

000 FAITHSHIELD: DEFENDING VISION–LANGUAGE 001 MODELS AGAINST EXPLANATION MANIPULATION 002 VIA X-SHIFT ATTACKS 003

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Vision–Language Models (VLMs) such as Contrastive Language–Image Pre-
014 training (CLIP) have achieved remarkable success in aligning images and text, yet
015 their explanations remain highly vulnerable to adversarial manipulation. Recent
016 findings show that imperceptible perturbations can preserve model predictions
017 while redirecting heatmaps toward irrelevant regions, undermining the faithfulness
018 of the explanation. We introduce the X-Shift attack, a novel adversarial strat-
019 egy that drives patch-level embeddings toward the target text embedding, thereby
020 shifting explanation maps without altering output predictions. This reveals a pre-
021 viously unexplored vulnerability in VLM alignment. To counter this threat, we
022 propose FaithShield Defense, a two-fold framework: (i) a dual-path redundant
023 extension of CLIP that disentangles global and local token contributions, produc-
024 ing explanations more robust to perturbations; and (ii) a novel faithfulness-based
025 detector that verifies explanation reliability via a masking test on top- k salient
026 regions. Explanations that fail this test are flagged as unfaithful. Extensive ex-
027 periments show that X-Shift reliably compromises explanation faithfulness, while
028 FaithShield restores robustness and enables principled detection of manipulations.
029 Our work formalizes explanation-oriented adversarial attacks and offers a prin-
030 cipled defense, enhancing trustworthy and verifiable explainability in VLMs.

032 1 INTRODUCTION

035 Deep Neural Networks (DNNs) play a critical role in modern society, powering applications in
036 healthcare, autonomous vehicles, smart cities, and other safety-critical domains. In particular,
037 Vision–Language Models (VLMs) architectures such as Contrastive Language–Image Pretraining
038 (CLIP) have emerged as foundational models that enable joint reasoning across vision and language
039 (Radford et al., 2021). As these systems are increasingly deployed in high-stakes applications, it is
040 imperative that their predictions are transparent and explainable. Explanation methods, commonly
041 referred to as Explainable AI (XAI), highlight the contribution of input features to model decisions,
042 and are essential for building trust, debugging failures, and identifying spurious correlations (Lipton,
043 2018; Li et al., 2022; Selvaraju et al., 2017; Li et al., 2025).

044 Despite their promise, recent studies have demonstrated that explanation methods are themselves
045 vulnerable to manipulation (Kindermans et al., 2019; Ghorbani et al., 2019; Dombrowski et al.,
046 2019; Heo et al., 2019; Slack et al., 2020; Lakkaraju & Bastani, 2020; Huang et al., 2023; Ajal-
047 loeian et al., 2023; Kuppa & Le-Khac, 2020). Adversarial perturbations can preserve model pre-
048 dictions while misleading explanations into focusing on irrelevant or incorrect regions. Most prior
049 work has studied this phenomenon in the image domain, targeting gradient-based methods or sur-
050rogate explanation models such as LIME and SHAP. However, the vulnerability of XAI in VLMs
051 such as CLIP remains largely unexplored, and no systematic defense mechanisms exist to ensure
052 that explanations are robust or verifiable in this setting (Baniecki & Biecek, 2024). This oversight
053 is critical: in applications like autonomous driving or medical VLMs, explanations directly guide
downstream safety logic and human decision-making, so attacks that preserve predictions but shift
explanations can meaningfully distort system behavior.

054
055
056
057
058
059
In this work, we address these gaps from two complementary angles. First, we introduce a novel
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
07510
07511
07512
07513
07514
07515
07516
07517
07518
07519
07520
07521
07522
07523
07524
07525
07526
07527
07528
07529
07530
07531
07532
07533
07534
07535
07536
07537
07538
07539
07540
07541
07542
07543
07544
07545
07546
07547
07548
07549
07550
07551
07552
07553
07554
07555
07556
07557
07558
07559
07560
07561
07562
07563
07564
07565
07566
07567
07568
07569
07570
07571
07572
07573
07574
07575
07576
07577
07578
07579
07580
07581
07582
07583
07584
07585
07586
07587
07588
07589
07590
07591
07592
07593
07594
07595
07596
07597
07598
07599
075100
075101
075102
075103
075104
075105
075106
075107
075108
075109
075110
075111
075112
075113
075114
075115
075116
075117
075118
075119
075120
075121
075122
075123
075124
075125
075126
075127
075128
075129
075130
075131
075132
075133
075134
075135
075136
075137
075138
075139
075140
075141
075142
075143
075144
075145
075146
075147
075148
075149
075150
075151
075152
075153
075154
075155
075156
075157
075158
075159
075160
075161
075162
075163
075164
075165
075166
075167
075168
075169
075170
075171
075172
075173
075174
075175
075176
075177
075178
075179
075180
075181
075182
075183
075184
075185
075186
075187
075188
075189
075190
075191
075192
075193
075194
075195
075196
075197
075198
075199
075200
075201
075202
075203
075204
075205
075206
075207
075208
075209
075210
075211
075212
075213
075214
075215
075216
075217
075218
075219
075220
075221
075222
075223
075224
075225
075226
075227
075228
075229
075230
075231
075232
075233
075234
075235
075236
075237
075238
075239
075240
075241
075242
075243
075244
075245
075246
075247
075248
075249
075250
075251
075252
075253
075254
075255
075256
075257
075258
075259
075260
075261
075262
075263
075264
075265
075266
075267
075268
075269
075270
075271
075272
075273
075274
075275
075276
075277
075278
075279
075280
075281
075282
075283
075284
075285
075286
075287
075288
075289
075290
075291
075292
075293
075294
075295
075296
075297
075298
075299
075300
075301
075302
075303
075304
075305
075306
075307
075308
075309
075310
075311
075312
075313
075314
075315
075316
075317
075318
075319
075320
075321
075322
075323
075324
075325
075326
075327
075328
075329
075330
075331
075332
075333
075334
075335
075336
075337
075338
075339
075340
075341
075342
075343
075344
075345
075346
075347
075348
075349
075350
075351
075352
075353
075354
075355
075356
075357
075358
075359
075360
075361
075362
075363
075364
075365
075366
075367
075368
075369
075370
075371
075372
075373
075374
075375
075376
075377
075378
075379
075380
075381
075382
075383
075384
075385
075386
075387
075388
075389
075390
075391
075392
075393
075394
075395
075396
075397
075398
075399
075400
075401
075402
075403
075404
075405
075406
075407
075408
075409
075410
075411
075412
075413
075414
075415
075416
075417
075418
075419
075420
075421
075422
075423
075424
075425
075426
075427
075428
075429
075430
075431
075432
075433
075434
075435
075436
075437
075438
075439
075440
075441
075442
075443
075444
075445
075446
075447
075448
075449
075450
075451
075452
075453
075454
075455
075456
075457
075458
075459
075460
075461
075462
075463
075464
075465
075466
075467
075468
075469
075470
075471
075472
075473
075474
075475
075476
075477
075478
075479
075480
075481
075482
075483
075484
075485
075486
075487
075488
075489
075490
075491
075492
075493
075494
075495
075496
075497
075498
075499
075500
075501
075502
075503
075504
075505
075506
075507
075508
075509
075510
075511
075512
075513
075514
075515
075516
075517
075518
075519
075520
075521
075522
075523
075524
075525
075526
075527
075528
075529
075530
075531
075532
075533
075534
075535
075536
075537
075538
075539
075540
075541
075542
075543
075544
075545
075546
075547
075548
075549
075550
075551
075552
075553
075554
075555
075556
075557
075558
075559
075560
075561
075562
075563
075564
075565
075566
075567
075568
075569
075570
075571
075572
075573
075574
075575
075576
075577
075578
075579
075580
075581
075582
075583
075584
075585
075586
075587
075588
075589
075590
075591
075592
075593
075594
075595
075596
075597
075598
075599
075600
075601
075602
075603
075604
075605
075606
075607
075608
075609
075610
075611
075612
075613
075614
075615
075616
075617
075618
075619
075620
075621
075622
075623
075624
075625
075626
075627
075628
075629
075630
075631
075632
075633
075634
075635
075636
075637
075638
075639
075640
075641
075642
075643
075644
075645
075646
075647
075648
075649
075650
075651
075652
075653
075654
075655
075656
075657
075658
075659
075660
075661
075662
075663
075664
075665
075666
075667
075668
075669
075670
075671
075672
075673
075674
075675
075676
075677
075678
075679
075680
075681
075682
075683
075684
075685
075686
075687
075688
075689
075690
075691
075692
075693
075694
075695
075696
075697
075698
075699
075700
075701
075702
075703
075704
075705
075706
075707
075708
075709
075710
075711
075712
075713
075714
075715
075716
075717
075718
075719
075720
075721
075722
075723
075724
075725
075726
075727
075728
075729
075730
075731
075732
075733
075734
075735
075736
075737
075738
075739
075740
075741
075742
075743
075744
075745
075746
075747
075748
075749
075750
075751
075752
075753
075754
075755
075756
075757
075758
075759
075760
075761
075762
075763
075764
075765
075766
075767
075768
075769
075770
075771
075772
075773
075774
075775
075776
075777
075778
075779
075780
075781
075782
075783
075784
075785
075786
075787
075788
075789
075790
075791
075792
075793
075794
075795
075796
075797
075798
075799
075800
075801
075802
075803
075804
075805
075806
075807
075808
075809
075810
075811
075812
075813
075814
075815
075816
075817
075818
075819
075820
075821
075822
075823
075824
075825
075826
075827
075828
075829
075830
075831
075832
075833
075834
075835
075836
075837
075838
075839
075840
075841
075842
075843
075844
075845
075846
075847
075848
075849
075850
075851
075852
075853
075854
075855
075856
075857
075858
075859
075860
075861
075862
075863
075864
075865
075866
075867
075868
075869
075870
075871
075872
075873
075874
075875
075876
075877
075878
075879
075880
075881
075882
075883
075884
075885
075886
075887
075888
075889
075890
075891
075892
075893
075894
075895
075896
075897
075898
075899
075900
075901
075902
075903
075904
075905
075906
075907
075908
075909

108 et al., 2018; 2019; Modas et al., 2019; Babadi et al., 2023; Wang et al., 2024; Croce & Hein, 2019;
 109 Madry et al., 2017). While the majority of this literature has focused on degrading predictive per-
 110 formance, only recently has research begun to investigate the vulnerability of explanation methods
 111 themselves (Baniecki & Biecek, 2024).

