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ABSTRACT

Vision–Language Models (VLMs) such as Contrastive Language–Image Pre-
training (CLIP) have achieved remarkable success in aligning images and text, yet
their explanations remain highly vulnerable to adversarial manipulation. Recent
findings show that imperceptible perturbations can preserve model predictions
while redirecting heatmaps toward irrelevant regions, undermining the faithful-
ness of the explanation. We introduce the X-Shift attack, a novel adversarial strat-
egy that drives patch-level embeddings toward the target text embedding, thereby
shifting explanation maps without altering output predictions. This reveals a pre-
viously unexplored vulnerability in VLM alignment. To counter this threat, we
propose FaithShield Defense, a two-fold framework: (i) a dual-path redundant
extension of CLIP that disentangles global and local token contributions, produc-
ing explanations more robust to perturbations; and (ii) a novel faithfulness-based
detector that verifies explanation reliability via a masking test on top-k salient
regions. Explanations that fail this test are flagged as unfaithful. Extensive ex-
periments show that X-Shift reliably compromises explanation faithfulness, while
FaithShield restores robustness and enables principled detection of manipulations.
Our work formalizes explanation-oriented adversarial attacks and offers a princi-
pled defense, enhancing trustworthy and verifiable explainability in VLMs.

1 INTRODUCTION

Deep Neural Networks (DNNs) play a critical role in modern society, powering applications in
healthcare, autonomous vehicles, smart cities, and other safety-critical domains. In particular,
Vision–Language Models (VLMs) architectures such as Contrastive Language–Image Pretraining
(CLIP) have emerged as foundational models that enable joint reasoning across vision and language
(Radford et al., 2021). As these systems are increasingly deployed in high-stakes applications, it is
imperative that their predictions are transparent and explainable. Explanation methods, commonly
referred to as Explainable AI (XAI), highlight the contribution of input features to model decisions,
and are essential for building trust, debugging failures, and identifying spurious correlations (Lipton,
2018; Li et al., 2022; Selvaraju et al., 2017; Li et al., 2025).

Despite their promise, recent studies have demonstrated that explanation methods are themselves
vulnerable to manipulation (Kindermans et al., 2019; Ghorbani et al., 2019; Dombrowski et al.,
2019; Heo et al., 2019; Slack et al., 2020; Lakkaraju & Bastani, 2020; Huang et al., 2023; Ajal-
loeian et al., 2023; Kuppa & Le-Khac, 2020). Adversarial perturbations can preserve model pre-
dictions while misleading explanations into focusing on irrelevant or incorrect regions. Most prior
work has studied this phenomenon in the image domain, targeting gradient-based methods or sur-
rogate explanation models such as LIME and SHAP. However, the vulnerability of XAI in VLMs
such as CLIP remains largely unexplored, and no systematic defense mechanisms exist to ensure
that explanations are robust or verifiable in this setting (Baniecki & Biecek, 2024). This oversight
is critical: in applications like autonomous driving or medical VLMs, explanations directly guide
downstream safety logic and human decision-making, so attacks that preserve predictions but shift
explanations can meaningfully distort system behavior.
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In this work, we address these gaps from two complementary angles. First, we introduce a novel
targeted adversarial attack on CLIP that manipulates patch–text similarity heatmaps while leaving
model results unchanged. Our attack operates in the downstream setting, requiring neither access
to training nor modification of evaluation pipelines, thereby closely modeling realistic deployment
scenarios.
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Figure 1: FaithShield Stage I – Dual-path mechanism in the visual transformer, where consistent
self-attention operates alongside the standard path to improve heatmap faithfulness and robustness
against X-Shift attacks.

Second, we propose a dual-path redundant extension of CLIP that disentangles global and local
token flows, prunes redundant features, and stabilizes explanation maps against adversarial pertur-
bations. Finally, we integrate a faithfulness-based detection module that applies a masking test to
identify unfaithful explanation regions by measuring confidence drops, thus enabling a trustworthy
and verifiable framework for XAI in VLMs learning.

Our main contributions are as follows:
1. We propose a novel targeted adversarial

attack that misleads patch–text heatmaps
of CLIP while leaving classification re-
sults intact.

2. We design a dual-path redundant exten-
sion of CLIP that disentangles feature
flows via a self-attention head, removes
redundancy, and produces explanations
that are robust to adversarial perturba-
tions.

3. We introduce a faithfulness-based detec-
tion layer that identifies unfaithful re-
gions in explanation maps, thereby pro-
viding a principled mechanism for veri-
fying the trustworthiness of VLMs XAI.
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Figure 2: FaithShield workflow with similarity
refinement (Stage I) and detection (Stage II).

2 RELATED WORK

The susceptibility of deep neural networks to adversarial perturbations is by now well established
(Huang et al., 2021; Szegedy et al., 2013; Goodfellow et al., 2014; Carlini & Wagner, 2017; Ilyas
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et al., 2018; 2019; Modas et al., 2019; Babadi et al., 2023; Wang et al., 2024; Croce & Hein, 2019;
Madry et al., 2017). While the majority of this literature has focused on degrading predictive per-
formance, only recently has research begun to investigate the vulnerability of explanation methods
themselves (Baniecki & Biecek, 2024).

Initial studies demonstrated that post hoc explanations are inherently fragile. Kindermans et al.
(2019) showed that saliency maps lack invariance to simple input transformations, while Ghorbani
et al. (2019) and Dombrowski et al. (2019) revealed that imperceptible perturbations can drastically
alter attribution heatmaps without affecting model predictions. Beyond perturbation-based attacks,
model-level manipulations have also been explored. For example, Heo et al. (2019) trained networks
to mislead attribution methods such as Grad-CAM and LRP, and Slack et al. (2020) demonstrated
wrapper-based manipulations of black-box models that arbitrarily control LIME and SHAP expla-
nations, highlighting risks such as fairwashing (Lakkaraju & Bastani, 2020).

Building on these findings, subsequent research proposed more targeted attack strategies. Huang
et al. (2023) introduced the Focus-Shifting Attack, which redirects saliency to adversary-specified
regions while preserving prediction consistency. Ajalloeian et al. (2023) developed a sparse pertur-
bation algorithm that manipulates attribution maps more efficiently than ℓ0-PGD. In parallel, Kuppa
& Le-Khac (2020) studied black-box attacks on LIME and SHAP within cybersecurity applications,
establishing an early taxonomy for explanation robustness.

Despite these advances, prior work has largely concentrated on unimodal image classifiers; VLMs
remain comparatively underexplored. For CLIP, recent studies have examined adversarial robust-
ness primarily at the level of predictions rather than explanations (Yang et al., 2024). For instance,
MP-Nav (Zhang et al.) strengthened poisoning attacks through semantic concept selection, and
X-Transfer (Huang et al., 2025b) proposed a universal adversarial perturbation transferable across
datasets and tasks. Additional lines of work have addressed backdoor vulnerabilities (Jia et al.,
2022), scaling behaviors (Jia et al., 2021), and robustness in grounding tasks (Koh et al., 2023;
Huang et al., 2025a).

