 2024). Furthermore,
Zero-1-to-3 (Liu et al.| [2023) proposes an image-guided SDS algorithm that distills the 3D-consistent
priors to optimize 3D representations given the input image, and its pipeline inspires the development
of subsequent image-to-3D object methods (Liu et al., 2023} |Qian et al., 2024 Wang & Shil 2023}
Wu et al.| 2023} |Stal 2023)). Distinguishing from prior endeavors, our work stands out by focusing on
generating view-consistent 3D sketch by optimizing 3D parametric curve primitives.

3 PRELIMINARY

DiffVG (Li et al.,2020) proposes a differentiable rasterizer for vector graphics that supports converting
2D Bézier curves to the raster image domain and back-propagating the gradient for optimization.
Given the 2D curves parameters ©, the vector graphics scene is defined as f(z,y, ©), and the raster
image is defined as the 2D grid sampling over the space of f(x,y,®). To compute the color of a 2D
location (z,y) € R2, DiffVG utilizes the inside-outside test (Neh) to find the curves overlapped with
the location initially. Subsequently, it sorts them according to a user-specified order and calculates the
color using alpha blending (Porter & Duff] |1984). Due to the inside-outside test, the scene function
f is not differentiable with respect to curve parameters. Thus, it uses the anti-aliasing technique to
make the pixel color differentiable. By prefiltering f over a convolution kernel k& with support A,
sampling I(x,y) at pixels can yield an alias-free image:

[(JC’ZU)://Aki(uw)f(x—u,y—v;e)dudv. (1)

Due to the integration over the filter support region, the focus shifts from the color value at the center
point to the average pixel color. The continuous change in the average color induced by the curve
movements makes the function I(x, y) differentiable.
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The goal is to compute the gradients of I with respect to O:

oI(z,y) .
50 8@// u, ) f(z —u,y —v;0)dudv. 2)

DiffVG proposes two approaches Monte Carlo Sampling and Analytical Prefiltering to evaluate the
pixel integral, which does not have a closed-form solution in general. We focus on the first approach
which performs better. The pixel integral can be discretized with Monte Carlo sampling (Ganacim
et al.l [2014):

o) = [[ ks =y =) dudo~ 5 Zkuz,m - u0), ()

but geometric discontinuities hinder the interchangeability of the integral and differential operators,
which consequently obstructs the direct representation of -2 a@ as a discretizable integral. Thus, it
rewrites the pixel color as the sum of integrals over multiple sub-regions A;, and applies the Reynolds
transport theorem to handle all the discontinuous changes on the boundary:

8] (x y Z//A . (%)g w d“d”+2/aA o ( ~n(t)) g(p())dp(t), (4

where g(u,v) is the multiplication of the scene function f and kernel k for brevity, 0A4; is the
boundary of area A;, n(t) is the outward normal of OA;, and p(t) denotes the 2D points on the J A;.
The first integral is responsible for the differentiation of color and the transparency, while the second
term is responsible for the change of the boundaries, and the boundary integral can be estimated by
the Monte Carlo estimator as:

1 (Vep; - ny) (9(pj + eny) — g(p; — eny))
Z:/Mi(@)(vepn)g(p(t))dp(t) R zj: Pl PO )

where € is a small number and P(p;|c)P(c) denotes the probability density of sampling the curve ¢
and point p; on the boundaries.

4 DIFF3DS

4.1 OVERVIEW

We propose Diff3DS, a novel differentiable rendering framework for generating view-consistent 3D
sketch by optimizing 3D parametric curves. A 3D sketch O is defined as a collection of 3D parametric
curve strokes that reside in 3D space. We particularly focus on the 3D rational Bézier curve and
our derivation supports the 3D linear, quadratic, and cubic rational Bézier curves. The theoretical
trainable parameters include the control point position, curve width, and rgb-alpha color. Follow
the previous methods (Vinker et al., 2022;2023;; |Choi et al.||2024), we represent each stroke by a
3D cubic Bézier curve and only optimize the control point position in our current implementation.
Moreover, weights for rational Bézier curves are disregarded to simplify the computation. Fig.[3|
illustrates the pipeline.

Dift3DS is designed with three stages. First, to render the 3D rational Bézier curve strokes O at a
given viewpoint, we perspectively project these curves onto the camera plane (Sec.[d.2). Then, we
render the projected 2D rational Bézier curves © to the raster image using a customized differentiable
rasterizer. (Sec.[4.3). Finally, we will perform back-propagation with the gradient computed from the
rendered image to optimize the 3D sketch parameters (Sec. [4.4).

4.2 3D RATIONAL BEZIER CURVE PROJECTION

In this section, we primarily explain how to project the 3D rational Bézier curves in camera coordinates
onto the 2D camera focal plane, and detailed proof is provided in Appendix[B] Given the control points
P = (Pf, Py PZ) € R?, the associated non-negative weights ; and the Bernstein polynomials
B (t), for 0 § t < 1, define the 3D rational Bézier curve p(t) of degree n by:

Bin(t)®: 5 _ (&(t), 4(t), 2(t)). ©

) =) =i p b
5 D=0 Bin(t)w;

4
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Assume the focal plane is z = f, where f is the focal length, the corresponding projected 2D curve
p(t) under the pinhole camera perspective projection can be defined as:

I(t) . y(t)
2(t)" ()
Due to rational Bézier curves are projective invariant, the curve p(t) still is identical to the 2D
rational Bézier curve defined by projected control points. Given projected 2D control points P; =

(PE,PY) = ( 1;’_'2 /s g’z f) € R? and adjusted weights w; = w; P7, p(t) can be written as following:

p(t) = (z(t), y(t)) = (

f)- N

Z Z] — ;;’3 Py = (x(t), y(t))- ®)

4.3 2D RATIONAL BEZIER CURVES DIFFERENTIABLE RASTERIZATION

This section primarily focuses on the differentiable rasterization of 2D curves © obtained through
projection. To render the projected rational Bézier curves and maintain their occlusion relationship
in 3D space, especially for colored curves, we customize a new differentiable rasterizer based on
DiffVG (Li et al., [2020). Given a 2D pixel location (x, y) and projected curves O, we first employ a
inside-outside test to identify all the overlapping curves with this pixel location. Then, we sort the
overlapping curve points and calculate the color of this pixel location using alpha blending algorithm.