112 Initial studies demonstrated that post hoc explanations are inherently fragile. Kindermans et al.
 113 (2019) showed that saliency maps lack invariance to simple input transformations, while Ghorbani
 114 et al. (2019) and Dombrowski et al. (2019) revealed that imperceptible perturbations can drastically
 115 alter attribution heatmaps without affecting model predictions. Beyond perturbation-based attacks,
 116 model-level manipulations have also been explored. For example, Heo et al. (2019) trained networks
 117 to mislead attribution methods such as Grad-CAM and LRP, and Slack et al. (2020) demonstrated
 118 wrapper-based manipulations of black-box models that arbitrarily control LIME and SHAP expla-
 119 nations, highlighting risks such as *fairwashing* (Lakkaraju & Bastani, 2020).

120 Building on these findings, subsequent research proposed more targeted attack strategies. Huang
 121 et al. (2023) introduced the *Focus-Shifting Attack*, which redirects saliency to adversary-specified
 122 regions while preserving prediction consistency. Ajalloeian et al. (2023) developed a sparse pertur-
 123 bation algorithm that manipulates attribution maps more efficiently than ℓ_0 -PGD. In parallel, Kuppa
 124 & Le-Khac (2020) studied black-box attacks on LIME and SHAP within cybersecurity applications,
 125 establishing an early taxonomy for explanation robustness.

126 Despite these advances, prior work has largely concentrated on unimodal image classifiers; VLMs
 127 remain comparatively underexplored. For CLIP, recent studies have examined adversarial robust-
 128 ness primarily at the level of predictions rather than explanations (Yang et al., 2024). For instance,
 129 MP-Nav (Zhang et al.) strengthened poisoning attacks through semantic concept selection, and
 130 X-Transfer (Huang et al., 2025b) proposed a universal adversarial perturbation transferable across
 131 datasets and tasks. Additional lines of work have addressed backdoor vulnerabilities (Jia et al.,
 132 2022), scaling behaviors (Jia et al., 2021), and robustness in grounding tasks (Koh et al., 2023;
 133 Huang et al., 2025a).

134 To the best of our knowledge, no prior work has systematically examined adversarial attacks that
 135 specifically manipulate CLIP explanations, nor proposed defenses that simultaneously enhance ro-
 136 bustness and detect unfaithful attribution regions. Our work fills this gap by (i) introducing a targeted
 137 explanation attack against CLIP and (ii) presenting *FaithShield*, a dual-path framework that disen-
 138 tangles redundant features, improves explanation robustness, and provides a principled detection
 139 mechanism for adversarial manipulations.

141 3 X-SHIFT ATTACK OBJECTIVES

144 We now introduce the **X-Shift attack**, an explanation-focused adversarial strategy that perturbs
 145 images such that predictions remain stable while explanation maps are shifted toward a target class.
 146 To achieve this, we combine the following complementary objectives: (i) manipulating explanation
 147 heatmaps, (ii) preserving the global model output, (iii) enforcing sparsity of perturbations, and (iv)
 148 ensuring validity of adversarial examples. Finally, we describe the explainability-focused attack and
 149 provide a concrete algorithm.

150 3.1 BASELINE: CLIP MODEL

153 CLIP (Radford et al., 2021) aligns an image encoder f_I and text encoder f_T in a shared embedding
 154 space. Given an image x and text t , their normalized embeddings are $z_I = f_I(x)/\|f_I(x)\|_2$, $z_T =$
 155 $f_T(t)/\|f_T(t)\|_2$, with similarity $s(x, t) = z_I^\top z_T$. Training minimizes a symmetric contrastive loss
 156 over N image–text pairs:

$$157 \mathcal{L}_{\text{CLIP}} = \frac{1}{2N} \sum_{i=1}^N \left[-\log \frac{\exp(s(x_i, t_i)/\tau)}{\sum_{j=1}^N \exp(s(x_i, t_j)/\tau)} - \log \frac{\exp(s(x_i, t_i)/\tau)}{\sum_{j=1}^N \exp(s(x_j, t_i)/\tau)} \right], \quad (1)$$

161 where τ is a learnable temperature. Our attack perturbs x into $x_{\text{adv}} = x + \delta$, preserving predictions
 but shifting explanation maps toward a target class.

162 3.2 ATTACK OBJECTIVES
163164 We combine the following complementary objectives to achieve explanation-focused adversarial
165 perturbations:166 **Explanation manipulation.** The primary goal is to force patch embeddings toward the target text
167 embedding. Let p denote the normalized embedding of patch p , and t_{target} the target text embed-
168 ding. Similarity is $s_p = p^\top t_{target}$. We maximize similarity of the top- K patches while suppressing
169 others:

170
$$\mathcal{L}_{xai} = -\frac{1}{K} \sum_{i \in \text{TopK}} s_{i,t} + \alpha \cdot \frac{1}{P-K} \sum_{i \notin \text{TopK}} s_{i,t}, \quad (2)$$

171

172 where $s_{i,t} = z_i^\top z_{T_{tar}}$ denotes the similarity between patch embedding z_i and the target text embed-
173 ding $z_{T_{tar}}$.174 **Prediction preservation.** To prevent label change, we enforce the clean prediction y^* at the global
175 (CLS) level:

176
$$\mathcal{L}_{\text{pred}} = -\log \frac{\exp(z_{\text{cls}}^\top t_{y^*})}{\sum_c \exp(z_{\text{cls}}^\top t_c)}. \quad (3)$$

177

178 **Patch-level margin.** For each patch, the target similarity $s_{p,t}$ must dominate over other classes:

179
$$\mathcal{L}_{\text{patch}} = \frac{1}{P} \sum_{p=1}^P \max \left(0, \max_{c \neq t} (s_{p,c} - s_{p,t} + m) \right), \quad (4)$$

180

181 where $s_{p,c} = z_p^\top z_{T_c}$ is the similarity between patch embedding z_p and text embedding z_{T_c} .182 **Entropy sharpening.** To avoid diffuse attention maps, we encourage sharp similarity distributions:

183
$$\mathcal{L}_{\text{entropy}} = \sum_{p=1}^P m_p \log m_p, \quad m_p = \frac{\exp(s_{p,t})}{\sum_q \exp(s_{q,t})}, \quad (5)$$

184

185 which corresponds to the negative Shannon entropy of the normalized similarities. Minimizing this
186 term encourages sharp and peaked similarity distributions rather than diffuse heatmaps.187 **Sparsity constraint.** Perturbations are restricted to k pixels by projecting $\delta = x_{adv} - x$ onto its
188 top- k entries:

189
$$\delta \leftarrow \text{TopK}(\delta, k). \quad (6)$$

190

191 **Validity constraint.** Ensure the adversarial image remains in the valid input domain:

192
$$x_{adv} \in [0, 1]^d. \quad (7)$$

193

194 The total objective combines explanation manipulation with auxiliary constraints:

195
$$\mathcal{L} = \mathcal{L}_{xai} + \lambda_{\text{pred}} \mathcal{L}_{\text{pred}} + \lambda_{\text{patch}} \mathcal{L}_{\text{patch}} + \lambda_{\text{ent}} \mathcal{L}_{\text{entropy}} \quad (8)$$

196

197 where λ_{pred} , λ_{patch} , and λ_{ent} are trade-off coefficients that balance the relative contributions of
198 preserving prediction consistency, enforcing patch-level constraints, and controlling explanation en-
199 tropy. Tuning these hyperparameters adjusts the strength of each auxiliary objective relative to the
200 main explanation-shifting loss \mathcal{L}_{xai} .201 **Explainability Attack Algorithm.** Adversarial examples are generated by iteratively updating
202 the input image using gradient-based optimization. The process is summarized in Algorithm 1 in
203 Appendix A.210 4 FAITHSHIELD DEFENSE FRAMEWORK
211212 We propose **FaithShield**, a two-stage defense framework designed to counter X-Shift attacks. The
213 framework consists of: (i) a robust explanation module that refines patch embeddings to produce
214 stable heatmaps, and (ii) a faithfulness-based detection mechanism that validates explanation reli-
215 ability. Together, these components ensure that explanations are both robust and verifiable.