To the best of our knowledge, no prior work has systematically examined adversarial attacks that
specifically manipulate CLIP explanations, nor proposed defenses that simultaneously enhance ro-
bustness and detect unfaithful attribution regions. Our work fills this gap by (i) introducing a targeted
explanation attack against CLIP and (ii) presenting FaithShield, a dual-path framework that disen-
tangles redundant features, improves explanation robustness, and provides a principled detection
mechanism for adversarial manipulations.

3 X-SHIFT ATTACK OBJECTIVES

We now introduce the X-Shift attack, an explanation-focused adversarial strategy that perturbs
images such that predictions remain stable while explanation maps are shifted toward a target class.
To achieve this, we combine the following complementary objectives: (i) manipulating explanation
heatmaps, (ii) preserving the global model output, (iii) enforcing sparsity of perturbations, and (iv)
ensuring validity of adversarial examples. Finally, we describe the explainability-focused attack and
provide a concrete algorithm.

3.1 BASELINE: CLIP MODEL

CLIP (Radford et al., 2021) aligns an image encoder fI and text encoder fT in a shared embedding
space. Given an image x and text t, their normalized embeddings are zI = fI(x)/∥fI(x)∥2, zT =
fT (t)/∥fT (t)∥2, with similarity s(x, t) = z⊤I zT . Training minimizes a symmetric contrastive loss
over N image–text pairs:

LCLIP =
1

2N

N∑
i=1

[
− log

exp(s(xi, ti)/τ)∑N
j=1 exp(s(xi, tj)/τ)

− log
exp(s(xi, ti)/τ)∑N
j=1 exp(s(xj , ti)/τ)

]
, (1)

where τ is a learnable temperature. Our attack perturbs x into xadv = x+ δ, preserving predictions
but shifting explanation maps toward a target class.

3
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3.2 ATTACK OBJECTIVES

We combine the following complementary objectives to achieve explanation-focused adversarial
perturbations:

Explanation manipulation. The primary goal is to force patch embeddings toward the target text
embedding. Let p denote the normalized embedding of patch p, and ttarget the target text embed-
ding. Similarity is sp = p⊤ttarget. We maximize similarity of the top-K patches while suppressing
others:

Lxai = −
1

K

∑
i∈TopK

si,t + α · 1

P −K

∑
i/∈TopK

si,t, (2)

where si,t = z⊤i zTtar denotes the similarity between patch embedding zi and the target text embed-
ding zTtar .

Prediction preservation. To prevent label change, we enforce the clean prediction y∗ at the global
(CLS) level:

Lpred = − log
exp(z⊤clsty∗)∑
c exp(z

⊤
clstc)

. (3)

Patch-level margin. For each patch, the target similarity sp,t must dominate over other classes:

Lpatch =
1

P

P∑
p=1

max
(
0,max

c̸=t
(sp,c − sp,t +m)

)
, (4)

where sp,c = z⊤p zTc
is the similarity between patch embedding zp and text embedding zTc

.

Entropy sharpening. To avoid diffuse attention maps, we encourage sharp similarity distributions:

Lentropy =

P∑
p=1

mp logmp, mp =
exp(sp,t)∑
q exp(sq,t)

, (5)

which corresponds to the negative Shannon entropy of the normalized similarities. Minimizing this
term encourages sharp and peaked similarity distributions rather than diffuse heatmaps.

Sparsity constraint. Perturbations are restricted to k pixels by projecting δ = xadv − x onto its
top-k entries:

δ ← TopK(δ, k). (6)

Validity constraint. Ensure the adversarial image remains in the valid input domain:

xadv ∈ [0, 1]d. (7)

The total objective combines explanation manipulation with auxiliary constraints:

L = Lxai + λpredLpred + λpatchLpatch + λentLentropy (8)

where λpred, λpatch, and λent are trade-off coefficients that balance the relative contributions of
preserving prediction consistency, enforcing patch-level constraints, and controlling explanation en-
tropy. Tuning these hyperparameters adjusts the strength of each auxiliary objective relative to the
main explanation-shifting loss Lxai.

Explainability Attack Algorithm. Adversarial examples are generated by iteratively updating
the input image using gradient-based optimization. The process is summarized in Algorithm 1 in
Appendix A.

4 FAITHSHIELD DEFENSE FRAMEWORK

We propose FaithShield, a two-stage defense framework designed to counter X-Shift attacks. The
framework consists of: (i) a robust explanation module that refines patch embeddings to produce
stable heatmaps, and (ii) a faithfulness-based detection mechanism that validates explanation relia-
bility. Together, these components ensure that explanations are both robust and verifiable.
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4.1 FAITHSHIELD–STAGE I: ROBUST EXPLANATION VIA DUAL-PATH REFINEMENT

Our Stage I design is inspired by the refinement strategies of Li et al. (2025), who introduced con-
sistent attention and redundancy removal to improve the interpretability of CLIP explanations. We
adapt these principles but extend them into a dual-path refinement architecture that is explicitly
tailored to adversarial robustness. Unlike Li et al. (2025), whose focus was interpretability, our
formulation integrates three complementary steps: (i) consistent self-attention, (ii) dual-path fea-
ture aggregation, and (iii) redundancy elimination, as a unified defense against targeted explanation
manipulation.

Let {zp}Pp=1 denote the patch embeddings from the vision encoder, and zT the normalized text
embedding. Recall from Section 3.1 that the baseline patch-level similarity is

sp(x, t) = z⊤p zT , p = 1, . . . , P, (9)

which can be reshaped into a spatial similarity map. However, such raw maps often highlight back-
ground regions (opposite visualization) and exhibit class-irrelevant activations (noisy activations)
across Vision Transformer (ViT) backbones. To mitigate these issues, we build upon the CLIP
framework a three-stage refinement procedure: (i) consistent self-attention, (ii) dual-path feature
aggregation, and (iii) feature redundancy removal.

Consistent Self-Attention. In vanilla CLIP, We follow Li et al. (2025) and replace heterogeneous
projections ϕq, ϕk, ϕv:

Araw = σ(s ·QK⊤)V, Q = ϕq(X), K = ϕk(X), V = ϕv(X), (10)

which may relate tokens from semantically inconsistent regions. We instead employ a homogeneous
projection ϕv to enforce semantic consistency:

Acon = σ(s · V V ⊤)V, V = ϕv(X). (11)

This ensures that self-attention emphasizes tokens with coherent semantics, verified quantitatively
via the mean Foreground Selection Ratio (mFSR). Figure 1 illustrates the dual-path schema, high-
lighting the replacement of raw multi-head self-attention with consistent self-attention blocks to
ensure more coherent token interactions.

Dual-Path Refinement. Not all intermediate modules are equally aligned with the final prediction.
Affinity between text features Ft and block-level class token features F̂c is measured as

a(Ft, F̂c) =
1

Nt

Nt∑
i=1

F
(i)
t F̂c, (12)

revealing that feed-forward networks (FFNs) often drift toward negatives and harm interpretabil-
ity. We therefore aggregate only consistent self-attention modules, skipping FFNs via a dual-path
architecture:

x̂i+1 =


None, i < d,

fAcon(xi, ϕv) + xi, i = d,

fAcon
(xi, ϕv) + x̂i, i > d,

(13)

while preserving the original path xi+1 for final model outputs. This design enhances interpretability
without degrading recognition accuracy (Li et al., 2025).

