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ABSTRACT

While large language models (LLMs) are emerging as automated heuristic de-
signers for solving vehicle routing problems (VRPs), state-of-the-art approaches
predominantly rely on massive, general-purpose models like GPT-4. This work
challenges this paradigm by demonstrating that smaller, specialized LLMs, when
finely tuned, can generate components that surpass expert-designed heuristics
within advanced solvers. We introduce RFTHGS, a novel Reinforcement learn-
ing (RL) framework for Fine-Tuning a small LLM to produce high-performance
crossover operators for the Hybrid Genetic Search (HGS) solver to solve the ca-
pacitated vehicle routing problem (CVRP). Our methods utilizes a multi-tiered,
curriculum-based reward function that progressively guides the LLM to first pro-
duce compilable code, then executable operators, and finally, components that ex-
ceed human expert-designed ones. Additionally, we introduce an operator caching
mechanism to work in conjunction with the reward function, discouraging plagia-
rism and promoting diversity during training. Experimental results demonstrate
that our fine-tuned LLM generates crossover operators which significantly out-
perform those designed by human experts in HGS. This performance advantage
is consistent, holding from small-scale instances and generalizing to large-scale
problems of up to 1000 nodes. Furthermore, RFTHGS surpasses leading neuro-
combinatorial baselines, prompt-based methods, and commercial LLMs, includ-
ing GPT-4o and GPT-4o-mini.

1 INTRODUCTION

Combinatorial Optimization Problems (COPs) represent a fundamental class of computational chal-
lenges that arise across diverse domains including supply chain management, logistics, scheduling,
and network design (Bengio et al., 2021). These problems, characterized by their discrete decision
variables and complex constraints, are often NP-hard in complexity, making exact solutions compu-
tationally intractable for large-scale instances. For decades, researchers have developed specialized
algorithms, heuristics, and metaheuristics to approximate optimal solutions, yet these approaches
typically require significant domain expertise and manual design efforts (Papadimitriou & Steiglitz,
1998). The emergence of large language models (LLMs), with their remarkable reasoning and
pattern recognition capabilities, has introduced a transformative paradigm for tackling COPs. By
leveraging their natural language processing and generative abilities, LLMs enable automated ap-
proaches that reduce reliance on manual algorithm design and expert intervention (Sun et al., 2024;
Novikov et al., 2025). Investigating on leveraging LLMs to solve Vehicle Routing Problems (VRPs)
represents one of the most cutting-edge frontiers in this field.

Initial studies explored the use of LLMs as end-to-end solvers for VRPs (Yang et al., 2024). How-
ever, these purely generative approaches often yield solutions that are substantially inferior to those
from conventional or deep learning-based solvers and are frequently infeasible—a shortcoming at-
tributed to the fact that LLMs are notoriously prone to hallucinations (Kalai et al., 2025). Conse-
quently, a more promising direction is to integrate LLMs not as autonomous solvers but as intelligent
operators within established optimization frameworks, such as evolutionary algorithms. In this hy-
brid paradigm, the LLM acts as a strategic generator or refiner within an iterative loop. For instance,
Liu et al. (2024c) employ general-purpose LLMs to guide an evolutionary process, using in-context
prompting to perform crossover and mutation. An alternative approach inverts this relationship, us-
ing evolutionary computation not as a framework for the LLM to power, but as a mechanism to guide
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the LLM itself in generating increasingly effective heuristics. Representative works like EoH (Liu
et al., 2024b) and ReEvo (Ye et al., 2024) iteratively refine LLM-generated heuristic through evo-
lutionary selection. In contrast, another line of research prioritizes general-purpose frameworks for
diverse VRP variants, favoring broader generalization at the cost of performance. Methods such
as ARS (Li et al., 2025a), which leverage predefined structures to generate constraint-checking
functions, and DRoC (Jiang et al., 2025), which utilizes retrieval to produce code that invokes ex-
ternal solvers like OR-Tools (Furnon & Perron, 2025), demonstrate improved generalization and
robustness against code execution failures. Nonetheless, a significant performance gap remains with
conventional and deep learning-based solvers, echoing doubts about the immediate application of
existing methods to large-scale problems. Given that practical instances in the real scenario often
rely on advanced solvers, a critical open question is whether we can finetune small LLMs to op-
timize key components within these solvers to achieve beyond expert performance, presenting a
challenging yet promising research frontier.

We introduce RFTHGS, a reinforcement learning (RL) framework for fine-tuning a reasoning LLM
with 14B parameters to autonomously generate effective crossover operators for the Hybrid Genetic
Search (HGS) algorithm (Vidal, 2022), thereby enhancing its performance in solving large-scale Ca-
pacitated Vehicle Routing Problems (CVRP). Our RL approach utilizes solution quality as the key
feedback signal, instantiated as a structured, tiered reward design. This reward is designed to guide
the learning process through three progressive stages. First, from our observation that instruction-
tuned models often fail to produce syntactically valid code, we reward the model with a reward for
generating any compilable code. Second, an additional reward is granted if the operator code ex-
ecutes successfully without runtime errors or timeouts. Finally, for the compilable and executable
code, the relative improvement in solution quality on a predefined set of CVRP instances—compared
to a baseline expert-designed operator—translates into a linear reward (positive for outperforming
the baseline, negative otherwise). It is important to emphasize that the CVRP instances serve ex-
clusively to steer the feedback mechanism by evaluating operators generated by the LLM and are
not provided as input to the model itself. To mitigate reward hacking and prevent the repeated gen-
eration of a single high-performing operator, we incorporate an operator buffer mechanism. This
mechanism penalizes the model for producing duplicates, thereby explicitly incentivizing diversity
in the discovered solutions. Through this iterative refinement process, our framework empowers
the LLM-generated operators to ultimately exceed the performance of handcrafted operators de-
signed by human experts. Extensive experiments verify that the LLM-generated crossover operator
delivers substantial improvements over the expert-designed operator in HGS, achieving superior
performance on both small and large-scale instances (up to 1,000 nodes) on real-world benchmark.
Furthermore, it surpasses all leading neuro-combinatorial and prompt-based LLM baselines by a
significant margin. This work provides, to the best of our knowledge, the first evidence that a small-
scale reasoning LLM (14B parameters) can be fine-tuned via RL to produce critical components that
exceed the performance of those in state-of-the-art, expert-designed solvers.

2 RELATED WORK

2.1 ON THE REASONING ABILITY OF LARGE LANGUAGE MODELS

The development of large language models (LLMs) with advanced reasoning capabilities has
evolved through several key phases, beginning with Chain of Thought (CoT) prompting, which ex-
plicitly guides models to generate intermediate reasoning steps, significantly improving performance
on tasks like arithmetic and commonsense reasoning (Plaat et al., 2024; Wei et al., 2022). This ap-
proach was further enhanced by inference-time strategies such as Self-Consistency (aggregating
multiple reasoning paths) and Tree-of-Thoughts (ToT) (exploring branched reasoning trajectories),
which reduce errors and improve robustness in multi-step problem-solving (Yao et al., 2023). A
major shift occurred with the integration of reinforcement learning (RL) techniques, where models
are trained using verifiable rewards (e.g., correct answers in mathematical problems or code execu-
tion results) to incentivize logical reasoning without relying solely on supervised fine-tuning (Xiang
et al., 2025; Xu et al., 2025). For instance, DeepSeek-R1 (DeepSeek-AI et al., 2025) and OpenAI’s
o1 series (OpenAI et al., 2024) exemplify how RL-driven self-improvement and scaled inference-
time compute enable deliberate, step-by-step reasoning. Additionally, hybrid methods such as Mi-
crosoft’s rStar-Math (Guan et al., 2025) (which integrates Monte Carlo Tree Search for problem
decomposition) and retrieval-augmented generation (RAG) (Lewis et al., 2020) combine the pattern
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recognition capabilities of LLMs with external tools for rigorous symbolic operations. Recent ad-
vancements also focus on test-time training and outcome-based exploration to enhance adaptability
and diversity in reasoning paths, while interpretability research aims to ensure faithful internal rea-
soning processes (Song et al., 2025). Despite progress, challenges such as hallucination, scalability,
and generalisation persist, driving ongoing innovation in architectures and training paradigms (Sho-
jaee et al., 2025). In contrast to the well-recognized success in solving math problems, training
the LLM with reasoning capabilities to generate operators that can outperform the default expert-
designed ones in advanced VRP solvers remains challenging and largely unexplored.