216 4.1 FAITHSHIELD-STAGE I: ROBUST EXPLANATION VIA DUAL-PATH REFINEMENT
217

218 Our Stage I design is inspired by the refinement strategies of Li et al. (2025), who introduced con-
219 sistent attention and redundancy removal to improve the interpretability of CLIP explanations. We
220 adapt these principles but extend them into a *dual-path refinement architecture* that is explicitly
221 tailored to adversarial robustness. Unlike Li et al. (2025), whose focus was interpretability, our
222 formulation integrates three complementary steps: (i) consistent self-attention, (ii) dual-path fea-
223 ture aggregation, and (iii) redundancy elimination, as a unified defense against targeted explanation
224 manipulation.

225 Let $\{z_p\}_{p=1}^P$ denote the patch embeddings from the vision encoder, and z_T the normalized text
226 embedding. Recall from Section 3.1 that the baseline patch-level similarity is

$$227 \quad 228 \quad s_p(x, t) = z_p^\top z_T, \quad p = 1, \dots, P, \quad (9)$$

229 which can be reshaped into a spatial similarity map. However, such raw maps often highlight back-
230 ground regions (*opposite visualization*) and exhibit class-irrelevant activations (*noisy activations*)
231 across Vision Transformer (ViT) backbones. To mitigate these issues, we build upon the CLIP
232 framework a three-stage refinement procedure: (i) consistent self-attention, (ii) dual-path feature
233 aggregation, and (iii) feature redundancy removal.

234 **Consistent Self-Attention.** In vanilla CLIP, We follow Li et al. (2025) and replace heterogeneous
235 projections ϕ_q, ϕ_k, ϕ_v :

$$237 \quad 238 \quad A_{\text{raw}} = \sigma(s \cdot QK^\top)V, \quad Q = \phi_q(X), \quad K = \phi_k(X), \quad V = \phi_v(X), \quad (10)$$

239 which may relate tokens from semantically inconsistent regions. We instead employ a homogeneous
240 projection ϕ_v to enforce semantic consistency:

$$241 \quad 242 \quad A_{\text{con}} = \sigma(s \cdot VV^\top)V, \quad V = \phi_v(X). \quad (11)$$

243 This ensures that self-attention emphasizes tokens with coherent semantics, verified quantitatively
244 via the mean Foreground Selection Ratio (mFSR). Figure 1 illustrates the dual-path schema, high-
245 lighting the replacement of raw multi-head self-attention with consistent self-attention blocks to
246 ensure more coherent token interactions.

247 **Dual-Path Refinement.** Not all intermediate modules are equally aligned with the final prediction.
248 Affinity between text features F_t and block-level class token features \hat{F}_c is measured as

$$249 \quad 250 \quad a(F_t, \hat{F}_c) = \frac{1}{N_t} \sum_{i=1}^{N_t} F_t^{(i)} \hat{F}_c, \quad (12)$$

253 revealing that feed-forward networks (FFNs) often drift toward negatives and harm interpretabil-
254 ity. We therefore aggregate only consistent self-attention modules, skipping FFNs via a dual-path
255 architecture:

$$256 \quad 257 \quad \hat{x}_{i+1} = \begin{cases} \text{None}, & i < d, \\ f_{A_{\text{con}}}(x_i, \phi_v) + x_i, & i = d, \\ f_{A_{\text{con}}}(x_i, \phi_v) + \hat{x}_i, & i > d, \end{cases} \quad (13)$$

260 while preserving the original path x_{i+1} for final model outputs. This design enhances interpretability
261 without degrading recognition accuracy (Li et al., 2025).

262 **Feature Redundancy Removal** Noisy activations arise from redundant features shared across
263 categories. Based on (Li et al., 2025), we first compute multiplied features:

$$265 \quad 266 \quad F_m = \mathcal{E}(F_i) \odot \mathcal{E}(F_t), \quad F_m \in \mathbb{R}^{N_i \times N_t \times C}, \quad (14)$$

267 where F_i and F_t are L2-normalized image and text features, \odot denotes element-wise product, and
268 \mathcal{E} broadcasts to matching shape. Next, we reweight influential classes:

$$269 \quad s = \sigma(\tau \cdot F_c F_t^\top), \quad w = \frac{s}{\mu_s}, \quad (15)$$

270 where F_c is the class token, τ is a logit scale, and μ_s the mean of s . Redundant features are then
271 estimated as

$$272 \quad F_r = \text{mean}(F_m \odot \mathcal{E}(w)) \in \mathbb{R}^{N_i \times C}, \quad (16)$$

273 and subtracted:

$$274 \quad S = \text{sum}(F_m - \mathcal{E}(F_r)) \in \mathbb{R}^{N_i \times N_t}. \quad (17)$$

275 Finally, S is reshaped, interpolated, and normalized to produce the refined similarity map.

277 **Final Heatmap.** The refined patch–text similarity is normalized via softmax:

$$279 \quad M(x, t)[p] = \frac{\exp(\alpha s_p^{\text{ref}}(x, t))}{\sum_{q=1}^P \exp(\alpha s_q^{\text{ref}}(x, t))}, \quad (18)$$

282 where α controls sharpness. This yields heatmaps that are semantically faithful, less noisy, and more
283 foreground-focused. Algorithm 2 in Appendix B illustrates the workflow of this subsection.

285 4.2 FAITHSHIELD–STAGE II: FAITHFULNESS-BASED DETECTION

287 The second stage of FaithShield introduces a novel detection module that tests whether an explanation
288 is truly faithful to the model’s decision. While prior work has focused on refining attention maps
289 to improve interpretability, none has provided a systematic mechanism for *detecting adversarially*
290 *misleading explanations*. Our Stage II addresses this gap.

291 Even with refined embeddings, adversarial perturbations may still redirect saliency toward irrele-
292 vant regions while leaving the prediction intact. To flag such cases, we propose a *confidence-drop*
293 *test*: mask the top- k most salient regions indicated by the explanation and re-evaluate the model’s
294 confidence for the target class. For a faithful explanation, removing the highlighted regions should
295 cause a substantial confidence drop, reflecting causal alignment between the explanation and the
296 prediction. Conversely, if the confidence remains nearly unchanged, the heatmap is identified as
297 misleading.

298 Given a heatmap $M(x, t)$ for class t , we select the top- $\rho\%$ patches:

$$299 \quad \mathcal{M}_t = \{p \mid M(x, t)[p] \geq \tau_t\}, \quad (19)$$

301 where τ_t is chosen such that $|\mathcal{M}_t| = \rho \cdot P$. These patches are suppressed in the input image to form
302 a perturbed version x' :

$$303 \quad x' = \begin{cases} x \odot (1 - M_t), & \text{(zeroing)} \\ 304 \quad \text{Blur}(x \odot M_t) + x \odot (1 - M_t), & \text{(blurring)}, \end{cases} \quad (20)$$

306 where M_t is upsampled to image resolution.

308 We then measure cosine similarity before and after masking:

$$310 \quad s_{\text{orig}} = z_I^\top z_T, \quad s_{\text{masked}} = (z'_I)^\top z_T, \quad (21)$$

311 where $z_I = f_I(x)/\|f_I(x)\|$ and $z'_I = f_I(x')/\|f_I(x')\|$. Since $s(x, t)$ is a cosine similarity in
312 $[-1, 1]$, we normalize it into $[0, 1]$ for interpretability when measuring confidence:

$$314 \quad \text{conf}(s) = \frac{1}{2}(1 + s). \quad (22)$$

315 This normalization does not affect the ranking of similarities but enables a consistent interpretation
316 of Δ_{conf} as a probability drop. the confidence drop is defined as:

$$318 \quad \Delta_{\text{conf}} = \text{conf}(s_{\text{orig}}) - \text{conf}(s_{\text{masked}}). \quad (23)$$

320 If the masked region is truly explanatory, Δ_{conf} will be large. Conversely, if Δ_{conf} is small, the
321 explanation is deemed unfaithful. We flag misleading explanations whenever:

$$322 \quad \Delta_{\text{conf}} < \theta, \quad (24)$$

323 with threshold θ . The overall defense integrates two complementary modules:

324 1. **Robust explanation:** Dual-path refinement of patch embeddings yields faithful and stable
 325 similarity maps.
 326 2. **Faithfulness detection:** Masking-based tests on clean and adversarial images identify un-
 327 faithful regions.
 328

329 Together, these modules ensure that explanations are both *robust* and *verifiable*. The procedure
 330 is summarized in Algorithm 3 in Appendix B. Figure 2 illustrates the refinement of similarity
 331 maps through dual-path processing and feature redundancy removal, followed by the application
 332 of faithfulness-based detection.

334 5 EXPERIMENTS

335 Our evaluation is designed to answer the following research questions:

336 • How effective is the proposed attack in shifting XAI?
 337 • Does the dual-path refinement improve robustness of XAI under adversarial perturbations?
 338 • Can the faithfulness-based detection reliably identify misleading XAI?

339 **Models and Datasets.** We evaluate our attack and defense framework at inference time, without re-
 340 quiring additional training data. Experiments are conducted on the validation splits of three bench-
 341 mark datasets: ImageNet-1k (Deng et al., 2009), Flickr30k (Young et al., 2014), and MS-COCO
 342 (Chen et al., 2015), which provide diverse natural images and object-level annotations for assessing
 343 VLMs explanations. For models, we utilize the CLIP family of vision–language encoders, specifi-
 344 cally ViT-B/16 (Radford et al., 2021), ViT-B/32 (Radford et al., 2021), and ViT-L/14 (Dosovitskiy
 345 et al., 2020), which span a range of capacities and input resolutions to assess the generality of our
 346 attack and defense across different backbones.