The inside-outside test identifies a curve as overlapping with a location if the closest distance between
them is less than half of the curve width, and the closest point to the location are considered as the
overlapping point . However, the identification is challenging. For the nth-degree rational curve p(t),
computing the ¢ that minimizes the distance (p(t) — ¢)? where ¢ = (z,y) equals to solve the roots of
a polynomial with degree 3n — 2. For the cubic rational curve, a 7th order polynomial needs to be
solved, which does not have a closed-form solution. Inspired by Diff VG, we solve the polynomial
using bisection and the Newton-Raphson method (William H. Press & Flannery.,[2007)). The iterative
solver obtains its initial guess from isolator polynomials (Sederberg & Chang.||1994) — the real roots
of a 7th order polynomial can be isolated by the roots of two cubic auxiliary polynomials. Please
refer to Appendix [C]for more details.

The rasterized result should faithfully maintains the occlusion in 3D space. In our task, different
points along the same projected 2D curve may have different depths. Therefore, each point should be
assigned with its own specific order for the color blending process. In the original Diff VG, each curve
is initialized with a user-specific order, meaning all the points along the same curve share this uniform
order. In contrast, our sort order is determined by the depth order among curve primitives. For each
overlapping point, we compute its unprojected z-depth in the 3D space using the corresponding 2D
rojected curve control points, and employ it as the primary sort order. To mitigate the z-fighting issue
[ﬁcaused by floating-point errors, we also utilize a user-specified order as the secondary order. After
obtaining the 2D curve scene function f(x,y, ©), the rendered raster image I will be calculated using
the Monte Carlo Sampling strategy (Sec.[3) with Eq. (3). Fig.[2]shows an example. Our rasterizer
faithfully renders the colored curves and maintains occlusions according to the depth order.

[Gox o, Figure 2: A rasterized result contains 3
Y :‘;}g;‘{‘\;llf;‘}‘;‘:: [lf“fzfo‘)lf)‘; st o029 - gyadratic rational Bézier curves and a line.
3 / | Point Depths: [30, 20, 10] All curves share the same control point posi-
| 1 e s 102501512 (1025, 105 tions in pixel space and the depths but with
} | Point Weights: (10,20, 10] different weights. Our rasterizer faithfully
} | Point Depths: (30,20, 1.0} renders the curves and maintains occlusions
! | Curve C :

| Comret Points: (0025, 01, 0,512, qozs, 1025y According to the depth order. (e.g., The upper
! 1}’05": piehts 10,40, 1) half of each curve has a greater depth than
| | Point Depths: [3.0, 2.0, 1. . .

! S : the line, while the lower half has a lesser
| Line D . . . .

| | Control Points: [(511.5, 0, (5115, 1023)] depth. This difference results in varying
! [ el £ b .

{0, 1029 (102 1f;,:§ e P color blending outcomes at the overlapping

regions).

"https://en.wikipedia.org/wiki/Z-fighting
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Figure 3: We generate the 3D sketch o, represented as a set of 3D strokes, from the text or image
input. We render the raster image I from the random camera via our differentiable renderer (Sec. ).
Then, the pre-trained diffusion model, conditioned on the input, diffuses the rendering I and predicts

the pseudo ground truth I. The discrepancies between Iy and I are used to update the 3D sketch.

4.4 GRADIENTS BACK-PROPAGATION

The rendering framework is fully differentiable since the projection and rasterizer are differentiable.
Thus, the gradients of I with respect to 3D curves parameter © can be calculated with the chain rule:

oI o1 00 ol
gg y) = Z(;(;’ v) 35’ where 76 denotes the gradients of I with respect to 2D projected curves

00
O that can be computed using Eq. and Eq. , and % denotes the gradients of projected 2D

ol (z,y)

curves © with respect to 3D curves ©. calculates the gradients of control point positions,

color, and width for projected 2D curves. The position gradients of 3D curve control points are
0
calculated with —, which is based on the gradients of the projected 2D control points. The color

and width gradients of 3D curves directly inherit the corresponding gradients of the projected 2D
curves.

5 MULTIMODAL-DRIVEN 3D SKETCH GENERATION

Diff3DS supports end-to-end optimization of 3D sketch under flexible supervisions. By employing
the Score Distillation Sampling algorithm, we propose the promising tasks of text-to-3D sketch and
image-to-3D sketch, with the goal of generating 3D sketch from flexible text or single image input.

