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Abstract
Recent advances in conditional diffusion models
have shown promise for generating realistic Talk-
ingFace videos, yet challenges persist in achieving
consistent head movement, synchronized facial
expressions, and accurate lip synchronization over
extended generations. To address these, we in-
troduce the Motion-priors Conditional Diffusion
Model (MCDM), which utilizes both archived
and current clip motion priors to enhance mo-
tion prediction and ensure temporal consistency.
The model consists of three key elements: (1)
an archived-clip motion-prior that incorporates
historical frames and a reference frame to pre-
serve identity and context; (2) a present-clip
motion-prior diffusion model that captures multi-
modal causality for accurate predictions of head
movements, lip sync, and expressions; and (3) a
memory-efficient temporal attention mechanism
that mitigates error accumulation by dynamically
storing and updating motion features. We also
introduce the TalkingFace-Wild dataset, a multi-
lingual collection of over 200 hours of footage
across 10 languages. Experimental results demon-
strate the effectiveness of MCDM in maintaining
identity and motion continuity for long-term Talk-
ingFace generation.

1. Introduction
TalkingFace generation (Tan et al., 2024; Peng et al., 2024;
Ye et al., 2024; Ji et al., 2021; Tan et al., 2023; Kim et al.,
2018; Liang et al., 2022; Ye et al., 2023; Pumarola et al.,
2018; Vougioukas et al., 2020) aims to create realistic and
expressive videos from a reference face and audio, with ap-
plications in virtual avatars, gaming, and filmmaking (Shen
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et al., 2023). However, the complexity of facial movements,
including head, lip, and expression motions, presents chal-
lenges, along with the need to maintain identity consistency
across extended sequences.

Early methods (Vougioukas et al., 2020; Wang et al., 2021b;
Hong et al., 2022a; Chan et al., 2022; Guo et al., 2024) use
GANs (Goodfellow et al., 2014; Mirza & Osindero, 2014)
to synthesize facial motions onto a reference image through
a two-step process: decoupling motion features from audio
and mapping them onto intermediate representations like
facial landmarks (Yang et al., 2023), 3DMM (Sun et al.,
2023), or HeadNeRF (Hong et al., 2022b). Despite their
promise, GAN-based methods suffer from training insta-
bility and inaccuracies in motion extraction, often leading
to artifacts like blurriness and flickering that compromise
video realism. Recent diffusion models (Wei et al., 2024;
Shen et al., 2025a; Tian et al., 2024; Shen et al., 2025b;d;
Guo et al., 2024; Zheng et al., 2024; Jiang et al., 2024) have
improved TalkingFace generation by enhancing video real-
ism through multi-step denoising that preserves conditional
input information. These methods typically use a Reference
UNet (Hu, 2024) to encode identity features and integrate
audio via cross-attention. However, reliance on static audio
features and weak correlations between audio and motion
complicate the decoupling of identity and motion cues, often
resulting in artifacts like motion distortion and flickering,
especially in long-term generation.

While some methods (Wang et al., 2024b; Ma et al., 2024;
Yang et al., 2024) improve long-term stability by introducing
motion constraints like facial landmarks and emotion tags,
these constraints often overly bind poses to the reference
image, limiting expression diversity. Models trained with
driven landmark fail to learn natural audio-driven motion
patterns, reducing audio-visual synergy. Additionally, static
emotion tags cannot capture dynamic shifts, leading to rigid,
inauthentic animations over extended sequences. Besides,
some approaches (Xu et al., 2024; Chen et al., 2024) in-
ject brief motion reference frames, usually fewer than five
over 0.2 seconds, which is insufficient to establish coherent
motion, resulting in random, less dynamic movements.

In this paper, we propose the Motion-priors Conditional
Diffusion Model (MCDM) to address the challenges in
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achieving long-term consistency in TalkingFace generation.
The MCDM comprises three key modules: the archived-clip
motion-prior, the present-clip motion-prior diffusion model,
and a memory-efficient temporal attention mechanism. Un-
like conventional reference UNet-based identity learning,
the archived-clip motion-prior introduces historical frames
along with a reference frame via frame-aligned attention ,
enhancing identity representation and creating a cohesive fa-
cial context over extended sequences. Then, the present-clip
motion-prior diffusion model leverages multimodal causal-
ity and temporal interactions to effectively decouple and
predict motion states, including head, lip, and expression
movements, ensuring a clear separation between identity
and motion features and promoting temporal consistency
across frames. To support long-term stability, we devise a
memory-efficient temporal attention that dynamically stores
and updates historical motion features, integrating them
with current motion cues via a memory update mechanism.
This structure reduces error accumulation often observed in
diffusion-based long-term TalkingFace generation, enabling
more stable and consistent outputs. Additionally, we present
the TalkingFace-Wild dataset, a high-quality, multilingual
video dataset with over 200 hours of footage in 10 languages,
offering a valuable resource for further research in Talking-
Face generation. Our main contributions are summarized as
follows:

• We propose MCDM to enhance robust identity consis-
tency and support temporal consistency in long-term
TalkingFace generation.

• MCDM leverages archived-clip priors for identity-
aware context, present-clip priors for disentangling
identity and motion, and memory-efficient temporal
attention to integrate historical and current motion fea-
tures with reduced error accumulation.

• MCDM achieves state-of-the-art performance on mul-
tiple TalkingFace benchmarks, demonstrating superior
identity preservation and temporal consistency under
long-term generation.