Feature Redundancy Removal Noisy activations arise from redundant features shared across
categories. Based on (Li et al., 2025), we first compute multiplied features:

Fm = E(Fi)⊙ E(Ft), Fm ∈ RNi×Nt×C , (14)

where Fi and Ft are L2-normalized image and text features, ⊙ denotes element-wise product, and
E broadcasts to matching shape. Next, we reweight influential classes:

s = σ(τ · FcF
⊤
t ), w =

s

µs
, (15)

5
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where Fc is the class token, τ is a logit scale, and µs the mean of s. Redundant features are then
estimated as

Fr = mean(Fm ⊙ E(w)) ∈ RNi×C , (16)

and subtracted:
S = sum(Fm − E(Fr)) ∈ RNi×Nt . (17)

Finally, S is reshaped, interpolated, and normalized to produce the refined similarity map.

Final Heatmap. The refined patch–text similarity is normalized via softmax:

M(x, t)[p] =
exp(α srefp (x, t))∑P
q=1 exp(α srefq (x, t))

, (18)

where α controls sharpness. This yields heatmaps that are semantically faithful, less noisy, and more
foreground-focused. Algorithm 2 in Appendix B illustrates the workflow of this subsection.

4.2 FAITHSHIELD–STAGE II: FAITHFULNESS-BASED DETECTION

The second stage of FaithShield introduces a novel detection module that tests whether an explana-
tion is truly faithful to the model’s decision. While prior work has focused on refining attention maps
to improve interpretability, none has provided a systematic mechanism for detecting adversarially
misleading explanations. Our Stage II addresses this gap.

Even with refined embeddings, adversarial perturbations may still redirect saliency toward irrele-
vant regions while leaving the prediction intact. To flag such cases, we propose a confidence-drop
test: mask the top-k most salient regions indicated by the explanation and re-evaluate the model’s
confidence for the target class. For a faithful explanation, removing the highlighted regions should
cause a substantial confidence drop, reflecting causal alignment between the explanation and the
prediction. Conversely, if the confidence remains nearly unchanged, the heatmap is identified as
misleading.

Given a heatmap M(x, t) for class t, we select the top-ρ% patches:

Mt = {p |M(x, t)[p] ≥ τt} , (19)

where τt is chosen such that |Mt| = ρ ·P . These patches are suppressed in the input image to form
a perturbed version x′:

x′ =

{
x⊙ (1−Mt), (zeroing)

Blur(x⊙Mt) + x⊙ (1−Mt), (blurring),
(20)

where Mt is upsampled to image resolution.

We then measure cosine similarity before and after masking:

sorig = z⊤I zT , smasked = (z′I)
⊤zT , (21)

where zI = fI(x)/∥fI(x)∥ and z′I = fI(x
′)/∥fI(x′)∥. Since s(x, t) is a cosine similarity in

[−1, 1], we normalize it into [0, 1] for interpretability when measuring confidence:

conf(s) = 1
2 (1 + s). (22)

This normalization does not affect the ranking of similarities but enables a consistent interpretation
of ∆conf as a probability drop. the confidence drop is defined as:

∆conf = conf(sorig)− conf(smasked). (23)

If the masked region is truly explanatory, ∆conf will be large. Conversely, if ∆conf is small, the
explanation is deemed unfaithful. We flag misleading explanations whenever:

∆conf < θ, (24)

with threshold θ. The overall defense integrates two complementary modules:

6
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1. Robust explanation: Dual-path refinement of patch embeddings yields faithful and stable
similarity maps.

2. Faithfulness detection: Masking-based tests on clean and adversarial images identify un-
faithful regions.

Together, these modules ensure that explanations are both robust and verifiable. The procedure
is summarized in Algorithm 3 in Appendix B. Figure 2 illustrates the refinement of similarity
maps through dual-path processing and feature redundancy removal, followed by the application
of faithfulness-based detection.

5 EXPERIMENTS

Our evaluation is designed to answer the following research questions:

• How effective is the proposed attack in shifting XAI?
• Does the dual-path refinement improve robustness of XAI under adversarial perturbations?
• Can the faithfulness-based detection reliably identify misleading XAI?

Models and Datasets. We evaluate our attack and defense framework at inference time, without re-
quiring additional training data. Experiments are conducted on the validation splits of three bench-
mark datasets: ImageNet-1k (Deng et al., 2009), Flickr30k (Young et al., 2014), and MS-COCO
(Chen et al., 2015), which provide diverse natural images and object-level annotations for assessing
VLMs explanations. For models, we utilize the CLIP family of vision–language encoders, specifi-
cally ViT-B/16 (Radford et al., 2021), ViT-B/32 (Radford et al., 2021), and ViT-L/14 (Dosovitskiy
et al., 2020), which span a range of capacities and input resolutions to assess the generality of our
attack and defense across different backbones.

Implementation. We implement attack and defense on official CLIP models, using patch–text sim-
ilarity maps that compute cosine similarity between patch and text embeddings. Unlike gradient-
based attributions (e.g., Grad-CAM, Integrated Gradients), which often yield unstable ViT heatmaps,
similarity maps are faithful, text-conditioned, efficient (single forward pass), and deterministic.
CLIP employs attention pooling, yielding a 7 × 7 grid for 224 × 224 inputs (datasets resized ac-
cordingly). The attack loss follows Section 3, with weights 20.0 for Lxai, λent for entropy, λmargin

for patch separation, and 0.01λpred for prediction consistency, tuned to balance manipulation and
stability.

Metrics. We evaluate global prediction stability and explanation robustness using four quantitative
metrics: CosSim (CLS), Max ∆Prob, and IoU (Top-k). Formal definitions of these metrics are
provided in Appendix C.1.

5.1 RESULTS ON EXPLAINABILITY

Proposed Attack Effectiveness. Figure 3 demonstrates that the X-Shift adversarial perturbations
successfully shift CLIP’s explanation maps while preserving the predicted label. In the clean case,
the heatmap correctly attends to the input concept (e.g., “bench”), whereas under the X-Shift at-
tack the attention is redirected toward unrelated regions (e.g., the “wall”), thereby compromising
explanation faithfulness. Stage I of the FaithShield defense is also shown, illustrating improved
robustness of the heatmaps under adversarial perturbations.

Furthermore, Figures 4, 5, and 6 visualize additional examples from ImageNet, Flickr30k, and
COCO. In each case, the perturbation remains imperceptible to humans yet induces substantial shifts
in the explanation maps, highlighting the vulnerability of current XAI methods.

Robustness and Detection with FaithShield. Figures 4, 5, and 6 further demonstrate the effective-
ness of the FaithShield framework. Stage I consistently improves robustness by preserving faithful
heatmaps even under adversarial perturbations. In addition, the faithfulness-based detection module
successfully flags regions that are inconsistent with the input text, identifying adversarially induced
shifts toward unrelated areas. These results confirm that FaithShield not only mitigates explana-
tion manipulation but also provides a reliable mechanism to detect when explanations have been
compromised.