2.2 SOLVING CVRP WITH LLM IN THE LOOP

The integration of LLMs into Vehicle Routing Problems (VRPs) has primarily advanced through
prompting-based methodologies (Yang et al., 2024; Jiang et al., 2025; Liu et al., 2024c; Huang
et al., 2024), which leverage the robust reasoning capabilities of state-of-the-art (SOTA) off-the-
shelf LLMs (e.g., GPT-o3-mini). For instance, ARS (Li et al., 2025b) uses LLMs to automatically
generate constraint-aware heuristics for solving complex vehicle routing problems by synthesiz-
ing natural language descriptions into executable code, which can construct heuristics for 90% of
common VRP variants with different constraints. Similarly, Hercules (Wu et al., 2025) employs
Core Abstraction Prompting (CAP) to derive high-performance heuristics by abstracting core com-
ponents from elite solutions, though it remains dependent on powerful closed-source LLMs. Exist-
ing research is also investigating automatic heuristic design with LLM. Representative works like
EoH (Liu et al., 2024b) and ReEvo (Ye et al., 2024) iteratively refine LLM-generated heuristics
through evolutionary selection. Most recently, CALM (Huang et al., 2025) extends this paradigm
by integrating reinforcement fine-tuning of the LLM into the evolutionary loop, allowing the model
and its generated heuristics to co-evolve. In contrast, finetuning-based approaches for COP re-
main relatively sparse, often due to challenges like catastrophic forgetting, computational costs,
and overfitting when adapting pre-trained models to specialized domains. While parameter-efficient
methods like LoRA (Hu et al., 2021) mitigate some issues, fine-tuning small open-source LLMs
(e.g., LLaMA (Touvron et al., 2023)) to generate operators for widely-used solvers like Hybrid Ge-
netic Search (HGS) (Vidal, 2022) remains an open problem. Current efforts are mainly devoted to
prompting, leaving a gap in developing specialized, lightweight models that can efficiently integrate
with solver frameworks without relying on API-dependent, proprietary LLMs.

3 PRELIMINARY

HGS For Solving The Capacitated Vehicle Routing Problem (CVRP). The Hybrid Genetic
Search (HGS) (Vidal, 2022) algorithm represents a state-of-the-art metaheuristic framework promi-
nently applied to complex combinatorial optimization problems, particularly vehicle routing prob-
lems (VRPs). As an extension of the classical genetic algorithm, HGS distinguishes itself through
a tight integration of population-based evolutionary search and intensive local improvement proce-
dures. Its core mechanism involves maintaining a diverse population of solutions that are iteratively
refined through a process of selection, crossover, and local search. Within this framework, the
crossover operator is the primary mechanism for global exploration by recombining genetic mate-
rial from parent solutions to generate novel offspring. This operator does not merely produce trivial
combinations; rather, it constructs promising, high-quality solution skeletons that effectively inherit
desirable attributes from both parents. These offspring solutions subsequently undergo rigorous lo-
cal search, which acts upon the foundation laid by crossover to exploit the solution space locally
and achieve feasibility and optimality. This synergistic interplay, where crossover provides a robust
starting point for deep local exploitation, is a critical factor in the documented efficacy of HGS, en-
abling it to navigate the trade-off between exploration and exploitation effectively and consistently
produce high-quality solutions for routing problems.

The Group Relative Policy Optimization (GRPO) Algorithm. GRPO (Shao et al., 2024) is an
improved variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017). The key innova-
tion of GRPO lies in utilizing a normalized reward function to compute advantages, where the mean
and variance are estimated through Monte-Carlo sampling (with sample size G) from the current
policy πk(·|x) at step k for each input (prompt) x. For given parameters ϵ, β > 0, and a reference
policy πref (usually the base model), the GRPO objective optimization problem is formulated as:
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the CrossOver operator...
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Figure 1: The reinforcement learning pipeline of RFTHGS. The framework iteratively optimizes
an LLM to generate effective crossover operators for HGS. Each iteration consists of generating
code from a structured prompt, evaluating the operator’s performance on a validation set (using in-
cremental compilation for speed), calculating a multi-faceted reward, and updating the LLM policy.
The LLM only sees operator examples, not problem instances or the solver codebase.

max
π

Ey∼πk(·|x) min

[
π(y|x)
πk(y|x)

Aπk
(x, y), clip

(
π(y|x)
πk(y|x)

, 1− ε, 1 + ε

)
Aπk

(x, y)

]
− βKL(π||πref)

(1)

where KL denotes Kullback-Leibler divergence, and Aπk
represents GRPO advantage function:

Aπk
(x, yi) =

r(x, yi)− Eπk
r(x, yi)√

Eπk
(r(x, yi)− Eπk

r(x, yi))2 + ε
≃ r(x, yi)− µ({rℓ})√

σ2({rℓ}) + ε
, 1 ≤ ℓ ≤ G (2)

with the advantage estimated by sampling a ”group” of size G for each input x, and µ and σ represent
the empirical mean and standard deviation, respectively.

4 METHOD

We introduce RFTHGS, a reinforcement learning framework that fine-tunes large language models
(LLMs) to generate crossover operators that outperform expert-designed ones in the Hybrid Genetic
Search (HGS) solver (Vidal, 2022). The framework uses solution quality as the key reward signal to
guide the LLM toward generating increasingly effective operators. As shown in Figure 1, RFTHGS
is an iterative closed feedback loop. Each iteration consists of prompting the LLM to generate new
operators, assessing their performance on a set of predefined CVRP instances, and then employing
the feedback reward to refine the LLM via reinforcement learning.

Specifically, each iteration begins by constructing a few-shot CoT context (see Appendix A.3) that
contains: (1) instructions specifying key properties (e.g., diversity and quality) and steps for gen-
erating a high-quality operator, and (2) examples of existing operators that illustrate the required
structure and syntax. The LLM then generates new crossover operators based exclusively on this
prompt, with no references to other modules in the HGS library or access to specific CVRP instances.
For evaluation, each generated operator is integrated into the HGS library, and the code is recom-
piled to test on a fixed problem benchmark set. We employ incremental compilation to speed up
this recompilation step. Finally, performance metrics such as compilability and improvement over
baseline operators are combined into a multi-faceted reward, which is used to finetune the LLM via
reinforcement learning. The RFTHGS framework automates the design of optimization operators,
and demonstrates that small LLMs can evolve components that outperform human-designed ones
in a state-of-the-art CVRP solver. We also verify that the RFTHGS framework is generic and can
be applied to optimize other operators (or modules) within HGS, as demonstrated in Appendix A.6,
where we apply RFTHGS to optimize the subpopulation operator as another example.
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Figure 2: (a) HGS as the environment for evaluating the quality of LLM-generated operators. We
use the incremental compilation technique to boost the computation of objective values. (b) The
multi-faceted reward function.

4.1 ONE-STEP POMDP MODELLING

We formulate the operator optimization as a one-step Partially Observable Markov Decision Process
(One-Step POMDP), with formal definitions of state, action, reward and policy given as follows.

State: The state X ∈ X 1 denotes a tokenized prompt received by the LLM, comprising both the
task instructions and examples of the target operator to be optimized. To mitigate context overload,
the input is restricted to the target operator itself (e.g., the crossover operator in HGS), rather than
the entire library of the solver. This restriction results in a partially observable environment, as the
model only perceives a subset of the full state space (i.e., the complete solver repository).

To enhance the versatility of the learning process, we maintain a buffer of few-shot examples con-
taining operators generated by the LLM during training as well as those designed by human experts.
At each iteration, we randomly sample examples from this buffer to construct the prompt. This ap-
proach enables the LLM to learn from and attempt to improve upon both its previous generations and
expert-designed operators. Furthermore, it enriches the diversity of the initial states (i.e., prompts),
which helps prevent overfitting and encourages broader exploration.