2. Related Work
GAN-Based Methods. GAN-based approaches (Kim et al.,
2018; Zhou et al., 2020; Pumarola et al., 2018; Vougioukas
et al., 2020; Zhang et al., 2023; Wang et al., 2021b; Hong
et al., 2022a; Chan et al., 2022; Guo et al., 2024) for
TalkingFace generation extract motion features from au-
dio or visual inputs and map them to intermediate repre-
sentations such as facial landmarks (Yang et al., 2023),
3DMM (Sun et al., 2023), or HeadNeRF (Hong et al.,
2022b). MakeItTalk (Zhou et al., 2020) employs LSTMs
to predict landmarks from audio, followed by a warp-based

GAN for video synthesis. GANimation (Pumarola et al.,
2018) models facial motion via continuous manifolds, en-
hancing expression dynamics. SadTalker (Zhang et al.,
2023) integrates ExpNet and PoseVAE to refine motion rep-
resentations within the FaceVid2Vid (Wang et al., 2021b)
framework. DaGAN (Hong et al., 2022a) introduces self-
supervised geometric learning to capture dense 3D motion
fields. While effective, GAN-based methods suffer from ad-
versarial training instability and motion inaccuracies, often
resulting in artifacts that degrade realism.

Diffusion-Based Methods. Diffusion models (Rombach
et al., 2022; Shen & Tang, 2024; Wang et al., 2024a; Shen
et al., 2025c) have gained traction in TalkingFace gener-
ation, producing high-quality, diverse outputs. AniPor-
trait (Wei et al., 2024) maps audio to 3D facial structures,
generating temporally coherent videos with expressive de-
tail. MegActor-Σ (Wang et al., 2024b) synchronizes lip
movements, expressions, and head poses using a reference
UNet (Hu, 2024) and facial loss functions to enhance fi-
delity. Hallo (Xu et al., 2024) and EchoMimic (Chen et al.,
2024) leverage limited motion reference frames to improve
expression diversity and pose alignment. However, reliance
on short-term frame histories (2-4 frames) compromises
long-term motion consistency, while increased frame depen-
dencies escalate computational costs. Additionally, static
audio features and restricted references fail to capture nat-
ural motion variations, leading to artifacts such as motion
distortion and rigid expressions in extended sequences.

Unlike prior work, our approach introduces motion priors
from both archived and present clips to enhance long-term
motion prediction and identity consistency. By leveraging
historical frames and memory-efficient temporal attention,
MCDM improves motion continuity while maintaining real-
ism in TalkingFace generation.

3. Method
Task Definition. Given a reference image, audio, and op-
tional facial landmarks, TalkingFace generation aims to
produce temporally coherent and realistic videos. The key
challenges include maintaining consistent identity over time,
achieving natural head movements, and ensuring expressive
and precise lip alignment with audio cues. However, ex-
isting methods often encounter limitations such as error
accumulation, inconsistent identity preservation, subopti-
mal audio-lip synchronization, and rigid expressions.

3.1. Overall Framework

To address the above challenges, we introduce MCDM, a
framework centered on a denoising UNet resembling Stable
Diffusion v1.5 (SD v1.5) 1, tailored to denoise multi-frame

1https://huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 1. Our MCDM architecture. On the upper, the archived-clip motion-prior leverages frame-aligned attention with archived-clip,
enhancing identity coherence over extended sequences. On the right, the present-clip motion-prior diffusion model uses multimodal
causality and temporal interactions to decouple and predict motion states, covering head, lip, and expression movements while maintaining
a clear separation of identity and motion features.

noisy latent inputs under conditional guidance. As illus-
trated in Figure 1, unlike standard UNet architectures, each
Transformer block in MCDM incorporates four attention
layers. The first layer, a self-attention, mirrors that in SD
v1.5. The second and third layers are parallel cross atten-
tion (spatial-wise), designed for distinct interactions: the
archived-clip reference attention layer, which integrates mo-
tion priors from archived clip encoded by the archived-clip
motion-prior module (Section 3.2), and the present-clip ref-
erence attention, which engages with present clip priors
from the present-clip motion-prior diffusion model (Sec-
tion 3.3). The fourth layer, the memory-efficient temporal
attention (Section 3.4), is a temporal-wise self attention that
dynamically updates and merges archived motion features
with current motion features, effectively mitigating error
accumulation.

3.2. Archived-Clip Motion-Prior Module

Motivation. Existing methods typically use the past 2− 4
frames to guide the denoising network for generating tem-
porally consistent videos. However, this limited history
frame is insufficient for maintaining long-term consistency,
and incorporating more frames exponentially increases com-
putational demand, making it impractical for real-world
applications. To overcome these limitations, we propose an
archived-clip motion prior that integrates long-term histori-
cal frames and a reference frame into the denoising UNet
via conditional frame-aligned attention, enhancing identity
representation and establishing motion context.

Architecture. As illustrated in Figure 1, the archived-clip
motion-prior consists of two frozen VAE encoders, two
learnable patchify layers, and a frame-aligned attention
mechanism. Given a reference frame Xref ∈ Rb×1×c×h×w

and a archived clip Xarch ∈ Rb×a×c×h×w, where b, c,
h, w, and a represent the batch size, channels, height,
width, and the number of archived frames, respectively.
First, the frozen VAE encoder extracts latent features from
both the reference and archived frames, resulting in fx ∈
Rb×1×4×h

8 ×
w
8 and fa ∈ Rb×a×4×h

8 ×
w
8 , respectively. Next,

the learnable patchify layers, consisting of 2D convolu-
tions followed by flattening operations, transform these
latent features into tokens, yielding Fx ∈ Rb×1×m×d and
Fa ∈ Rb×a×m×d, where m and d denote the token length
and embedding dimension.

In the frame-aligned attention, we adopt a frame-wise com-
putation approach to improve efficiency and adaptability for
long temporal sequences. For each archived frame i ∈ [1, a],
the Key Ki is derived from the reference tokens Fx, while
the Value Vi is derived from the tokens of the corresponding
archived frame F i

a:

Ki = FxWK , Vi = FaiWV , (1)
where WK ∈ Rd×d and WV ∈ Rd×d are learnable projec-
tion matrices for the Key and Value. The attention for each
frame i is then computed as:

Attention(Q,Ki, Vi) = Softmax
(
QK⊤

i√
d

)
Vi, (2)

where Q ∈ Rn×d represents a learnable query tokens, with
n denoting the number of queries. Aggregating the outputs
across all frames yields the final output Fac ∈ Rb×a×n×d,
where each frame’s attended tokens reflect both the static
reference and dynamic temporal information.