7
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Figure 3: Visualization of a sample image under the X-Shift attack and FaithShield. Columns show
the clean and adversarial images (optimized to shift CLIP’s explanation toward “ground” while
keeping the “bench” prediction), the clean–adversarial difference map, CLIP heatmaps showing
explanation drift, and FaithShield Stages I–II, which suppress the drift and reveal unrelated manip-
ulated regions.

Quantitative Evaluation. Table 1 summarizes results across ImageNet, Flickr30k, and MS-COCO
with three CLIP backbones (ViT-B/16, ViT-B/32, ViT-L/14). Across all settings, the CosSim (CLS)
remains high (typically ≥ 0.93) and the Max ∆Prob is nearly zero, confirming that the X-Shift
perturbations preserve the global classification decision. The main differences arise in explanation
stability. For vanilla CLIP, the Top-k IoU between clean and adversarial heatmaps is consistently
low (e.g., 0.487 on ImageNet ViT-B/16, 0.727 on Flickr30k ViT-L/14, and 0.556 on COCO ViT-
B/32), revealing that explanations are highly sensitive to perturbations even when predictions remain
unchanged. By contrast, FaithShield substantially improves alignment between clean and adversar-
ial maps, achieving IoU gains of +0.124 (ImageNet ViT-B/16), +0.222 (Flickr30k ViT-L/14), and
+0.346 (COCO ViT-B/16). These improvements consistently hold across datasets and backbones,
with relative gains often exceeding 20–35%. Taken together, the results demonstrate that FaithShield
effectively mitigates explanation shifts induced by adversarial perturbations, delivering robust and
reliable XAI without compromising classification accuracy.

Evaluation of FaithShield Ablations. Our empirical findings align with the architectural ablations
reported in Appendix C.5. Individually, the Stage-I components (S1, S2, FS) offer only partial stabil-
ity, producing IoU values in the range of 0.70–0.88. In contrast, the full Stage-I + Stage-II pipeline
achieves substantially stronger and prediction-preserving alignment between clean and adversarial
explanations, with IoU improving to 0.90–0.97. These results confirm that robust explanation con-
sistency emerges only when structural refinement (Stage I) is paired with the ∆conf-based causal
detector (Stage II).

Evaluation of X-Shift Attack Transferability. Our cross-model analysis (Appendix C.2) demon-
strates that X-Shift perturbations generalize across CLIP backbones and explainability methods.
Self-attacks produce the strongest manipulation (IoUTopK as low as 0.44–0.47), while cross-model
transfer remains strong. For instance, a perturbation crafted on ViT-B/32 transfers to ViT-L/14
with IoU = 0.63. Additionally, ScoreCAM, RISE, and gradient-based attribution maps all exhibit
consistent explanation drift under X-Shift, indicating that the attack corrupts the shared image–text
embedding space, not a specific explainer. When FaithShield is applied, these drifts are dramatically
reduced across all architectures and XAI methods (Appendix C.3).

Evaluation of Attack-Loss Ablations. Appendix C.4 analyzes the effect of removing each loss
component in the X-Shift objective. The patterns are consistent across datasets:

• Removing the XAI-shift term weakens the attack, increasing IoU (e.g., 0.78 → 0.72) and
reducing TargetSim.

• Removing prediction-stability terms (e.g., Lpred) breaks stealth, increasing Max∆Prob by
nearly an order of magnitude (from 6.6× 10−5 to 5.4× 10−4).

• Using only the XAI term yields the strongest drift (IoU ≈ 0.82) but destroys classification
stability.

• The full objective achieves the best balance: strong manipulation (IoU ≈ 0.79), high Tar-
getSim, stable CLS embedding (0.977), and minimal Max∆Prob.

Together, these results show that FaithShield counters both direct and transferable explanation
attacks, and that each component of the X-Shift loss and each stage of FaithShield are neces-
sary and complementary. The system delivers robust, prediction-preserving interpretability across
datasets, architectures, and XAI techniques.
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Figure 4: Comparison of CLIP explanations on ImageNet dataset(ViT-B/16, ViT-B/32, ViT-L/14)
under X-Shift attack and FaithShield defense. Columns show original/adversarial images, CLIP
heatmaps, and FaithShield stages I and II (clean vs. adversarial).

Figure 5: Explanations on Flickr30k samples using CLIP (ViT-B/16, ViT-B/32, ViT-L/14) under
X-Shift attack and FaithShield defense. Shown are original/adversarial images, CLIP heatmaps, and
FaithShield stages I and II (clean vs. adversarial).

Table 1: Quantitative comparison of Vanilla CLIP vs. FaithShield under X-Shift attack across
datasets and backbones. Metrics: cosine similarity (CosSim), maximum probability change under
X-Shift attack (Max ∆Prob), and Top-k IoU.

Dataset Backbone Vanilla CLIP FaithShield
CosSim Max ∆Prob IoU CosSim Max ∆Prob IoU

ImageNet
ViT-B/16 0.805 0.004 0.487 0.805 0.004 0.611
ViT-B/32 0.807 0.004 0.450 0.807 0.004 0.634
ViT-L/14 0.948 0.000 0.551 0.948 0.000 0.877

Flickr30k
ViT-B/16 0.935 0.000 0.841 0.935 0.000 0.933
ViT-B/32 0.974 0.000 0.867 0.974 0.000 1.000
ViT-L/14 0.933 0.000 0.727 0.933 0.000 0.949

MS-COCO
ViT-B/16 0.977 0.000 0.611 0.977 0.000 0.902
ViT-B/32 0.953 0.000 0.556 0.953 0.000 0.867
ViT-L/14 0.962 0.000 0.583 0.962 0.000 0.727

6 CONCLUSION

This paper examined the vulnerability of VLMs, focusing on CLIP, to adversarial explanation at-
tacks. We introduced X-Shift, a targeted perturbation that manipulates patch–text heatmaps with-
out altering classification outputs, exposing a fundamental weakness of current explanation mecha-
nisms: explanations can be redirected toward irrelevant regions while predictions remain unchanged.
To address this, we proposed FaithShield, a dual-path refinement combined with a faithfulness-based
detection module. The refinement stabilizes explanation maps by disentangling redundant feature
flows, while the detection mechanism applies a causal masking test to flag unfaithful regions. To-
gether, they provide robust and verifiable explanations under adversarial perturbations. Our findings
highlight the need for trustworthy and accountable VLMs. Future work will extend this framework

9
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Figure 6: Explanation robustness on COCO samples using CLIP (ViT-B/16, ViT-B/32, ViT-L/14)
under X-Shift attack and FaithShield defenses. Columns display original vs. adversarial images,
CLIP heatmaps, and FaithShield stages I & II (clean vs. adversarial).

to other foundation models, evaluate resilience against adaptive attacks, and explore applications in
safety-critical domains such as autonomous driving and medical decision support.

REPRODUCIBILITY STATEMENT

All implementation details, including training and evaluation scripts, are provided in the anonymized
supplementary file (supplementary code.zip). This ensures reproducibility while maintain-
ing anonymity during the review process.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmad Ajalloeian, Seyed Mohsen Moosavi-Dezfooli, Michalis Vlachos, and Pascal Frossard.
Sparse attacks for manipulating explanations in deep neural network models. In 2023 IEEE In-
ternational Conference on Data Mining (ICDM), pp. 918–923. IEEE, 2023.