347 **Implementation.** We implement attack and defense on official CLIP models, using patch–text sim-
 348 ilarity maps that compute cosine similarity between patch and text embeddings. Unlike gradient-
 349 based attributions (e.g., Grad-CAM, Integrated Gradients), which often yield unstable ViT heatmaps,
 350 similarity maps are faithful, text-conditioned, efficient (single forward pass), and deterministic.
 351 CLIP employs attention pooling, yielding a 7×7 grid for 224×224 inputs (datasets resized ac-
 352 cordingly). The attack loss follows Section 3, with weights 20.0 for \mathcal{L}_{xai} , λ_{ent} for entropy, λ_{margin}
 353 for patch separation, and $0.01\lambda_{\text{pred}}$ for prediction consistency, tuned to balance manipulation and
 354 stability.

355 **Metrics.** We evaluate global prediction stability and explanation robustness using four quantitative
 356 metrics: CosSim (CLS), Max Δ Prob, and IoU (Top- k). Formal definitions of these metrics are
 357 provided in Appendix C.1.

361 5.1 RESULTS ON EXPLAINABILITY

362 **Proposed Attack Effectiveness.** Figure 3 demonstrates that the X-Shift adversarial perturbations
 363 successfully shift CLIP’s explanation maps while preserving the predicted label. In the clean case,
 364 the heatmap correctly attends to the input concept (e.g., “bench”), whereas under the X-Shift at-
 365 tack the attention is redirected toward unrelated regions (e.g., the “wall”), thereby compromis-
 366 ing explanation faithfulness. Stage I of the FaithShield defense is also shown, illustrating improved
 367 robustness of the heatmaps under adversarial perturbations.

368 Furthermore, Figures 4, 5, and 6 visualize additional examples from ImageNet, Flickr30k, and
 369 COCO. In each case, the perturbation remains imperceptible to humans yet induces substantial shifts
 370 in the explanation maps, highlighting the vulnerability of current XAI methods.

371 **Robustness and Detection with FaithShield.** Figures 4, 5, and 6 further demonstrate the effective-
 372 ness of the FaithShield framework. Stage I consistently improves robustness by preserving faithful
 373 heatmaps even under adversarial perturbations. In addition, the faithfulness-based detection module
 374 successfully flags regions that are inconsistent with the input text, identifying adversarially induced
 375 shifts toward unrelated areas. These results confirm that FaithShield not only mitigates explana-
 376 tion manipulation but also provides a reliable mechanism to detect when explanations have been
 377 compromised.

Figure 3: Visualization of a sample image under the X-Shift attack and FaithShield. Columns show the clean and adversarial images (optimized to shift CLIP’s explanation toward “ground” while keeping the “bench” prediction), the clean–adversarial difference map, CLIP heatmaps showing explanation drift, and FaithShield Stages I–II, which suppress the drift and reveal unrelated manipulated regions.

Quantitative Evaluation. Table 1 summarizes results across ImageNet, Flickr30k, and MS-COCO with three CLIP backbones (ViT-B/16, ViT-B/32, ViT-L/14). Across all settings, the **CosSim (CLS)** remains high (typically ≥ 0.93) and the **Max Δ Prob** is nearly zero, confirming that the X-Shift perturbations preserve the global classification decision. The main differences arise in explanation stability. For vanilla CLIP, the **Top- k IoU** between clean and adversarial heatmaps is consistently low (e.g., 0.487 on ImageNet ViT-B/16, 0.727 on Flickr30k ViT-L/14, and 0.556 on COCO ViT-B/32), revealing that explanations are highly sensitive to perturbations even when predictions remain unchanged. By contrast, **FaithShield** substantially improves alignment between clean and adversarial maps, achieving IoU gains of +0.124 (ImageNet ViT-B/16), +0.222 (Flickr30k ViT-L/14), and +0.346 (COCO ViT-B/16). These improvements consistently hold across datasets and backbones, with relative gains often exceeding 20–35%. Taken together, the results demonstrate that FaithShield effectively mitigates explanation shifts induced by adversarial perturbations, delivering robust and reliable XAI without compromising classification accuracy.

Evaluation of FaithShield Ablations. Our empirical findings align with the architectural ablations reported in Appendix C.5. Individually, the Stage-I components (S1, S2, FS) offer only partial stability, producing IoU values in the range of 0.70–0.88. In contrast, the full Stage-I + Stage-II pipeline achieves substantially stronger and prediction-preserving alignment between clean and adversarial explanations, with IoU improving to 0.90–0.97. These results confirm that robust explanation consistency emerges *only* when structural refinement (Stage I) is paired with the Δ conf-based causal detector (Stage II).

Evaluation of X-Shift Attack Transferability. Our cross-model analysis (Appendix C.2) demonstrates that X-Shift perturbations generalize across CLIP backbones and explainability methods. Self-attacks produce the strongest manipulation (IoU_{TopK} as low as 0.44–0.47), while cross-model transfer remains strong. For instance, a perturbation crafted on ViT-B/32 transfers to ViT-L/14 with IoU = 0.63. Additionally, ScoreCAM, RISE, and gradient-based attribution maps all exhibit consistent explanation drift under X-Shift, indicating that the attack corrupts the shared image–text embedding space, not a specific explainer. When FaithShield is applied, these drifts are dramatically reduced across all architectures and XAI methods (Appendix C.3).

Evaluation of Attack-Loss Ablations. Appendix C.4 analyzes the effect of removing each loss component in the X-Shift objective. The patterns are consistent across datasets:

- Removing the XAI-shift term weakens the attack, increasing IoU (e.g., 0.78 → 0.72) and reducing TargetSim.
- Removing prediction-stability terms (e.g., $\mathcal{L}_{\text{pred}}$) breaks stealth, increasing Max Δ Prob by nearly an order of magnitude (from 6.6×10^{-5} to 5.4×10^{-4}).
- Using only the XAI term yields the strongest drift (IoU ≈ 0.82) but destroys classification stability.
- The full objective achieves the best balance: strong manipulation (IoU ≈ 0.79), high TargetSim, stable CLS embedding (0.977), and minimal Max Δ Prob.

Together, these results show that **FaithShield counters both direct and transferable explanation attacks**, and that **each component of the X-Shift loss and each stage of FaithShield are necessary and complementary**. The system delivers robust, prediction-preserving interpretability across datasets, architectures, and XAI techniques.

Figure 4: Comparison of CLIP explanations on ImageNet dataset(ViT-B/16, ViT-B/32, ViT-L/14) under X-Shift attack and FaithShield defense. Columns show original/adversarial images, CLIP heatmaps, and FaithShield stages I and II (clean vs. adversarial).

Figure 5: Explanations on Flickr30k samples using CLIP (ViT-B/16, ViT-B/32, ViT-L/14) under X-Shift attack and FaithShield defense. Shown are original/adversarial images, CLIP heatmaps, and FaithShield stages I and II (clean vs. adversarial).

Table 1: Quantitative comparison of **Vanilla CLIP** vs. **FaithShield** under X-Shift attack across datasets and backbones. Metrics: cosine similarity (CosSim), maximum probability change under X-Shift attack (Max Δ Prob), and Top- k IoU.

Dataset	Backbone	Vanilla CLIP			FaithShield		
		CosSim	Max Δ Prob	IoU	CosSim	Max Δ Prob	IoU
ImageNet	ViT-B/16	0.805	0.004	0.487	0.805	0.004	0.611
	ViT-B/32	0.807	0.004	0.450	0.807	0.004	0.634
	ViT-L/14	0.948	0.000	0.551	0.948	0.000	0.877
Flickr30k	ViT-B/16	0.935	0.000	0.841	0.935	0.000	0.933
	ViT-B/32	0.974	0.000	0.867	0.974	0.000	1.000
	ViT-L/14	0.933	0.000	0.727	0.933	0.000	0.949
MS-COCO	ViT-B/16	0.977	0.000	0.611	0.977	0.000	0.902
	ViT-B/32	0.953	0.000	0.556	0.953	0.000	0.867
	ViT-L/14	0.962	0.000	0.583	0.962	0.000	0.727

6 CONCLUSION

This paper examined the vulnerability of VLMs, focusing on CLIP, to adversarial explanation attacks. We introduced X-Shift, a targeted perturbation that manipulates patch–text heatmaps without altering classification outputs, exposing a fundamental weakness of current explanation mechanisms: explanations can be redirected toward irrelevant regions while predictions remain unchanged. To address this, we proposed *FaithShield*, a dual-path refinement combined with a faithfulness-based detection module. The refinement stabilizes explanation maps by disentangling redundant feature flows, while the detection mechanism applies a causal masking test to flag unfaithful regions. Together, they provide robust and verifiable explanations under adversarial perturbations. Our findings highlight the need for trustworthy and accountable VLMs. Future work will extend this framework

Figure 6: Explanation robustness on COCO samples using CLIP (ViT-B/16, ViT-B/32, ViT-L/14) under X-Shift attack and FaithShield defenses. Columns display original vs. adversarial images, CLIP heatmaps, and FaithShield stages I & II (clean vs. adversarial).

to other foundation models, evaluate resilience against adaptive attacks, and explore applications in safety-critical domains such as autonomous driving and medical decision support.

REPRODUCIBILITY STATEMENT

All implementation details, including training and evaluation scripts, are provided in the anonymized supplementary file (`supplementary_code.zip`). This ensures reproducibility while maintaining anonymity during the review process.