3.3. Present-Clip Motion-Prior Diffusion Model

Motivation. Motion information is typically driven either
by landmark signals from a driving video or directly by
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audio cues. The landmark-driven approach guides refer-
ence image movements but limits the natural diversity of
head motions and expressions. In contrast, audio-driven
methods rely solely on audio cues, often lacking sufficient
guidance for realistic head movement. To address these lim-
itations, we propose the present-clip motion-prior diffusion
model, which first predicts motion states, including head,
lip, and expressions motions, rather than directly generating
TalkingFace videos.

Architecture. We aim to predict motion in head, lip, and
expressions lip movements, conditioned on audio and image
tokens. As shown in Figure 1 (right), we begin by extracting
feature tokens from the audio encoder, image encoder, head
encoder, lip encoder, and express encoder.

Audio Encoder: Audio sequence tokens are extracted from
the input audio via a frozen Wav2Vec model (Baevski et al.,
2020).

Image Encoder: Image tokens are extracted from the refer-
ence frame using a frozen CLIP (Radford et al., 2021) and
are replicated along the temporal dimension to align with
audio features.

Head Encoder: Head tokens are extracted from reference
landmark video through a frozen Landmark Guider 2; no-
tably, these tokens are optional, allowing simulation of con-
ditions with or without reference video guidance.

Lip and Express Encoders: Lip and expression tokens
are extracted from the target video using a custom-trained
encoder. Details of the lip and express encoders are provided
in the supplementary material.

We then pass the audio and image tokens through a feature-
wise linear modulation (FiLM) layer (Perez et al., 2018)
to adaptively learn multimodal correlation tokens. These
tokens, along with the timestep t, and noise-added tokens
for head, lip, and expression movements, are prepended to
the input sequence. This composite input is fed into an L-
layer structure consisting of a multimodal causal transformer
block (Peebles & Xie, 2023) and a temporal interaction
transformer block (Hu, 2024), with added noise in facial
motion tokens acting as the supervision. The training loss
Lprior for the present-clip motion-prior diffusion model ϵθ is
defined as:

Lprior = Et,Fp,zt,ϵ, ∥ϵ− ϵθ (zt, t, Fp)∥2 . (3)

Without landmark guidance, Fp represent multimodal in-
teraction tokens from audio and the reference frame. zt
represent noise-added tokens for head, lip, and expression
movements at timestep t. With landmark guidance, Fp addi-
tionally include landmark tokens. zt represent noise-added
lip and expression tokens. This design allows flexible con-

2https://github.com/MooreThreads/Moore-AnimateAnyone
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Figure 2. The overview of memory-efficient temporal attention.
It can dynamically update and integrate historical motion features
with current ones.

ditioning, incorporating landmark guidance when available,
while effectively leveraging multimodal interactions for ac-
curate motion state predictions.

3.4. Memory-Efficient Temporal Attention

Motivation. For long-term TalkingFace generation, current
methods primarily adopt either fully or semi-autoregressive
strategies: the former generates one frame per iteration,
while the latter produces a fixed-length clip. However, due
to GPU memory limitations, relying on a restricted frame
history for extrapolation often results in error accumulation,
as limited prior motion information undermines consistency
over extended sequences. Therefore, we propose a memory-
efficient temporal attention to dynamically update and inte-
grate historical motion features with current ones, reducing
error accumulation.

Architecture. AnimateDiff (Guo et al., 2023) demonstrates
that the temporal layer in self-attention ensures smooth
temporal continuity and consistency of appearance details
across frames. We replace traditional self-attention with
fast attention (Choromanski et al., 2020) in the temporal
layer to enhance temporal continuity and manage memory
efficiently, allowing the accumulation of extensive historical
motion information for consistent long-sequence generation.
As shown in Figure 2, let Fac and Fpc denote the output
features of the archived-clip and present-clip motion-prior
modules, respectively, and let Zt represent the noisy latent
feature at time step t. These features undergo reference at-
tention, yielding refined representations F ref

ac and F ref
pc , which

capture spatial-domain motion characteristics. F ref
ac is then

input into the motion memory update mechanism, which ag-
gregates motion across frames, producing the update feature
Mf . The memory update mechanism is defined as follows,

(1) Initialization: At the first frame, the memory M1 is ini-
tialized with F ref

ac since no prior motion information exists:

M1 = F ref
ac . (4)

(2) Memory Update: For each frame f , the memory Mf

is updated by combining the current feature F ref
ac with the
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previous memory Mf−1 as:

Mf = αMf−1 + (1− α)F ref
ac , (5)

where α ∈ [0, 1] controls the balance between past and cur-
rent frames. This fixed memory update mechanism avoids
storage bottlenecks of historical information. We then con-
catenate F ref

pc with Mf along the temporal dimension, creat-
ing F cat

m , which integrates past and current motion. F cat
m is

processed through Fast Attention along the temporal axis to
capture dependencies across frames, with the lower half of
the resulting feature map used as the output Fm.

3.5. Training and Inference

Training. Our training process is divided into three stages,
each with specific learning objectives. Each stage is super-
vised using standard MSE loss (Rombach et al., 2022).

Stage1. The archived-clip motion-prior is trained to en-
hance identity representation and establish a robust facial
motion context across extended sequences. The present-clip
reference attention and memory-efficient temporal attention
modules remain frozen during this stage.

Stage2. The present-clip motion-prior diffusion model is
trained to predict the motion states of facial expressions,
lip, and head movements. To simulate scenarios without a
driving video, we randomly drop the entire landmark clip.

Stage3. The full motion-priors conditional diffusion model
is trained for generating stable and consistent long-term
TalkingFace videos. Only the present-clip reference and
memory-efficient temporal attentions are trained.

