FAITHSHIELD: DEFENDING VISION-LANGUAGE MODELS AGAINST EXPLANATION MANIPULATION VIA X-SHIFT ATTACKS

Anonymous authorsPaper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) such as Contrastive Language-Image Pretraining (CLIP) have achieved remarkable success in aligning images and text, yet their explanations remain highly vulnerable to adversarial manipulation. Recent findings show that imperceptible perturbations can preserve model predictions while redirecting heatmaps toward irrelevant regions, undermining the faithfulness of the explanation. We introduce the X-Shift attack, a novel adversarial strategy that drives patch-level embeddings toward the target text embedding, thereby shifting explanation maps without altering output predictions. This reveals a previously unexplored vulnerability in VLM alignment. To counter this threat, we propose FaithShield Defense, a two-fold framework: (i) a dual-path redundant extension of CLIP that disentangles global and local token contributions, producing explanations more robust to perturbations; and (ii) a novel faithfulness-based detector that verifies explanation reliability via a masking test on top-k salient regions. Explanations that fail this test are flagged as unfaithful. Extensive experiments show that X-Shift reliably compromises explanation faithfulness, while FaithShield restores robustness and enables principled detection of manipulations. Our work formalizes explanation-oriented adversarial attacks and offers a principled defense, enhancing trustworthy and verifiable explainability in VLMs.

1 Introduction

Deep Neural Networks (DNNs) play a critical role in modern society, powering applications in healthcare, autonomous vehicles, smart cities, and other safety-critical domains. In particular, Vision–Language Models (VLMs) architectures such as Contrastive Language–Image Pretraining (CLIP) have emerged as foundational models that enable joint reasoning across vision and language (Radford et al., 2021). As these systems are increasingly deployed in high-stakes applications, it is imperative that their predictions are transparent and explainable. Explanation methods, commonly referred to as Explainable AI (XAI), highlight the contribution of input features to model decisions, and are essential for building trust, debugging failures, and identifying spurious correlations (Lipton, 2018; Li et al., 2022; Selvaraju et al., 2017; Li et al., 2025).

Despite their promise, recent studies have demonstrated that explanation methods are themselves vulnerable to manipulation (Kindermans et al., 2019; Ghorbani et al., 2019; Dombrowski et al., 2019; Heo et al., 2019; Slack et al., 2020; Lakkaraju & Bastani, 2020; Huang et al., 2023; Ajalloeian et al., 2023; Kuppa & Le-Khac, 2020). Adversarial perturbations can preserve model predictions while misleading explanations into focusing on irrelevant or incorrect regions. Most prior work has studied this phenomenon in the image domain, targeting gradient-based methods or surrogate explanation models such as LIME and SHAP. However, the vulnerability of XAI in VLMs such as CLIP remains largely unexplored, and no systematic defense mechanisms exist to ensure that explanations are either robust or verifiable in this setting (Baniecki & Biecek, 2024).

In this work, we address these gaps from two complementary angles. First, we introduce a novel targeted adversarial attack on CLIP that manipulates patch—text similarity heatmaps while leaving model results unchanged. Our attack operates in the downstream setting, requiring neither access

055

056 057

058

060 061

062

063

064 065

066

067

068

071

073

074

075

076 077

079

081

082 083

084

085

087

090

091

092

093

094

095

096

097

098

099 100 101

102 103

104

105

106

107

Transformer Encode Multi-Head Self-attention Vision-Language Model (L * layers) Classifie Image Encode MLP Transformer Encode Layer Norm Laver Norm Text Encoder Consistent Self-attention Multi-Head Self Consistent Self attention attention QΊ

to training nor modification of evaluation pipelines, thereby closely modeling realistic deployment scenarios.

Figure 1: FaithShield Stage I – Dual-path mechanism in the visual transformer, where consistent self-attention operates alongside the standard path to improve heatmap faithfulness and robustness against X-Shift attacks.

Original Z

Laver Norm

Second, we propose a *dual-path redundant extension of CLIP* that disentangles global and local token flows, prunes redundant features, and stabilizes explanation maps against adversarial perturbations. Finally, we integrate a *faithfulness-based detection module* that applies a masking test to identify unfaithful explanation regions by measuring confidence drops, thus enabling a trustworthy and verifiable framework for XAI in VLMs learning.

Our main contributions are as follows:

- We propose a novel targeted adversarial attack that misleads patch-text heatmaps of CLIP while leaving classification results intact.
- We design a dual-path redundant extension of CLIP that disentangles feature flows via a self-attention head, removes redundancy, and produces explanations that are robust to adversarial perturbations.
- 3. We introduce a faithfulness-based detection layer that identifies unfaithful regions in explanation maps, thereby providing a principled mechanism for verifying the trustworthiness of VLMs XAI.

viding a principled mechanism for verifigure 2: FaithShield workflow with similarity fying the trustworthiness of VLMs XAI. refinement (Stage I) and detection (Stage II).