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Ahmad Ajalloeian, Seyed Mohsen Moosavi-Dezfooli, Michalis Vlachos, and Pascal Frossard.
543 Sparse attacks for manipulating explanations in deep neural network models. In *2023 IEEE International Conference on Data Mining (ICDM)*, pp. 918–923. IEEE, 2023.

544 Narges Babadi, Hadis Karimipour, and Anik Islam. An ensemble learning to detect decision-based
545 adversarial attacks in industrial control systems. In *2023 IEEE Symposium Series on Computational Intelligence (SSCI)*, pp. 879–884. IEEE, 2023.

546 Hubert Baniecki and Przemyslaw Biecek. Adversarial attacks and defenses in explainable artificial
547 intelligence: A survey. *Information Fusion*, 107:102303, 2024.

548 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017
549 ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

550 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
551 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv
552 preprint arXiv:1504.00325*, 2015.

553 Francesco Croce and Matthias Hein. Sparse and imperceptible adversarial attacks. In *Proceedings
554 of the IEEE/CVF international conference on computer vision*, pp. 4724–4732, 2019.

555 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
556 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
557 pp. 248–255. Ieee, 2009.

558 Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-
559 Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame.
560 *Advances in neural information processing systems*, 32, 2019.

561 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
562 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
563 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
564 arXiv:2010.11929*, 2020.

565 Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
566 *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 3681–3688, 2019.

567 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
568 examples. *arXiv preprint arXiv:1412.6572*, 2014.

569 Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adver-
570 sarial model manipulation. *Advances in neural information processing systems*, 32, 2019.

571 Hanxun Huang, Yisen Wang, Sarah Erfani, Quanquan Gu, James Bailey, and Xingjun Ma. Explor-
572 ing architectural ingredients of adversarially robust deep neural networks. *Advances in neural
573 information processing systems*, 34:5545–5559, 2021.

574 Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, and James Bailey. Detecting backdoor samples
575 in contrastive language image pretraining. *arXiv preprint arXiv:2502.01385*, 2025a.

576 Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, and James Bailey. X-transfer attacks: Towards
577 super transferable adversarial attacks on clip. *arXiv preprint arXiv:2505.05528*, 2025b.

578 Qi-Xian Huang, Lin-Kuan Chiang, Min-Yi Chiu, and Hung-Min Sun. Focus-shifting attack: An ad-
579 versarial attack that retains saliency map information and manipulates model explanations. *IEEE
580 Transactions on Reliability*, 73(2):808–819, 2023.

581 Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
582 limited queries and information. In *International conference on machine learning*, pp. 2137–
583 2146. PMLR, 2018.

594 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
 595 Madry. Adversarial examples are not bugs, they are features. *Advances in neural information*
 596 *processing systems*, 32, 2019.

597

598 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 599 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 600 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 601 PMLR, 2021.

602 Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained
 603 encoders in self-supervised learning. In *2022 IEEE Symposium on Security and Privacy (SP)*, pp.
 604 2043–2059. IEEE, 2022.

605

606 Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
 607 Dähne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods. In *Explainable*
 608 *AI: Interpreting, explaining and visualizing deep learning*, pp. 267–280. Springer, 2019.

609 Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried. Grounding language models to images for
 610 multimodal inputs and outputs. In *International Conference on Machine Learning*, pp. 17283–
 611 17300. PMLR, 2023.

612

613 Aditya Kuppa and Nhien-An Le-Khac. Black box attacks on explainable artificial intelligence (xai)
 614 methods in cyber security. In *2020 International Joint Conference on neural networks (IJCNN)*,
 615 pp. 1–8. IEEE, 2020.

616 Himabindu Lakkaraju and Osbert Bastani. ” how do i fool you?” manipulating user trust via mis-
 617 leading black box explanations. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and*
 618 *Society*, pp. 79–85, 2020.

619

620 Yi Li, Hualiang Wang, Yiqun Duan, Hang Xu, and Xiaomeng Li. Exploring visual interpretability
 621 for contrastive language-image pre-training. *arXiv preprint arXiv:2209.07046*, 2022.

622

623 Yi Li, Hualiang Wang, Yiqun Duan, Jiheng Zhang, and Xiaomeng Li. A closer look at the explain-
 624 ability of contrastive language-image pre-training. *Pattern Recognition*, 162:111409, 2025.

625

626 Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of inter-
 627 pretability is both important and slippery. *Queue*, 16(3):31–57, 2018.

628

629 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 630 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 631 2017.

632

633 Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels
 634 make a big difference. In *Proceedings of the IEEE/CVF conference on computer vision and*
 635 *pattern recognition*, pp. 9087–9096, 2019.

636

637 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 638 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 639 models from natural language supervision. In *International conference on machine learning*, pp.
 640 8748–8763. PMLR, 2021.

641

642 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 643 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 644 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 645 2017.

646

647 Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime
 648 and shap: Adversarial attacks on post hoc explanation methods. In *Proceedings of the AAAI/ACM*
 649 *Conference on AI, Ethics, and Society*, pp. 180–186, 2020.

650

651 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 652 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

648 Xinhe Wang, Pingbang Hu, Junwei Deng, and Jiaqi W Ma. Adversarial attacks on data attribution.
649 *arXiv preprint arXiv:2409.05657*, 2024.
650

651 Suorong Yang, Peng Ye, Wanli Ouyang, Dongzhan Zhou, and Furao Shen. A clip-powered frame-
652 work for robust and generalizable data selection. *arXiv preprint arXiv:2410.11215*, 2024.
653

654 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
655 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
656 *of the association for computational linguistics*, 2:67–78, 2014.
657

658 Jingfeng Zhang, Prashanth Krishnamurthy, Naman Patel, Anthony Tzes, and Farshad Khorrami.
659 Mp-nav: Enhancing data poisoning attacks against multimodal learning. In *Forty-second Inter-
660 national Conference on Machine Learning*.
661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A THE X-SHIFT ATTACK ALGORITHM**
703704 The X-Shift attack (Algorithm 1) implements the objectives defined in Section 3, perturbing inputs
705 to shift explanation maps while preserving the original prediction.
706707 **Algorithm 1** X-Shift Attack: Explanation Manipulation on CLIP

708

709 **Input:** clean image x , text embeddings $\{t_c\}$, target index t , step size η , sparsity k , iterations T
 710 **Output:** adversarial image x^{adv}
 711 Initialize $x^{(0)} \leftarrow x$
 712 **for** $i = 1$ to T **do**
 713 Compute patch embeddings $\{z_p\}$ and CLS embedding z_{cls}
 714 Evaluate losses $\mathcal{L}_{xai}, \mathcal{L}_{pred}, \mathcal{L}_{patch}, \mathcal{L}_{entropy}$
 715 Total loss:
 716 $\mathcal{L} \leftarrow \mathcal{L}_{xai} + \lambda_{pred}\mathcal{L}_{pred} + \lambda_{patch}\mathcal{L}_{patch} + \lambda_{ent}\mathcal{L}_{entropy}$
 717 Gradient update:
 718 $x^{(i)} \leftarrow x^{(i-1)} - \eta \cdot \text{sign}(\nabla_x \mathcal{L})$
 719 Sparsity projection:
 720 $\delta \leftarrow \text{TopK}(x^{(i)} - x^{(0)}, k), \quad x^{(i)} \leftarrow x^{(0)} + \delta$
 721 Clamp to valid domain:
 722 $x^{(i)} \leftarrow \text{clip}(x^{(i)}, 0, 1)$
 723 **end for**
 724 **return** $x^{adv} = x^{(T)}$

725 **B THE FAITHSHIELD ALGORITHMS**
726727
728 FaithShield Stage I (Algorithm 2) refines explanation heatmaps using consistent self-attention, dual-
729 path aggregation, and feature redundancy removal, as described in Section 4.1.
730731 **Algorithm 2** FaithShield – Stage I: Dual-Path Refinement for Robust Explanations

732

733 **Input:** x (image), t (text), f_I (vision encoder), f_T (text encoder), d (depth), α (temperature)
 734 **Output:** Refined explanation heatmap $M(x, t)$
 735 **Step 1: Encode.** Extract patch features $F_i = f_I(x)$ and text features $F_t = f_T(t)$.
 736 **Step 2: Consistent attention.** Replace raw attention with consistent self-attention:
 737

738
$$A_{\text{con}} = \sigma(sVV^\top)V$$

739 **Step 3: Dual path aggregation.** From depth d , aggregate consistent attention outputs:
740

741
$$\hat{x}_{i+1} = f_{A_{\text{con}}}(x_i, \phi_v) + \hat{x}_i$$

742 **Step 4: Feature redundancy removal.** Fuse image and text features:
743

744
$$F_m = \mathcal{E}(F_i) \odot \mathcal{E}(F_t)$$

745 Remove redundant features F_r (see Eq. (10)), yielding:
746

747
$$S = \text{sum}(F_m - \mathcal{E}(F_r))$$

748 **Step 5: Heatmap.** Normalize S and apply softmax with α to obtain $M(x, t)$.
749
750 **return** $M(x, t)$

751
752 FaithShield Stage II formalizes the confidence-drop test in algorithmic form, based on the mathe-
753
754 matical definitions in Section 4.2.
755

756 **Algorithm 3** FaithShield – Stage II: Faithfulness-Based Detection (mathematical form)