Narges Babadi, Hadis Karimipour, and Anik Islam. An ensemble learning to detect decision-based
adversarial attacks in industrial control systems. In 2023 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 879–884. IEEE, 2023.

Hubert Baniecki and Przemyslaw Biecek. Adversarial attacks and defenses in explainable artificial
intelligence: A survey. Information Fusion, 107:102303, 2024.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015.

Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4724–4732, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-
Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame.
Advances in neural information processing systems, 32, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3681–3688, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adver-
sarial model manipulation. Advances in neural information processing systems, 32, 2019.

Hanxun Huang, Yisen Wang, Sarah Erfani, Quanquan Gu, James Bailey, and Xingjun Ma. Explor-
ing architectural ingredients of adversarially robust deep neural networks. Advances in neural
information processing systems, 34:5545–5559, 2021.

Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, and James Bailey. Detecting backdoor samples
in contrastive language image pretraining. arXiv preprint arXiv:2502.01385, 2025a.

Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, and James Bailey. X-transfer attacks: Towards
super transferable adversarial attacks on clip. arXiv preprint arXiv:2505.05528, 2025b.

Qi-Xian Huang, Lin-Kuan Chiang, Min-Yi Chiu, and Hung-Min Sun. Focus-shifting attack: An ad-
versarial attack that retains saliency map information and manipulates model explanations. IEEE
Transactions on Reliability, 73(2):808–819, 2023.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In International conference on machine learning, pp. 2137–
2146. PMLR, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021.

Jinyuan Jia, Yupei Liu, and Neil Zhenqiang Gong. Badencoder: Backdoor attacks to pre-trained
encoders in self-supervised learning. In 2022 IEEE Symposium on Security and Privacy (SP), pp.
2043–2059. IEEE, 2022.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
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A THE X-SHIFT ATTACK ALGORITHM

The X-Shift attack (Algorithm 1) implements the objectives defined in Section 3, perturbing inputs
to shift explanation maps while preserving the original prediction.

Algorithm 1 X-Shift Attack: Explanation Manipulation on CLIP

Input: clean image x, text embeddings {tc}, target index t, step size η, sparsity k, iterations T
Output: adversarial image xadv

Initialize x(0) ← x
for i = 1 to T do

Compute patch embeddings {zp} and CLS embedding zcls
Evaluate losses Lxai,Lpred,Lpatch,Lentropy

Total loss:
L ← Lxai + λpredLpred + λpatchLpatch + λentLentropy

Gradient update:
x(i) ← x(i−1) − η · sign(∇xL)

Sparsity projection:

δ ← TopK(x(i) − x(0), k), x(i) ← x(0) + δ

Clamp to valid domain:
x(i) ← clip(x(i), 0, 1)

end for
return xadv = x(T )

B THE FAITHSHIELD ALGORITHMS

FaithShield Stage I (Algorithm 2) refines explanation heatmaps using consistent self-attention, dual-
path aggregation, and feature redundancy removal, as described in Section 4.1.

Algorithm 2 FaithShield – Stage I: Dual-Path Refinement for Robust Explanations

Input: x (image), t (text), fI (vision encoder), fT (text encoder), d (depth), α (temperature)
Output: Refined explanation heatmap M(x, t)
Step 1: Encode. Extract patch features Fi = fI(x) and text features Ft = fT (t).
Step 2: Consistent attention. Replace raw attention with consistent self-attention:

Acon = σ(sV V ⊤)V

Step 3: Dual path aggregation. From depth d, aggregate consistent attention outputs:

x̂i+1 = fAcon
(xi, ϕv) + x̂i

Step 4: Feature redundancy removal. Fuse image and text features:

Fm = E(Fi)⊙ E(Ft)

Remove redundant features Fr (see Eq. (10)), yielding:

S = sum(Fm − E(Fr))

Step 5: Heatmap. Normalize S and apply softmax with α to obtain M(x, t).
return M(x, t)

FaithShield Stage II formalizes the confidence-drop test in algorithmic form, based on the mathe-
matical definitions in Section 4.2.
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Algorithm 3 FaithShield – Stage II: Faithfulness-Based Detection (mathematical form)

Input: image x, adversarial image xadv , text embeddings {zTj}Nj=1, threshold θ, masking ratio ρ
Output: misleading explanation flags per label
for j = 1 to N do

Compute heatmap M(x, tj)
Select top-ρ% patches:

Mj = { p |M(x, tj)[p] ≥ τj }, |Mj | = ρP

Mask regions to obtain perturbed input:

x′
j = x⊙ (1−Mj) or x′

j = Blur(x⊙Mj) + x⊙ (1−Mj)

Compute similarities:

sorigj = z⊤I zTj
, smasked

j = (z′I)
⊤zTj

with zI = fI(x)/∥fI(x)∥, z′I = fI(x
′
j)/∥fI(x′

j)∥
Normalize to confidence:

conf(s) = 1
2 (1 + s)

Compute confidence drop:

∆conf
j = conf(sorigj )− conf(smasked

j )

Flag tj as misleading if:
∆conf

j < θ

end for
return flags for all labels tj

C EXTENDED EXPERIMENTAL ANALYSIS

This appendix provides the complete definitions of all quantitative metrics used in Section 5, fol-
lowed by expanded experimental results that analyze cross-architecture transferability, ablation stud-
ies, FaithShield component isolation, and adaptive-attacker robustness.

C.1 EVALUATION METRICS

We measure four complementary aspects of model behavior under X-Shift perturbations: (i)
embedding-level stealth, (ii) classifier stability, (iii) spatial attribution consistency at the patch level,
and (iv) distributional similarity of the full explanation map. Below we summarize the exact formu-
lations.

Cosine Similarity of CLS Tokens (CosSim ↑). This metric quantifies how close the clean and
adversarial global embeddings remain. A high value indicates a stealthy attack that preserves high-
level semantics. Given the CLS embeddings zclean and zadv:

CosSimCLS =
zclean · zadv

∥zclean∥2 ∥zadv∥2
. (25)

Maximum Probability Deviation (Max∆Prob ↓). This term measures the largest change in pre-
dicted probability across all text prompts. Low values imply that classification remains unchanged
even though the explanation map shifts:

Max∆Prob = max
j
|P (yj | xclean)− P (yj | xadv)| . (26)

Intersection-over-Union of Top-k Patches (IoU-Topk ↓). We extract the top-k highest-scoring
patches in the similarity map for a target concept, compute the corresponding binary masks Mclean
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and Madv, and evaluate. Lower IoU indicates stronger spatial manipulation, as fewer top patches
are preserved under the adversarial perturbation. We use either a fixed k or a percentage k = αHW
of all patches:

IoUTop-k =
|Mclean ∩Madv|
|Mclean ∪Madv|

. (27)

Soft Intersection-over-Union (Soft-IoU ↓). To capture distributional differences beyond hard top-
k sets, we compute a soft approximation using a temperature τ . This measures global distributional
drift, complementing IoU-Topk:

pclean = softmax(sclean/τ), padv = softmax(sadv/τ), (28)

Soft-IoU =

∑
i min(pclean,i, padv,i)∑
i max(pclean,i, padv,i)

. (29)

Spearman Rank Correlation (Spearman). We compute the rank correlation between the flat-
tened similarity maps. Low correlation indicates large reordering of influential patches:

ρ = Spearman(sclean, sadv). (30)

Wasserstein Distance (EMD). We compute the Earth Mover’s Distance between flattened simi-
larity scores. EMD captures how much “work” is needed to transform the clean explanation distri-
bution into its adversarial counterpart:

EMD(sclean, sadv) = W1(sclean, sadv). (31)

Together, these metrics provide a multi-dimensional characterization of explanation-shifting behav-
ior: stealth (CosSim, Max∆Prob), local spatial reordering (IoU-Topk), and global distributional
drift (Soft-IoU, Spearman, EMD).