2 Related Work

The susceptibility of deep neural networks to adversarial perturbations is by now well established (Huang et al., 2021; Szegedy et al., 2013; Goodfellow et al., 2014; Carlini & Wagner, 2017; Ilyas et al., 2018; 2019; Modas et al., 2019; Babadi et al., 2023; Wang et al., 2024; Croce & Hein, 2019; Madry et al., 2017). While the majority of this literature has focused on degrading predictive performance, only recently has research begun to investigate the vulnerability of explanation methods themselves (Baniecki & Biecek, 2024).

 Initial studies demonstrated that post hoc explanations are inherently fragile. Kindermans et al. (2019) showed that saliency maps lack invariance to simple input transformations, while Ghorbani et al. (2019) and Dombrowski et al. (2019) revealed that imperceptible perturbations can drastically alter attribution heatmaps without affecting model predictions. Beyond perturbation-based attacks, model-level manipulations have also been explored. For example, Heo et al. (2019) trained networks to mislead attribution methods such as Grad-CAM and LRP, and Slack et al. (2020) demonstrated wrapper-based manipulations of black-box models that arbitrarily control LIME and SHAP explanations, highlighting risks such as *fairwashing* (Lakkaraju & Bastani, 2020).

Building on these findings, subsequent research proposed more targeted attack strategies. Huang et al. (2023) introduced the *Focus-Shifting Attack*, which redirects saliency to adversary-specified regions while preserving prediction consistency. Ajalloeian et al. (2023) developed a sparse perturbation algorithm that manipulates attribution maps more efficiently than ℓ_0 -PGD. In parallel, Kuppa & Le-Khac (2020) studied black-box attacks on LIME and SHAP within cybersecurity applications, establishing an early taxonomy for explanation robustness.

Despite these advances, prior work has largely concentrated on unimodal image classifiers; VLMs remain comparatively underexplored. For CLIP, recent studies have examined adversarial robustness primarily at the level of predictions rather than explanations (Yang et al., 2024). For instance, MP-Nav (Zhang et al.) strengthened poisoning attacks through semantic concept selection, and X-Transfer (Huang et al., 2025b) proposed a universal adversarial perturbation transferable across datasets and tasks. Additional lines of work have addressed backdoor vulnerabilities (Jia et al., 2022), scaling behaviors (Jia et al., 2021), and robustness in grounding tasks (Koh et al., 2023; Huang et al., 2025a).

To the best of our knowledge, no prior work has systematically examined adversarial attacks that specifically manipulate CLIP explanations, nor proposed defenses that simultaneously enhance robustness and detect unfaithful attribution regions. Our work fills this gap by (i) introducing a targeted explanation attack against CLIP and (ii) presenting *FaithShield*, a dual-path framework that disentangles redundant features, improves explanation robustness, and provides a principled detection mechanism for adversarial manipulations.

3 X-SHIFT ATTACK OBJECTIVES

We now introduce the **X-Shift attack**, an explanation-focused adversarial strategy that perturbs images such that predictions remain stable while explanation maps are shifted toward a target class. To achieve this, we combine the following complementary objectives: (i) manipulating explanation heatmaps, (ii) preserving the global model output, (iii) enforcing sparsity of perturbations, and (iv) ensuring validity of adversarial examples. Finally, we describe the explainability-focused attack and provide a concrete algorithm.

3.1 BASELINE: CLIP MODEL

CLIP (Radford et al., 2021) aligns an image encoder f_I and text encoder f_T in a shared embedding space. Given an image x and text t, their normalized embeddings are $z_I = f_I(x)/\|f_I(x)\|_2$, $z_T = f_T(t)/\|f_T(t)\|_2$, with similarity $s(x,t) = z_I^\top z_T$. Training minimizes a symmetric contrastive loss over N image—text pairs:

$$\mathcal{L}_{\text{CLIP}} = \frac{1}{2N} \sum_{i=1}^{N} \left[-\log \frac{\exp(s(x_i, t_i)/\tau)}{\sum_{j=1}^{N} \exp(s(x_i, t_j)/\tau)} - \log \frac{\exp(s(x_i, t_i)/\tau)}{\sum_{j=1}^{N} \exp(s(x_j, t_i)/\tau)} \right], \quad (1)$$

where τ is a learnable temperature. Our attack perturbs x into $x_{\text{adv}} = x + \delta$, preserving predictions but shifting explanation maps toward a target class.