Action: The action (or response) Y ∼ p(·|X ∈ X ) generated by our operator-refining LLM is a
sequence of tokens Y ∈ Y consisting of two main parts, where p(·|X) is the conditional probability
from which the actions are sampled. The first part is a reasoning segment enclosed between the
special tokens <think> and </think>, where it explains the steps and logic it plans to take for
the optimization task. Following this, it outputs optimized version of the code for the target operator.

State Transition: The state terminates after the action is generated, since we only allow one round of
optimization for the operator. Therefore, there are no state transitions, and the POMDP is one-step.

Reward: The reward r ∈ R is a scalar evaluating the quality of LLM-generated operators. Please
refer to Section 4.2 below for details of the reward function.

Policy Network: The policy network is a base large language model, denoted by πθ(·|X), X ∈ X ,
with trainable parameters θ that parameterize the conditional probability distribution p(·|X) from
which the optimized operator is sampled. In this work, we focus on relatively small LLMs (e.g.,
14B parameters), which can be either a pretrained base model or an instruction-tuned variant.

4.2 THE MULTI-FACETED REWARD DESIGN WITH ANTI-PLAGIARISM CACHE

Building on the insight that carefully crafted, multi-faceted rewards are crucial for effective
RL (Narvekar et al., 2020; Eppe et al., 2022; Huang et al., 2025), we developed a multi-tiered reward
function to decompose the learning process. Particularly, the reward function follows a curriculum

1Here we use the symbol X ∈ X to represent the state to highlight that the RL task here is different from
the conventional RL ones, where the initial state is the input to the LLM.
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learning principle, guiding the LLM through progressive stages to evolve operators that exceed those
designed by human experts. To ensure the robustness of this approach, we further introduce two key
innovations: a mechanism to prevent reward hacking by deterring plagiarism of prompt examples,
and a method to significantly accelerate the training process.

Anti-Plagiarism Cache With Abstract Syntax Tree. To mitigate reward hacking and encourage
the exploration of unseen operators, we introduce a caching mechanism that leverages Abstract Syn-
tax Trees (ASTs) to deter plagiarism. The AST provides a structured, hierarchical representation that
abstracts away unnecessary syntactic details like punctuation and formatting to capture the essen-
tial logical structure of the generated operators. We cache the AST representations of all few-shot
operator examples in the prompt. For each operator generated by the policy πθ, its AST is com-
pared against those in the cache. A penalty is invoked by the reward function if a substantial match
is detected, indicating direct copying. This approach promotes diverse exploration by penalizing
redundant operator generation.

HGS With Incremental Compilation As The Evaluator. We have to integrate each generated op-
erator into the HGS library to evaluate its quality. This process inevitably requires recompiling the
repository, which will incur prohibitive computational overhead, especially for large training batch
sizes. Nonetheless, recompiling the entire library is unwarranted when only a single, small code
snippet (the generated operator) is modified. To address this bottleneck, we employ an incremental
compilation technique that selectively recompiles only the modified code and its dependencies, re-
ducing recompilation time to approximately 25% of compiling the whole library and significantly
accelerating the training speed.

Here we give the formulation of our three-stage reward function. First, the reward function assigns
a reward of −0.8 for a syntactically correct and compilable operator to encourage a rapid transition
from invalid code and improve exploration efficiency, or a penalty of −1 for invalid output. Upon
achieving compilability, the function then assesses executability, penalizing runtime failures such
as timeouts. An operator that executes successfully receives a reward of −0.7, independent of its
solution quality. Finally, for executable operators, performance is evaluated on a predefined set
of CVRP instances, with the reward quantified as the relative improvement over expert-designed
benchmarks according to the following calculation:

r(o) =


−1 o /∈ C
−0.8 o ∈ C, o /∈ E
−0.9 o ∈ C, o ∈ E, o ∈ P
max

(
−0.7, [ϕJ

HGS(oexpert)− ϕJ
HGS(o)]/ϕ

J
HGS(oexpert)

)
o ∈ C, o ∈ E, o /∈ P

(3)

In this formulation, o represents the generated operator, while C, E, and P correspond to the sets
of compilable, executable, and plagiarized code, respectively. For evaluation, the HGS library is
recompiled to include the generated operator o. The performance metric ϕJ

HGS(·) is then calculated as
the average result on J random CVRP instances. To benchmark the effectiveness of our continuous
reward design in Equation 3, we compare it with a discrete version where we employ a +1 reward
if the generated operator outperforms the baseline operator in Table 3 (details in Appendix 5.4).
We find that our continuous reward offers feedback proportional to performance gains, enabling
sustained refinement and explaining its superior performance.

4.3 THE REINFORCEMENT LEARNING ALGORITHM

We use DAPO (Yu et al., 2025) as the reinforcement learning algorithm for training our operator
refining network. Specifically, DAPO is an improved version of GRPO with four adjustments: 1).
Clip-Higher Mechanism. Unlike GRPO following the original PPO setting where a unified clip ra-
tion is adopted for the positive and negative responses, DAPO decouples the clipping range into a
higher upper bound (εhigh) and a standard lower bound (εlow), allowing the policy to more aggres-
sively increase probabilities for promising but initially low-likelihood tokens. This promotes greater
exploration and diversity in generated responses, effectively preventing entropy collapse where the
model becomes overly deterministic; 2). Dynamic Sampling. This strategy filters out prompt groups
where all sampled responses are either all correct or all incorrect, as these yield zero advantage and
provide no learning signal. By replacing them with new prompts that exhibit varied performance,
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Table 1: Performance comparison of baselines and our method for CVRPLIB across problem
sizes. Light gray columns indicate generalization to unseen problem sizes, while light gray rows
represent generalization to higher iterations. The darker gray intersection areas highlight double
generalization across both dimensions. Bold values denote best performance among all methods;
asterisks (*) indicate that the results are unavailable.

n ∈ [100, 200) n ∈ [200, 400) n ∈ [400, 600) n ∈ [600, 800) n ∈ [800, 1000]

Methods Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s)

Conventional Solver
HGS-PyVRP800 (Wouda et al., 2024) 0.62 12.45 1.85 28.16 1.95 58.41 2.62 91.31 2.32 121.04
HGS-PyVRP1000 (Wouda et al., 2024) 0.55 14.88 1.66 36.27 1.81 72.86 2.43 110.54 2.22 144.17
HGS-PyVRP1200 (Wouda et al., 2024) 0.52 17.25 1.56 42.98 1.69 88.40 2.32 129.58 2.10 173.15

OR-Tools (Furnon & Perron, 2025) 4.26 88.83 5.05 172.07 4.98 296.53 6.71 416.95 4.65 532.32
LKH (Helsgaun, 2000) 1.42 191.12 1.97 252.23 2.85 432.36 3.65 599.41 3.31 545.85

NCO
POMO (Kwon et al., 2020) 13.30 0.41 14.64 0.64 22.07 1.29 21.57 2.32 41.23 4.16

MTPOMO (Liu et al., 2024a) 6.50 0.98 8.79 1.02 16.58 1.89 26.56 2.81 28.19 4.33
MVMoE (Zhou et al., 2024) 5.46 0.80 8.14 1.56 13.26 2.85 16.59 4.17 18.40 6.25

RF-POMO (Berto et al., 2025) 5.67 0.54 7.07 1.15 10.29 1.97 12.28 2.86 13.31 4.48
RF-MoE-L (Berto et al., 2025) 7.15 0.85 7.67 1.58 10.76 2.79 15.15 3.95 15.70 5.84

AM (Kool et al., 2019) 200.75 0.30 204.59 0.58 253.98 1.12 301.08 1.51 280.49 2.01
DeepACO (Ye et al., 2023) 76.18 18.37 93.02 35.03 97.70 61.03 123.89 88.23 116.13 112.01

NeuroLKH (Xin et al., 2021) 1.96 1.02 * * * * * * * *
NeuOpt (Ma et al., 2023) 3.51 * * * * * * * * *

Prompting-Based Method With LLM
MCTS-AHD (Zheng et al., 2025) 18.51 4.35 19.07 10.06 18.40 22.50 28.51 37.60 19.70 55.61