C.2 TRANSFERABILITY OF X-SHIFT ACROSS VISION TRANSFORMER BACKBONES

We evaluate whether explanation-shifting perturbations generated on one CLIP encoder transfer to
other CLIP variants with different patch sizes and embedding dimensions. Specifically, we test
ViT-B/16, ViT-B/32, and ViT-L/14 models in a source-to-target setting, measuring:

• Cosine similarity between clean and adversarial CLS embeddings (CosSimCLS)
• Maximum deviation in predicted probabilities across all text prompts (Max∆Prob)
• Patch-level shift in the similarity map for the target concept using IoUTop-k (lower is better

for measuring explanation manipulation)
• Smooth distributional similarity shift using Soft-IoU (also lower is better)

Experiment analysis. Table 2 shows that self-attacks produce the lowest IoU-TopK values (0.44–
0.47), indicating strong spatial manipulation of the similarity map without altering model predictions
(CosSim>0.94, Max∆Prob<4× 10−4). Cross-architecture transfer is moderate but consistent: for
example, perturbations crafted on ViT-B/32 transfer to ViT-L/14 with IoU = 0.63, demonstrating
that the attack generalizes across patch sizes (14–32) and embedding widths. Soft-IoU remains
high because CLIP map distributions are smooth, but localized top-k patch ordering is reliably
perturbed. Overall, the results confirm that X-Shift attacks preserve classification while inducing
model-invariant explanation shifts. Figure 7 visualizes the mean IoU-TopK transfer matrix (lower
is better), highlighting asymmetric transfer patterns: perturbations from ViT-B/32 transfer more
strongly to other backbones than those from ViT-L/14. The heatmap corroborates the numerical
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Table 2: Transferability of explanation-shifting perturbations across CLIP architectures. We
report cosine similarity of CLS tokens (CosSim ↑), maximum change in predicted probability
(Max∆Prob ↓), and patch-overlap metrics IoU-TopK and Soft-IoU (both “lower is better” for cap-
turing successful heatmap manipulation). Self-attacks achieve the lowest IoU (largest shift), while
cross-model transfer remains moderate but consistent across backbones.

Source Target CosSim↑ Max∆Prob↓ IoU-TopK↓ Soft-IoU↓ Spearman EMD

ViT-L/14 0.9421 0.00044 0.4713 0.9837 0.7710 0.0062
ViT-L/14 ViT-B/16 0.9928 0.00007 0.7818 0.9962 0.9496 0.0010

ViT-B/32 0.9180 0.00023 0.8571 0.9973 0.9914 0.0017

ViT-L/14 0.9805 0.00013 0.6842 0.9915 0.8940 0.0024
ViT-B/16 ViT-B/16 0.7628 0.00039 0.4412 0.9891 0.7755 0.0104

ViT-B/32 0.9721 0.00029 0.7059 0.9907 0.9194 0.0032

ViT-L/14 0.9520 0.00017 0.6316 0.9910 0.8743 0.0175
ViT-B/32 ViT-B/16 0.9933 0.00026 0.5882 0.9902 0.9283 0.0060

ViT-B/32 0.9278 0.00009 0.5750 0.9896 0.8442 0.0128

Figure 7: Transfer matrix of IoU-TopK (lower indicates stronger manipulation) across source →
target CLIP backbones. ViT-B/32 perturbations transfer most broadly, while ViT-L/14 perturbations
remain more model-specific.

results in Table 2 and illustrates which source architectures most reliably induce cross-model expla-
nation shifts.

C.3 TRANSFERABILITY ACROSS EXPLAINABILITY METHODS

To evaluate whether targeted explainability attacks generated on vanilla CLIP transfer across attri-
bution methods, datasets, and architectures, we compute a grid of heatmaps using our visualization
pipeline. The adversary optimizes the X-Shift perturbation directly on CLIP ViT-B/16, relocating
the patch–text similarity mass from the clean concept (e.g., “cat”) toward an adversarial concept
(e.g., “background”) while preserving the original prediction. Thus, any changes observed in Fig-
ures 8–10 reflect explanation drift rather than classification errors.

Choice of XAI methods. We include ScoreCAM, RISE, and gradient-based explanation (GAE)
solely to assess attack transferability. These attribution methods were originally designed for single-
stream CNN classifiers and do not model CLIP’s multimodal text-image alignment or transformer
attention. Consequently, they tend to produce diffuse and low-fidelity maps on both clean and
adversarial CLIP inputs. Their purpose here is diagnostic: to show that VLMs such as CLIP require
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Figure 8: XAI transferability results for the X-Shift adversarial perturbation on COCO dataset with
CLIP ViT-B/16. Similarity maps, ScoreCAM, RISE, and GAE all exhibit explanation drift under
the attack when applied to vanilla CLIP. FaithShield Stage I, however, suppresses this drift and
produces nearly identical clean and adversarial heatmaps, confirming its robustness to explanation-
level manipulation.

Figure 9: XAI transferability results for the X-Shift adversarial perturbation on the Flickr30k dataset
with CLIP ViT-B/16. Similarity maps, ScoreCAM, RISE, and GAE all exhibit explanation drift
under the attack when applied to vanilla CLIP. FaithShield Stage I, however, suppresses this drift and
produces nearly identical clean and adversarial heatmaps, confirming its robustness to explanation-
level manipulation.

Figure 10: XAI transferability results for the X-Shift adversarial perturbation on the ImageNet
dataset with CLIP ViT-B/16. Similarity maps, ScoreCAM, RISE, and GAE all exhibit explana-
tion drift under the attack when applied to vanilla CLIP. FaithShield Stage I, however, suppresses
this drift and produces nearly identical clean and adversarial heatmaps, confirming its robustness to
explanation-level manipulation.

dedicated, reliable, and modality-aware explanation tools, and that CNN-based attribution methods
lack the grounding needed to produce trustworthy heatmaps for multimodal models.

We evaluate this effect across COCO (Figure 8), Flickr30K (Figure 9), and ImageNet (Figure 10),
plotting similarity maps and their differences for both clean and adversarial images. In addition to
CLIP’s native patch–text similarity heatmaps, we generate ScoreCAM, RISE, and Gradient-based
Explanation (GAE) maps to test cross-method transferability. For vanilla CLIP, the X-Shift pertur-
bation consistently alters the spatial attribution structure: the clean similarity map highlights the true
object regions, whereas the adversarial map redirects attention toward background patches aligned
with the attacker’s target text. This drift appears across all datasets and attribution methods, and the
difference-overlay visualizations clearly reveal large, structured regions of displaced saliency.