Inference. The present-clip motion-prior diffusion model
first predicts distinct motion tokens based on the given con-
ditions (either with or without landmark guidance). Land-
marks are not used by default unless specified. Subsequently,
MCDM utilizes these motion tokens, alongside a single
reference image and audio input, to generate the video se-
quence. For the initial archived clip, we initialize it using the
reference image and then progressively update the motion
memory to ensure temporal consistency.

4. Experiments
4.1. Experimental Settings

Datasets. The HDTF dataset (Zhang et al., 2021) comprises
410 videos with over 10,000 unique speech sentences, var-
ied head poses, and movement patterns. Following prior
work (Chen et al., 2024; Tian et al., 2024; Xu et al., 2024),
we split HDTF into training and testing sets with a 9:1 ratio.
The CelebV-HQ dataset (Zhu et al., 2022) includes 35,666
clips (3–20 seconds each) across 15,653 identities, totaling
roughly 65 hours. Both datasets present quality issues, such
as audio-lip misalignment, facial occlusions, small facial

German
Polish
Russian
French
Croatian
Chinese
Arabic
English
Thai
Spanlish

8.2% 13.4%

8.4%

9.1%

10.7%

10.2%11.9%

7.3%

14.8%

6.0% Statistics of our TalkingFace-Wild dataset

Num. of languages 10
Num. of identities 3,452
Num. of video clips 31.3k
Total hours 241.6 h
Avg. duration 27.8 s

Table 1. Statistics of our TalkingFace-Wild dataset. We release
a TalkingFace dataset that is well-balanced across 10 languages.

regions, and low resolution. To mitigate these, we devel-
oped a custom data processing pipeline for high-quality
TalkingFace data, detailed in the following subsection.

Additionally, mostly methods (Wang et al., 2024b; Xu et al.,
2024; Jiang et al., 2024) employ proprietary datasets for
supplementary training and testing. Similarly, we sourced
a variety of TalkingFace videos from YouTube using tar-
geted keyword queries (e.g., “nationality,” “interview,” “di-
alogue”) across different languages and contexts. From
Table 1, we collect a new high-quality dataset, TalkingFace-
Wild, covering 10 languages and totaling over 200 hours
after processing through our data pipeline. To assess the
generalization capability of models, we also constructed an
open-set test collection of 20 diverse portrait images and 20
audio clips.

Data Processing. First, we detect scene transitions in raw
videos using PySceneDetect3 and trim each clip to a max-
imum duration of 30 seconds. Next, we apply face detec-
tion (Guo et al., 2021) to exclude videos lacking complete
faces or containing multiple faces, using the bounding boxes
to extract talking head regions. Third, an image quality as-
sessment model (Su et al., 2020) filters out low-quality and
low-resolution clips. Fourth, SyncNet (Prajwal et al., 2020)
assesses audio-lip synchronization, discarding clips with
misaligned audio. Finally, we manually inspect a subset to
verify audio-lip synchronization and overall video quality,
ensuring precise filtering. In addition, to ensure a fair com-
parison, we report results trained independently on each of
the previously mentioned datasets.

Metrics. We utilize a comprehensive set of metrics to assess
the quality of generated videos and audio-lip synchroniza-
tion. Fréchet Inception Distance (FID) (Heusel et al., 2017)
evaluates individual frame quality by comparing feature
distributions from a pre-trained model. Fréchet Video Dis-
tance (FVD) (Unterthiner et al., 2019) quantifies the distribu-
tional distance between real and generated videos, providing
an overall assessment of video fidelity. Sync-C and Sync-
D (Chung & Zisserman, 2017) evaluate lip synchronization
from content and dynamic perspectives, with higher Sync-
C and lower Sync-D scores indicating superior alignment
with audio. Structural Similarity Index (SSIM) (Wang et al.,

3https://github.com/Breakthrough/PySceneDetect
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Method HDTF CelebV-HQ
FID↓ FVD↓ Sync-C↑ Sync-D↓ SSIM↑ E-FID↓ FID↓ FVD↓ Sync-C↑ Sync-D↓ SSIM↑ E-FID↓

Audio2Head 76.08 1417.65 3.16 17.62 0.572 3.81 127.30 1882.64 1.96 17.36 0.391 8.42
V-Express 57.14 1152.29 5.05 11.68 0.706 1.83 98.07 1465.26 3.71 13.41 0.514 5.18
AniPortrait 54.81 1072.63 5.40 11.39 0.727 1.95 94.25 1260.74 3.98 12.88 0.536 4.91
SadTalker 52.77 956.24 5.73 10.65 0.736 1.87 88.22 1055.49 4.05 11.20 0.565 4.66
Hallo 37.29 616.04 6.33 8.64 0.774 1.67 72.46 907.60 6.48 8.61 0.620 2.93
EchoMimic 31.44 595.17 6.96 8.59 0.782 1.64 71.47 893.28 6.70 8.45 0.637 2.81
MegActor-Σ 31.37 586.10 6.87 8.55 0.778 1.62 70.82 875.21 6.77 8.32 0.634 2.74
MCDM (Ours) 26.45 543.28 7.49 8.04 0.824 1.51 67.29 784.53 7.25 7.84 0.662 2.31

Table 2. Quantitative comparisons on HDTF and CelebV-HQ. MCDM achieves the top results across all metrics, with best in bold.

Method FID↓ FVD↓ Sync-C↑ Sync-D↓ SSIM↑E-FID↓
Audio2Head 87.21 1836.25 2.32 13.92 0.613 3.12
V-Express 62.18 1324.57 5.45 9.04 0.674 2.81
AniPortrait 56.11 954.91 6.37 8.29 0.706 2.60
SadTalker 52.77 847.20 6.94 7.92 0.724 2.49
Hallo 51.35 792.38 6.85 7.65 0.728 2.35
EchoMimic 49.20 751.44 7.06 7.18 0.737 2.31
MegActor-Σ 48.57 724.40 7.22 7.14 0.745 2.29
MCDM (Ours) 42.08 656.71 7.84 6.69 0.779 1.97

Table 3. Quantitative comparisons on TalkingFace-Wild.
MCDM achieves a significant advantage over other methods.