5.1 TEXT-TO-3D SKETCH

Pioneering works (Poole et al.| [2023} [Wang et al., [2023a) propose the Score Distillation Sampling
(SDS) algorithm, utilizing the prior of a pre-trained 2D text-to-image model to optimize 3D represen-
tations. By integrating SDS with Diff3DS, we distill the diffusion prior to generate the 3D sketch
O from the input text. Given a pre-trained diffusion model ¢4, text embedding y, rendered image I
with our rasterizer R and the noise timestep ¢, image I will be added with noise to obtain a noisy
image Iy: I; = v/a I + /1 — aue, where € ~ N(0, I) and &; is the cumulative product of scaling at
timestep ¢. Then the gradient of SDS loss on © is given by:

ol
VeLsps(p, I =R(O)) =Es . |w(t)(€s(li;y,t) —¢€) 25| Q)

where w(t) is a weight based on the timestep ¢, and the predicted noise sampled by classifier-free
guidance (CFG) (Ho & Salimans) 2021)) with weight A\ denotes as:

é¢([t; Y, t) = 6¢(It; @, t) + )\(6¢(It; Y, t) — 6¢(It; (Z), t)) (10)
By deriving the pseudo ground truth image I with one-step denoising:
. 1 .
Iy = \/C_Tt(lt_\/l_@tezi)(lt;yyt))a (11
we can transform Eq. (9) into an equivalent form as follows:
- Ve . 01
5L I=RO))=E; |wit)——={T — I))—|, 12
v@ SDS(¢7 ( )) t, W( )1 — \/a( 0)8@ ( )
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which can be regarded as matching the input view I with predicted Io.

Similar with (Poole et al., 2023)), due to the bias
of 2D text-to-image model, we encounter seri-

ous view inconsistency problem known as the ; _ - T
Janus problem. This problem persists even when * h ‘ ” * J y |13 “é

directional prompts (e.g., "the front view of...")

are used to distinguish between different views. i [ g
To mitigate this issue, we integrate MVDream t t ! : | ! ‘
I ,; |

=5 A

4

(Shi et al., 2024) with our framework, which ‘ - -
A=100 A=500

is able to generate 3D-aware four view images A=t
using input text and camera poses. Figure 4: Pseudo ground truth Iy visualization. As
the CFG weight \ decreases, the effective supervi-

=75 A=30 A=50

The impact of the CFG weight A on the optimiza- " i N
tion process has received attention in existing sion region of Iy also decreases.

text-to-3D methods. By visualizing the pseudo ground truth I, after denoising with different levels
of weight X at large noise timesteps in Fig. [ we find that as A decreases, the effective supervision

region of I decreases, hereby impacting the final shape of results.

5.2 IMAGE-TO-3D SKETCH

Zero-1-to-3 (Liu et al., [2023) proposes an image-guided SDS method that conditions on the input view
image I and relative camera qxtrinsic (R, T), based on its View:conditioned model. Our framework
is able to generate 3D sketch O from the input reference image I by distilling the 3D consistent prior:

~ ~ ol
VeLsps(d, I =R(O)) =Eye |w(t)(ég(I; I, R, T,t) —€) 56| (13)

5.3 DYNAMIC NOISE DELETION

We find that our framework is affected by the issue of gradient sparsity in the Monte Carlo Sampling
strategy. In Reynolds’ formula, the gradient from pixel space is determined by the curve boundaries.
This results in the loss of information from pixels that are not incident to those boundaries. In cases
where significant displacements of curves are required, the optimization tends to get trapped in a local
optimum state: curves contract the boundaries to minimize the loss function. During our training
process, some curves tend to contract to extremely small lengths as noises. To obtain clean results,
we propose the Dynamic Noise Deletion strategy. We discretize each curve into n line segments
(n = 20) and accumulate their lengths as the total length of the curve. The curve with lengths below
a specified threshold will be considered as noise and removed dynamically.

5.4 TIME ANNEALING SCHEDULE

To further enhance the performance of the results, we employ a time annealing schedule similar with
(Wang et al.;,|2023b; Zhu et al.,|2024; |Shi et al.| [2024; [Huang et al.,|2024)). During the optimization
process, we gradually adjust the maximum and minimum time step for SDS in a linear manner. The
large noise timestep focuses on aligning the curves with the semantic content of the input text or
image during the initial training phase. Conversely, the small noise timestep employed during the
later training phase focuses on further enhancing the details.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

We implement our rendering framework in C++/CUDA with a PyTorch interface (Paszke et al., 2019).
In the experiment, a user-specified number of curves will be randomly initialized within a sphere
of radius 1.5. We randomly sample the camera position using the radius from 1.8 to 2.0, with the
azimuth in the range of -180 to 180 degrees, the elevation in the range of 0 to 30 degrees and the
field of view (fov) of 60 degrees. For the pre-trained model, we apply Stable Diffusion 2.1 (sta) and
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"Higly detailed, majestic royal tall ship, realistic painting..., [suffix]."
DiffSketcher DreamGaussian MVDream Diff3DS (Ours)

Figure 5: Qualitative results of the text-to-3D sketch task. Existing text-to-3D methods fail to generate
sketch-style results, even with the addition of the "sketch in black and white, line drawing" suffix.

Table 1: Evaluation of text-to-3D sketch task. ~ Table 2: Evaluation of image-to-3D sketch task.

CLIP-Score” 1 \ Novel Vievs;s Reference View
Method ‘ VITB/16  ViT B/32 BLIP-Score 1 Method ‘ ViTCI;Ill;-chli'g ];32 LPIPS |
DreamGaussian 0.2561 0.2453 0.4990 NEF 0.6612 0.6605 0.3997
MVDream 0.2763 0.2653 0.4949 3Doodle 0.6734  0.6746 0.2567
Diff3DS (Ours) 0.3046 0.3034 0.5038 Diff3DS (Ours) | 0.6768 0.6846 0.2647

MVDream for the text-to-3D sketch task. And we apply Zero-1-to-3
[2023) and Stable-Zero123 2023)) for the image-to-3D sketch task. The training process requires
1 hour for the text-to-3D sketch task and 2 hours for the image-to-3D sketch task on a single NVIDIA
A10 GPU. More details can be found in the Appendix [A]

6.2 TEXT-TO-3D SKETCH

Baselines To the best of our knowledge, we are the first text-to-3D sketch method. We select the
existing text-to-3D object methods DreamGaussian 2024) and MVDream (Shi et al .|

as compared baselines, and further choose the text-to-2D sketch method DiffSketcher (Xing|
etal. as the additional perceptual reference.