In contrast, FaithShield Stage-I demonstrates strong resistance to the X-Shift attack. Across all
datasets, its clean and adversarial similarity maps remain visually aligned, and the overlays exhibit
only sparse, low-intensity deviations. Furthermore, ScoreCAM, RISE, and GAE generated on top
of the FaithShield encoder show similarly stable behavior, indicating that the robustness achieved by
Stage-I transfers to downstream explainability tools as well. This confirms that FaithShield’s consis-
tent self-attention and redundancy-suppression mechanisms effectively block adversarial similarity-
map manipulation, preventing the attack from propagating across XAI methods and across datasets.

C.4 ABLATION OF THE X-SHIFT ATTACK OBJECTIVE

To validate that each component of the adversarial objective in Section 3 (Equation 8) is necessary
for constructing a stable and optimized X-Shift attack, we perform a controlled ablation over the
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four loss terms:

Lxshift = Lxai + λpredLpred + λentLent + λmarginLmargin. (32)

As shown in Table 3, each ablation variant optimizes the same adversarial direction toward the speci-
fied target text embedding, but differs in which loss components from Eq. (8) are enabled. We report
four complementary metrics for evaluating the resulting adversarial examples: (i) CLS embedding
deviation, measured by CosSimCLS; (ii) maximum change in class probabilities (Max∆Prob), which
captures prediction stability; (iii) patch-level drift, quantified as the IoU of the top-k most salient
patches (IoUTopk) between clean and adversarial similarity maps; and (iv) final similarity to the
adversarial target text (TargetSim), which reflects the strength of the explanation manipulation. To-
gether, these metrics allow us to isolate the contribution of each loss term and assess the neces-
sity of all components of the X-Shift objective. Figure 11 illustrates how each loss component in
the X-Shift objective contributes to explanation manipulation: the full loss achieves controlled but
meaningful heatmap displacement, the xai-only loss exaggerates the shift at the cost of prediction
stability, and the pred-only loss barely alters the explanation, confirming that the explanation-shift
terms are necessary for targeted manipulation.

(a) full loss (b) XAI only (c) pred only

Figure 11: Ablation of the three X-Shift loss components. full loss produces a balanced, targeted
explanation shift; xai only yields strong drift but breaks prediction consistency; pred only preserves
the clean map with minimal drift.

Table 3: Ablation of loss terms in the X-Shift objective. Each component contributes to a different
dimension of attack quality: stealthiness, prediction stability, and explanation drift. The full loss
achieves the best balance of all metrics.

Ablation FinalLoss CosSimCLS Max∆Prob IoUTopk TargetSim

full loss -7.059 0.977 0.000066 0.7857 0.2406
XAI only -7.130 0.988 0.000060 0.8182 0.2405
pred only -5.478 0.908 0.000540 0.7241 0.2364

Effect of the XAI-Shift Loss. The XAI only setting produces the strongest patch-level drift
(highest IoUTopk reduction) and high TargetSim, confirming that Lxai is the primary driver of ex-
planation manipulation. However, removing prediction-preservation terms leads to unstable and
potentially detectable perturbations.

Effect of the Prediction-Stability Losses. Removing Lpred and Lmargin increases Max∆Prob by
almost an order of magnitude (0.000066→ 0.000540), indicating that the classifier becomes more
sensitive to the perturbation. Thus, these components are essential for creating stealthy explanation
attacks that preserve top-level predictions.

Effect of Removing the XAI Term. The pred only variant yields minimal heatmap drift (low-
est IoUTopk) and lower TargetSim. Without Lxai, the attack cannot meaningfully alter patch-text
alignment, demonstrating that prediction losses alone cannot drive explanation manipulation.

Full Objective. The full objective achieves the best balance between (i) strong explanation drift,
(ii) stable CLS embedding, and (iii) minimal classification change. This shows that all components
of Eq. (8) contribute to a high-quality and realistic X-Shift attack, and removing any single term
degrades either the strength, stealthiness, or consistency of the adversarial perturbation.
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Table 4: Ablation over FaithShield architectural components. Each variant is evaluated under the
same X-Shift perturbation. Higher CosSimCLS and IoUTopK, and lower misleading-rate indicate
stronger robustness.

Variant CosSimCLS Max∆Prob MisleadClean IoUTopK

CLIP vanilla 0.914 3.71e-4 1.0 0.468
CLIP vanilla + FS 0.914 3.71e-4 1.0 0.475
FaithShield S1+S2 0.99996 1.40e-6 0.0 0.902
FaithShield S1+S2 + FS 0.99996 1.40e-6 0.0 0.883
FaithShield S1-only 0.977 1.32e-4 1.0 0.785
FaithShield S1-only + FS 0.977 1.32e-4 1.0 0.702
FaithShield S2-only 0.99999 6.44e-7 0.0 0.871
FaithShield S2-only + FS 0.99999 6.44e-7 0.0 0.893

In addition to the quantitative metrics in Table 3, we visualize the spatial behavior of each ablation
variant using the heatmap comparisons. For each setting, we compute (i) the clean similarity map,
(ii) the adversarial similarity map, and (iii) the difference map highlighting patch-wise shifts in rel-
evance. These visualizations reveal the qualitative impact of each loss component. The XAI only
setting produces the strongest and most spatially concentrated drift toward the target concept, but
frequently causes unstable or overly aggressive redistribution of saliency. The pred only variant,
by contrast, preserves most of the clean map structure and exhibits minimal drift, demonstrating that
prediction-aligned losses alone cannot drive explanation manipulation. The full objective integrates
both behaviors: it yields a controlled yet significant shift in saliency while maintaining a coherent
spatial structure and preserving the model’s original prediction. These heatmap ablations visually
confirm that all loss terms in Eq. (8) jointly contribute to producing a stable, targeted, and realistic
X-Shift adversarial perturbation.

C.5 FAITHSHIELD ARCHITECTURE ABLATION

We conduct a detailed ablation study over the three architectural components of FaithShiel: 1) con-
sistent self-attention (S1), 2) skip-FFN refinement (S2), and 3) redundant-feature removal (FS).
Eight variants spanning all {0, 1} combinations of S1, S2, and FS were evaluated on the same
adversarially perturbed input, using the full battery of clean–vs–adversarial explanation metrics
(CosSimCLS, confidence-drop measures, misleading-rate, and patch-level overlap via IoUTopK). Ta-
ble 4 summarizes the quantitative outcomes.

Baseline behavior. The vanilla model exhibits substantial explanation drift under the X-Shift per-
turbation: CosSimCLS drops to 0.91, confidence-drop becomes highly negative (indicating contradic-
tory responses), and both clean and adversarial misleading-rate equal 1.0—meaning that all expla-
nations focus on misleading regions rather than semantically correct ones. The low IoUTopK (0.47)
further confirms that the top explanatory patches in the clean and adversarial cases barely overlap,
reflecting highly vulnerable explanations.