3.2 ATTACK OBJECTIVES

We combine the following complementary objectives to achieve explanation-focused adversarial perturbations:

166 167

169 170

175 176 177

178 179

181 183

185 186

187

188 189 190

192

193

196 197

199 200

201 202 203

204

205 206 207

209 210 211

208

212

213 214 215 1. Explanation manipulation. The primary goal is to force patch embeddings toward the target text embedding. Let p denote the normalized embedding of patch p, and t_{target} the target text embedding. Similarity is $s_p = p^{\top} t_{target}$. We maximize similarity of the top-K patches while suppressing others:

$$\mathcal{L}_{\text{xai}} = -\frac{1}{K} \sum_{i \in \text{TopK}} s_{i,t} + \alpha \cdot \frac{1}{P - K} \sum_{i \notin \text{TopK}} s_{i,t}, \tag{2}$$

where $s_{i,t} = z_i^\top z_{T_{\text{tar}}}$ denotes the similarity between patch embedding z_i and the target text embedding $z_{T_{tar}}$.

2. **Prediction preservation.** To prevent label change, we enforce the clean prediction y^* at the global (CLS) level:

$$\mathcal{L}_{\text{pred}} = -\log \frac{\exp(z_{\text{cls}}^{\top} t_{y^*})}{\sum_{c} \exp(z_{\text{cls}}^{\top} t_{c})}.$$
 (3)

3. **Patch-level margin.** For each patch, the target similarity $s_{p,t}$ must dominate over other classes:

$$\mathcal{L}_{\text{patch}} = \frac{1}{P} \sum_{p=1}^{P} \max \left(0, \max_{c \neq t} (s_{p,c} - s_{p,t} + m) \right), \tag{4}$$

where $s_{p,c} = z_p^{\top} z_{T_c}$ is the similarity between patch embedding z_p and text embedding z_{T_c} .

4. Entropy sharpening. To avoid diffuse attention maps, we encourage sharp similarity distributions:

$$\mathcal{L}_{\text{entropy}} = \sum_{p=1}^{P} m_p \log m_p, \qquad m_p = \frac{\exp(s_{p,t})}{\sum_q \exp(s_{q,t})}, \tag{5}$$

which corresponds to the negative Shannon entropy of the normalized similarities. Minimizing this term encourages sharp and peaked similarity distributions rather than diffuse heatmaps.

5. Sparsity constraint. Perturbations are restricted to k pixels by projecting $\delta = x_{adv} - x$ onto its top-k entries:

$$\delta \leftarrow \text{TopK}(\delta, k).$$
 (6)

6. Validity constraint. Ensure the adversarial image remains in the valid input domain:

$$x_{adv} \in [0,1]^d. \tag{7}$$

The total objective combines explanation manipulation with auxiliary constraints:

$$\mathcal{L} = \mathcal{L}_{xai} + \lambda_{pred} \mathcal{L}_{pred} + \lambda_{patch} \mathcal{L}_{patch} + \lambda_{ent} \mathcal{L}_{entropy}, \tag{8}$$

where $\lambda_{\text{pred}}, \lambda_{\text{patch}}$, and λ_{ent} are trade-off coefficients that balance the relative contributions of preserving prediction consistency, enforcing patch-level constraints, and controlling explanation entropy. Tuning these hyperparameters adjusts the strength of each auxiliary objective relative to the main explanation-shifting loss \mathcal{L}_{xai} .

Explainability Attack Algorithm. Adversarial examples are generated by iteratively updating the input image using gradient-based optimization. The process is summarized in Algorithm 1 in Appendix A.

FAITHSHIELD DEFENSE FRAMEWORK

We propose FaithShield, a two-stage defense framework designed to counter X-Shift attacks. The framework consists of: (i) a robust explanation module that refines patch embeddings to produce stable heatmaps, and (ii) a faithfulness-based detection mechanism that validates explanation reliability. Together, these components ensure that explanations are both robust and verifiable.

4.1 FAITHSHIELD-STAGE I: ROBUST EXPLANATION VIA DUAL-PATH REFINEMENT

Our Stage I design is inspired by the refinement strategies of Li et al. (2025), who introduced consistent attention and redundancy removal to improve the interpretability of CLIP explanations. We adapt these principles but extend them into a *dual-path refinement architecture* that is explicitly tailored to adversarial robustness. Unlike Li et al. (2025), whose focus was interpretability, our formulation integrates three complementary steps: (*i*) consistent self-attention, (*ii*) dual-path feature aggregation, and (*iii*) redundancy elimination, as a unified defense against targeted explanation manipulation.

Let $\{z_p\}_{p=1}^P$ denote the patch embeddings from the vision encoder, and z_T the normalized text embedding. Recall from Section 3.1 that the baseline patch-level similarity is

$$s_p(x,t) = z_p^{\top} z_T, \quad p = 1, \dots, P,$$
 (9)

which can be reshaped into a spatial similarity map. However, such raw maps often highlight background regions (*opposite visualization*) and exhibit class-irrelevant activations (*noisy activations*) across Vision Transformer (ViT) backbones. To mitigate these issues, we build upon the CLIP framework a three-stage refinement procedure: (*i*) consistent self-attention, (*ii*) dual-path feature aggregation, and (*iii*) feature redundancy removal.