ReEvo (Ye et al., 2024) 72.11 4.96 96.55 10.78 107.40 23.99 163.62 41.72 144.22 61.49
GPT4o800 (Hurst et al., 2024) 0.62 12.1 1.85 29.3 1.95 59.4 2.62 91.7 2.32 119.2
GPT4o1000 (Hurst et al., 2024) 0.55 15.0 1.66 36.1 1.81 73.4 2.43 111.2 2.22 143.7
GPT4o1200 (Hurst et al., 2024) 0.52 17.7 1.56 43.1 1.69 87.3 2.32 130.5 2.10 172.8
GPT-o3800 (Jaech et al., 2024) 0.62 11.96 1.85 30.20 1.95 58.94 2.62 91.39 2.32 119.04
GPT-o31000 (Jaech et al., 2024) 0.55 14.31 1.66 34.80 1.81 73.61 2.43 109.78 2.22 143.19
GPT-o31200 (Jaech et al., 2024) 0.52 17.65 1.56 43.53 1.69 87.89 2.32 130.71 2.10 172.93

GPT-o4-mini800 (Jaech et al., 2024) 0.70 10.9 1.78 26.1 1.99 54.4 2.80 86.7 2.28 114.8
GPT-o4-mini1000 (Jaech et al., 2024) 0.63 13.7 1.66 32.3 1.86 66.8 2.70 106.3 2.20 140.6
GPT-o4-mini1200 (Jaech et al., 2024) 0.58 16.3 1.58 38.6 1.74 79.4 2.61 127.1 2.11 169.6

Ours
RFTHGS800 0.70 13.14 1.67 29.60 1.83 61.65 2.59 92.17 2.24 118.59

RFTHGS1000 0.52 14.33 1.62 36.16 1.76 74.16 2.35 110.43 2.17 143.87
RFTHGS1200 0.46 19.13 1.55 44.18 1.73 87.84 2.26 132.04 2.09 172.56

DAPO ensures every training batch contains meaningful gradients, improving training efficiency
and stability without sacrificing throughput. However, in our paper, we deprecate this design as the
reward signal in our case is continuous, specifying a wide range of situations from uncompilable
code to superior performance gain against the baseline operators that all contribute useful learning
signals for the LLM to learn; 3). Token-Level Policy Gradient Loss. Unlike GRPO, which averages
losses at the response level, DAPO calculates and aggregates the loss over all tokens in the batch
before averaging. This ensures each token’s contribution to the gradient is weighted equally, pro-
viding more precise updates for long reasoning chains and better reinforcing correct steps in lengthy
responses; 4). Overlong Reward Shaping. To address the issue of truncated lengthy responses that
may contain valid reasoning, DAPO employs two strategies: Overlong Filtering excludes these re-
sponses from training updates to avoid misleading penalties, and Soft Overlong Punishment applies
a gradual, length-dependent penalty beyond a certain token threshold to encourage conciseness with-
out harshly punishing correct but verbose reasoning. The pseudo-code of our algorithm is shown in
Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS AND BASELINES

We give the details of the configurations of our RFTHGS algorithm. Specifically, we initialize the
policy with Qwen-14B reasoning LLM (Yang et al., 2025). For DAPO, we follow its optimal set-
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(a) (b)

Figure 3: Training dynamics of the RFTHGS framework. (a) Average reward per step, showing
stable convergence. (b) Evolution of the reward distribution, illustrating the effectiveness of the
multi-faceted reward function in guiding the learning process.

tings reported in the original paper with εhigh = 0.28 and εlow = 0.2. The batch size is set to 16 and
the rollout group size is 16. Therefore, the policy model will generate 256 crossover operators for
each step. For calculating reward during training, we use a fixed set of 30 CVRP instances sampled
from the CVRPLIB X instances (Uchoa et al., 2017), restricting the selection to those with at most
400 nodes. During the testing phase, we sample 16 operators and report the performance of the best
one. The final evaluation of our method is performed on the CVRPLIB benchmark, which encom-
passes a wide range of instance sizes from small scales to industry-level scales (up to 1000 nodes).
We benchmark RFTHGS against a variety of baselines on CVRPLIB X instances (Uchoa et al.,
2017). These include the state-of-the-art conventional solvers, neuro-combinatorial techniques, and
prompting strategies that utilize commercial LLMs such as the GPT-4 series. To ensure an equitable
comparison for the LLM-based approaches, we consistently sample 16 operators and select the best
one for each. Further details on the baselines are available in Table 1. Detailed breakdown of the
computational resources required for RL training is provided in Appendix A.7

5.2 PERFORMANCE ON CVRPLIB

Table 1 compares RFTHGS against a diverse set of baselines on CVRPLIB instances, including
conventional heuristics, neuro-combinatorial methods, and prompting techniques that utilize com-
mercial LLMs such as the flagship GPT-4o series. The results demonstrate that RFTHGS outper-
forms all baseline methods by a substantial margin. This superior performance is underscored by
its exceptional generalization capability to large-scale problems unseen during training. Notably,
although trained exclusively on instances with n < 400, our approach generalizes effectively to
instances of up to n = 1000, which are more than twice the size of the largest training instances.
This validates the potential of refining advanced solvers via learned components for complex com-
binatorial optimization problems. The code comparison between human-expert designed operators
and our LLM-optimized operators is presented in Appendix A.8, highlighting the key modifications
introduced by the LLM that contribute to improved performance.

Table 2: Successful compilation rate.

Successful Compilation Rate
GPT-4o GPT-o3 GPT-o4-mini RFTHGS-14B

3/16 9/16 3/16 16/16

Another key observation is that our RFTHGS
framework enables a 14B-parameter LLM to
outperform trillion-parameter GPT reasoning
models (GPT-4o, GPT-o3, GPT-o4-mini). This
advantage is demonstrated through both the
quality of the modifications and their practi-
cal efficacy. As shown in Table 2, our model
achieves a perfect successful compilation rate of 16/16, substantially exceeding the rates of the GPT
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Table 3: Ablation study on reward design. FRTHGSd is the 14B LLM trained with reward in
Equation 4. FRTHGSc is the 14B LLM trained with reward in Equation 3. Shaded areas are gener-
alization results.

n ∈ [100, 200) n ∈ [200, 400) n ∈ [400, 600) n ∈ [600, 800) n ∈ [800, 1000]

Methods Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s)

HGS 0.62 12.45 1.85 28.16 1.95 58.41 2.62 91.31 2.32 121.04
FRTHGSd 0.83 11.75 1.78 28.89 1.92 58.12 2.64 94.30 2.30 120.28
FRTHGSc 0.70 13.14 1.67 29.60 1.83 61.65 2.59 92.17 2.24 118.59

models (3/16, 9/16, and 3/16, respectively). Crucially, while the GPT models often introduce nu-
merous modifications, these changes consistently fail to improve performance. This is evident in
Table 1, where the crossover operators modified by these GPT models exhibit performance identi-
cal to the original, unmodified operator, confirming that no functionally helpful modifications were
made. In contrast, our RFTHGS-guided model produces targeted, effective modifications that yield
consistent performance gains. This demonstrates that specialized fine-tuning for a specific task is
more effective than using a general-purpose model of a much larger scale.

5.3 LEARNING PATTERN ANALYSIS

Figure 3a presents the learning curve of the RFTHGS framework, demonstrating stable and mono-
tonic convergence. The average reward increases smoothly without significant oscillations, indicat-
ing a well-structured learning landscape with the effective design of our reward function. A crit-
ical inflexion occurs around step 200, where the generated operator surpasses the expert-designed
baseline, marking the transition from learning executable operators to discovering superior heuris-
tics. Beyond this intersection point, the curve continues to show consistent improvement, ultimately
achieving substantially higher performance. This smooth progression shows that RFTHGS can ef-
fectively guide the LLM in generating increasingly sophisticated crossover operators. Figure 3b
reveals the underlying learning patterns through the dynamics of the reward distribution. The heat
map exhibits a clear curriculum learning pattern that precisely echoes our multi-tiered reward de-
sign. Initially, the density concentrates at lower rewards as the model masters syntactic correctness
and compilability. Subsequently, the distribution shifts toward intermediate rewards, corresponding
to the phase where operators become executable and yield valid solutions. Finally, the density cen-
ter progressively migrates to the highest reward region, indicating the refinement toward operators
that consistently outperform human-designed ones. This tri-phasic progression validates the effec-
tiveness of our hierarchical reward structure in decomposing the complex operator design task into
manageable learning stages.