2004) measures structural consistency between ground truth
and generated videos, while E-FID (Deng et al., 2019) pro-
vides a refined image fidelity evaluation based on Inception
network features.

Implementations. The experiments are conducted on a
computing platform equipped with 8 NVIDIA V100 GPUs.
Training is performed in three stages, with each stage con-
sisting of 30,000 iterations and a batch size of 4. Video
data is processed at a resolution of 512× 512. The learning
rate is fixed at 1× 10−5 across all stages, and the AdamW
optimizer is employed to stabilize training. Each training
clip comprised 16 video frames. In the archived-clip motion-
prior module, we set α = 16, m = 256, and n = 16. In
the present-clip motion-prior diffusion model, the number
of layers L is set to 8, and the weighting factor α in Eq. 5
is configured to 0.1 to balance the influence of prior mo-
tion information. This setup is chosen to optimize long-term
identity preservation and enhance motion consistency within
generated TalkingFace videos.

4.2. Main Results

We compare our method with several SOTA meth-
ods, including Audio2Head (Wang et al., 2021a), V-
Express (Wang et al., 2024b), AniPortrait (Wei et al., 2024),
SadTalker (Zhang et al., 2023), Hallo (Xu et al., 2024),
EchoMimic (Chen et al., 2024), and MegActor-Σ (Yang
et al., 2024), from quantitative, qualitative, and user study.
Unless otherwise specified, all methods do not use land-
marks to ensure a fair comparison.

Quantitative Evaluation. Table 2 presents a quantitative

comparison on the HDTF (Zhang et al., 2021) and CelebV-
HQ (Zhu et al., 2022), illustrating the overall superior perfor-
mance of diffusion-based methods compared to GAN-based
methods. Our proposed MCDM achieves the best scores
across all metrics, outperforming existing diffusion-based
approaches. Specifically, MCDM achieves superior lip-
sync accuracy, reflected in higher Sync-C and lower Sync-D
scores, outperforming methods like EchoMimic (Chen et al.,
2024) and MegActor-Σ (Yang et al., 2024), which show
notable declines in synchronization quality. MCDM’s out-
standing SSIM and E-FID scores also highlight its ability to
generate visually appealing, temporally consistent content
with precise lip synchronization.

Table 3 summarizes the quantitative performance on the pro-
posed TalkingFace-Wild dataset. Consistent with results on
HDTF (Zhang et al., 2021) and CelebV-HQ (Zhu et al.,
2022), MCDM surpasses all competing SOTA methods
across evaluation metrics, demonstrating marked improve-
ments in visual quality and temporal consistency. Achieving
the best FID, FVD, and an E-FID of 1.97, MCDM shows
strong capability in generating high-fidelity TalkingFace
videos under diverse conditions, effectively maintaining
temporal coherence across audio, expressions, and lip syn-
chronization.

Qualitative Evaluation. Figure 3 provides a qualita-
tive comparison of our method against other SOTA ap-
proaches. Compared to V-Express (Wang et al., 2024b)
and EchoMimic (Chen et al., 2024), our approach shows
superior head and lip synchronization, benefiting from the
audio-visual consistency introduced by motion priors. Ad-
ditionally, unlike Hallo (Xu et al., 2024) and MegActor-
Σ (Yang et al., 2024), Our method accurately captures sub-
tle facial actions, including blinks and expression nuances
through the archived-clip, while better preserving identity
consistency. Overall, our approach demonstrates the best
visual results.

User Study. The quantitative and qualitative compar-
isons underscore the substantial advantages of our proposed
MCDM in generating consistent TalkingFace videos. To
further evaluate video quality, we conducte a user study, fo-
cusing on identity consistency, motion synchronization, and
overall video quality. We randomly selected 10 cases, shuf-
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Figure 3. Qualitative comparison on HDTF and CelebV-HQ. Our method achieves the best generation results, particularly in identity
consistency and motion detail.
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Figure 4. User study results of identity consistency, motion synchronization, and video quality. Higher values indicate better
performance.

Method FID↓ FVD↓ Sync-C↑ Sync-D↓ SSIM↑ E-FID↓
w/o Fa 46.25 708.93 7.37 7.05 0.749 2.25
w/o Fpc 45.63 684.20 7.49 6.97 0.758 2.13
w/o MTA 44.27 671.05 7.62 6.84 0.771 2.04
Ours 42.08 656.71 7.84 6.69 0.779 1.97

Table 4. Ablation results on the TalkingFace-Wild dataset.

fled the generated videos from each method, and recruited
20 participants (10 male, 10 female) to provide rank-3 pref-
erences. From Figure 4, our method consistently achieved
the highest scores across all metrics in the user preference
evaluation. This user study highlights the significant advan-
tage of our approach in user-centric TalkingFace generation.

4.3. Ablation Results

We conduct an ablation study to assess the impact of each
component in our method. Table 4 shows the results: w/o Fa

omits historical frame information, w/o Fpc adds an audio
attention module for audio feature input, and w/o MTA
applies a standard temporal attention module.

Archived-Clip Motion-Prior. The results in Table 4 show
that removing historical frame information (w/o Fa) sig-
nificantly degrades performance across all metrics, under-
scoring the importance of the archived-clip motion-prior.
To further assess the effect of Fa on long-term generation,
we visualized frames 30, 300, 1800, 3600, and 7200 with
corresponding SSIM scores, as shown in Figure 5. Fig-
ure 5(a) indicates that without the archived-clip (w/o Fa),
identity consistency worsens with frame progression, result-
ing in visible artifacts and inconsistencies in head, mouth,
and expression. In Figure 5(b), the SSIM scores highlight
error accumulation increases with frame count, showing a
rapid decline in (w/o Fa), while (w/ Fa) remains stable at
a higher value. These findings validate the effectiveness of
the archived-clip motion-prior in preserving both identity
and temporal coherence over extended sequences.