Consistent Self-Attention. In vanilla CLIP, We follow Li et al. (2025) and replace heterogeneous projections ϕ_q, ϕ_k, ϕ_v :

$$A_{\text{raw}} = \sigma(s \cdot QK^{\top})V, \quad Q = \phi_q(X), \quad K = \phi_k(X), \quad V = \phi_v(X), \tag{10}$$

which may relate tokens from semantically inconsistent regions. We instead employ a homogeneous projection ϕ_v to enforce semantic consistency:

$$A_{\text{con}} = \sigma(s \cdot VV^{\top})V, \quad V = \phi_v(X). \tag{11}$$

This ensures that self-attention emphasizes tokens with coherent semantics, verified quantitatively via the mean Foreground Selection Ratio (mFSR). Figure 1 illustrates the dual-path schema, highlighting the replacement of raw multi-head self-attention with consistent self-attention blocks to ensure more coherent token interactions.

Dual-Path Refinement. Not all intermediate modules are equally aligned with the final prediction. Affinity between text features F_t and block-level class token features \hat{F}_c is measured as

$$a(F_t, \hat{F}_c) = \frac{1}{N_t} \sum_{i=1}^{N_t} F_t^{(i)} \hat{F}_c,$$
(12)

revealing that feed-forward networks (FFNs) often drift toward negatives and harm interpretability. We therefore aggregate only consistent self-attention modules, skipping FFNs via a dual-path architecture:

$$\hat{x}_{i+1} = \begin{cases} \text{None}, & i < d, \\ f_{A_{\text{con}}}(x_i, \phi_v) + x_i, & i = d, \\ f_{A_{\text{con}}}(x_i, \phi_v) + \hat{x}_i, & i > d, \end{cases}$$
(13)

while preserving the original path x_{i+1} for final model outputs. This design enhances interpretability without degrading recognition accuracy (Li et al., 2025).

Feature Redundancy Removal Noisy activations arise from redundant features shared across categories. Based on (Li et al., 2025), we first compute multiplied features:

$$F_m = \mathcal{E}(F_i) \odot \mathcal{E}(F_t), \quad F_m \in \mathbb{R}^{N_i \times N_t \times C},$$
 (14)

where F_i and F_t are L2-normalized image and text features, \odot denotes element-wise product, and \mathcal{E} broadcasts to matching shape. Next, we reweight influential classes:

$$s = \sigma(\tau \cdot F_c F_t^{\top}), \quad w = \frac{s}{\mu_s}, \tag{15}$$

where F_c is the class token, τ is a logit scale, and μ_s the mean of s. Redundant features are then estimated as

$$F_r = \operatorname{mean}(F_m \odot \mathcal{E}(w)) \in \mathbb{R}^{N_i \times C}, \tag{16}$$

and subtracted:

$$S = \operatorname{sum}(F_m - \mathcal{E}(F_r)) \in \mathbb{R}^{N_i \times N_t}. \tag{17}$$

Finally, S is reshaped, interpolated, and normalized to produce the refined similarity map.

Final Heatmap. The refined patch–text similarity is normalized via softmax:

$$M(x,t)[p] = \frac{\exp(\alpha \, s_p^{\text{ref}}(x,t))}{\sum_{q=1}^P \exp(\alpha \, s_q^{\text{ref}}(x,t))},\tag{18}$$

where α controls sharpness. This yields heatmaps that are semantically faithful, less noisy, and more foreground-focused. Algorithm 2 in Appendix B illustrates the workflow of this subsection.

4.2 FAITHSHIELD-STAGE II: FAITHFULNESS-BASED DETECTION

The second stage of FaithShield introduces a **novel detection module** that tests whether an explanation is truly faithful to the model's decision. While prior work has focused on refining attention maps to improve interpretability, none has provided a systematic mechanism for *detecting adversarially misleading explanations*. Our Stage II addresses this gap.

Even with refined embeddings, adversarial perturbations may still redirect saliency toward irrelevant regions while leaving the prediction intact. To flag such cases, we propose a confidence-drop test: mask the top-k most salient regions indicated by the explanation and re-evaluate the model's confidence for the target class. For a faithful explanation, removing the highlighted regions should cause a substantial confidence drop, reflecting causal alignment between the explanation and the prediction. Conversely, if the confidence remains nearly unchanged, the heatmap is identified as misleading.

Given a heatmap M(x,t) for class t, we select the top- $\rho\%$ patches:

$$\mathcal{M}_t = \{ p \mid M(x, t)[p] \ge \tau_t \}, \tag{19}$$

where τ_t is chosen such that $|\mathcal{M}_t| = \rho \cdot P$. These patches are suppressed in the input image to form a perturbed version x':

$$x' = \begin{cases} x \odot (1 - M_t), & \text{(zeroing)} \\ \text{Blur}(x \odot M_t) + x \odot (1 - M_t), & \text{(blurring)}, \end{cases}$$
 (20)

where M_t is upsampled to image resolution.