Qualitative Comparisons Fig. [5]shows the qualitative results of the text-to-3D sketch task. We
compared the 3D results of the text-to-3D baseline method with our method, and further provide
the 2D results of DiffSketcher. To encourage baseline methods to generate sketch-style results, we
append the suffix "sketch in black and white, line drawing" to each prompt inputted to the baselines.
From the results, it can be seen, even with the additional suffix, the general text-to-3D baselines
DreamGaussian and MVDream cannot generate the sketch-style content. For DiffSketcher, the results
are more like sketch draws and only in 2D. In contrast, our method can generate 3D view-consistent
sketches with clearly defined curves.

Quantitative Comparisons We collect 35 text prompts from previous works
Shi et al.| 2024) and websites. Notably, the accurate evaluation of 3D sketch generation is yet to be
resolved due to the absence of ground truth sketches. In this work, we measure the CLIP text-image
similarity (Radford et al., 2021) (CLIP-Score™) and BLIP-Score (Li et al. m metrics to evaluate
the consistency of the rendered views with the input text prompt, following prev10us work (Xing|
2024). For all metrics, we render the 3D sketch into 8 views and compute the metric between
each view and the input text prompt, and use the averaged value as the final result. Table[T|shows the
evaluation results and our method outperforms all the text-to-3D baselines.
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Figure 6: Qualitative results of the image-to-3D sketch task. 3Doodle and NEF fail to extract
reasonable 3D curves from a single input image.

6.3 IMAGE-TO-3D SKETCH

Baselines To the best of our knowledge, we are the first to generate 3D sketch from a single image.
The closest works to ours are Neural Edge Fields (NEF) (Ye et al.,|2023)) and 3Doodle (Choi et al.,
2024])), which generate 3D curves from multiview images. We also choose the image-to-2D sketch
method CLIPasso (Vinker et al., [2022)) as the additional perceptual reference.

Qualitative Comparisons Fig. [6]shows the qualitative results of the image-to-3D sketch task. Note
that CLIPasso can only generate 2D sketch and is used as a reference for the results of 2D generation
methods. As the reconstruction methods, 3Doodle and NEF attain reasonable results for the reference
view, but they fail for other views because they lack the ability to predict the unobserved regions from
a single input image. In contrast, our method can generate view-consistent 3D sketches.

Quantitative Comparisons We collect 25 images generated with Imagine (Imal 2023)). Follow
previous works (Qian et al., 2024;|Choi et al.,|2024), we use CLIP visual similarity (Radford et al.|
2021) (CLIP-Score') metric to measure the abstract semantic similarity across the reference image
and the rendered novel views, while employing LPIPS (Zhang et al., 2018) metric in the reference
view to measure structural semantic similarity. For the CLIP-Score!, we calculate the metric between
each of the 8 rendered images and the reference image, and use the average value as the final score.
Table 2] reports the evaluation results. On the LPIPS metric, our method significantly outperforms
NEF and achieves a score comparable to 3Doodle, which has optimized for the reference view with
more losses, including the LPIPS and CLIP loss. On the CLIP-Score metric, our method surpasses
all baseline approaches. These results demonstrate the superiority of our method.

User Study We further conduct a user study to evaluate the overall quality of our image-to-
3D sketch results. Specifically, we prepared 25 tasks, each of which is composed of three
randomly-ordered 3D sketches generated using three methods: NEF, 3Doodle and Diff3DS.
We used the Likert scores as the evaluation metric, with 1 g 3 4 5
arange from 1 to 5 where a higher score indicates that the

generated 3D sketch is more preferred by the users. In each

task, the participants were asked to score each 3D sketch

1.78
result based on the following two questions: (1) How well _ 212
does the 3D sketch fit the input image, e.g., in terms of

keeping the similar shape and structure of the input? (2) _ 418
How is the quality of the 3D sketch, e.g., whether the 4

rendered views are 3D consistent or whether the sketch NeF ] 3poodie [l Diftsps
is visually pleasing? We distributed questionnaires to

40 participants who are CS, EE and Math students and Figure 7: Bar plots of our user study
researchers, and got 1000 valid scores in total. The results results. The score is of scale 1-5, the

are summarized in Fig.[7] which highlights the superiority higher the better.
of our method. More details can be found in the Appendix
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6.4 ABLATIONS AND ANALYSIS

Effect of Hyperparameters Fig.[§|illustrates the effect of hyperparameters. Fig.[8](a) illustrates
the effect of different CFG weights A in the text-to-3D sketch task. A larger weight leads to a stronger
shape prior, while a smaller weight results in shape degradation. Fig. 8] (b) illustrates the effect
of various pre-trained models. The Janus Problem easily arises when using Stable Diffusion, and
MVDream partially mitigates this issue (e.g., the bicycle with three wheels in the bird’s-eye view).
Then Zero-1-to-3 is not sufficiently 3D consistent in certain examples (e.g., the upper part of the
scissors is bent in the side view). Fig.[§](c) illustrates that increasing the initial curve number can
enhance the details of results, even though the final curve number is automatically determined by
Dynamic Noise Deletion. Too few curves may fail to represent a complete 3D object.

bl ANt V8
AL

A= Based Stable Diffusion Based Zero-1-to-3 - » > N,
Al ;
g@\ 3 A 4% A AL A
A=50 Based MVDream Based Stable-Zero123 A=50
(a) CFG Weight. (b) Pre-trained Models. (c) Initial Curve Number.

Figure 8: Effect of hyperparameters.