5.4 GENERALIZATION PERFORMANCE ON ITERATIONS

The generalization capability of RFTHGS is further assessed across two joint dimensions, i.e., itera-
tion count and problem size. Regarding iteration generalization, models trained with an 800-iteration
budget (RFTHGS800) maintain robust performance when evaluated at higher budgets of 1000 and
1200 iterations, consistently outperforming expert-designed baselines. This indicates that the opti-
mized operators retain their efficacy beyond their training configuration. In terms of problem size,
although trained exclusively on instances with n < 400, RFTHGS generalizes effectively to signif-
icantly larger problems (up to n = 1000). This joint generalization underscores the robustness and
strong out-of-distribution scalability of our method. The results are shown in the last two rows (grey
areas) of Table 1.

6 CONCLUSION

This paper introduces RFTHGS, a reinforcement learning framework that optimizes operators in the
Hybrid Genetic Search (HGS) solver for solving the Capacitated Vehicle Routing Problem (CVRP).
By fine-tuning with domain-specific rewards, we demonstrate that specialized small LLMs can sur-
pass large general and deep thinking ones like GPT-4o, GPT-o4-mini, and GPT-o3 with trillions of
parameters. Our core innovation is a novel RL-based fine-tuning paradigm guided by solution qual-
ity, featuring a multi-tiered reward mechanism with anti-plagiarism caching for progressive learning.
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Extensive experiments on CVRPLIB benchmarks confirm that the crossover operator generated by
our method demonstrates superior performance over the expert-designed operator within the HGS
framework, achieving substantial improvements, particularly on large-scale instances with up to
1,000 nodes. To our knowledge, this is the first work to show that a small, fine-tuned LLM can
generate operators that exceed expert-crafted components in a leading combinatorial optimization
solver. In future, we will try to evolve more operators inside HGS and solve more types of VRPs.

7 ETHICS STATEMENT

This study involves no personal data, human subjects, or other sensitive content and therefore
presents no obvious ethical concerns. The only potential risk lies in the fact that operators gen-
erated by LLMs may contain bugs which, if deployed without thorough validation, could cause
losses.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive experimental details
throughout this paper. Section 5.1 presents complete experimental configurations and environment
specifications, while the Appendix A.3 includes detailed prompts. These materials provide sufficient
information for independent reproduction of our experimental results. Furthermore, we will open-
source our full code base and model weights to further improve reproducibility.
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Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 9459–9474. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

Kai Li, Fei Liu, Zhenkun Wang, Xialiang Tong, Xiongwei Han, Mingxuan Yuan, and Qingfu Zhang.
ARS: Automatic routing solver with large language models. arXiv preprint arXiv:2502.15359,
2025a.

11

https://arxiv.org/abs/2501.12948
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://api.semanticscholar.org/CorpusID:235458009
https://arxiv.org/abs/2505.12285
https://arxiv.org/abs/2505.12285
https://arxiv.org/abs/2509.04664
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kai Li, Fei Liu, Zhenkun Wang, Xialiang Tong, Xiongwei Han, Mingxuan Yuan, and Qingfu Zhang.
Ars: Automatic routing solver with large language models, 2025b. URL https://arxiv.
org/abs/2502.15359.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1898–1908,
2024a.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: towards efficient automatic algorithm design using large language
model. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024b.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8,
2024c. doi: 10.1109/CEC60901.2024.10611913.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
gions of routing problems with flexible neural k-opt. Advances in Neural Information Processing
Systems, 36:49555–49578, 2023.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.
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Table 4: Ablation study on reward design. FRTHGSd is the 14B LLM trained with reward in
Equation 4. FRTHGSc is the 14B LLM trained with reward in Equation 3. Shaded areas are gener-
alization results.

n ∈ [100, 200) n ∈ [200, 400) n ∈ [400, 600) n ∈ [600, 800) n ∈ [800, 1000]

Methods Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s) Gap% (↓) Time (s)

HGS 0.62 12.45 1.85 28.16 1.95 58.41 2.62 91.31 2.32 121.04
FRTHGSd 0.83 11.75 1.78 28.89 1.92 58.12 2.64 94.30 2.30 120.28
FRTHGSc 0.70 13.14 1.67 29.60 1.83 61.65 2.59 92.17 2.24 118.59

A APPENDIX

A.1 ABLATION STUDIES ON REWARD DESIGN

To benchmark the effectiveness of our continuous reward design (Equation 3), we compare it with a
discrete version defined as follows:

rd(o) =



−1 o /∈ C
−0.8 o ∈ C, o /∈ E
−0.9 o ∈ C, o ∈ E, o ∈ P
0 o ∈ C, o ∈ E, o /∈ P, ϕJ

HGS(oexpert) < ϕJ
HGS(o)

1 o ∈ C, o ∈ E, o /∈ P, ϕJ
HGS(oexpert) > ϕJ

HGS(o)

(4)

Table 4 demonstrates the clear advantage of our continuous reward design. FRTHGSc consistently
outperforms the discrete-reward variant FRTHGSd, particularly on larger problem sizes. The dis-
crete reward’s binary nature (0 or 1) provides limited guidance. Once an operator beats the baseline,
the gradient vanishes as all improvements receive the same reward, and the advantage is thus 0
(Equation 2). In contrast, our continuous reward offers feedback proportional to performance gains,
enabling sustained refinement and explaining its superior performance.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We clarify that all intellectual contributions in this work, from initial idea conception and algo-
rithm design to experimental implementation and result validation, were conducted exclusively by
the human authors. While we employed LLMs during the manuscript preparation phase to refine
language expression and improve readability, their role was strictly limited to linguistic polishing.
The manuscript’s structure, core arguments, and all substantive content were determined entirely
by the human authors, with LLMs serving merely as an auxiliary tool for enhancing clarity and
grammatical accuracy, similar to traditional proofreading services.

A.3 PROMPT TEMPLATE

# ROLE: Expert C++ Optimization Engineer for Vehicle Routing Problems

You are a senior C++ optimization engineer with expertise in algorithmic
optimization, particularly for Vehicle Routing Problems (VRP). Your
task is to analyze and improve the selective_route_exchange.cpp file’
s crossover algorithm.

## TASK OVERVIEW
You are given the file selective_route_exchange.cpp (full listing below).
Your goal is to make ONE small, reliable modification that tends to

create
children with better penalised cost (Solution quality ↑) while keeping

runtime
and interface intact.

## THINKING PROCESS REQUIREMENTS
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1. First, thoroughly analyze the current implementation to understand:
- The algorithm’s purpose and workflow
- Key decision points and heuristics
- Performance bottlenecks or optimization opportunities
- Any constraints that must be preserved

2. Generate at least 3 different modification approaches, evaluating each
on:

- Potential improvement to solution quality
- Impact on runtime performance
- Compatibility with existing code
- Risk of introducing bugs or side effects

3. For your chosen modification:
- Justify why it’s likely to improve solution quality
- Verify it maintains the function signature and behavior
- Double-check for compatibility with the rest of the codebase
- Consider edge cases and verify robustness

############################################################
## HARD RULES (Mandatory Verification Checklist)

1. □ Keep the function signature and namespace exactly the same:
pyvrp::crossover::selectiveRouteExchange(...)

2. □ The file must still compile under C++17 with the current #include
lines.
You may NOT remove #include directives.

3. □ Do not change any public headers, class interfaces, or external
behaviour
except for the improved offspring quality.

4. □ DO NOT fabricate or use non-existent or unmentioned attributes or
methods.
Verify every method you use exists in the provided code or

documentation.

5. □ Wrap the code you output with ‘‘‘cpp and ‘‘‘.

6. □ Mark ALL your modifications with clear "// MODIFY: XXX" comments
explaining the change.

7. □ You must make at least one modification; DO NOT copy the original
code.