Present-Clip Motion-Prior. Similarly, excluding the
present-clip motion-prior and injecting audio information
directly via audio attention (w/o Fpc) leads to a drop in
performance across all metrics. This decline highlights the
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Figure 5. Visualization results and SSIM scores during long-
term generation. We find that w/ Fa offers a distinct advantage in
maintaining both identity and contextual consistency.
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Figure 6. Lip heatmap and expression cluster. We find that w/
Fp effectively tracks the lip region and conveys expressions.

effectiveness of the present-clip motion-prior in leveraging
multimodal causality and temporal interactions to decouple
and predict motion states, including expressions, lip move-
ment, and head motion (see Table 4). To further validate
this decoupling capability, we visualize heatmaps of the
predicted lip tokens, as shown in Figure 6(a), where the
present-clip motion-prior accurately localizes and tracks lip
motion. For expression decoupling, t-SNE (Van der Maaten
& Hinton, 2008) visualization of expression tokens reveals
tighter clustering within each of the eight distinct emotion
categories when using the present-clip motion-prior, indicat-
ing improved separation of emotional content from audio
input.

Memory-Efficient Temporal Attention. Following the
standard approach (Hu, 2024), we replace the proposed
memory-efficient temporal attention with conventional tem-
poral attention by directly summing F ref

ac and F ref
pc . As

shown in Table 4, this modification significantly degrades
performance across all metrics. This drop in quality is pri-
marily due to the absence of an update mechanism, which
introduces gaps between the archived clip and the present
clip, compromising video smoothness. Next, we analyzed
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Figure 7. SSIM results for different α values. Our method per-
forms comparably well when the α value is smaller than 0.9.

Method FID↓ FVD↓ Sync-C↑ Sync-D↓ SSIM↑ E-FID↓
B1 42.49 668.24 7.69 6.78 0.771 2.02
B2 47.12 721.17 7.30 6.84 0.732 2.29
Ours 42.08 656.71 7.84 6.69 0.779 1.97

Table 5. More results of variant MCDM.

the effect of different α values in Eq. 5, which control the
update rate, on the model’s SSIM performance, as shown
in Figure 7. We observed that as α increases, SSIM grad-
ually declines. When α is below 0.9, our approach signifi-
cantly outperforms the w/o WTA configuration. However,
at α = 0.9, the performance is weaker than w/o WTA, due
to the excessive accumulation of historical frame informa-
tion and a reduced proportion of the present clip. Conse-
quently, we set α = 0.1 as the default value in this paper.

More Results. Table 5 evaluates different design variants.
In B1, Q-Former (Li et al., 2023) replaces frame-aligned at-
tention, while in B2, Reference UNet (Hu, 2024) substitutes
VAE with Reference UNet, omitting archived-clip informa-
tion. Results show that frame-aligned attention outperforms
Q-Former by effectively capturing temporal context and
integrating long-term dependencies. Additionally, using a
frozen VAE with a trainable patchify layer proves to be an
efficient alternative to the conventional Reference UNet.

5. Conclusion
We presented the Motion-priors Conditional Diffusion
Model (MCDM) to address the challenges of long-term
TalkingFace generation by achieving robust identity con-
sistency and motion continuity. MCDM integrates three
key innovations: an archived-clip motion-prior to enhance
identity representation, a present-clip motion-prior diffu-
sion model for accurate motion prediction, and a memory-
efficient temporal attention to mitigate error accumulation
over extended sequences. Additionally, we introduced the
TalkingFace-Wild dataset, offering over 200 hours of multi-
lingual video data across diverse scenarios. Experimental
results demonstrate the effectiveness of MCDM, setting new
benchmarks in long-term TalkingFace generation.
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Supplementary Material

This supplementary material offers a more detailed exploration of the experiments and methodologies presented in the main
paper. Section A introduces a comprehensive set of symbols and definitions to enhance understanding. Section B delves into
the implementation details of our proposed method. Section C provides additional experimental results. Sections D and E
respectively discuss comparisons with concurrent works and future work.

A. Some Notations and Definitions
The notations and definitions used throughout this paper are summarized in Table 6.

Table 6. Main notations and definitions used in this paper.
Notation Definition

z0 Target image
t Timestep
zt Noisy data at step t

c Pose or audio condition
ϵ Gaussian noise
ϵθ Diffusion model

Xref Reference frame
Xarch Archived clip
Fx Feature of the reference frame
Fa Feature of the archived clip
Fac Feature of archived-clip motion prior
Fp Feature of present-clip motion prior
F ref
ac Feature of archived-clip reference attention

F ref
pc Feature of present-clip reference attention

B. More Details
B.1. Archived-Clip Motion-Prior Module

VAE Encoder. Existing TalkingFace methods (Wang et al., 2024b; Xu et al., 2024; Chen et al., 2024) often rely on Reference
UNet (Hu, 2024) to inject and learn identity features from a reference frame. However, training a standalone Reference
UNet demands substantial parameters and incurs significant computational costs, restricting its applicability to efficient
generation tasks. In contrast, our approach employs a frozen VAE to encode reference images, streamlining the generation
process via latent feature projection. By leveraging the pretrained encoding capabilities of the VAE, our method not only
preserves identity consistency but also significantly enhances computational efficiency. As demonstrated in Tables 2 and 3
of the main manuscript, the proposed VAE-based approach outperforms traditional Reference UNet methods in identity
preservation. Moreover, Reference UNet exhibits considerable limitations in integrating archived frames, rendering it less
effective for long-sequence generation. Our archived-clip motion-prior module seamlessly incorporates archived frames,
enabling high-quality long-term TalkingFace generation. Results in Table 7 of the main manuscript further highlight the
robustness and effectiveness of our method.