Analysis of Designed Rasterizer

Our rasterizer accurately renders the N \ vy Kodse /\\\,
blended colors of overlapping curves ) _“\,ﬁ-\l — it P P A
and faithfully reproduces occlusion re- 3Doodle N
lationships between curves, and en- e o N

ables seamless integration with other g;: :_\_{'4 2 \;\( o

3D sketch generation methods like ST & T A
3Doodle. To assess its effectiveness,
we conduct an experiment to generate
colored 3D sketches from multi-view Figure 9: Analysis of designed rasterizer.

images using both the original 3Doodle and a variant integrated with our rasterizer. As shown in
Fig.[0] the original 3Doodle suffers from noticeable color conflict errors across multiple viewpoints
(e.g., the support base, which is farther from the camera, is incorrectly rendered in the foreground,
occluding the LEGO excavator). These noticeable color conflicts disrupt the object’s visual coherence
and lead to semantic ambiguity. In contrast, our rasterizer consistently reproduces accurate occlusion
relationships between objects, providing clearer visual and spatial semantics. Additional results and
details can be found in the Appendix [D.8]

Target Object 3Doodle (+ Our rasterizer)

7 CONCLUSIONS

In this paper, we propose Diff3DS, a novel differentiable rendering framework for generating view-
consistent 3D sketch by optimizing 3D parametric curves under various supervisions. By employing
the recent Score Distillation Sampling (SDS) to distill prior knowledge from pre-trained 2D image
generation model, we achieve 3D sketch generation from the flexible text or single image input.
Our proposed rasterizer accurately renders the blended colors in overlapping regions and faithfully
reproduces occlusion relationships between curves, showcasing its strong potential for generating
colored 3D sketches. One limitation of Diff3DS is it inherits the sparse gradient issue from DiffVG
and can only optimize continuous parameters. Also, the initial curve number is set manually to
achieve a balance between the approximation accuracy and complexity of the results. Moreover, our
current implementation does not distinguish between the view-independent curve (e.g., feature lines)
and the view-dependent curve (e.g., contours of smooth surface boundaries), limiting the expressive
capacity of the overall shape of a 3D object, which is extensively discussed in 3Doodle. Incorporating
the diverse curve representations of 3Doodle to Diff3DS is a promising future work. Also, one future
direction is to extend our framework for scene-level generation task, such as text-to-3D scene sketch.

10
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SUPPLEMENTARY

OVERVIEW

This supplementary material is structured into multiple sections that offer further details and analysis
pertaining to our Diff3DS research. Concretely, it will hone in on the topics that follow:

e In section[Alwe provide the implementation details of Diff3DS.
e In section [B] we provide a detailed proof for the 3D rational Bézier curve projection.

e In section[C] we provide a detailed analysis for finding the closest distance between a point
and a rational Bézier curve.

e In section |D| we provide more analysis and experiment results.

e In section[E] we provide more high quality sketch results.

A IMPLEMENTATION DETAILS

We implement our rendering framework in C++/CUDA with the PyTorch interface, and follow the
STEP standard (ISO 10303-21) (Loffredol [1999)) to format and save our 3D curve results. In the
experiment, a user-specified number of curves will be randomly initialized within a sphere of radius
1.5. The default curve number is set to 56. We randomly sample the camera position using the radius
from 1.8 to 2.0, with the azimuth in the range of -180 to 180 degrees, the elevation in the range of 0
to 30 degrees and the field of view (fov) of 60 degrees. Notice that Stable-Zero123 abnegates the
relative distance for simplifyingﬂ we fix its radius at 2.0.

For the pre-trained model, we apply Stable Diffusion 2.1 (sta) and MVDream (Shi et al.|[2024) for the
text-to-3D sketch task, with the CFG weight of 50. And we apply Zero-1-to-3 (Liu et al.} 2023 and
Stable-Zero123 (Sta, [2023) for the image-to-3D sketch task, with the CFG weight of 7.5 followed by
(L1u et al.| 2023 [Stal 2023) .

For all tasks, the total number of training steps is 4000. Starting from step 2000, we dynamically
delete the noise every 100 steps. The training process requires 1 hour for the text-to-3D sketch task
and 2 hours for the image-to-3D sketch task on a single NVIDIA A10 GPU with a batch size of
4. To optimize the control point positions, we use the Adam optimizer and set the learning rate of
the optimizer to 0.002. For the time annealing schedule, we prefer to decrease the maximum and
minimum time steps from 0.85 to 0.3 and 0.1, respectively, over the first 3600 steps. Due to limited
resources, not all possible combinations of the hyper-parameters related to the time steps have been
fully explored, and there may be other configurations that could produce better results.

For the Dynamic Noise Deletion, only the curves with lengths below a specified threshold will be
considered as noise and removed dynamically. The trade-off between noise removal and detail
preservation can be balanced by adjusting the threshold. Currently, the threshold is empirically set to
0.1 which is below the 10% of the average curve length.

B 3D RATIONAL BEZIER CURVE PROJECTION

Given the control points P, = (}51-"’”, }51;/7 ]512) € R3, the associated non-negative weights ; and the
Bernstein polynomials B; ,,(¢), for 0 < ¢ < 1, define a nth-degree 3D rational Bézier curve p(t) by:

- Bi,n (t)wl =~

ﬁ(t) = ; mpi = (i(t),gj(t),é(t)).

Assume the focal plane is z = f, where f is the focal length, the corresponding projected 2D curve
p(t) under the pinhole camera perspective projection can be defined as:

plt) = ((), y(1)) = @ng, Zgﬁ.