8. □ Before finalizing, double-check that your modification:
- Does not introduce new parameters
- Does not change the function’s contract
- Is focused on improving solution quality, not runtime
- Is fully compatible with the existing codebase
- Uses only documented methods and attributes

############################################################
## DELIVERABLES (strict):

A. ≤ 2-sentence summary of the optimization idea, clearly explaining how
it improves solution quality.

B. Output the FULL C++ code with your modifications. Mark all changes
with "// MODIFY: XXX" comments.

C. Brief explanation of your verification process and why you’re
confident the modification will:
- Improve solution quality

17
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- Maintain compatibility with the existing codebase
- Not significantly impact runtime performance

############################################################
## SCORING AND EVALUATION

We will benchmark on a fixed random seed over several CVRP instances.
Your patch should reduce the average optimal gap in ≥90% of the instances

without
increasing total runtime by >3%.

Key considerations for high-quality solutions:
- More efficient route structures (fewer vehicles, shorter routes)
- Better client assignment to routes based on spatial relationships
- Improved handling of capacity constraints
- Preservation of high-quality route segments during crossover
- Better diversity in the generated offspring

############################################################

## selective_route_exchange.cpp
‘‘‘cpp
{code}
‘‘‘

## Extra Information:
## DOMAIN KNOWLEDGE: CVRP AND CROSSOVER OPERATIONS

The Selective Route Exchange is a crossover operation for the Capacitated
Vehicle Routing Problem (CVRP). The algorithm:

1. Selects routes from two parent solutions
2. Exchanges these routes to create offspring
3. Aims to preserve beneficial route structures while creating new

combinations

### Key Optimization Areas to Consider:
- Route selection strategy (which routes to exchange)
- Client-to-route assignment decisions
- Proximity/distance calculations between routes or clients
- Handling of capacity constraints
- Diversity generation in offspring solutions

## Essential Fields and Methods for CVRP Crossover

**ProblemData Key Methods:**
- ‘numLocations()‘ - Returns ‘size_t‘ total number of locations (depots +

clients)
- ‘numClients()‘ - Returns ‘size_t‘ number of client locations
- ‘centroid()‘ - Returns ‘std::pair<double, double>‘ center of all client

locations
- ‘client(idx)‘ - Returns ‘ProblemData::Client‘ with coordinates (x, y)

**Route Key Methods:**
- ‘centroid()‘ - Returns ‘std::pair<double, double>‘ center of route’s

client locations
- ‘vehicleType()‘ - Returns ‘VehicleType‘ (size_t) vehicle type index
- ‘begin()‘ / ‘end()‘ - Iterator support for visiting clients in route
- ‘size()‘ - Returns ‘size_t‘ number of clients in route
- ‘visits()‘ - Returns ‘std::vector<Client>‘ all client indices in route

order

**Route Construction:**
- ‘Route(data, visits, vehicleType)‘ - Constructor taking ‘std::vector<

Client>‘ visits and vehicle type

18
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**Client Iteration:**
- Routes are iterable containers of ‘Client‘ (size_t) indices
- Use range-based for loops: ‘for (Client c : route)‘ to access all

clients in route
- Client coordinates: ‘data.client(c).x‘, ‘data.client(c).y‘

A.4 EXAMPLE OUTPUT WITH REASONING

<think>
Okay, let’s dive into this code. The task is to improve the

selective_route_exchange.cpp’s crossover algorithm to get better
penalized costs without changing the function signature or runtime
much.

First, I need to understand what the current code does. The selective
route exchange crossover selects routes from two parents based on
their angular orientation relative to the data’s centroid. It sorts
the routes by ascending polar angle, then exchanges routes starting
at given indices. The goal is to create offspring that combine
beneficial route structures from both parents.

Looking at the current implementation, the routes are sorted using a
comparator that compares the absolute value of their angles. The
comment says this is to cluster routes with similar directions. But
maybe there’s a better way to sort them. For instance, sorting by the
actual angle (not absolute) might group routes that are in similar

directions more effectively, leading to better route alignment and
potentially better solution quality.

Wait, the current code uses std::abs(angleA) < std::abs(angleB) for
comparison. But if we sort by the actual angle, routes that are in
the same direction (like 30 degrees and 330 degrees) would be far
apart in the sorted list. However, if we sort by angle in a circular
manner (like considering angles modulo 360), that could cluster them
better. But the current code uses absolute value, which might not
account for directional similarity properly.

So, perhaps changing the comparator in the sortByAscAngle function from
absolute angles to the actual angles would lead to better clustering.
For example, routes with angles close to each other, even if they’re
on opposite ends of the circle, might still be better grouped if

they are in similar directions when considering the centroid. Wait,
the centroid is for all clients, so the route’s angle is the
direction of the route’s centroid relative to the data’s centroid.

If we sort by the actual angle instead of absolute value, routes that are
in similar directions (like 0 degrees and 45 degrees) would be

closer together. However, routes with angles like 170 and -170 (which
have absolute values of 170 and 170) would be considered equal, but

their actual angles are very different. So sorting by absolute value
might not be the best approach.

Alternatively, maybe we should sort the routes by their actual angle,
considering them in a circular way. But how to handle that in a
comparator? For example, placing routes with angles near each other,
but accounting for circular continuity. However, that’s more complex
and might not be feasible with a simple comparator.

But the current code uses absolute angle values. Let’s think: if the
angle is computed as the direction from the data’s centroid to the
route’s centroid, sorting by absolute value might not be the best.
For example, a route with an angle of 0 degrees (directly along the
data’s x-axis) and a route with 90 degrees (along y-axis) are not
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similar. But if we sort by the actual angle, they’ll be ordered in a
way that might group routes with similar directions.

Wait, maybe the current approach is a mistake. Changing the comparator
from absolute angle to the actual angle might lead to better route
clusters. For instance, if two routes are in similar directions (like
30 and 35 degrees), they’ll be grouped together, which might lead to
better combinations during crossover.

So the modification would be in the sortByAscAngle function. The
comparator currently uses std::abs(angleA) < std::abs(angleB).
Changing that to compare angleA < angleB would sort routes by their
actual angle, which could lead to better alignment of similar-
direction routes.

This seems like a small change that could improve the clustering, leading
to more effective exchanges between similar routes. This could

result in offspring that preserve good route structures from both
parents, thus improving the penalized cost.

I need to make sure that this change doesn’t break anything else. The
comparator is used to sort the routes. Changing the comparison from
absolute angles to actual angles would affect the order, but the
algorithm relies on adjacent routes in the sorted list having similar
directions. If the comparator is fixed to sort by actual angles,

that should be more accurate.

So the plan is to modify the lambda in the sortByAscAngle function from
comparing absolute angles to comparing the angles directly. That’s a
simple code change with minimal risk of bugs. It’s confined to the
comparator and doesn’t alter other parts of the code. The rest of the
logic remains the same, ensuring compatibility.

</think>

A. The modification changes the route sorting strategy from absolute
angle comparison to actual angle comparison, enabling better
clustering of routes with similar directional alignment relative to
the data’s centroid. This increases the likelihood of exchanging
similar, well-aligned routes, which can produce offspring with more
efficient route structures.

B. ‘‘‘cpp
#include "selective_route_exchange.h"

#include "DynamicBitset.h"

#include <cmath>
#include <vector>

using Client = size_t;
using Clients = std::vector<Client>;
using Route = pyvrp::Route;
using Routes = std::vector<Route>;

namespace
{
// Angle of the given route w.r.t. the centroid of all client locations.
double routeAngle(pyvrp::ProblemData const &data, Route const &route)
{

auto const [dataX, dataY] = data.centroid();
auto const [routeX, routeY] = route.centroid();
return std::atan2(routeY - dataY, routeX - dataX);

}

Routes sortByAscAngle(pyvrp::ProblemData const &data, Routes routes)
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{
// MODIFY: Sort routes by actual angle instead of absolute angle
// to better cluster routes with similar directional alignment.
auto cmp = [&data](Route const &a, Route const &b) {

double angleA = routeAngle(data, a);
double angleB = routeAngle(data, b);
return angleA < angleB;

};

std::sort(routes.begin(), routes.end(), cmp);
return routes;

}
} // namespace

pyvrp::Solution pyvrp::crossover::selectiveRouteExchange(
std::pair<Solution const *, Solution const *> const &parents,
ProblemData const &data,
CostEvaluator const &costEvaluator,
std::pair<size_t, size_t> const &startIndices,
size_t const numMovedRoutes)