Frame-Aligned Attention. We propose frame-aligned attention to align the reference frame with the archived frames to
incorporate additional archived frames. The frame-aligned attention overcomes the limitations of traditional Q-Former (Li
et al., 2023) in preserving temporal consistency and identity integrity. Unlike Q-former, which is primarily tailored for
short-sequence multimodal alignment, frame-aligned attention dynamically aligns feature tokens between reference and
archived frames, enabling precise modeling of static identity features and dynamic temporal dependencies. This method
achieves superior performance in TalkingFace generation, as evidenced in Table 7 of the main manuscript. Additionally,
frame-aligned attention employs frame-wise attention to optimize computational efficiency, making it highly effective for
long-sequence tasks. In contrast, Q-Former relies on global attention, concatenating features from all frames, leading to
computational costs that scale linearly with sequence length and insufficient temporal modeling. The frame-aligned attention
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Figure 8. Results of different expression. Our proposed MCDM demonstrates remarkably realistic performance across four common
emotional audio categories.

seamlessly integrates archived frames, significantly improving both temporal consistency and identity preservation.

B.2. Present-Clip Motion-Prior Diffusion Model

Lip and Express Encoders. Lip motion is driven by speech content, while emotions influence expression motion. The
entanglement of these components often results in inconsistencies, such as a smiling expression paired with tense lip
movements, undermining the realism and naturalness of the generated results. We propose the present-clip motion-prior
diffusion model, which disentangles lip and expression motion features from lip and express encoders and predicts them
independently. The training process involves constructing a pseudo-labeled dataset of paired videos with consistent
expressions but varying lip motions, or vice versa, to facilitate disentangled learning. A 4-layer Transformer-based lip
encoder and express encoder are used to extract speech-driven lip motion and emotion-driven expression features separately.
These features are integrated into a motion decoder to reconstruct facial motion, including landmarks and local deformations.
The training is optimized with a total loss function comprising self-reconstruction, cross-reconstruction, and consistency
losses, ensuring effective disentanglement and accurate motion reconstruction.

Temporal Interaction Transformer Block. In text-to-image (T2I) generation, Kandinsky (Razzhigaev et al., 2023) has
demonstrated the effectiveness of predicting image features to improve model quality. However, maintaining temporal
consistency is crucial for TalkingFace generation, where prior T2I models primarily focus on predicting features for static
conditions (e.g., image) and lack the capability to model motion continuity across sequences. To address this limitation, we
propose the present-clip motion-prior diffusion model, which presents a temporal interaction transformer block to ensure
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Motion-Prior Conditional Diffusion Model

Method 30 300 1800 3600 7200

V-Express (Wang et al., 2024b) 1.43 15.7 N/A N/A N/A
Vanilla (Ours) 0.97 8.6 54.1 122.5 264.6
MCDM (Ours) 0.75 5.7 27.3 46.9 74.5

Table 7. Results of inference speed. As the number of frames increases, the advantage of our method becomes more pronounced. ”N/A”
denotes that the GPU encountered an overflow issue and was unable to complete the task. The unit is minutes.

temporal coherence. Specifically, multimodal correlation tokens and noise-injected decoupled motion features are extracted
using corresponding encoders and a feature-wise linear modulation (FiLM) layer (Perez et al., 2018). These tokens are
concatenated along the token dimension and represented as a 4D tensor x ∈ Rb×f×n×d, where b, f , n, and d denote batch
size, temporal length, token count, and token dimension, respectively. During processing, the temporal dimension f is
reshaped into the batch size b within a multimodal causal transformer block (Peebles & Xie, 2023), allowing independent
frame-wise processing. After passing through the multimodal causal transformer block, the features are reshaped back into a
4D tensor to preserve temporal relationships. The temporal interaction transformer further reshapes the token dimension
n into the batch size b to learn and maintain temporal consistency for TalkingFace generation before reshaping it back,
ignoring the temporal dimension. The temporal interaction transformer block employs multiple self-attention modules to
guide self-attention along the temporal dimension f , effectively capturing motion features.

B.3. Memory-Efficient Temporal Attention

Fast Attention. In memory-efficient temporal attention, both self-attention (Guo et al., 2023) and fast attention (Choromanski
et al., 2020) are viable options. However, fast attention is particularly suited for capturing long-term temporal dependencies.
As sequence length increases, traditional mechanisms like cross-attention face scalability challenges, resulting in higher
computational and memory costs. Fast attention, with its optimized computation, allows efficient modeling of extended
temporal relationships, making it ideal for tasks requiring consistent and coherent motion across a large number of frames
while maintaining computational feasibility and temporal fidelity.

B.4. User Study

As shown in Figure 8, we conducted a user study to comprehensively evaluate the quality of the generated videos, focusing
on three key metrics: identity consistency, motion synchronization, and video quality. The detailed procedure is as follows:

Data Preparation. We randomly selected 10 samples from the test set, where each sample includes one input and its
corresponding target video. For each sample, videos were generated using eight different methods, resulting in a total of 80
video clips (10 samples × 8 methods). These videos were randomly shuffled to ensure anonymity and fairness during the
evaluation.

Evaluation Rules. We recruited 20 participants, comprising 10 males and 10 females, from diverse backgrounds with
adequate visual perception abilities. Before the evaluation, participants were given detailed instructions on the evaluation
criteria:

• Identity Consistency: Assess whether the facial identity remains consistent across frames.

• Motion Synchronization: Evaluate the alignment between lip motion and audio input.

• Video Quality: Consider the naturalness, smoothness, and realism of the video.

Participants were asked to rank the videos using the rank-3 rule, selecting the top three videos from each set and ordering
them by preference (1 being the best, 3 being the third best). To ensure accurate evaluations, participants were allowed to
rewatch videos as needed. The study followed ethical principles outlined in relevant guidelines. All participants provided
informed consent prior to the study, and their feedback was anonymized to protect privacy.