We then measure cosine similarity before and after masking:

$$s_{\text{orig}} = z_I^{\top} z_T, \qquad s_{\text{masked}} = (z_I')^{\top} z_T,$$
 (21)

where $z_I = f_I(x)/\|f_I(x)\|$ and $z_I' = f_I(x')/\|f_I(x')\|$. Since s(x,t) is a cosine similarity in [-1,1], we normalize it into [0,1] for interpretability when measuring confidence:

$$conf(s) = \frac{1}{2}(1+s).$$
 (22)

This normalization does not affect the ranking of similarities but enables a consistent interpretation of Δ_{conf} as a probability drop. the confidence drop is defined as:

$$\Delta_{\text{conf}} = \text{conf}(s_{\text{orig}}) - \text{conf}(s_{\text{masked}}). \tag{23}$$

If the masked region is truly explanatory, Δ_{conf} will be large. Conversely, if Δ_{conf} is small, the explanation is deemed unfaithful. We flag misleading explanations whenever:

$$\Delta_{\rm conf} < \theta,$$
 (24)

with threshold θ . The overall defense integrates two complementary modules:

- Robust explanation: Dual-path refinement of patch embeddings yields faithful and stable similarity maps.
- similarity maps.
- 2. **Faithfulness detection:** Masking-based tests on clean and adversarial images identify unfaithful regions.

Together, these modules ensure that explanations are both *robust* and *verifiable*. The procedure is summarized in Algorithm 3 in Appendix C. Figure 2 illustrates the refinement of similarity maps through dual-path processing and feature redundancy removal, followed by the application of faithfulness-based detection.

5 EXPERIMENTS

Our evaluation is designed to answer the following research questions:

• How effective is the proposed attack in shifting XAI?

• Does the dual-path refinement improve robustness of XAI under adversarial perturbations?

• Can the faithfulness-based detection reliably identify misleading XAI?

Models and Datasets. We evaluate our attack and defense framework at inference time, without requiring additional training data. Experiments are conducted on the validation splits of three benchmark datasets: ImageNet-1k (Deng et al., 2009), Flickr30k (Young et al., 2014), and MS-COCO (Chen et al., 2015), which provide diverse natural images and object-level annotations for assessing VLMs explanations. For models, we utilize the CLIP family of vision—language encoders, specifically ViT-B/16 (Radford et al., 2021), ViT-B/32 (Radford et al., 2021), and ViT-L/14 (Dosovitskiy et al., 2020), which span a range of capacities and input resolutions to assess the generality of our attack and defense across different backbones.

Implementation. We implement attack and defense on official CLIP models, using patch–text similarity maps that compute cosine similarity between patch and text embeddings. Unlike gradient-based attributions (e.g., Grad-CAM, Integrated Gradients), which often yield unstable ViT heatmaps, similarity maps are faithful, text-conditioned, efficient (single forward pass), and deterministic. CLIP employs attention pooling, yielding a 7×7 grid for 224×224 inputs (datasets resized accordingly). The attack loss follows Section 3, with weights 20.0 for \mathcal{L}_{xai} , λ_{ent} for entropy, λ_{margin} for patch separation, and $0.01\lambda_{pred}$ for prediction consistency, tuned to balance manipulation and stability.

Metrics. We evaluate global prediction stability and explanation robustness using four quantitative metrics: CosSim (CLS), Max Δ Prob, and IoU (Top-k). Formal definitions of these metrics are provided in Appendix D.

5.1 RESULTS ON EXPLAINABILITY

Proposed Attack Effectiveness. Figure 3 demonstrates that the X-Shift adversarial perturbations successfully shift CLIP's explanation maps while preserving the predicted label. In the clean case, the heatmap correctly attends to the input concept (e.g., "bench"), whereas under the X-Shift attack the attention is redirected toward unrelated regions (e.g., the "wall"), thereby compromising explanation faithfulness. Stage I of the FaithShield defense is also shown, illustrating improved robustness of the heatmaps under adversarial perturbations.

Furthermore, Figures 4, 5, and 6 visualize additional examples from ImageNet, Flickr30k, and COCO. In each case, the perturbation remains imperceptible to humans yet induces substantial shifts in the explanation maps, highlighting the vulnerability of current XAI methods.

Robustness and Detection with FaithShield. Figures 4, 5, and 6 further demonstrate the effectiveness of the FaithShield framework. Stage I consistently improves robustness by preserving faithful heatmaps even under adversarial perturbations. In addition, the faithfulness-based detection module successfully flags regions that are inconsistent with the input text, identifying adversarially induced shifts toward unrelated areas. These results confirm that FaithShield not only mitigates explanation manipulation but also provides a reliable mechanism to detect when explanations have been compromised.