{
// We create two candidate offsprings, both based on parent A:
// Let A and B denote the set of customers selected from parents A

and B
// Ac and Bc denote the complements: the customers not selected
// Let v denote union and ˆ intersection
// Parent A: A v Ac
// Parent B: B v Bc

// Offspring 1:
// B and Ac\B, remainder A\B unplanned
// (note B v (Ac\B) v (A\B) = B v ((Ac v A)\B) = B v Bc = all)
// Note Ac\B = (A v B)c

// Offspring 2:
// AˆB and Ac, remainder A\B unplanned
// (note AˆB v Ac v A\B = (AˆB v A\B) v Ac = A v Ac = all)

auto startA = startIndices.first;
auto startB = startIndices.second;

size_t nRoutesA = parents.first->numRoutes();
size_t nRoutesB = parents.second->numRoutes();

if (startA >= nRoutesA)
throw std::invalid_argument("Expected startA < nRoutesA.");

if (startB >= nRoutesB)
throw std::invalid_argument("Expected startB < nRoutesB.");

if (numMovedRoutes < 1 || numMovedRoutes > std::min(nRoutesA,
nRoutesB))

{
auto msg = "Expected numMovedRoutes in [1, min(nRoutesA, nRoutesB

)]";
throw std::invalid_argument(msg);

}

// Sort parents’ routes by (ascending) polar angle.
auto const routesA = sortByAscAngle(data, parents.first->routes());
auto const routesB = sortByAscAngle(data, parents.second->routes());

DynamicBitset selectedA(data.numLocations());
DynamicBitset selectedB(data.numLocations());

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

// Routes are sorted on polar angle, so selecting adjacent routes in
both

// parents should result in a large overlap when the start indices
are

// close to each other.
for (size_t r = 0; r < numMovedRoutes; r++)
{

for (Client c : routesA[(startA + r) % nRoutesA])
selectedA[c] = true;

for (Client c : routesB[(startB + r) % nRoutesB])
selectedB[c] = true;

}

// For the selection, we want to minimize |A\B| as these need
replanning

while (true)
{

// Difference for moving ’left’ in parent A
int differenceALeft = 0;

for (Client c : routesA[(startA - 1 + nRoutesA) % nRoutesA])
differenceALeft += !selectedB[c];

for (Client c : routesA[(startA + numMovedRoutes - 1) % nRoutesA
])
differenceALeft -= !selectedB[c];

// Difference for moving ’right’ in parent A
int differenceARight = 0;

for (Client c : routesA[(startA + numMovedRoutes) % nRoutesA])
differenceARight += !selectedB[c];

for (Client c : routesA[startA])
differenceARight -= !selectedB[c];

// Difference for moving ’left’ in parent B
int differenceBLeft = 0;

for (Client c : routesB[(startB - 1 + numMovedRoutes) % nRoutesB
])
differenceBLeft += selectedA[c];

for (Client c : routesB[(startB - 1 + nRoutesB) % nRoutesB])
differenceBLeft -= selectedA[c];

// Difference for moving ’right’ in parent B
int differenceBRight = 0;

for (Client c : routesB[startB])
differenceBRight += selectedA[c];

for (Client c : routesB[(startB + numMovedRoutes) % nRoutesB])
differenceBRight -= selectedA[c];

int const bestDifference = std::min({differenceALeft,
differenceARight,
differenceBLeft,
differenceBRight});

if (bestDifference >= 0) // there are no further improving moves
break;

if (bestDifference == differenceALeft)
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{
for (Client c : routesA[(startA + numMovedRoutes - 1) %

nRoutesA])
selectedA[c] = false;

startA = (startA - 1 + nRoutesA) % nRoutesA;
for (Client c : routesA[startA])

selectedA[c] = true;
}
else if (bestDifference == differenceARight)
{

for (Client c : routesA[startA])
selectedA[c] = false;

startA = (startA + 1) % nRoutesA;
for (Client c : routesA[(startA + numMovedRoutes - 1) %

nRoutesA])
selectedA[c] = true;

}
else if (bestDifference == differenceBLeft)
{

for (Client c : routesB[(startB + numMovedRoutes - 1) %
nRoutesB])
selectedB[c] = false;

startB = (startB - 1 + nRoutesB) % nRoutesB;
for (Client c : routesB[startB])

selectedB[c] = true;
}
else if (bestDifference == differenceBRight)
{

for (Client c : routesB[startB])
selectedB[c] = false;

startB = (startB + 1) % nRoutesB;
for (Client c : routesB[(startB + numMovedRoutes - 1) %

nRoutesB])
selectedB[c] = true;

}
}

// Identify differences between route sets
auto const selectedBNotA = selectedB & ˜selectedA;

std::vector<Clients> visits1(nRoutesA);
std::vector<Clients> visits2(nRoutesA);

// Replace selected routes from parent A with routes from parent B
for (size_t r = 0; r < numMovedRoutes; r++)
{

size_t indexA = (startA + r) % nRoutesA;
size_t indexB = (startB + r) % nRoutesB;

for (Client c : routesB[indexB])
{

visits1[indexA].push_back(c); // c in B

if (!selectedBNotA[c])
visits2[indexA].push_back(c); // c in AˆB

}
}

// Move routes from parent A that are kept
for (size_t r = numMovedRoutes; r < nRoutesA; r++)
{
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size_t indexA = (startA + r) % nRoutesA;

for (Client c : routesA[indexA])
{

if (!selectedBNotA[c])
visits1[indexA].push_back(c); // c in Ac\B

visits2[indexA].push_back(c); // c in Ac
}

}

// Turn visits back into routes.
Routes routes1;
Routes routes2;
for (size_t r = 0; r < nRoutesA; r++)
{

if (!visits1[r].empty())
routes1.emplace_back(data, visits1[r], routesA[r].vehicleType

());

if (!visits2[r].empty())
routes2.emplace_back(data, visits2[r], routesA[r].vehicleType

());
}

auto const sol1 = Solution(data, routes1);
auto const sol2 = Solution(data, routes2);

auto const cost1 = costEvaluator.penalisedCost(sol1);
auto const cost2 = costEvaluator.penalisedCost(sol2);
return cost1 < cost2 ? sol1 : sol2;

}
‘‘‘

C. This modification changes the route sorting comparator from absolute
angle comparison to actual angle comparison. This should better
cluster routes with similar directional orientation relative to the
data centroid, improving the likelihood of exchanging routes that are
structurally compatible. The change only affects the route sorting

strategy and does not alter any other part of the algorithm’s logic,
ensuring compatibility with existing code. Since it’s just a
comparator change, it does not impact runtime performance. Comparing
actual angles instead of absolute angles is a more accurate measure
of directional similarity, which should lead to better solution
quality.
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A.5 RFTHGS PSEUDO CODE

Algorithm 1: RFTHGS: Reinforcement Finetuning For Refining HGS
Input: Initial policy πθold , full instance set I, instance batch size B, clipping parameters

εlower, εupper, group size G
Output: Optimized policy πθ

Initialize θ ← θold;
foreach iteration 1, 2, . . . , N do

Draw a random subset B ⊂ I with |B| = B;
foreach instance I ∈ B do

// Step 1: Generate operators with LLM
Construct prompt q for CrossOver operator optimization;
Sample G operators {o1, . . . , oG} ∼ πθold(· | q);
// Step 2: Evaluate with PyVRP
foreach operator oi do

Run PyVRP solver with oi substituted on instance set B;
Obtain objective value and compute reward ri;

end
// Step 3: Compute advantages
r = (r1, r2, . . . , rG)

Normalised reward for each operator: Âi,t =
ri −mean(r)

std(r)
;

// Step 4: Update policy with DAPO
foreach token position t do

rt(θ) ←
πθ(ot | q, o<t)

πθold(ot | q, o<t)
;

Lpolicy ← E
[
min

(
rt(θ) Ât, clip

(
rt(θ), 1− εlower, 1 + εupper

)
Ât

)]
;

end
θ ← θ + α∇θLpolicy;

end
end

A.6 OPTIMIZING OTHER OPERATORS USING RFTHGS

The RFTHGS framework is not only suitable for optimizing the crossover operator but can also be
applied to optimize other operators (or modules) influencing solution quality within HGS. In this
section, we demonstrate the application of RFTHGS to optimize the subpopulation (subp)
module in HGS. The primary function of this module is to manage population control by determining
which individuals to eliminate based on cost and diversity metrics, ensuring the population size
remains within defined thresholds.