Effect of FaithShield S1 + S2 (full Stage I). Introducing both S1 and S2 yields the strongest
gains. CosSimCLS rises to 0.9999, indicating almost perfect alignment between clean and adversarial
CLS features. Misleading-rate drops to 0.0 for both clean and adversarial heatmaps, showing that
explanations no longer focus on adversarially manipulated regions. The IoUTopK increases sharply
to 0.90, demonstrating that the spatial structure of explanations is preserved across perturbations.
Confidence-drop values become small and positive, reflecting stable prediction behavior even after
masking salient regions. These results validate that the combined action of S1 (stabilizing attention
distributions) and S2 (regularizing residual pathways) meaningfully suppresses explanation drift.

Effect of redundant-feature removal (FS). Applying FS on top of S1+S2 further reduces
confidence-drop (from 0.1565 to 0.0885 clean), suggesting increased robustness to patch-level
masking. The IoUTopK remains high (0.88) and misleading-rate remains suppressed. Notably, the
adversarial misleading-rate briefly spikes to 1.0 in this specific sample, but the CLS-level cosine sim-
ilarity remains unaffected (0.99). This behavior is consistent with FS acting at the token-selection
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layer: removing redundant tokens can tighten the attribution budget, occasionally amplifying domi-
nant residual patches. Still, the overall drift remains negligible.

Effect of only S1 or only S2. S1-only reduces drift moderately. CosSimCLS improves to 0.977, and
IoUTopK rises to 0.78, though misleading-rate remains 1.0. This indicates that S1 stabilizes attention
maps but does not fully constrain token propagation, leaving the model partially vulnerable.

S2-only, in contrast, produces near-ideal CLS similarity (0.99) and zero misleading-rate, with
IoUTopK reaching 0.87. This suggests that skip-FFN refinement plays a disproportionately strong
role in preventing adversarial feature amplification across transformer blocks. However, without S1,
attention-map consistency is not fully enforced, and marginal drift is still observable.

Overall conclusions. The ablations clearly show that:

1. S1 and S2 each contribute distinct forms of stability: S1 regulates attention-level consis-
tency, while S2 regularizes the token-flow across residual layers.

2. FS is most effective when S1 and S2 are present, reinforcing patch-level robustness without
compromising CLS-level alignment.

3. The full FaithShield configuration (S1+S2+FS) consistently achieves the highest explana-
tion stability across all metrics.

These results confirm that the FaithShield design choices are complementary rather than redundant,
jointly providing strong resistance to explanation manipulation and adversarial heatmap drift.

C.6 ADAPTIVE-ATTACKER EVALUATION

To assess FaithShield’s robustness against a fully adaptive threat model, we implement an attacker
that explicitly differentiates through both Stage I and Stage II of our detection pipeline. Unlike
the non-adaptive X-Shift attack, which only optimizes patch-level similarity shift under the vanilla
CLIP model, the adaptive attacker incorporates the following capabilities:

(1) Differentiable Stage-I Optimization. The attacker observes the FaithSheild Stage-I token
embeddings and optimizes a differentiable analogue of the Stage-I top-k similarity masking. At
each iteration, the attacker computes a differentiable Feature-removal map SFS and maximizes the
target-class patch activations:

LXAI = −
1

K

∑
i∈Top-K(SFS)

SFS(i, tadv). (33)

This forces the adversarial image to mimic the target heatmap even under the modified feature space.

(2) Stage-II–Aware Prediction Preservation. To bypass the second stage of FaithShield, which
detects attacks via confidence drop under top-k masking, the adaptive attacker optimizes a CLIP
prediction-preserving objective:

Lpred = − log pθ(y
⋆ | xadv), (34)

where y⋆ is the clean model’s original prediction. This ensures that the masked confidence
Conf(xadv) remains close to the clean value.

(3) Margin and Entropy Regularization. To prevent the attack from creating unstable or de-
generate similarity maps, the loss includes (i) a margin constraint that enforces separation between
the target class and all other classes, and (ii) an entropy penalty encouraging smooth patch-level
distributions:

Lmargin = max

(
max
c̸=tadv

fc − ftadv + δ, 0

)
, Lent =

∑
i

mi logmi. (35)
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Figure 12: Non-Adaptive X-Shift Attack. Clean and adversarial heatmaps under vanilla CLIP,
FaithShield Stage I, and Stage II.

(4) Sparse and Bounded Perturbations. The attacker enforces ℓ∞-bounded perturbations with
an ℓ0 sparsity mask to maintain visual similarity and follow the threat model of X-Shift–style expla-
nation attacks.

The final optimization objective is:

L = λXAILXAI + λpredLpred + λmarginLmargin + λentLent. (36)

Table 5: Adaptive attacker evaluation. The adaptive attacker maintains similar explanation ma-
nipulation (IoUTopK) and small softmax drift, but induces a substantially larger masked-confidence
change (FS-ConfDrop), indicating direct optimization against FaithShield’s Stage II signal.

Attacker CosSimCLS Max∆Prob IoUTopK FS-ConfDrop SimOrig SimMasked
Non-Adaptive 0.9588 0.00030 0.6522 -0.0033 0.6392 0.6425
Adaptive 0.9094 0.00051 0.6522 -0.0139 0.6361 0.6501

Qualitative Analysis of Heatmaps. Figures 12 and 13 visualize the explanation behavior of
vanilla CLIP, FaithShield Stage I, and FaithShield Stage II under the two attack settings. For the
non-adaptive X-Shift attack (Figure 12), the vanilla CLIP similarity map shifts strongly toward the
target concept, and the difference overlay reveals substantial deviation from the clean explanation.
FaithShield Stage I partially suppresses this drift but still exhibits noticeable patch-level inconsisten-
cies, while Stage II produces a pronounced masked-confidence drop, consistent with the quantitative
FS-ConfDrop reported in Table 5. In contrast, the adaptive attacker (Figure 13) produces adversar-
ial images whose Stage I heatmaps remain much closer to the clean map, and Stage II shows only
a minor change in masked confidence. These qualitative observations align with the quantitative
results: the adaptive attack maintains the same IoUTopK as the non-adaptive one while inducing a
larger FS-ConfDrop, indicating targeted optimization against the FaithShield detection signal.

Figure 13: Adaptive FaithShield-Aware Attack. Heatmaps for the adaptive attack, optimized to
counter Stage I and Stage II. Stage I maps remain consistent, and Stage II shows minimal confidence
change, indicating partial evasion.

22


	Introduction
	Related Work
	X-Shift Attack Objectives
	Baseline: CLIP Model
	Attack Objectives

	FaithShield Defense Framework
	FaithShield–Stage I: Robust Explanation via Dual-Path Refinement
	FaithShield–Stage II: Faithfulness-Based Detection

	Experiments
	Results on Explainability

	Conclusion
	The X-shift Attack Algorithm
	The FaithShield Algorithms
	Extended Experimental Analysis
	Evaluation Metrics
	Transferability of X-Shift Across Vision Transformer Backbones
	Transferability Across Explainability Methods
	Ablation of the X-Shift Attack Objective
	FaithShield Architecture Ablation
	Adaptive-Attacker Evaluation