Figure 3: Explanation of a sample image using CLIP under X-Shift attack and FaithShield defenses. Columns display original vs. adversarial images, CLIP heatmaps, and FaithShield stages I (clean vs. adversarial).

Figure 4: Comparison of CLIP explanations on ImageNet dataset(ViT-B/16, ViT-B/32, ViT-L/14) under X-Shift attack and FaithShield defense. Columns show original/adversarial images, CLIP heatmaps, and FaithShield stages I and II (clean vs. adversarial).

Figure 5: Explanations on Flickr30k samples using CLIP (ViT-B/16, ViT-B/32, ViT-L/14) under X-Shift attack and FaithShield defense. Shown are original/adversarial images, CLIP heatmaps, and FaithShield stages I and II (clean vs. adversarial).

Quantitative Evaluation. Table 1 summarizes results across ImageNet, Flickr30k, and MS-COCO with three CLIP backbones (ViT-B/16, ViT-B/32, ViT-L/14). Across all settings, the CosSim (CLS) remains high (typically ≥ 0.93) and the Max Δ Prob is nearly zero, confirming that the X-Shift perturbations preserve the global classification decision. The main differences arise in explanation stability. For vanilla CLIP, the Top-k IoU between clean and adversarial heatmaps is consistently low (e.g., 0.487 on ImageNet ViT-B/16, 0.727 on Flickr30k ViT-L/14, and 0.556 on COCO ViT-B/32), revealing that explanations are highly sensitive to perturbations even when predictions remain unchanged. By contrast, FaithShield substantially improves alignment between clean and adversarial maps, achieving IoU gains of +0.124 (ImageNet ViT-B/16), +0.222 (Flickr30k ViT-L/14), and +0.346 (COCO ViT-B/16). These improvements consistently hold across datasets and backbones, with relative gains often exceeding 20-35%. Taken together, the results demonstrate that FaithShield effectively mitigates explanation shifts induced by adversarial perturbations, delivering robust and reliable XAI without compromising classification accuracy.

6 CONCLUSION

This paper examined the vulnerability of VLMs, focusing on CLIP, to adversarial explanation attacks. We introduced X-Shift, a targeted perturbation that manipulates patch—text heatmaps with-

Figure 6: Explanation robustness on COCO samples using CLIP (ViT-B/16, ViT-B/32, ViT-L/14) under X-Shift attack and FaithShield defenses. Columns display original vs. adversarial images, CLIP heatmaps, and FaithShield stages I II (clean vs. adversarial).

Table 1: Quantitative comparison of CLIP and **FaithShield** under adversarial attack across datasets and backbones. Metrics: cosine similarity of CLS embeddings (CosSim), maximum change in probability (Max Δ Probability), and top-k IoU of explanation maps.

Dataset	Backbone	Model	CosSim (CLS)	Max ΔProb	IoU(Top-k)
ImageNet	ViT-B/16	CLIP	0.805	0.004	0.487
		FaithShield	0.805	0.004	0.611
	ViT-B/32	CLIP	0.807	0.004	0.450
		FaithShield	0.807	0.004	0.634
	ViT-L/14	CLIP	0.948	0.000	0.551
		FaithShield	0.948	0.000	0.877
Flickr30k	ViT-B/16	CLIP	0.935	0.000	0.841
		FaithShield	0.935	0.000	0.933
	ViT-B/32	CLIP	0.974	0.000	0.867
		FaithShield	0.974	0.000	1.000
	ViT-L/14	CLIP	0.933	0.000	0.727
		FaithShield	0.933	0.000	0.949
MS-COCO	ViT-B/16	CLIP	0.977	0.000	0.611
		FaithShield	0.977	0.000	0.902
	ViT-B/32	CLIP	0.953	0.000	0.556
		FaithShield	0.953	0.000	0.867
	ViT-L/14	CLIP	0.962	0.000	0.583
		FaithShield	0.962	0.000	0.727

out altering classification outputs, exposing a fundamental weakness of current explanation mechanisms: explanations can be redirected toward irrelevant regions while predictions remain unchanged. To address this, we proposed *FaithShield*, a dual-path refinement combined with a faithfulness-based detection module. The refinement stabilizes explanation maps by disentangling redundant feature flows, while the detection mechanism applies a causal masking test to flag unfaithful regions. Together, they provide robust and verifiable explanations under adversarial perturbations. Our findings highlight the need for trustworthy and accountable VLMs. Future work will extend this framework to other foundation models, evaluate resilience against adaptive attacks, and explore applications in safety-critical domains such as autonomous driving and medical decision support.

REPRODUCIBILITY STATEMENT

All implementation details, including training and evaluation scripts, are provided in the anonymized supplementary file (supplementary_code.zip). This ensures reproducibility while maintaining anonymity during the review process.