C. More Results
Comparisons in Inference Speed. To further evaluate inference speed, we conducted an additional experiment, as shown in
Table 7. Using the representative Reference-based architecture V-Express (Wang et al., 2024b) as a baseline, we kept all other
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Motion-Prior Conditional Diffusion Model

Settings FID↓ FVD↓ Sync-C↑ Sync-D↓ SSIM↑ E-FID↓
2 45.72 704.26 7.39 7.03 0.754 2.19
4 44.53 694.61 7.55 6.93 0.767 2.08
8 43.68 678.49 7.68 6.81 0.773 2.03
16 42.08 656.71 7.84 6.69 0.779 1.97

Table 8. Results of different archived frames. We observed that increasing the number of archived frames significantly improves the
quality of the generated results.

HappyFearful Angry DisgustedReference

Figure 9. Results of different expression. Our proposed MCDM demonstrates remarkably realistic performance across four common
emotional audio categories.

settings of MCDM unchanged and replaced fast attention (Choromanski et al., 2020) with the commonly used self-attention
(Vanilla) (Guo et al., 2023) and our proposed MCDM. We measured the time required to generate 30, 300, 1800, 3600, and
7200 frames (in minutes). The results show that for 30 and 300 frames, V-Express (Wang et al., 2024b) significantly lags
behind both Vanilla (Ours) and MCDM (Ours). Notably, as the number of frames increases, the Reference-based V-Express
encounters GPU memory overflow, rendering it unable to handle more extensive sequences. In contrast, our proposed
MCDM demonstrates increasing efficiency advantages over Vanilla as the frame count grows. Specifically, for 7200 frames,
our method achieves nearly 4× speedup compared to Vanilla.

Influence of Different Archived Frame Numbers. To investigate the influence of archived clip length, we conducted
experiments using 2, 4, 8, and 16 frames while keeping all other settings fixed. As presented in Table 8, increasing the
number of archived frames leads to notable improvements in both identity consistency and temporal coherence. This result
highlights the critical role of archived frames and further demonstrates the effectiveness of our proposed archived-clip
motion-prior module.

Results of Different Emotional Audio. To comprehensively evaluate the capability of our proposed MCDM in audio
disentanglement tasks, we select four classic emotional audio categories as inputs: ’fearful,’ ’happy,’ ’angry,’ and ’disgusted.’
These audio clips drive a single reference image to generate the corresponding facial dynamics, as illustrated in Figure 9.
The results demonstrate that MCDM achieves remarkably lifelike performance across all four emotional audio types, with
outstanding detail fidelity. Subtle variations in eye expressions and mouth movements further highlight the model’s ability
to capture intricate facial features and emotional nuances.

Comparisons with T2I Prior Diffusion Model. To validate the effectiveness of the proposed present-clip motion-prior
diffusion model, we compare its performance with the Kandinsky (Razzhigaev et al., 2023). Kandinsky’s results are obtained
by independently predicting features and then averaging them. As shown in Table 9, the present-clip motion-prior diffusion
model significantly outperforms Kandinsky in generating prior features. This improvement is attributed to the model’s ability
to capture temporal consistency, whereas Kandinsky only predicts static image features. This inherent conflict with the
temporal consistency required for TalkingFace generation limits Kandinsky’s effectiveness in modeling motion sequences.

Results of Long-Term TalkingFace Generation. Figure 10 illustrates the long-term TalkingFace generation results of the
proposed MCDM. The generated sequences demonstrate consistent identity preservation throughout the extended duration.
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Motion-Prior Conditional Diffusion Model

Methods Cosine Similarity↑
Kandinsky 0.656

MCDM (Ours) 0.947
Table 9. Results of prior model. We compute the average cosine similarity of motion features, revealing that MCDM demonstrates a
significant advantage in predicting motion features.

Reference Frame 30 Frame 300 Frame 1800 Frame 3600 Frame 7200

Figure 10. Results of long-term TalkingFace generation. MCDM maintains long-term TalkingFace consistency and enables natural
head pose transitions.

Additionally, the transitions in head poses appear smooth and natural, further validating the effectiveness of MCDM.

D. Discussion of Concurrent Work
Alongside our work, there are two notable concurrent studies, Loopy (Jiang et al., 2024) and Hallo2 (Cui et al., 2024)
for TalkingFace generation. Since both are concurrent works without available code, we limit our discussion to their
methodologies. Loopy (Jiang et al., 2024) introduces inter- and intra-clip temporal modules to capture long-term motion
dependencies, focusing on natural and unconstrained motion without spatial constraints. Hallo2 (Cui et al., 2024) extends
portrait animation to long-duration videos by employing patch-drop and Gaussian noise augmentations to address temporal
artifacts and improve consistency. In contrast, our proposed MCDM introduces the Archived-Clip Motion-Prior and Present-
Clip Motion-Prior mechanisms, explicitly disentangling identity and motion features while leveraging memory-efficient
temporal attention. Unlike Loopy’s emphasis on naturalness or Hallo2’s augmentation-based strategies, MCDM achieves
superior identity preservation and temporal coherence, particularly in long-frame scenarios, while maintaining computational
efficiency.

E. Future Work
In our experiments, the proposed motion-prior conditional diffusion model (MCDM) effectively demonstrates that combining
archived and present motion priors significantly improves identity consistency and temporal coherence in long-sequence
TalkingFace generation tasks. This enhancement leads to a notable improvement in the overall quality of the generated
videos. MCDM is the first approach to explicitly focus on motion priors while eliminating dependency on Reference UNet,
thereby addressing GPU memory constraints. Additionally, its simple and modular design ensures ease of reproduction.
Nonetheless, several directions for future exploration remain. These include extending the method to tasks such as ”animate
anyone” for dance generation, full-body digital human synthesis, and, in particular, scenarios involving multiple reference
images. In these contexts, the continued reliance on Reference UNet presents a limitation, marking an important area for
future research.
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