>https://github.com/threestudio-project/threestudio/issues/360
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Due to rational Bézier curves are projective invariant, the projected 2D curve p(t) still is identical to
the rational Bézier curve defined by projected control points. Given projected 2D control points

pr pY
Py = (PF,PY)=(=-f,=Lf) e R?
(P, B) (P;f P;f)

p(t) can be written as a 2D rational Bézier curve with adjusted weights w; = win:

-
- Sl bl
- Z]_g(t)(g)(};)) ) Z]_gB(t)(g)(w)P) (if ))
= (a(t). (1)

C CLOSEST DISTANCE BETWEEN A POINT AND A RATIONAL BEZIER CURVE

Given a point ¢ € R? and a nth-degree rational Bézier curve
Xy Bin(ywiP,
Yo Bin(Hw;

we want to find the closest distance between them and the closest point ¢* on the curve p. The closest
distance is defined as (p(t*) — ¢)?, and t* is defined as:

p(t)

t* = arg, min(p(t) — ¢)*.
To solve the t*, we take the derivative of the squared distance with respect to ¢ and set it to zero:

2(p(t) — q)p'(t) = p(t) = 0,
which equal to solve the roots of a polynomial with degree 3n — 2. For the quadratic rational curve
and the cubic rational curve, a 4th order polynomial and a 7th order polynomial need to be solved
respectively. We provide the detail separately in section|C.I]and section|C.2]

To solve all real roots of these polynomials, inspired by DiffVG, we solve the polynomial using
bisection and the Newton-Raphson method (William H. Press & Flannery., [2007). The Newton-
Raphson solver obtains its initial guess for intervals from isolator polynomials (Sederberg & Chang.|
1994). For the polynomial p(t) with two adjacent real roots ¢; and t5, given any two lower order
other polynomials b(t) and ¢(t), define

a(t) = b(t)p'(t) + c(t)p(t),
where p/(t) is the derivative, (Sederberg & Chang.|[1994) proofs that a(¢) or b(¢) must has at least
one real root in the closed interval [to,t1]. Since p(tg) = p(t1) = 0, we know a(to)a(t1) =
b(to)b(t1)p' (to)p’(t1). Since to and t; are roots of p and p’(to)p'(t1) < 0. Thus either a(tg)a(t;) <
0 or b(to)b(t1) < 0. Please see the original paper for discussions on multiple roots.

After solving all the real roots of ¢ and b within the (0, 1), the intervals for finding the real roots of
p are then determined. We can then use bisection and the Newton-Raphson method to find all the
roots of p within these intervals. The key operation is the selection of the polynomials b(¢) and ¢(t),
(Sederberg & Chang.| |1994) prefer to find the b(¢) and c(¢) which follow Degree(a) + Degree(b) =
Degree(p) — 1. In the upcoming paragraphs, we will discuss the cases of the 4th order polynomial
and the 7th order polynomial in section|C.3|and section
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C.1 CLOSEST DISTANCE OF QUADRATIC RATIONAL CURVE CASE

The quadratic rational curve p(t) can be reorganized using variables A through F as follows:

(1 —t)2wo Py + 2(1 — t)twi Py + t2wa Py At? + Bt +C
p(t) = (1—t)%wo +2(1 — t)twy + 2wy DR+ Et+ F’
we can further calculate p(t) — ¢ and p/(t) as:
() — g = (A—Dq)t* + (B — Eq)t + (C — Fq)
Dt?+ Et+ F
(AE — BD)t* + (2AF — 2CD)t + (BF — CE)
(Dt2 + Et + F)?

p(t) =

By reorganizing them using variables a through f:

(t) _ at? + bt + ¢
p 1= De Y Ei+F

dt? + et + f
p(t) =

(Dt2 + Et + F)?’
we can rewrite the target polynomial p(t) as below:
(at? + bt + c)(dt® + et + f)
(Dt2 + Et + F)3 ’
whose numerator is a 4th order polynomial in the variable ¢. Note that the denominator of p(t) is
strictly positive, due to the definition of the rational Bézier curve. Therefore, finding the real roots

of the equation p(t) = 0 is equivalent to finding the real roots of the 4th order polynomial in the
numerator.

p(t) = 2(p(t) — q)p'(t) = 2

C.2 CLOSEST DISTANCE OF CUBIC RATIONAL CURVE CASE

The cubic rational curve p(t) can be reorganized using variables A through H as follows:
(1 —t)PwoPo + 3(1 — t)* w1 Py + 3(1 — t)t2wa Py + t3w3 P3
p(t) = (1= 1)3wo + 3(1 — £)2twy + 3(1 — £)t2ws + 3w
At® + Bt> + Ct+ D
T EP+FPLGi+ H
we can further calculate p(t) — ¢ and p’(¢) as:
(A— Eq)t* + (B — Fq)t* + (C — Gq)t + (D — Hq)

t) — =
p(t) —q EB+F2+Gt+H

(t) = 34+ 2Bt +C  (3Et* +2Ft + G)(A® + Bt* + Ct + D)
PO = BT Frerci+ o (Et* + F£2 1 Gt + H)?

By reorganizing them using variables a through :

_at+ b+t +d
= Es Y Fe 1 Gt + H
(1) = et + ft> + gt + ht +i

(Et? + Ft2 + Gt + H)?’

p(t) —

we can write the target polynomial p(t) as below:

(at3 + bt% + ct + d)(et* + ft2 + gt* + ht + 1)

(Et3 + Ft2 + Gt + H)3 :
whose numerator is a 7th order polynomial in the variable ¢. Note that the denominator of p(t) is
strictly positive, due to the definition of the rational Bézier curve. Therefore, finding the real roots

of the equation p(t) = 0 is equivalent to finding the real roots of the 7th order polynomial in the
numerator.

p(t) = 2(p(t) — q)p'(t) =2
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C.3 ISOLATOR POLYNOMIALS OF THE 4TH ORDER POLYNOMIAL CASE

We aim to isolate the real roots of the 4th order polynomial p(t) by the roots of two lower order
polynomials a(t) and b(t). To keep Degree(a) + Degree(b) = Degree(p) — 1, we select a(t) as the
2nd order polynomial and b(t) as the linear polynomial.