To rigorously test the generalizability of our framework, we applied RFTHGS to the Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW) variant. It is important to emphasize that
the configuration of the RFTHGS framework remained consistent with the experiments described in
the main manuscript, where the POMDP formulation, training algorithm, base model, and reward
calculation were identical.

Experimental Setup For training, we generate a dataset comprising 50 randomly generated
CVRPTW instances with problem sizes ranging from 100 to 300 customers. For the testing phase,
we generated 100 new random instances for each problem size, extending up to 1000 customers.

Results and Analysis The performance of the RFTHGS-optimized subp operator on CVRPTW
instances is summarized in Table 5. The performance is reported as the relative gap to the original
HGS, calculated as (CostRFTHGS − CostHGS)/CostHGS . A negative value indicates that the
RFTHGS-optimized operator outperforms the baseline HGS.
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Table 5: Performance of the optimized subpopulation operator on CVRPTW instances. Values
represent the relative gap (%) compared to the baseline HGS.

instance size 100 200 300 500 1000

HGS-subp (%) 0.000 0.000 0.000 0.000 0.000
RFTHGS-subp (%) -0.088 -0.213 -0.299 -0.289 -0.224

As shown in Table 5, the optimized subp operator consistently outperforms the standard HGS
across all problem sizes. Furthermore, the operator demonstrates strong generalization capabilities,
maintaining superior performance on much larger problem sizes (500 and 1000) that were not seen
during training, achieving relative gaps of -0.289% and -0.224%, respectively.

Mechanism of Improvement An analysis of the code generated by RFTHGS reveals that the
enhanced subp operator modifies the fitness evaluation logic. The LLM introduced a third ranking
metric based on the number of routes in a solution. This new metric is weighted and combined with
the existing cost and diversity rankings to determine individual survival during parent selection.

This modification proves effective because it introduces a selective pressure that favors solutions
utilizing fewer vehicles. By biasing the population towards more compact configurations, the algo-
rithm indirectly promotes lower total costs, as fewer routes inherently reduce the cumulative distance
associated with frequent returns to the depot. These results confirm that RFTHGS is a framework
capable of optimizing diverse components within mature solvers across different problem variants.

A.7 TRAINING COST ANALYSIS

We provide a breakdown of the computational resources for the RL training of our 14B model. The
total training duration was approximately 98 GPU hours per device. Analyzing the cost per training
step reveals a total duration of roughly 660 seconds, which is composed of 360 seconds for LLM
training (inference, backward propagation, and updates) and 300 seconds for operator evaluation
(execution and reward calculation).

Since reward computation constitutes a significant portion of the training cycle, future implementa-
tions can mitigate this bottleneck by adopting fully asynchronous training paradigms and utilizing
lightweight sandbox environments, such as llm-sandbox vndee (2025). These tools enable the
isolation of code execution on CPU-only nodes, allowing for massive parallelization and reduced
GPU idle time.

A.8 COMPARISON BETWEEN HUMAN-EXPERT AND LLM-OPTIMIZED OPERATORS

Crossover

# human expert

...

Routes sortByAscAngle(pyvrp::ProblemData const &data, Routes routes)
{

auto cmp = [&data](Route const &a, Route const &b)
{ return routeAngle(data, a) < routeAngle(data, b); };

std::sort(routes.begin(), routes.end(), cmp);
return routes;

}

...

# llm optimized

...
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// Angle of the given route w.r.t. the centroid of all client locations.
// Adjusted to [0, 2π) range for better circular proximity handling
double routeAngle(pyvrp::ProblemData const &data, Route const &route)
{

auto const [dataX, dataY] = data.centroid();
auto const [routeX, routeY] = route.centroid();
double angle = std::atan2(routeY - dataY, routeX - dataX);
if (angle < 0) angle += 2 * M_PI; // MODIFY: Adjust angle to [0, 2π)

range
return angle;

}

...

Subpopulation

# human expert

...

std::vector<size_t> byCost(size());
std::iota(byCost.begin(), byCost.end(), 0);
std::stable_sort(

byCost.begin(),
byCost.end(),
[&](size_t a, size_t b)
{

return costEvaluator.penalisedCost(*items_[a].solution)
< costEvaluator.penalisedCost(*items_[b].solution);

});
// clang-format on

std::vector<std::pair<double, size_t>> diversity;
for (size_t costRank = 0; costRank != size(); costRank++)
{

auto const dist = items_[byCost[costRank]].avgDistanceClosest();
diversity.emplace_back(-dist, costRank); // higher is better

}

std::stable_sort(diversity.begin(), diversity.end());

auto const popSize = static_cast<double>(size());
auto const numElite = std::min(params.numElite, size());
auto const divWeight = 1 - numElite / popSize;

for (size_t divRank = 0; divRank != size(); divRank++)
{

auto const costRank = diversity[divRank].second;
auto const idx = byCost[costRank];
items_[idx].fitness = (costRank + divWeight * divRank) / (2 *

popSize);
}

}

...

# llm optimized
...

/*
---------------------------------------------------------------------

* STEP 2: compute diversity rank (modified: normalize diversity
values)
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* ------------------------------------------------------------------
*/

std::vector<std::pair<double, size_t>> diversity;
for (size_t costRank = 0; costRank != size(); costRank++)
{

auto const dist = items_[byCost[costRank]].avgDistanceClosest();
// MODIFY: Normalize diversity values between lbDiversity and

ubDiversity
auto normalizedDist = std::clamp(dist, params.lbDiversity, params

.ubDiversity);
diversity.emplace_back(-normalizedDist, costRank); // higher is

better
}
std::stable_sort(diversity.begin(), diversity.end());

/*
---------------------------------------------------------------------

* STEP 3 (NEW): rank individuals by number of routes
*

* (fewer routes -> better -> lower rank)
*

* ------------------------------------------------------------------
*/

// MODIFY: Added route-count ranking to capture vehicle-usage quality
.

std::vector<size_t> byRoutes(size());
std::iota(byRoutes.begin(), byRoutes.end(), 0);
std::stable_sort(

byRoutes.begin(),
byRoutes.end(),
[&](size_t a, size_t b)
{

return items_[a].solution->numRoutes()
< items_[b].solution->numRoutes();

});

// routeRankOfIdx[i] = rank of individual i in the route ranking.
std::vector<size_t> routeRankOfIdx(size());
for (size_t rank = 0; rank != byRoutes.size(); ++rank)

routeRankOfIdx[byRoutes[rank]] = rank;

/*
---------------------------------------------------------------------

* STEP 4: combine the three ranks into the biased fitness
* ------------------------------------------------------------------

*/
auto const popSize = static_cast<double>(size());
auto const numElite = std::min(params.numElite, size());

// MODIFY: Adjust weights based on normalized diversity values
std::vector<double> normalizedDiversities;
for (const auto& [negDist, costRank] : diversity) {

normalizedDiversities.push_back(-negDist);
}
double avgDiversity = std::accumulate(normalizedDiversities.begin(),

normalizedDiversities.end(), 0.0) / normalizedDiversities.size();
double diversityFactor = (avgDiversity - params.lbDiversity) / (

params.ubDiversity - params.lbDiversity);
auto baseDivWeight = 1.0 - numElite / popSize;
auto baseRouteWeight = 0.5 * (1.0 - numElite / popSize);
auto divWeight = baseDivWeight * (1.0 - diversityFactor) +

baseDivWeight * 0.5 * diversityFactor;
auto routeWeight = baseRouteWeight * diversityFactor;
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for (size_t divRank = 0; divRank != size(); divRank++)
{

auto const costRank = diversity[divRank].second;
auto const idx = byCost[costRank];
auto const routeRank = routeRankOfIdx[idx];

// MODIFY: fitness now blends cost, diversity and route-count
with dynamic weights.

auto const denom =
(1.0 /*cost*/ + divWeight + routeWeight) * popSize;

items_[idx].fitness =
(costRank + divWeight * divRank + routeWeight * routeRank) /

denom;
}

}

...
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