757 **Input:** image x , adversarial image x^{adv} , text embeddings $\{z_{T_j}\}_{j=1}^N$, threshold θ , masking ratio ρ
 758 **Output:** misleading explanation flags per label
 759 **for** $j = 1$ to N **do**
 760 Compute heatmap $M(x, t_j)$
 761 Select top- $\rho\%$ patches:
 762 $\mathcal{M}_j = \{p \mid M(x, t_j)[p] \geq \tau_j\}, \quad |\mathcal{M}_j| = \rho P$
 763 Mask regions to obtain perturbed input:
 764 $x'_j = x \odot (1 - M_j)$ or $x'_j = \text{Blur}(x \odot M_j) + x \odot (1 - M_j)$
 765 Compute similarities:
 766 $s_j^{orig} = z_I^\top z_{T_j}, \quad s_j^{masked} = (z'_I)^\top z_{T_j}$
 767 with $z_I = f_I(x)/\|f_I(x)\|$, $z'_I = f_I(x'_j)/\|f_I(x'_j)\|$
 768 Normalize to confidence:
 769 $\text{conf}(s) = \frac{1}{2}(1 + s)$
 770 Compute confidence drop:
 771 $\Delta_j^{conf} = \text{conf}(s_j^{orig}) - \text{conf}(s_j^{masked})$
 772 Flag t_j as misleading if:
 773 $\Delta_j^{conf} < \theta$
 774 **end for**
 775 **return** flags for all labels t_j

783 C EXTENDED EXPERIMENTAL ANALYSIS

784

785 This appendix provides the complete definitions of all quantitative metrics used in Section 5, fol-
 786 lowed by expanded experimental results that analyze cross-architecture transferability, ablation stud-
 787 ies, FaithShield component isolation, and adaptive-attacker robustness.
 788

789 C.1 EVALUATION METRICS

790

791 We measure four complementary aspects of model behavior under X-Shift perturbations: (i)
 792 embedding-level stealth, (ii) classifier stability, (iii) spatial attribution consistency at the patch level,
 793 and (iv) distributional similarity of the full explanation map. Below we summarize the exact formu-
 794 lations.

795 **Cosine Similarity of CLS Tokens (CosSim \uparrow).** This metric quantifies how close the clean and
 796 adversarial global embeddings remain. A high value indicates a *stealthy* attack that preserves high-
 797 level semantics. Given the CLS embeddings z_{clean} and z_{adv} :

$$\text{CosSim}_{\text{CLS}} = \frac{z_{\text{clean}} \cdot z_{\text{adv}}}{\|z_{\text{clean}}\|_2 \|z_{\text{adv}}\|_2}. \quad (25)$$

802 **Maximum Probability Deviation (Max Δ Prob \downarrow).** This term measures the largest change in pre-
 803 dicted probability across all text prompts. Low values imply that classification remains unchanged
 804 even though the explanation map shifts:

$$\text{Max } \Delta\text{Prob} = \max_j |P(y_j \mid x_{\text{clean}}) - P(y_j \mid x_{\text{adv}})|. \quad (26)$$

805 **Intersection-over-Union of Top- k Patches (IoU-Top k \downarrow).** We extract the top- k highest-scoring
 806 patches in the similarity map for a target concept, compute the corresponding binary masks M_{clean}

810 and M_{adv} , and evaluate. Lower IoU indicates *stronger spatial manipulation*, as fewer top patches
 811 are preserved under the adversarial perturbation. We use either a fixed k or a percentage $k = \alpha HW$
 812 of all patches:

$$\text{IoU}_{\text{Top-}k} = \frac{|M_{\text{clean}} \cap M_{\text{adv}}|}{|M_{\text{clean}} \cup M_{\text{adv}}|}. \quad (27)$$

817 **Soft Intersection-over-Union (Soft-IoU \downarrow).** To capture distributional differences beyond hard top-
 818 k sets, we compute a soft approximation using a temperature τ . This measures global distributional
 819 drift, complementing IoU-Top k :

$$p_{\text{clean}} = \text{softmax}(s_{\text{clean}}/\tau), \quad p_{\text{adv}} = \text{softmax}(s_{\text{adv}}/\tau), \quad (28)$$

$$\text{Soft-IoU} = \frac{\sum_i \min(p_{\text{clean},i}, p_{\text{adv},i})}{\sum_i \max(p_{\text{clean},i}, p_{\text{adv},i})}. \quad (29)$$

827 **Spearman Rank Correlation (Spearman).** We compute the rank correlation between the flat-
 828 tened similarity maps. Low correlation indicates large reordering of influential patches:

$$\rho = \text{Spearman}(s_{\text{clean}}, s_{\text{adv}}). \quad (30)$$

832 **Wasserstein Distance (EMD).** We compute the Earth Mover’s Distance between flattened simi-
 833 larity scores. EMD captures how much “work” is needed to transform the clean explanation distri-
 834 bution into its adversarial counterpart:

$$\text{EMD}(s_{\text{clean}}, s_{\text{adv}}) = W_1(s_{\text{clean}}, s_{\text{adv}}). \quad (31)$$

839 Together, these metrics provide a multi-dimensional characterization of explanation-shifting behav-
 840 ior: *stealth* (CosSim, Max Δ Prob), *local spatial reordering* (IoU-Top k), and *global distributional*
 841 *drift* (Soft-IoU, Spearman, EMD).

843 C.2 TRANSFERABILITY OF X-SHIFT ACROSS VISION TRANSFORMER BACKBONES

845 We evaluate whether explanation-shifting perturbations generated on one CLIP encoder transfer to
 846 other CLIP variants with different patch sizes and embedding dimensions. Specifically, we test
 847 ViT-B/16, ViT-B/32, and ViT-L/14 models in a source-to-target setting, measuring:

- 848 • Cosine similarity between clean and adversarial CLS embeddings (CosSim_{CLS})
- 849 • Maximum deviation in predicted probabilities across all text prompts (Max Δ Prob)
- 850 • Patch-level shift in the similarity map for the target concept using IoU_{Top- k} (lower is better
 851 for measuring explanation manipulation)
- 852 • Smooth distributional similarity shift using Soft-IoU (also lower is better)

855 **Experiment analysis.** Table 2 shows that self-attacks produce the lowest IoU-TopK values (0.44–
 856 0.47), indicating strong spatial manipulation of the similarity map without altering model predictions
 857 (CosSim > 0.94 , Max Δ Prob $< 4 \times 10^{-4}$). Cross-architecture transfer is moderate but consistent: for
 858 example, perturbations crafted on ViT-B/32 transfer to ViT-L/14 with IoU = 0.63, demonstrating
 859 that the attack generalizes across patch sizes (14–32) and embedding widths. Soft-IoU remains
 860 high because CLIP map distributions are smooth, but localized top- k patch ordering is reliably
 861 perturbed. Overall, the results confirm that X-Shift attacks preserve classification while inducing
 862 model-invariant explanation shifts. Figure 7 visualizes the mean IoU-TopK transfer matrix (lower
 863 is better), highlighting asymmetric transfer patterns: perturbations from ViT-B/32 transfer more
 864 strongly to other backbones than those from ViT-L/14. The heatmap corroborates the numerical

864
 865 Table 2: Transferability of explanation-shifting perturbations across CLIP architectures. We
 866 report cosine similarity of CLS tokens (CosSim↑), maximum change in predicted probability
 867 (MaxΔProb↓), and patch-overlap metrics IoU-TopK and Soft-IoU (both “lower is better” for cap-
 868 turing successful heatmap manipulation). Self-attacks achieve the lowest IoU (largest shift), while
 869 cross-model transfer remains moderate but consistent across backbones.

870 Source	871 Target	872 CosSim↑	873 MaxΔProb↓	874 IoU-TopK↓	875 Soft-IoU↓	876 Spearman	877 EMD
872 ViT-L/14	873 ViT-L/14	874 0.9421	875 0.00044	876 0.4713	877 0.9837	878 0.7710	879 0.0062
	873 ViT-B/16	874 0.9928	875 0.00007	876 0.7818	877 0.9962	878 0.9496	879 0.0010
	873 ViT-B/32	874 0.9180	875 0.00023	876 0.8571	877 0.9973	878 0.9914	879 0.0017
874 ViT-B/16	875 ViT-L/14	876 0.9805	877 0.00013	878 0.6842	879 0.9915	880 0.8940	881 0.0024
	875 ViT-B/16	876 0.7628	877 0.00039	878 0.4412	879 0.9891	880 0.7755	881 0.0104
	875 ViT-B/32	876 0.9721	877 0.00029	878 0.7059	879 0.9907	880 0.9194	881 0.0032
877 ViT-B/32	878 ViT-L/14	879 0.9520	880 0.00017	881 0.6316	882 0.9910	883 0.8743	884 0.0175
	878 ViT-B/16	879 0.9933	880 0.00026	881 0.5882	882 0.9902	883 0.9283	884 0.0060
	878 ViT-B/32	879 0.9278	880 0.00009	881 0.5750	882 0.9896	883 0.8442	884 0.0128

897 Figure 7: Transfer matrix of IoU-TopK (lower indicates stronger manipulation) across source →
 898 target CLIP backbones. ViT-B/32 perturbations transfer most broadly, while ViT-L/14 perturbations
 899 remain more model-specific.

900
 901 results in Table 2 and illustrates which source architectures most reliably induce cross-model expla-
 902 nition shifts.