Define p(t) and p’(t) as follows:
p(t) =t*+ Bt* + Ct* + Dt + E
p(t) = 4t3 + 3Bt* + 2Ct + D,

and we know a(t) = c(t)p(t) —b(t)p'(t). Let ¢(t) = 1, a(t) can be written as a(t) = p(t) — b(¢)p'(t)
By doing a long division between p and p’, we obtain the isolator polynomials as follows:

C 3B, 3D CB DB
A TR E A T
1 B
b(t)71t+176

C.4 ISOLATOR POLYNOMIALS OF THE 7TH ORDER POLYNOMIAL CASE

We aim to isolate the real roots of the 7th order polynomial p(t) by the roots of two lower order
polynomials a(t) and b(t). To keep Degree(a) + Degree(b) = Degree(p) — 1, we select a(t) and
b(t) both be the cubic polynomial.

Define p(t) and p’(t) as follows:

p(t) =t" + pet® + ... + pit + po
o (t) = 7t% + 6pgt® + ... + p1,

and we know a(t) = c(t)p(t) — b(t)p'(t). We wish a and b to both be cubic polynomials. Note that
b(t)p'(¢) is a 9th order polynomial, so we assume c(¢) to be a 2nd order polynomial to ensure that
c(t)p(t) is a 9th order polynomial too. Let b(t) = (¢3 + Ct* + Dt + E) and c(t) = (7t* + At + B),
we can obtain two 9th order polynomials, and their difference a(x) is a cubic polynomial:

c(t)p(t) = (t" + pet® + ... + pit + po) (Tt + At + B)
b(t)p' (t) = (Tt° + 6pet® + ... + p1)(t* + Ct* + Dt + E).

By setting the coefficients of the 8th to 4th order terms of a(t) to 0, we can obtain a system of 5 linear
equations in variables A through E. By solving this system of equations, we can determine the values
of variables A through E. We can then proceed to find b(t), ¢(t), and a(t). Please refer to our code
for the specific details.

D MORE ANALYSIS AND EXPERIMENTS

D.1 ABLATION STUDY OF DESIGNED COMPONENTS

We evaluate the contributions of the Time Annealing Schedule and Dynamic Noise Deletion compo-
nents, as shown in Fig. The omission of Time Annealing Schedule affects the conformity of the
generated results with the semantic meaning of the input text or the level of detail in the reference
image, and the omission of Dynamic Noise Deletion leads to the retention of some noise in the results.

A brightly
colored mushroom
growing on a log

Input W/o TAS W/o DND Input Our W/o TAS ‘W/o DND
Figure 10: Ablation study on Time Annealing Schedule (TAS) and Dynamic Noise Deletion (DND).
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D.2 USER STUDY

We provide details of our user study. Specifically, our user study includes 25 tasks, which cover a
diverse range of object types, e.g., flamingo, unicorn, windmill, lighthouse, boat, bike, sword, bow,
scissor, flower etc. Each task is composed of three 3D sketches generated using three methods: NEF,
3Doodle and Diff3DS. We used the Likert scores as the evaluation metric, with a range from 1 to 5
where a higher score indicates that the generated 3D sketch is more preferred by the users.

In each task, the order of sketches presented to the users was randomized. Specifically, for each
method, the 3D sketch is rendered in four views and organized in the form shown in Fig.[TT] Then,
for each task, it contains three randomly-ordered rows, while each row represents the results of one
method. The participants were asked to score each 3D sketch output based on the following two
questions:

1. How well does the 3D sketch fit the input image, e.g., in terms of keeping the similar shape
and structure of the input?

2. How is the quality of the 3D sketch, e.g., whether the 4 rendered views are 3D consistent or
whether the sketch is visually pleasing?

We distributed questionnaires to 40 participants who are CS, EE and Math students and researchers,
and finally collected total 1000 valid scores.

*21 Input Image

A b F o4

1

Figure 11: Screenshot of an example question used in our user study

D.3 EFFICIENCY OF THE INITIAL NUMBER OF CURVES

The effect of the initial curve number have reported in Fig. 8 (c). To further evaluate the efficiency of
the curve number, we have conducted a new ablation study on the initial curve number, and the results
are shown in Table 3] The results show that as the number of initial curve increases, CLIP-Score
performance shows a consistent increase while the average optimization time keeps getting longer.
Meanwhile, when the initial number reaches 56, further increasing it to 112 does not result in a
significant performance improvement due to the Dynamic Noise Deletion process.

Metric \ Number | num=112  num=56 num=28 num=14

CLIP-Score™ (ViT B/16) | 0.3074 0.3046  0.2920  0.2785
CLIP-Score™ (ViT B/32) | 0.3032 0.3034  0.2883 0.2786
Average Training Time 80min 60min 45min 35min

Table 3: Efficiency of the initial curve number.
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D.4 EFFECT OF NOISE SAMPLE SCHEDULE

The choice of noise sampling schedule has a significant impact on the results. For our task, the large
noise timestep focuses on aligning the curves with the semantic content of the input condition during
the initial training phase. Conversely, the small noise timestep employed during the later training
phase focuses on further enhancing the details. In the current implementation, we have employed
a biased sampling that decreases the maximum and minimum time steps from 0.85 to 0.3 and 0.1,
whereas original DreamFusion randomly samples noises from 0.98 to 0.02. Based on our experience,
further reducing the sampling of high-level noise would lead to a significant decline in the geometric
quality of the results. We have provided relevant results in the Fig. T2}

4@ :

M,
t ~[0.3,0.5] %L\\* @ %
| M &

Figure 12: Effect of noise sample schedule.