REFERENCES

- Ahmad Ajalloeian, Seyed Mohsen Moosavi-Dezfooli, Michalis Vlachos, and Pascal Frossard. Sparse attacks for manipulating explanations in deep neural network models. In 2023 IEEE International Conference on Data Mining (ICDM), pp. 918–923. IEEE, 2023.
- Narges Babadi, Hadis Karimipour, and Anik Islam. An ensemble learning to detect decision-based adversarial attacks in industrial control systems. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 879–884. IEEE, 2023.
- Hubert Baniecki and Przemyslaw Biecek. Adversarial attacks and defenses in explainable artificial intelligence: A survey. *Information Fusion*, 107:102303, 2024.
- Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.
- Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv* preprint arXiv:1504.00325, 2015.
- Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In *Proceedings* of the IEEE/CVF international conference on computer vision, pp. 4724–4732, 2019.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
- Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame. *Advances in neural information processing systems*, 32, 2019.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 3681–3688, 2019.
- Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.
- Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adversarial model manipulation. *Advances in neural information processing systems*, 32, 2019.
- Hanxun Huang, Yisen Wang, Sarah Erfani, Quanquan Gu, James Bailey, and Xingjun Ma. Exploring architectural ingredients of adversarially robust deep neural networks. *Advances in neural information processing systems*, 34:5545–5559, 2021.
- Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, and James Bailey. Detecting backdoor samples in contrastive language image pretraining. *arXiv preprint arXiv:2502.01385*, 2025a.
- Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, and James Bailey. X-transfer attacks: Towards super transferable adversarial attacks on clip. *arXiv preprint arXiv:2505.05528*, 2025b.
- Qi-Xian Huang, Lin-Kuan Chiang, Min-Yi Chiu, and Hung-Min Sun. Focus-shifting attack: An adversarial attack that retains saliency map information and manipulates model explanations. *IEEE Transactions on Reliability*, 73(2):808–819, 2023.
- Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with limited queries and information. In *International conference on machine learning*, pp. 2137–2146. PMLR, 2018.

- Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features. *Advances in neural information* processing systems, 32, 2019.
 - Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916. PMLR, 2021.
 - Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained encoders in self-supervised learning. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 2043–2059. IEEE, 2022.
 - Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency methods. In *Explainable AI: Interpreting, explaining and visualizing deep learning*, pp. 267–280. Springer, 2019.
 - Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried. Grounding language models to images for multimodal inputs and outputs. In *International Conference on Machine Learning*, pp. 17283– 17300. PMLR, 2023.
 - Aditya Kuppa and Nhien-An Le-Khac. Black box attacks on explainable artificial intelligence (xai) methods in cyber security. In 2020 International Joint Conference on neural networks (IJCNN), pp. 1–8. IEEE, 2020.
 - Himabindu Lakkaraju and Osbert Bastani. "how do i fool you?" manipulating user trust via misleading black box explanations. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, pp. 79–85, 2020.
 - Yi Li, Hualiang Wang, Yiqun Duan, Hang Xu, and Xiaomeng Li. Exploring visual interpretability for contrastive language-image pre-training. *arXiv preprint arXiv:2209.07046*, 2022.
 - Yi Li, Hualiang Wang, Yiqun Duan, Jiheng Zhang, and Xiaomeng Li. A closer look at the explainability of contrastive language-image pre-training. *Pattern Recognition*, 162:111409, 2025.
 - Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. *Queue*, 16(3):31–57, 2018.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.
 - Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels make a big difference. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9087–9096, 2019.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626, 2017.
 - Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, pp. 180–186, 2020.
 - Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

Xinhe Wang, Pingbang Hu, Junwei Deng, and Jiaqi W Ma. Adversarial attacks on data attribution. arXiv preprint arXiv:2409.05657, 2024. Suorong Yang, Peng Ye, Wanli Ouyang, Dongzhan Zhou, and Furao Shen. A clip-powered framework for robust and generalizable data selection. arXiv preprint arXiv:2410.11215, 2024. Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the association for computational linguistics, 2:67–78, 2014. Jingfeng Zhang, Prashanth Krishnamurthy, Naman Patel, Anthony Tzes, and Farshad Khorrami. Mp-nav: Enhancing data poisoning attacks against multimodal learning. In Forty-second Inter-national Conference on Machine Learning.

A APPENDIX

The X-Shift attack (Algorithm 1) implements the objectives defined in Section 3, perturbing inputs to shift explanation maps while preserving the original prediction.