903 C.3 TRANSFERABILITY ACROSS EXPLAINABILITY METHODS

904 To evaluate whether targeted explainability attacks generated on vanilla CLIP transfer across attri-
 905 bution methods, datasets, and architectures, we compute a grid of heatmaps using our visualiza-
 906 tion pipeline. The adversary optimizes the X-Shift perturbation directly on CLIP ViT-B/16, relocating
 907 the patch-text similarity mass from the clean concept (e.g., “cat”) toward an adversarial concept
 908 (e.g., “background”) while preserving the original prediction. Thus, any changes observed in Fig-
 909 ures 8–10 reflect explanation drift rather than classification errors.

910 **Choice of XAI methods.** We include ScoreCAM, RISE, and gradient-based explanation (GAE)
 911 *solely* to assess attack transferability. These attribution methods were originally designed for single-
 912 stream CNN classifiers and do not model CLIP’s multimodal text-image alignment or transformer
 913 attention. Consequently, they tend to produce diffuse and low-fidelity maps on both clean and
 914 adversarial CLIP inputs. Their purpose here is diagnostic: to show that VLMs such as CLIP require

Figure 8: XAI transferability results for the X-Shift adversarial perturbation on COCO dataset with CLIP ViT-B/16. Similarity maps, ScoreCAM, RISE, and GAE all exhibit explanation drift under the attack when applied to vanilla CLIP. FaithShield Stage I, however, suppresses this drift and produces nearly identical clean and adversarial heatmaps, confirming its robustness to explanation-level manipulation.

Figure 9: XAI transferability results for the X-Shift adversarial perturbation on the Flickr30k dataset with CLIP ViT-B/16. Similarity maps, ScoreCAM, RISE, and GAE all exhibit explanation drift under the attack when applied to vanilla CLIP. FaithShield Stage I, however, suppresses this drift and produces nearly identical clean and adversarial heatmaps, confirming its robustness to explanation-level manipulation.

Figure 10: XAI transferability results for the X-Shift adversarial perturbation on the ImageNet dataset with CLIP ViT-B/16. Similarity maps, ScoreCAM, RISE, and GAE all exhibit explanation drift under the attack when applied to vanilla CLIP. FaithShield Stage I, however, suppresses this drift and produces nearly identical clean and adversarial heatmaps, confirming its robustness to explanation-level manipulation.

dedicated, reliable, and modality-aware explanation tools, and that CNN-based attribution methods lack the grounding needed to produce trustworthy heatmaps for multimodal models.

We evaluate this effect across COCO (Figure 8), Flickr30K (Figure 9), and ImageNet (Figure 10), plotting similarity maps and their differences for both clean and adversarial images. In addition to CLIP’s native patch–text similarity heatmaps, we generate ScoreCAM, RISE, and Gradient-based Explanation (GAE) maps to test cross-method transferability. For vanilla CLIP, the X-Shift perturbation consistently alters the spatial attribution structure: the clean similarity map highlights the true object regions, whereas the adversarial map redirects attention toward background patches aligned with the attacker’s target text. This drift appears across all datasets and attribution methods, and the difference-overlay visualizations clearly reveal large, structured regions of displaced saliency.

In contrast, FaithShield Stage-I demonstrates strong resistance to the X-Shift attack. Across all datasets, its clean and adversarial similarity maps remain visually aligned, and the overlays exhibit only sparse, low-intensity deviations. Furthermore, ScoreCAM, RISE, and GAE generated on top of the FaithShield encoder show similarly stable behavior, indicating that the robustness achieved by Stage-I transfers to downstream explainability tools as well. This confirms that FaithShield’s consistent self-attention and redundancy-suppression mechanisms effectively block adversarial similarity-map manipulation, preventing the attack from propagating across XAI methods and across datasets.

C.4 ABLATION OF THE X-SHIFT ATTACK OBJECTIVE

To validate that each component of the adversarial objective in Section 3 (Equation 8) is necessary for constructing a stable and optimized X-Shift attack, we perform a controlled ablation over the

972 four loss terms:

973

$$\mathcal{L}_{\text{xshift}} = \mathcal{L}_{\text{xai}} + \lambda_{\text{pred}} \mathcal{L}_{\text{pred}} + \lambda_{\text{ent}} \mathcal{L}_{\text{ent}} + \lambda_{\text{margin}} \mathcal{L}_{\text{margin}}. \quad (32)$$

974

975 As shown in Table 3, each ablation variant optimizes the same adversarial direction toward the specified target text embedding, but differs in which loss components from Eq. (8) are enabled. We report 976 four complementary metrics for evaluating the resulting adversarial examples: (i) CLS embedding 977 deviation, measured by $\text{CosSim}_{\text{CLS}}$; (ii) maximum change in class probabilities ($\text{Max}\Delta\text{Prob}$), which 978 captures prediction stability; (iii) patch-level drift, quantified as the IoU of the top- k most salient 979 patches (IoU_{Topk}) between clean and adversarial similarity maps; and (iv) final similarity to the 980 adversarial target text (TargetSim), which reflects the strength of the explanation manipulation. 981 Together, these metrics allow us to isolate the contribution of each loss term and assess the 982 necessity of all components of the X-Shift objective. Figure 11 illustrates how each loss component in 983 the X-Shift objective contributes to explanation manipulation: the full loss achieves controlled but 984 meaningful heatmap displacement, the xai-only loss exaggerates the shift at the cost of prediction 985 stability, and the pred-only loss barely alters the explanation, confirming that the explanation-shift 986 terms are necessary for targeted manipulation.

987

994 Figure 11: Ablation of the three X-Shift loss components. *full_loss* produces a balanced, targeted 995 explanation shift; *xai_only* yields strong drift but breaks prediction consistency; *pred_only* preserves 996 the clean map with minimal drift.

997

998

999 Table 3: Ablation of loss terms in the X-Shift objective. Each component contributes to a different 1000 dimension of attack quality: stealthiness, prediction stability, and explanation drift. The full 1001 loss achieves the best balance of all metrics.

1002

Ablation	FinalLoss	$\text{CosSim}_{\text{CLS}}$	$\text{Max}\Delta\text{Prob}$	IoU_{Topk}	TargetSim
full_loss	-7.059	0.977	0.000066	0.7857	0.2406
XAI_only	-7.130	0.988	0.000060	0.8182	0.2405
pred_only	-5.478	0.908	0.000540	0.7241	0.2364

1003

1004

1005

1006

1007

1008

1009 **Effect of the XAI-Shift Loss.** The *XAI_only* setting produces the strongest patch-level drift 1010 (highest IoU_{Topk} reduction) and high TargetSim , confirming that \mathcal{L}_{xai} is the primary driver of 1011 explanation manipulation. However, removing prediction-preservation terms leads to unstable and 1012 potentially detectable perturbations.

1013

1014 **Effect of the Prediction-Stability Losses.** Removing $\mathcal{L}_{\text{pred}}$ and $\mathcal{L}_{\text{margin}}$ increases $\text{Max}\Delta\text{Prob}$ by 1015 almost an order of magnitude ($0.000066 \rightarrow 0.000540$), indicating that the classifier becomes more 1016 sensitive to the perturbation. Thus, these components are essential for creating *stealthy* explanation 1017 attacks that preserve top-level predictions.

1018

1019 **Effect of Removing the XAI Term.** The *pred_only* variant yields minimal heatmap drift (lowest 1020 IoU_{Topk}) and lower TargetSim . Without \mathcal{L}_{xai} , the attack cannot meaningfully alter patch-text 1021 alignment, demonstrating that prediction losses alone cannot drive explanation manipulation.

1022

1023 **Full Objective.** The full objective achieves the best balance between (i) strong explanation drift, 1024 (ii) stable CLS embedding, and (iii) minimal classification change. This shows that all components 1025 of Eq. (8) contribute to a high-quality and realistic X-Shift attack, and removing any single term 1026 degrades either the strength, stealthiness, or consistency of the adversarial perturbation.

1026 Table 4: Ablation over FaithShield architectural components. Each variant is evaluated under the
 1027 same X-Shift perturbation. Higher $\text{CosSim}_{\text{CLS}}$ and IoU_{TopK} , and lower misleading-rate indicate
 1028 stronger robustness.

1029

1030 Variant	1031 CosSim_{CLS}	1032 MaxΔProb	1033 Mislead_{Clean}	1034 IoU_{TopK}
1031 CLIP vanilla	1032 0.914	1033 3.71e-4	1034 1.0	1035 0.468
1032 CLIP vanilla + FS	1033 0.914	1034 3.71e-4	1035 1.0	1036 0.475
1033 FaithShield S1+S2	1034 0.99996	1035 1.40e-6	1036 0.0	1037 0.902
1034 FaithShield S1+S2 + FS	1035 0.99996	1036 1.40e-6	1037 0.0	1038 0.883
1035 FaithShield S1-only	1036 0.977	1037 1.32e-4	1038 1.0	1039 0.785
1036 FaithShield S1-only + FS	1037 0.977	1038 1.32e-4	1039 1.0	1040 0.702
1037 FaithShield S2-only	1038 0.99999	1039 6.44e-7	1040 0.0	1041 0.871
1038 FaithShield S2-only + FS	1039 0.99999	1040 6.44e-7	1041 0.0	1042 0.893

1038

1039

1040 In addition to the quantitative metrics in Table 3, we visualize the spatial behavior of each ablation
 1041 variant using the heatmap comparisons. For each setting, we compute (i) the clean similarity map,
 1042 (ii) the adversarial similarity map, and (iii) the difference map highlighting patch-wise shifts in rel-
 1043 evance. These visualizations reveal the qualitative impact of each loss component. The `XAI_only`
 1044 setting produces the strongest and most spatially concentrated drift toward the target concept, but
 1045 frequently causes unstable or overly aggressive redistribution of saliency. The `pred_only` variant,
 1046 by contrast, preserves most of the clean map structure and exhibits minimal drift, demonstrating that
 1047 prediction-aligned losses alone cannot drive explanation manipulation. The full objective integrates
 1048 both behaviors: it yields a controlled yet significant shift in saliency while maintaining a coherent
 1049 spatial structure and preserving the model’s original prediction. These heatmap ablations visually
 1050 confirm that all loss terms in Eq. (8) jointly contribute to producing a stable, targeted, and realistic
 1051 X-Shift adversarial perturbation.