D.5 EFFECT OF CURVE INITIALIZATION

In the current implementation, the initial curves are randomly initialized within a sphere of radius 1.5.
Based on our observations, the quality of the results is generally insensitive to minor variations in the
curve initialization radius. However, significantly reducing the radius can still degrade the quality of

the results, as shown in the Fig.[T3] We recommend adjusting the radius to ensure the projected curve
remains fully visible within the image and occupies a reasonable area.

radius = 1.5 /:.’\/(:Q))'\‘“ ‘ X(‘/i ™ §
: = \ry\: (12 37 V%/ % é % jé § %

Figure 13: Effect of curve initialization.

radius = 0.5 1 , *? "

time

D.6 EFFECT OF OPTIMIZING COLOR, OPACITY AND WIDTH

vy b
Né i} /
. Wer S W i /
tion results in different modes, as D | "
shown in Fig.[[4] including Position, !

RGB, RGBA (both color and opacity),
Alpha, and Width. Notably, we ob-
serve that optimizing the curve width
results in unstable outcomes. We hy-

pothesize that this instability stems
from the rendered image semantics
being highly sensitive to variations in  Figure 14: Effect of optimizing color, opacity and width.

curve width, and plan to explore this
topic in our future work.

Our proposed differentiable rasterizer
supports the optimization of the con-
trol point position, color, opacity and
curve width. We report the optimiza-

\

Position RGBA Alpha Width

20



Published as a conference paper at ICLR 2025

D.7 COMPARISON WITH 3D SKETCH RECONSTRUCTION METHODS UNDER MULTI-VIEW
SUPERVISION

We further compare our approach with the 3D sketch reconstruction method under multi-view
supervision. Specifically, we employ MVDream and Stable-Zero123 to generate 3D objects from
input text and a single view, rendering 120 horizontal views as training data. Notably, we report
comparisons only between Diff3DS and 3Doodle, as NEF failed to converge and produce reasonable
results in our experiments. To ensure a fair comparison, 3Doodle adopts the same setup as our
method, optimizing only the 3D curves and randomly initializing the positions of the curve control
points. For the text-to-3D and image-to-3D sketch tasks, 3Doodle requires 3 hours (1 hour for object
generation) and 2.5 hours (0.5 hours for object generation), respectively. In contrast, our method only
requires 1 hour and 2 hours, respectively.

As illustrated in Fig.[T3] our method achieves performance comparable to the baseline within a more
efficient training time.

Mystical elven
bow, enchanted
arrows

b
jr 4 .
A quill pen, é {
European style, Y \
neat feathers $ ! I
Pi § a’/ \f /
Higly detailed, N i /\
majestic royal ship ( i ! == 1\
V : ¢
SRNZ S !
A fire phoenix, \/ 'ikj g(& A ))/ j) «\
mythical bird, ™ - 7. S
engulfed in flames %,gg? v
A

Input 3D Object 3Doodle (120 views, ~3h) Diff3DS (~1h)
(a) Text-to-3D sketch task.

,-\

o
— LN
Basnans

= = b R
e

Input 3D Object  3Doodle (120 views, ~2.5h) Diff3DS (~2h)
(b) Image-to-3D sketch task.

Figure 15: Comparison with 3D sketch reconstruction method under multi-view supervision.
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D.8 ANALYSIS OF DESIGNED RASTERIZER

We conduct an experiment generating colored 3D sketches from given multi-view images using both
the original 3Doodle and its variant integrated with our rasterizer. For the training dataset, we use the
"toyhorse" and "toycar" from the 3Doodle-provided dataset, along with "hotdog", "ship", and "lego"
from the Nerf Synthesis dataset (Mildenhall et al., 2021). As shown in Fig.[I6] the original 3Doodle
suffers from noticeable color conflicts across multiple viewpoints (e.g., the plate’s curve incorrectly
appears over the hotdog), disrupting the visual coherence of the object and leading to semantic
ambiguity. In contrast, our rasterizer consistently reproduces accurate occlusion relationships between
objects, providing clearer visual and spatial semantics.
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3Doodle (+ Our rasterizer)
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Figure 16: Analysis of designed rasterizer. In the figure, the red arrow points to the curves which has
incorrect depth order, e.g., the curve of the plate falsely appears over the hotdog.

D.9 SKETCH STYLIZATION

The style of our generated sketches can be altered by applying different brushes to the vector strokes.
We rendered the 3D sketch in the vector graphics format and used various brush styles from Adobe
INlustrator to demonstrate the diverse styles of the generated sketches, as shown in Fig. [T7}

Y

) J

Figure 17: Sketch stylization.
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E MORE HIGH QUALITY RESULTS

E.1 MORE RESULTS OF THE TEXT-TO-3D SKETCH TASK

SRR

“Mystical elven bow, ethereal craftsmanship, enchanted arrows, forest protector.”

"A DSLR photo of a time clock, clear pointer."

"A flower on a office table, solid wood, minimalist, straight table legs."

e

"A quill pen, vintage, European style, three-dimensional, neat feathers."

A~
w7

\//Mn |
9

"Castle in the clouds, ethereal fortress, sky-high citadel.”

Figure 18: More results of the text-to-3D sketch task.
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E.2 MORE RESULTS OF THE IMAGE-TO-3D SKETCH TASK

Generated Results

Figure 19: More results of the image-to-3D sketch task
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E.3 MORE 3D SKETCH RESULTS RENDERED USING BLENDER [COMMUNITY| (2018))
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Figure 20: More rendered 3D sketch results.
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Figure 21: More rendered 3D sketch results.
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