Algorithm 1 X-Shift Attack: Explanation Manipulation on CLIP

Input: clean image x, text embeddings $\{t_c\}$, target index t, step size η , sparsity k, iterations T **Output:** adversarial image x^{adv}

Initialize $x^{(0)} \leftarrow x$

for i = 1 to T do

Compute patch embeddings $\{z_p\}$ and CLS embedding z_{cls}

Evaluate losses $\mathcal{L}_{xai}, \mathcal{L}_{pred}, \mathcal{L}_{patch}, \mathcal{L}_{entropy}$

Total loss:

$$\mathcal{L} \leftarrow \mathcal{L}_{xai} + \lambda_{pred} \mathcal{L}_{pred} + \lambda_{patch} \mathcal{L}_{patch} + \lambda_{ent} \mathcal{L}_{entropy}$$

Gradient update:

$$x^{(i)} \leftarrow x^{(i-1)} - n \cdot \operatorname{sign}(\nabla_x \mathcal{L})$$

Sparsity projection:

$$\delta \leftarrow \text{TopK}(x^{(i)} - x^{(0)}, k), \quad x^{(i)} \leftarrow x^{(0)} + \delta$$

Clamp to valid domain:

$$x^{(i)} \leftarrow \operatorname{clip}(x^{(i)}, 0, 1)$$

end for

 $\mathbf{return}\; x^{adv} = x^{(T)}$

B APPENDIX

FaithShield Stage I (Algorithm 2) refines explanation heatmaps using consistent self-attention, dual-path aggregation, and feature redundancy removal, as described in Section 4.1.

Algorithm 2 FaithShield – Stage I: Dual-Path Refinement for Robust Explanations

Input: x (image), t (text), f_I (vision encoder), f_T (text encoder), d (depth), α (temperature)

Output: Refined explanation heatmap M(x,t)

Step 1: Encode. Extract patch features $F_i = f_I(x)$ and text features $F_t = f_T(t)$.

Step 2: Consistent attention. Replace raw attention with consistent self-attention:

$$A_{\rm con} = \sigma(sVV^{\top})V$$

Step 3: Dual path aggregation. From depth d, aggregate consistent attention outputs:

$$\hat{x}_{i+1} = f_{A_{\text{con}}}(x_i, \phi_v) + \hat{x}_i$$

Step 4: Feature redundancy removal. Fuse image and text features:

$$F_m = \mathcal{E}(F_i) \odot \mathcal{E}(F_t)$$

Remove redundant features F_r (see Eq. (10)), yielding:

$$S = \operatorname{sum}(F_m - \mathcal{E}(F_r))$$

Step 5: Heatmap. Normalize S and apply softmax with α to obtain M(x,t). **return** M(x,t)

C APPENDIX

FaithShield Stage II formalizes the confidence-drop test in algorithmic form, based on the mathematical definitions in Section 4.2.

Algorithm 3 FaithShield – Stage II: Faithfulness-Based Detection (mathematical form)

Input: image x, adversarial image x^{adv} , text embeddings $\{z_{T_j}\}_{j=1}^N$, threshold θ , masking ratio ρ **Output:** misleading explanation flags per label

for j = 1 to N do

Compute heatmap $M(x, t_i)$

Select top- $\rho\%$ patches:

$$\mathcal{M}_j = \{ p \mid M(x, t_j)[p] \ge \tau_j \}, \quad |\mathcal{M}_j| = \rho P$$

Mask regions to obtain perturbed input:

$$x'_j = x \odot (1 - M_j)$$
 or $x'_j = \operatorname{Blur}(x \odot M_j) + x \odot (1 - M_j)$

Compute similarities:

$$s_j^{orig} = z_I^{\top} z_{T_j}, \quad s_j^{masked} = (z_I')^{\top} z_{T_j}$$

with
$$z_I = f_I(x)/||f_I(x)||, z_I' = f_I(x_i')/||f_I(x_i')||$$

Normalize to confidence:

$$\operatorname{conf}(s) = \frac{1}{2}(1+s)$$

Compute confidence drop:

$$\Delta_j^{conf} = \operatorname{conf}(s_j^{orig}) - \operatorname{conf}(s_j^{masked})$$

Flag t_i as misleading if:

$$\Delta_j^{conf} < \theta$$

end for

return flags for all labels t_i

D EVALUATION METRICS

We define the four quantitative metrics used in Section 5.

1. CosSim (CLS). The cosine similarity between clean and adversarial CLS embeddings:

$$CosSim_{CLS} = \frac{z_{clean} \cdot z_{adv}}{\|z_{clean}\|_2 \|z_{adv}\|_2}.$$
 (25)

2. Max Δ Prob. The maximum change in class probabilities:

$$\operatorname{Max} \Delta \operatorname{Prob} = \max_{i} \left| P(y_j | x_{\text{clean}}) - P(y_j | x_{\text{adv}}) \right|. \tag{26}$$

3. **IoU** (**Top-***k*). The intersection-over-union between clean and adversarial top-*k* masks:

$$IoU_{Top-k} = \frac{|M_{clean} \cap M_{adv}|}{|M_{clean} \cup M_{adv}|}.$$
 (27)