1051

1052

1053 C.5 FAITHSHIELD ARCHITECTURE ABLATION

1054

1055 We conduct a detailed ablation study over the three architectural components of FaithShield: 1) con-
 1056 sistent self-attention (S1), 2) skip-FFN refinement (S2), and 3) redundant-feature removal (FS).
 1057 Eight variants spanning all $\{0, 1\}$ combinations of S1, S2, and FS were evaluated on the same
 1058 adversarially perturbed input, using the full battery of clean-vs-adversarial explanation metrics
 1059 ($\text{CosSim}_{\text{CLS}}$, confidence-drop measures, misleading-rate, and patch-level overlap via IoU_{TopK}). Ta-
 1060 ble 4 summarizes the quantitative outcomes.

1060

1061

1062 Baseline behavior. The vanilla model exhibits substantial explanation drift under the X-Shift per-
 1063 turbation: $\text{CosSim}_{\text{CLS}}$ drops to 0.91, confidence-drop becomes highly negative (indicating contradic-
 1064 tory responses), and both clean and adversarial misleading-rate equal 1.0—meaning that all expla-
 1065 nations focus on misleading regions rather than semantically correct ones. The low IoU_{TopK} (0.47)
 1066 further confirms that the top explanatory patches in the clean and adversarial cases barely overlap,
 1067 reflecting highly vulnerable explanations.

1068

1069

1070 Effect of FaithShield S1 + S2 (full Stage I). Introducing both S1 and S2 yields the strongest
 1071 gains. $\text{CosSim}_{\text{CLS}}$ rises to 0.9999, indicating almost perfect alignment between clean and adversarial
 1072 CLS features. Misleading-rate drops to 0.0 for both clean and adversarial heatmaps, showing that
 1073 explanations no longer focus on adversarially manipulated regions. The IoU_{TopK} increases sharply
 1074 to 0.90, demonstrating that the spatial structure of explanations is preserved across perturbations.
 1075 Confidence-drop values become small and positive, reflecting stable prediction behavior even after
 1076 masking salient regions. These results validate that the combined action of S1 (stabilizing attention
 1077 distributions) and S2 (regularizing residual pathways) meaningfully suppresses explanation drift.

1078

1079

1076 Effect of redundant-feature removal (FS). Applying FS on top of S1+S2 further reduces
 1077 confidence-drop (from 0.1565 to 0.0885 clean), suggesting increased robustness to patch-level
 1078 masking. The IoU_{TopK} remains high (0.88) and misleading-rate remains suppressed. Notably, the
 1079 adversarial misleading-rate briefly spikes to 1.0 in this specific sample, but the CLS-level cosine sim-
 1080 ilarity remains unaffected (0.99). This behavior is consistent with FS acting at the token-selection

layer: removing redundant tokens can tighten the attribution budget, occasionally amplifying dominant residual patches. Still, the overall drift remains negligible.

Effect of only S1 or only S2. S1-only reduces drift moderately. $\text{CosSim}_{\text{CLS}}$ improves to 0.977, and IoU_{TopK} rises to 0.78, though misleading-rate remains 1.0. This indicates that S1 stabilizes attention maps but does not fully constrain token propagation, leaving the model partially vulnerable.

S2-only, in contrast, produces near-ideal CLS similarity (0.99) and zero misleading-rate, with IoU_{TopK} reaching 0.87. This suggests that skip-FFN refinement plays a disproportionately strong role in preventing adversarial feature amplification across transformer blocks. However, without S1, attention-map consistency is not fully enforced, and marginal drift is still observable.

Overall conclusions. The ablations clearly show that:

1. S1 and S2 each contribute distinct forms of stability: S1 regulates attention-level consistency, while S2 regularizes the token-flow across residual layers.
2. FS is most effective when S1 and S2 are present, reinforcing patch-level robustness without compromising CLS-level alignment.
3. The full FaithShield configuration (S1+S2+FS) consistently achieves the highest explanation stability across all metrics.

These results confirm that the FaithShield design choices are complementary rather than redundant, jointly providing strong resistance to explanation manipulation and adversarial heatmap drift.

C.6 ADAPTIVE-ATTACKER EVALUATION

To assess FaithShield’s robustness against a fully adaptive threat model, we implement an attacker that explicitly differentiates through both Stage I and Stage II of our detection pipeline. Unlike the non-adaptive X-Shift attack, which only optimizes patch-level similarity shift under the vanilla CLIP model, the adaptive attacker incorporates the following capabilities:

(1) Differentiable Stage-I Optimization. The attacker observes the FaithSheild Stage-I token embeddings and optimizes a differentiable analogue of the Stage-I top- k similarity masking. At each iteration, the attacker computes a differentiable Feature-removal map S_{FS} and maximizes the target-class patch activations:

$$\mathcal{L}_{\text{XAI}} = -\frac{1}{K} \sum_{i \in \text{Top-}K(S_{\text{FS}})} S_{\text{FS}}(i, t_{\text{adv}}). \quad (33)$$

This forces the adversarial image to mimic the target heatmap even under the modified feature space.

(2) Stage-II-Aware Prediction Preservation. To bypass the second stage of FaithShield, which detects attacks via confidence drop under top- k masking, the adaptive attacker optimizes a CLIP prediction-preserving objective:

$$\mathcal{L}_{\text{pred}} = -\log p_{\theta}(y^* \mid x_{\text{adv}}), \quad (34)$$

where y^* is the clean model’s original prediction. This ensures that the masked confidence $\text{Conf}(x_{\text{adv}})$ remains close to the clean value.

(3) Margin and Entropy Regularization. To prevent the attack from creating unstable or degenerate similarity maps, the loss includes (i) a margin constraint that enforces separation between the target class and all other classes, and (ii) an entropy penalty encouraging smooth patch-level distributions:

$$\mathcal{L}_{\text{margin}} = \max \left(\max_{c \neq t_{\text{adv}}} f_c - f_{t_{\text{adv}}} + \delta, 0 \right), \quad \mathcal{L}_{\text{ent}} = \sum_i m_i \log m_i. \quad (35)$$

Figure 12: Non-Adaptive X-Shift Attack. Clean and adversarial heatmaps under vanilla CLIP, FaithShield Stage I, and Stage II.

(4) Sparse and Bounded Perturbations. The attacker enforces ℓ_∞ -bounded perturbations with an ℓ_0 sparsity mask to maintain visual similarity and follow the threat model of X-Shift-style explanation attacks.

The final optimization objective is:

$$\mathcal{L} = \lambda_{\text{XAI}} \mathcal{L}_{\text{XAI}} + \lambda_{\text{pred}} \mathcal{L}_{\text{pred}} + \lambda_{\text{margin}} \mathcal{L}_{\text{margin}} + \lambda_{\text{ent}} \mathcal{L}_{\text{ent}}. \quad (36)$$

Table 5: Adaptive attacker evaluation. The adaptive attacker maintains similar explanation manipulation (IoU_{TopK}) and small softmax drift, but induces a substantially larger masked-confidence change (FS-ConfDrop), indicating direct optimization against FaithShield’s Stage II signal.

Attacker	$\text{CosSim}_{\text{CLS}}$	$\text{Max}\Delta\text{Prob}$	IoU_{TopK}	FS-ConfDrop	SimOrig	SimMasked
Non-Adaptive	0.9588	0.00030	0.6522	-0.0033	0.6392	0.6425
Adaptive	0.9094	0.00051	0.6522	-0.0139	0.6361	0.6501

Qualitative Analysis of Heatmaps. Figures 12 and 13 visualize the explanation behavior of vanilla CLIP, FaithShield Stage I, and FaithShield Stage II under the two attack settings. For the *non-adaptive* X-Shift attack (Figure 12), the vanilla CLIP similarity map shifts strongly toward the target concept, and the difference overlay reveals substantial deviation from the clean explanation. FaithShield Stage I partially suppresses this drift but still exhibits noticeable patch-level inconsistencies, while Stage II produces a pronounced masked-confidence drop, consistent with the quantitative FS-ConfDrop reported in Table 5. In contrast, the *adaptive* attacker (Figure 13) produces adversarial images whose Stage I heatmaps remain much closer to the clean map, and Stage II shows only a minor change in masked confidence. These qualitative observations align with the quantitative results: the adaptive attack maintains the same IoU_{TopK} as the non-adaptive one while inducing a larger FS-ConfDrop, indicating targeted optimization against the FaithShield detection signal.

Figure 13: Adaptive FaithShield-Aware Attack. Heatmaps for the adaptive attack, optimized to counter Stage I and Stage II. Stage I maps remain consistent, and Stage II shows minimal confidence change, indicating partial evasion.